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2 Propagation of biological impulses

Understanding wave propagation in discrete excitable media is challenging be-
cause of poorly understood phenomena associated with spatial discreteness. The
study of the transmission of nerve impulses along myelinated axons and muscle
contraction are paradigmatic examples. This section is taken from [1, 2, 3, 4, 7].
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2.1 Myelinated nerves

Myelinated nerve fibers, such as the motor axons of vertebrates, are covered
almost everywhere by a thick insulating coat of myelin. Only a fraction of the
active membrane is exposed, at small active nodes called Ranvier nodes. The
myelinated axons of motor nerves can be very long, and contain hundreds or
thousands of nodes. The wave activity jumps from one node to the next one
giving rise to “saltatory” propagation of impulses. Saltatory conduction on
myelinated nerve models has two important features. One is the possibility of
increasing the speed of the nerve impulse while decreasing the diameter of the
nerve fiber. The other is propagation failure when the myelin coat is damaged,
which causes diseases such as multiple sclerosis.

2.1.1 Hodgkin-Huxley equations for myelinated axons

A myelinated nerve is a sequence of exposed Ranvier nodes separated by regions
covered with myelin sheaths. Myelin is considered to be a perfect insulator.
Then, the nerve axon can be represented by an equivalent circuit where C and
R represent lumped resistance and capacitance. Vk, Ik and Iion(k) represent
the membrane potential, internodal current and ionic current at the k-th node.
Applying Kirchoff’s laws to the circuit yields:

Vk−1 − Vk = RIk, Ik − Ik+1 = C
dVk
dt

+ Iion(k)

Adopting at each node the Hodgkin-Huxley expression for the ion current, we
obtain the discrete Hodgkin-Huxley model for a myelinated axon:

C dVk
dT + Iion(Vk,Mk, Nk, Hk) =

D(Vk+1 − 2Vk + Vk−1),
dMk

dT = λMΛM (Vk)(M∞(Vk)−Mk),
dNk
dT = λNΛN (Vk)(N∞(Vk)−Nk),
dHk
dT = λHΛH(Vk)(H∞(Vk)−Hk),

where the index k designs the k-th node of the fiber. Here, Vk is the deviation
from rest of the membrane potential, Nk is the potassium activation, Mk is the
sodium activation and Hk the sodium inactivation. The ion current is given by:

Iion(V,M,N,H) = gNaM
3H(V − V Na,R)

+gL(V − V L,R) + gKN
4(V − V K,R).

The fraction of open K+ channels is computed as N4
k . The fraction of open

Na+ channels is approximated by M3
kHk. The parameters have the following

interpretation. gNa and gK are the maximum conductance values for Na+

and K+ pathways, respectively. gL is a constant leakage conductance. The
corresponding equilibrium potentials are V Na, V K and V L, respectively. Then,
V Na,R = V Na − V R, V K,R = V K − V R and V L,R = V L − V R, where V R
is the resting potential. C is the membrane capacitance. The coefficient D =
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1
L(ri+re)

= 1
R , where L is the length of the myelin sheath between nodes and

ri, re the resistances per unit length of intracellular and extra-cellular media.
This model is adequate for the long axons of peripheral myelinated nerves.

Numerical simulations representing the propagation of nerve impulses are pre-
sented in [3], where an asymptotic construction of pulse like solutions is also
given. Nerve impulse propagation is shown to fail when the leading front of the
pulse is pinned [1], which happens when the myelin sheath deteriorates (multiple
sclerosis) or in the presence of drugs, see simulations in [3].

2.1.2 FitzHugh-Hodgkin-Huxley equations

More biological detail can be included by adding an equation for the membrane
potential V (x, t) across the myelin sheath in the internodes:

c
∂V

∂T
=

1

ri + re

∂2V

∂2x
− V

r
, x ∈ (xk, xk+1), t > 0

V (xk, t) = Vk(t), V (xk+1, t) = Vk+1(t)

coupled with the system for Mk, Nk, Hk and:

C
dVk
dT

+ Iion(Vk,Mk, Nk, Hk) = Ik(t)

Ik(t) =
1

ri + re
[
∂V

∂x
(x+
k , t)−

∂V

∂x
(x−k , t)]

In this way, myelinated nerve fibers can be described by a linear diffusion equa-
tion which is periodically loaded by the active nodes. This model produces a
good quantitative approximation of the conduction velocity for toad axons. Nu-
merical simulations of the sensitivity to different parameters (diameter, nodal
area...) produce results in agreement with experiments. The discrete Hodgkin-
Huxley model is recovered by assuming that the axial currents along the myelin

sheath ∂V
∂x (x, t) are constant in each internode. Then, ∂V

∂x (x, t) = Vk+1(t)−Vk(t)
L

in [xk, xk+1] with L = xk+1−xk. As a result, Ik(t) = 1
L(ri+re)

(Vk+1−Vk+Vk−1).

