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Partial Differential Equations

. Prove that the solution ® of the equation

d? dk
_ 2 d(x) = _
7@ =)~ [ e
with fR2 % = a fized and ‘é% € L? is unique.

Taken from [21]. Assume that there are two solutions ®; and ®, satisfying
such conditions. Set U = ®; — ®,. Then, % € L? and

d?U _ / dk _ / dk
dz? r 1+ exp(e(k) — @1(x)) & 1+ exp(e(k) — Po(z))’
Let us assume first that U(x) > 0 everywhere. Then
dkdz dkdzx
o / T exp(e(k) = @1(2)) / 1+ exp(e(k) — 85 (x))

which is impossible.

:a,’

Let us assume now that there is a unique point xg at which U(zy) = 0.

We take U(z) < 0 for < 29 and U(x) > 0 for > . Thus, fl;[{ < 0if

2 . . . .
r < zo and % < 0if x > x9. Then, % is decreasing if x < xg and %
is increasing if * > x¢. On the other hand,

dav\* < rdu\? © 1dU >
— | dz= — | d — | d
Y [ (2 o ()
is finite. If there exists x* such that %f*) > 0 and z* < z¢ then

fm* (ﬂ)2dx > (D) 2fm* dxr = oo. This is impossibl h
o0 \dz i = . possible, so that

— 00
‘fi—g < 0 for all x and U is decreasing. This contradicts our assumption on

xg. Therefore, we should have at least to points xzg and x; at which U

vanishes.

Let z¢p and x; be such that U(xg) = U(z1) = 0. If xp is such that
2

U(zy) = max {U(z), x0 <z < x1} > 0, then % < 0 because the

maximum is attained at an interior point. However,

d*U(xpr) dk B dk
2 dx? _/RlJreXp(e(k)f(I)l(xM)) /Rl+eXp(6(l€)7(I)2(l'M))

since U(zps) > 0. Hence, max {U(z), o0 < < 21} = 0. In an analogous
way, we conclude that U(z,,) = min {U(z), vo <z < x1} = 0. Therefore,
U =0 on [zg,x1].

Now we set g = min{z|U(x) = 0} and x; = max {x |U(z) = 0}. Then,
U(x) < 0 for x < z¢ and U(x) > 0 for x > z;. Repeating the above
arguments, we would obtain ' ¢ [zg,z1] such that U(a’) = 0. This

contradicts the definition of g and x;. Therefore, U = 0 everywhere and
P = Py,

0

>0,



2. Consider balls B, = B(x,¢) centered at a point x of small radius e. Given
a smooth function u(x), let v, be the solution of

Av, + kv, =0, in R?\ B,

ve = —u(x), on 0B.,

lim r!/2 ((%E — zkvE) =0.
r—o00 or

What is the behavior of %1: ase—07?

Taken from [47]. The Dirichlet—to-Neumann provides an expression for
the normal derivative of v, on I';:

Onve(x + &(cos 0, sin 6))
(1)yr
ko (Hp,jp) (ke) 2
= — L L / 0=y (x 4 £(cos ©,5in ©))dO
2m —~  HY(ke) Jo
n=-—00 [n|
in polar coordinates. Here H I(il) denotes the Hankel function of the first
kind of order |n|. We choose the normal vector n pointing into B.. For
sufficiently small € > 0,

Ov,

(H") (ke)
on v

HY (ke)

(x +e(cosf,sinf)) =k (x) + O(e).

For small € > 0, the Hankel functions have the following leading parts:

—2log(ke 2
HV (ke) ~ % (Ho") (ke) = —H}" (ke) ~ ——.

Thus,
(Hy") (ke) 1
HY (ke) ke log(ke)’

and 2= (x + £(cos 0, sin ) ~ mu(x).

3. Given a bounded open set Q C RN, we consider the problem: Find u > 0
such that

—Au=u? x€Q,
u=0 x¢€ o,
u>0 xe.

Prove that there is a solution when 1 < p+1 < p*, where p* = oo if N < 2
and p* < % when N > 2.



Consider the minimization problem

Jo IVul? dx

I= MinueHg(Q)f

W = MinueHg(Q)J(U)-

The functional J(u) to be minimized is positive, thus, bounded from be-
low. Consider a minimizing sequence u,, € H}(Q), such that J(u,) — I

as n — oo. The sequence v, = is a minimizing sequence sat-

Uy
Tun Tpptr
isfying also [[vy|[ze+: = 1. Then, [, |Vv,|*dx — I implies that v, is
bounded in H}(Q) and v,, tends weakly in Hg to a limit v € H}(Q). By
Sobolev injections, v,, is compact in LP*1 p + 1 < p*, thus v € LPTH(Q)
and ||vp||pe+1 = 1 — ||v||pp+1 = 1. By lower semicontinuity of weak con-
vergence, we have J(v) < limy,_00J(v,) = I. Since v € Hi (), we have
I < J(v). Therefore, I = J(v) and the minimum is attained at v. More-
over, we can replace v by |v| and J(Jv|) < I(v), so that w = |v| > 0 is a
minimizer too and I = J(w). w # 0 because |w| pr+1 = 1.