This approximation is reasonable in view of the numerical solutions constructed
in [7].

2.1.3 FitzHugh-Nagumo equations

The discrete Fitz Hugh-Nagumo system is a simplification of the Hodgkin-
Huxley model for myelinated nerves useful to gain qualitative understanding
of the mathematical clues of successful pulse propagation and propagation fail-
ure [1, 2]:

duk
dt

= d (uk+1 − 2uk + uk−1) + f(uk)− vk,

dvk
dt

= ε (uk −Bvk),
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k = 0,±1, . . . . Here uk and vK are the membrane potential and the recovery
variable (which acts as an outward ion current) at the kth excitable membrane
site (node of Ranvier). The cubic source term f(uk) is an ionic current, and the
discrete diffusive term is proportional to the difference in internodal currents
through a given site. The constant B is selected so that the source terms in the
FHN system are O(1) for uk and vk of order 1, that the only stationary uniform
solution is uk = 0 = vk, and that the FHN system has excitable dynamics.
The constant ε > 0 is the ratio between the characteristic time scales of both
variables. We assume ε� 1, that is, fast excitation and slow recovery.

2.2 Muscle contraction

Similar models are used to describe the contraction and recovery of muscle
fibers. The Morris-Lecar model is given by

dvk
dt

= D(vk+1 − 2vk + vk−1) + f(vk, wk)− 2I,

dwk
dt

= λ cosh(
vk − V3

2V4
)
[
1 + tanh(

vk − V3

V4
)− 2wk

]
,

where the index k denotes the k-th site and:

f(v, w) = 2w(v − VK) + 2gL(v − VL) + gCa
[
1 + tanh(

v − V1

V2
)
]
(v − 1).

vk is the ratio of membrane potential to a reference potential and wk is the frac-
tion of open K+ channels. The time scale is gK

2Cm
, gK being the K+ conductance

and Cm the membrane capacitance.
This system is a reduced version of the full Morris-Lecar model, which in-

volves one more fast variable mk. It exhibits a rich dynamical behavior de-
pending on its stationary solutions. There are two possibilities. It there is a
unique stable constant solution, the system displays excitable dynamics. When
it happens to be unstable, the system develops self-oscillations and displays
synchronization phenomena [4].

3 Modular protein behavior

Tissue elasticity in living organisms results from the extension and recoil of
proteins fastened to rigid structures that move under force. Polyproteins or
modular proteins, such as titin that plays an important role in muscle contrac-
tion, ubiquitin and other relevant proteins, comprise a number of repeated single
protein domains joined by short peptide linkers. A simple version of tissue elas-
ticity appears in most single-molecule experiments, like atomic force microscopy
(AFM), in which a biomolecule is chained to rigid platforms whose motion is
controlled. Force-clamp and length-clamp experiments provide information on
the protein structure, and can be interpreted by means of simple mathematical
models. This section is taken from [9, 12, 13, 15].
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In real experiments, the tip of the cantilever can attach the polyprotein at
any point. Therefore, the number N of protein monomers exposed to force varies
between one and the total number of monomers. Let the monomer positions be
xj , j = 1, . . . , N . The relative extensions of the monomers are uj = xj+1 − xj ,
j = 1, . . . , N and external forces ±F applied to the ends of the monomer chain
produce a potential −F

∑N
j=0 uj = Fx0 − FxN+1. Thus these forces on the

chain ends yield an equal effective external force F on each of the extensions
uj . The free energy of the jth monomer is V (uj ; δj), where V (u; δ) is a double-
well potential whose minima correspond to the folded (enthalpic) and unfolded
(entropic) states. The parameter δ can vary from monomer to monomer. The
monomers are connected to their next neighbors by harmonic springs (the link-
ers) and they undergo Brownian motion in the liquid in which they are im-
mersed. We assume that their inertia can be neglected and therefore that their
dynamics is overdamped. The resulting model is as follows [15]:

γj u̇j = F − V ′(uj ; δj)− kj+1(uj − uj+1)− kj(uj − uj−1) +
√

2kBTγj ξj(t),

〈ξj(t)〉 = 0, 〈ξj(t)ξl(t′)〉 = δjlδ(t− t′), j = 1, . . . , N.

Here V ′(u; δ) = dV (u; δ)/du, kj = k for j = 1, . . . , N + 1. As explained before,
the force F provided by the AFM affects the effective potential of all monomers
between the AFM tip and the platform equally. There are two possible experi-
mental settings: (i) The force F is kept constant (force-clamp experiments); (ii)
the total extension of the chain is controlled and kept constant or increased at a
uniform rate(force-extension experiments). In case (ii), F (t) is a new unknown
that should be calculated. The boundary conditions for this chain are

u0 = 0, uN = 0.

We assume that the monomers at x1 and xN rigidly follow the platform and the
AFM tip so that u0 = uN = 0. For case (ii) we need to add the constraint that
the total length of the monomer chain, L, be kept constant so that the following
new equation holds:

N∑
j=1

uj = xN+1 − x0 = L.

In force-extension experiments, L = µt+ ν, with a positive µ.

3.1 Folding and unfolding

In a typical force-clamp experiment, the force is first raised, kept at a large
value until all domains become unfolded and then abruptly lowered to a smaller
value. Immediately after the force increment, abrupt or stepwise unfolding of
the polyprotein follows. On the other hand, after the force is lowered, refolding
is similar for single module proteins and for homopolyproteins; the folding events
do not show traces of sequential folding for polyproteins.
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Assuming infinitely rigid springs connect the protein to AFM cantilever and
platform, u0 = u1, uN+1 = uN . At zero external force and temperature T , we
use the effective potential:

V (u) = U0

[(
1− e−2b(u−Rc)/Rc

)2

− 1

]
+
kBTLc

4P

(
1

1− u
Lc

− 1− u

Lc
+

2u2

L2
c

)
.

It is a cubic, with three zeros, three of which are stable. Given F , the smallest
u(1)(F ) and largest u(3)(F ) zeros represent the folded and unfolded state for
each module. Folding and unfolding phenomena can be explained qualitatively
and quantitatively in terms of pinning and depinning of fronts in this system
[?].

3.2 Force-extension curves

As the polyprotein is pulled, one or more modules unfold at a typical force
that measures its mechanical stability. It should be stressed that the unraveling
of a domain is a stochastic event and may occur in a certain range of forces.
These length-clamp experiments deliver a sawtooth force-extension curve (FEC).
Similar curves are obtained by stretching nucleic acids and other biomolecules.
When the force extension curve is swept at a finite rate, stochastic jumps be-
tween folded and unfolded states may be observed, and the unfolding force
increases with the extension rate.

Studying stationary solutions of the model proposed above [12], we have a
global constraint in the minimization procedure leading to the equilibrium values
of the extensions. As a consequence, the force-extension curve has multiple
branches in a certain range of forces. The stability of these branches is governed
by the free energy: there are a series of first-order phase transitions at certain
values of the total length, in which the free energy itself is continuous but its
first derivative, the force, has a finite jump. This behavior is completely similar
to the one observed in real experiments with biomolecules like proteins, and
other complex systems. The effect of noise and unequal monomer presence are
studied in detail in [15].

A simpler model of an oscillator coupled to Ising spins that undergo Glauber
dynamics [8] in contact with a thermal bath could explain qualitatively many
features of the force-extension curves measured in experiments with biomolecules
[9]. DNA force-extension curves correspond to cycling at different rates the
curves of the spin-oscillator first-order phase transition with the force as a con-
trol parameter. However, the spin-oscillator model is too simple to account for
the sawtooth pattern observed in length-controlled experiments.
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4 Biofilm spread

Biofilms are bacterial aggregates attached to wet surfaces and encased in a self-
produced polymeric matrix. This makes them hard to eliminate. At hospitals,
they are a major cause of hospital acquired infections. In industry, biofilm in-
duced damage in materials causes substantial losses. On the other side, they are
elementary cell aggregates which grow to develop patterns, providing a simple
toy system for models of tissue development.

When spreading in flows, biofilms elongate with the current forming threads.
The shape of the thread adapts to geometrical constraints, seeking to minimize
adequate energies. Its time evolution until an equilibrium shape is reached can
be described by discrete rod models. We tackle here two different experimental
frameworks: biofilms in networks of cylindrical tubes and biofilms in channel
flows. In the latter case, hybrid models combining cellular automata descriptions
of cell activity and continuous descriptions of macroscopic fields for chemicals
and flows reproduce a rich variety of patterns. Whereas biofilms in flows tend
to form filamentary structures, biofilms spreading on agar/air interfaces adopt
wrinkled shapes. Hybrid models incorporating elastic fields are also successful
reproducing wrinkle formation processes. This section is taken from [11, 14, 16,
17].

4.1 Biofilms in tubes

Consider the typical flow circuits used in medical systems. Injecting bacteria
of the Pseudomonas genus inside, tubes fill with helical biofilms which wrap
around the walls [16]. Vortical motion drive bacteria to the walls creating biofilm
nucleation sites. The biofilm then elongates following the streamlines until it
undergoes a helical instability.

Discrete rod models describe the process. The filament is discretized using
a sequence of nodes xi along the filament γ, plus a reference system at each one
(the material frame) that measures the twist. This frame is obtained at each
location twisting the Bishop frame (a fixed untwisted frame) a certain angle
θi. The dynamics of the discrete filament is then governed by equations for the
angles θi, and for the node positions xi.

The equations for the angles follow from energy arguments. When the un-
deformed configuration of the filament is straight and its elastic response is
isotropic, the elastic energy due to torsion and bending takes the form:

E =

n∑
i=1

β
(θi − θi−1)2

`
i

+

n∑
i=1

α

2`
i

i∑
j=i−1

‖wj
i −wj

i‖
2,

where α and β are the bending and torsion moduli, respectively. `
i

is the
length of the segments ei = xi+1 − xi in a reference undeformed configuration
{x0,x1, ...,xn+1}. The vectors wj

i , w
j
i , j = i − 1, i, are material curvatures in

the deformed and undeformed configurations, respectively. The material frame
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is updated in a quasistatic way. Imposing

∂E

∂θi
= 0,

for all segments i not fixed by a boundary condition, this system of equations
determines the angle configuration that minimizes the energy of the thread.
Clamped ends are accounted for assigning the material frame for i = 0, i = n.
No boundary condition corresponds to a stress free end.

We keep track of the filament position displacing the nodes according to
Newton’s second law:

M
d2x

dt2
= −dE

dx
+ f ,

where f represents the external forces and −dEdx the elastic forces. M is the mass
matrix, we set M = mI. Biofilm filaments live inside tubes of a certain shape.
A simple way to incorporate this restriction and reproduce helical instabilities
in tubes is a penalty method [16].

4.2 Biofilms in channels

Discrete rod models also allow us to reproduce the dynamics of filaments in cor-
ner flows, for instance. The dynamics of biofilm layers covering channel walls,
instead, is more appropriately described by means on hybrid models coupling
continuous descriptions of flow and chemical fields with cellular automata mod-
els of cell activity [11, 17].

Cellular automata provide a simple strategy allowing for an easy transfer
of information into macroscopic models. The film is divided in tiles, each of
them of the size of a cell. We have to decide for each cell whether it is dead
or deactivated, it moves, it detaches or it divides creating a newborn cell that
displaces the rest. That is done resorting to probabilities that depend on the
relevant concentrations. This approach allows us to use the same grid of tiles
to discretize the equations for the concentrations and the displacements.

The fluid surrounding the biofilm is governed by the incompressible Navier-
Stokes equations:

ρut − µ∆u + u · ∇u +∇p = 0, x ∈ Ωf , t > 0

divu = 0, x ∈ Ωf , t > 0

where u(x, t) is the velocity and p(x, t) the pressure. ρ and µ stand for the
density and viscosity of the fluid. The non-slip condition on the velocity holds
at the biofilm/fluid interface Γ.

Biomass tiles C located on the surface of the biofilm detach due to shear
forces exerted by the flow [17]

Pe(C) =
1

1 + γ
τ(C)

=
τ(C)

τ(C) + γ
.
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γ is a measure of the biofilm cohesion. τ(C) measures the shear force felt by cell
C. The probability for biomass motion in the x directions is defined as:

Px(C) =
1

1 + γ
|Fx(C)|

=
|Fx(C)|
|Fx(C)|+ γ

.

Fx is the force exerted by the flow in the x direction (on cell walls normal
to the x direction) weighted with a geometrical factor accounting for neighbor
protection. Similar expressions are used in the y and z directions.

The concentrations of nutrients and oxygen inside the region containing the
biofilm and the boundary layer are governed by:

−Ds∆
2cs = k2

cs
cs +Ks

co
co +Ko

,

−Do∆
2co = ωk2

cs
cs +Ks

co
co +Ko

,

with zero flux conditions at the substratum. One of them will act as limiting
concentration cl, that is, the concentration that limits biofilm growth. The cells
will divide with probability:

Pd(C)) =
cl(C))

cl(C) +Kl
,

where cl denotes the limiting concentration and Kl its saturation coefficient in
the Monod law. Whenever neighboring grid tiles are empty, the daughter cell
is placed in any of the empty tiles with equal probability. Otherwise, the new
cell will shift one of the neighbors. The cell offering the minimal mechanical
resistance is chosen [11].

This kind of hybrid models allows us to reproduce a variety of patterns, such
as ripples, mounds and streamers, as well as erosion and fragment detachment,
on channels of different geometry and roughness [11, 17].

4.3 Biofilms on surfaces

We can reproduce wrinkle branching in an expanding biofilm resorting to Föppl-
Von Karman descriptions of the interface biofilm/agar:

∂ξ

∂t
=

1− 2νv
2(1− νv)

hv
ηv

[
D(−∆2ξ + ∆CM ) + h

∂

∂xβ

(
σα,β(u)

∂ξ

∂xα

)]
− µv
ηv
ξ,

∂u

∂t
=

hvh

ηv
∇ · σ(u)− µv

ηv
u,

where hv is the thickness of the viscoelastic substratum and µv, νv, ηv its rub-
bery modulus, Poisson ratio, and viscosity, respectively. The bending stiffness

is D = Eh3

12(1−ν2) , where E and ν represent the Young are Poisson moduli of the

biofilm, whereas h is the film thickness. ξ stands for the out of plane displace-
ment and u the in plane displacement. α and β stand for x, y and summation
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over repeated indices is intended. Stresses σ and strains ε are defined in terms
of in-plane displacements u = (ux, uy):

εα,β =
1

2

(
∂uα
∂xβ

+
∂uβ
∂xα

+
∂ξ

∂xα

∂ξ

∂xβ

)
+ ε0

α,β ,

σxx =
E

1− ν2
(εxx + νεyy), σxy =

E

1 + ν
εxy, σyy =

E

1− ν2
(εyy + νεxx).

The residual strains ε0
α,β are expressed in terms of the growth tensor as:

ε0
α,β = −1

2
(gαβ + gβα + gzαgzβ) ,

and should be computed from cellular activity.
Using a cellular automata description of cell activity, we can calculate growth

tensors due to cell division, death, and water absorption processes, and estimate
the residual stresses. Performing ensemble averages, the averaged stresses repro-
duce spatial variations reflecting cellular activity. Filtering the resulting fields
using image processing techniques yields smooth approximations with a clear
spatial structure averaging just a few runs. These fields are smooth enough to
be plugged in Von Karman’s equations without causing numerical instability,
allowing to reproduce behaviors that resemble observed patterns [14].

5 Angiogenesis

Angiogenesis is a process through which new blood vessels grow from pre-
existing ones. Angiogenesis is vital for tissue delevopment and repair. However,
angiogenic disorders are often the cause of inflammatory and immune diseases.
Moreover, angiogenesis is essential for the transition of benign tumors into ma-
lignant ones, and for subsequent tumor spread.

A kinetic integrodifferential system is able to reproduce some aspects of the
development of the stochastic vessel network. The evolution of the density of
blood vessel tips p in response to the concentration of tumor angiogenic factor
released by cells c is described by the following set of equations:

∂

∂t
p(x,v, t) = α(c(x, t))δv0

(v)p(x,v, t)− γp(x,v, t)
∫ t

0

d s

∫
dv′p(x,v′, s)

−v · ∇xp(x,v, t) + βdivv(vp(x,v, t)) +

−divv [F (c(x, t))) p(x,v, t)]+ σ∆vp(x,v, t),

∂

∂t
c(x, t) = d∆xc(x, t)− ηc(x, t)j(x, t),

p(x,v, 0) = p0(x,v), c(x, 0) = c0(x),
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where

α(c) = α1

c
cR

1 + c
cR

, F(c) =
d1

(1 + γ1c)q1
∇xc,

j(x, t) =

∫
RN

|v|
1 + e|v−v0χ|2/σ2

v
p(x,v, t) dv, ρ(x, t) =

∫
RN

p(x,v, t) dv,

for x ∈ Ω ⊂ RN , v ∈ RN , N = 2, 3, t ∈ [0,∞). The constants β, σ, γ, d,
η, α1, cR, d1, γ1, q1 are positive. The parameter χ >> 1 (typically χ > 10)
whereas σ2

v << 1. δv0
is a Dirac measure supported at a point v0. v0 is a typical

sprouting velocity for the tips. The source term α(c)δv0
p represents creation of

new tips due to vessel tip branching. Tip vessel death when a tip encounters
another vessel (anastomosis) is described by the integral sink −γp

∫ t
0
ρ(p). The

Fokker-Planck operator expresses blood vessel extension. The chemotactic force
F(c) is taken to depend on the flux of blood vessel tips through j to represent
that consumption of tumor angiogenic factor is mostly due to the additional
endothelial cells that produce vessel extensions. The velocity cut-off through
the Fermi-Dirac distribution in the definition of j reflects the fact that cell
velocities are limited, and small [20]. Solutions in the whole space for this
model and simplified diffusion versions are constructed in [19, 20].

The general form of the boundary conditions in dimension N = 2, 3, is as
follows [21]. We impose Neumann boundary conditions for c:

∂c

∂r
(x, t) = cr0(x, t) < 0, x ∈ Sr0 ,

∂c

∂r
(x, t) = 0, x ∈ Sr1 , t ∈ [0, T ],

where cr0 represents the influx of tumor angiogenic factor coming from the inner
core of the tumor. Sr0 and Sr1 are spheres of radius r0 and r1, respectively. Since
diffusion is absent in the x variable, the transport operator forces boundary
conditions of the form:

p−(x,v, t) = g(x,v, t) on Σ−T .

The sets Σ±T = (0, T ) × Γ±, where Γ± = {(x,v) ∈ ∂Ω × R | ± v · n(x) > 0},
n(x) being the outward unit normal onto the boundary ∂Ω. We denote by
p+ and p− the traces of p on Σ+

T and Σ−T , respectively. In our geometry, the
boundary conditions for p are defined using the magnitudes that can actually
be measured: the marginal tip density ρ =

∫
pdv in the inner boundary and

the flux of blood vessels j =
∫
vpdv in the outer boundary. Using coordinates

x = rθ, with r = |x|, θ ∈ SN−1, and v = vrφ, with vr = |v|, φ ∈ SN−1, the
boundary conditions on Σ−T read:

p−(r0,θ, vr,φ, t) =
e−

β
σ |v−v0|2

I0

[
ρ(r0,θ,t)−

∫ ∞
0

dṽrṽ
N−1
r

∫
{φ̃∈SN−1|ṽ·n>0}

dφ̃ p+(r0,θ,ṽr,φ̃,t)
]
,

p−(r1,θ, vr,φ, t) =
e−

β
σ |v−v0|2

I1

[
−j0−

∫ ∞
0

dṽrṽ
N−1
r

∫
{φ̃∈SN−1|ṽ·n>0}

dφ̃ p+(r1,θ,ṽr,φ̃,t)f1(v)
]
,
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where p+ and p− denote the traces of the solution p on Σ+
T and Σ−T , respectively,

and

I0 =

∫ ∞
0

dṽrṽ
N−1
r

∫
{φ̃∈SN−1|ṽ·n<0}
dφ̃ e−

β
σ |ṽ−v0|2 , I1 =

∫ ∞
0

dṽrṽ
N−1
r

∫
{φ̃∈SN−1|ṽ·n<0}
dφ̃ e−

β
σ |ṽ−v0|2f1(ṽ).

The remaining functions are defined as:

f1(v) = v · n
[
1 + e|v−v0χ|2/σ2

v

]−1

,

j0(θ, t) = v0 α(c(r1,θ, t)) p(r1,θ, v0,w0, t),

for the fixed velocity v0 = (v0,w0, ), v0 > 0, w0 ∈ RN−1.

6 Imaging of biological structures

In many situations we need to extract information on the inner structure of
a medium from external indirect observations. Technology has provided many
tools for different purposes: magnetic resonance, tomography, ultrasound, radar,
seismic imaging... All of them are based on emitting some kind of wave which
interacts with the medium under study, and is then measured at a set of re-
ceptors. Knowing the data recorded at the receptors and the emitted waves,
we wish to reconstruct the internal geometry and/or material properties of the
medium. We consider here two particular imaging set-ups of biological rele-
vance: electrical impedance tomography and holography. This section is taken
from [10, 18].

6.1 Electrical impedance tomography

The impedance imaging problem consists in producing an image of the elec-
tromagnetic properties of a medium by applying electric currents to its exterior
surface and measuring voltages on it. The range of medical applications is wide,
because different tissues have different electromagnetic properties. For example,
we can think of monitoring for lung problems (embolies, clots, accumumation
of fluids) or blood flow (internal bleeding, heart function), screening for breast
cancer, determining the boundary between dead and living cells, detecting tem-
perature changes in hyperthermia treatments...

We want to reconstruct the admittivity γ inside Ω from measurements on
the boundary. If we assume that Ω contains a number of inclusions Ωi,j , the
admittivity γ is a piecewise function in Ω with discontinuities at the boundaries
of the inclusions. We set Ωi = ∪dj=1Ωi,j with Ωi,j open connected bounded sets

satisfying Ωi,l ∩ Ωi,j = ∅ for l 6= j. The admittivity in the matrix Ωe = Ω \ Ωi
is γe. We define γi in Ωi as γi = γi,j in Ωi,j . To simplify, we assume γe to be
known. To identify the inclusions from the recorded data, we can solve the
optimization problem [10]

J(Ωi, γi) =
1

2

∫
∂Ω

|u− Vmeas|2dl
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where u solves
∇ · γe∇u = 0 in Ωe, ∇ · γi∇u = 0 in Ωi,

u− − u+ = 0 on ∂Ωi, γi∂nu
− − γe∂nu+ = 0 on ∂Ωi,

γe∂nu = j on ∂Ω.

The unit normal n points outside Ωe but inside Ωi and u− and u+ denote the
limit values of u on ∂Ωi from outside and inside Ωi, respectively. Topological
derivative methods allow us to approximate solutions of the inverse problem
for such incident waves [10]. Instead of electromagnetic signals, other methods
monitor temperature recordings to locate unhealthy tissue. One can invert
similar problems by topological methods using thermal waves [5, 6].

6.2 Holography

Digital in-line holography is a promising tool for high speed three dimensional
(3D) imaging of live cells and soft matter. It can achieve high temporal (mi-
croseconds) and spatial (nanometers) resolution while avoiding the usage of toxic
stains and fluorescent markers. Holograms are two-dimensional (2D) light in-
terference patterns that contain information about the 3D positions and optical
properties of an object or set of objects.

When the emitted light beams are time harmonic, that is, Einc(x, t) =
Re[e−ıωtEinc(x)], the resulting wave fields also happen to be time harmonic
EΩ,κ(x, t) = Re[e−ıωtEΩ,κ(x)] and the complex amplitude EΩ,κ(x) satisfies a
stationary version of the time dependent Maxwell equations, the so-called for-
ward problem:

curl ( 1
µe
curlE)− κ2

e

µe
E = 0 in R3 \ Ω,

curl ( 1
µi
curlE)− κ2

i

µi
E = 0 in Ω,

n̂×E− = n̂×E+, on ∂Ω,
1
µi
n̂× curlE− = 1

µe
n̂× curlE+, on ∂Ω,

lim|x|→∞|x|
∣∣curl (E−Einc)× x

|x| − ıκe(E−Einc)
∣∣ = 0,

where µi, εi, κi and µe, εe, κe are the permeabilities, permittivities and wavenum-
bers κ2 = ω2εµ of the objects and the ambient medium, respectively. In bio-
logical media, µi ∼ µe ∼ µ0, µ0 being the vacuum permeability [?]. The signs
+ and − denote the values from outside and inside Ω. The vector n̂ represents
the outer normal vector.

The imaging problem becomes [18]finding objects Ω such that the equation:

Imeas(xj) = |EΩ(xj)|2, j = 1, . . . , N,

is satisfied. Alternatively, we can reformulate this equation as a constrained

13



optimization problem: Find the global minimum Ω of

J(R3 \ Ω) =
1

2

N∑
j=1

|IΩ(xj)− Imeas(xj)|2.

Here, IΩ = |EΩ|2 and EΩ is the solution of the dimensionless forward system.
Ω is the design variable in this optimization problem. The stationary Maxwell
system is the constraint. The true objects are a global minimum at which the
cost functional vanishes. We can tackle this problem by topological derivative
techniques [18].
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