Now, J(w) < J(w +tr), r € HE () for real t. An asymptotic expansion
first for ¢ > 0 then for ¢ < 0 leads to

/Verdx:c/wprdx
Q Q

for all » € H3(Q2) and some ¢ > 0. This implies —Aw = cwP. Setting
w=c Ve Dy we get —Au = u? and u > 0, u # 0. By the strong
maximum principle, u > 0.

Ifp+1=p*= ]3—]_\7 and N > 2 existence depends on the geometry of €2,

2
see [1].
. Prove that the function v(x,t) = |t|rﬁ%¢(x), 1<p<p*—1, where
» \?
~ao=(27) oris xeo,
p—1
¢=0 xe€0dN,

is a solution of the backward parabolic problem

—Av+ o P, =0 x € Q x (—00,0],
v=0 x€INx(—00,0].

Proof taken from [3, 8]. We see that
P,
= ———|t|p—1
o= =Ll o0),
P\,
it = = (25 ) 147516601000,

~w = =800 = 117 (L) eGP ot)
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so that the equation is fulfilled. Existence of ¢ follows from critical point
theory.

. Given a solution u € WL (RT, HY(Q)) N W22 (R, L2(Q)) of
wpy — Au+ alu [P uy =0 in LO(RY, HH(Q))
with a >0, 1 <p and p+ 1 < p*, we set

1 1
E@®) = 5/Q|Vu(x,t)|2 dx+§/9|ut(x7t)|2 dx.

Then, for some positive constant C(F(0)), we have

E(t) < C(E(0)t~2/P=1 ¢ >0.

Proof taken from [2]. We set ¢(t) = E®~1/2 [ uu, dx. Next, we differ-
entiate with respect to t to get

E'(t)

fa/ lug|PTdx <0,
Q

o) = E(t)PD/2 (/ |ut|2dx—/ Vu|2dx—a/|ut|p_1utudx)
) Q Q

-1
—|—pTE(t)(p73)/2E’(t)/ uug dx
)

First, notice that E(t) < E(0) and — [, [Vu|?dx = —2E(t) + [, |u:|* dx.
Moreover,

1 1
/uutdx < B()~! (/ |u|2dx+f/ |ut|2dx> <
Q 2 Ja 2 Ja

for some positive constant C(€2) because Poincaré’s inequality implies

E@t)™!

2o lul?dx < @ Jo IVul?dx. As a consequence, we get

t) < )\ ur|“dx — aBE ()™ U |7 T upudx

o) < 2@ [ ufdx - aB@OE D [
Q Q

1

—op()Pth/2 P

5 C(Q)E(0)P~V/2E/(¢).

Now we set 1. (t) = (1+ K1) E(t) +eg(t) with Ky = 252C(Q)E(0)(P~1)/2,
We get

YLt) < 2eB(t)PD/2 /

g2 dx — aeE(t)@*U/?/ g [P
Q

Q
_9eB(H)PHD2 _ g / g [P+
Q



Notice that [lu,[|2. < meas(Q)®=D/PHI( [ |y, [P+1)2/(P+D) By Young’s
inequality

2
p+1

2507 [ P < 2 meas ) ()7 ( / |ut|p+1)
Q Q
p+1
<eE(t) = +56/ | [P
Q

for some positive § depending on €.

Using Sobolev injections for p + 1 < p* we find

_p
p+1
[ b wenax < ( / |utp+1dx) lallzos < SE)arllZes [Vl 2z

Notice that ||Vul||z2 < 2E(t). By Young’s inequality again
eaE(t)(p_l)/2/ e[ g dx < eaB (1) PTV2S(Q) ugl? o0 |Vl 2
Q
< %/ \ut|p+1 +€77(E)E(t)(p+1)/2
Q

where 1 > 0 depends on F(0), 2, a and ¢, and tends to zero as € tends to
zero. Adding up, we get

vElt) < (-5 + D) /Q el + (=1 +n(e) E()®+D/2,

On the other hand, for € small enough,

1

SE(t) < (1 K2e)B(t) < e(t) < (1+ Kae) < 2E(2).
Choosing ¢ small enough, we find

w;(t) < _ZE(P-H)/? < _%

Yo (t)PT/2,
Integrating the inequality we find E(t) < C(F(0))t=/®=1 for t > 0.
. Consider the wvorticity equation in two dimensions. Let v = curlu €
C((0,00); WHP(R2)), 1 < p < oo, be the solution of
v —Av+u-Vo=0, x € R? x R
v(x,0) = vy, x € R?,

for a divergence free velocity field u and an initial datum vy € L*(R?).
Prove 1) that the mass [, vo dx does not change with time and 2) that

[v() || e (r2) < Ct™'% fort > 0.



Proof taken from [4, 5]. Notice that u- Vv = div(uv) = 0. Integrating
the equation, using the divergence theorem, and the fact that v vanishes

at infinity we get
d
— vodx = 0.
dt Jg2

The velocity vector is given by

1 (_yQayl)
u(x,t) = K xv(x,t) = by /]R? WU(X —y,t)dy

where the kernel K € L** and ||K * v < ||K ||12,00[[v]|2e for r > 2,
l<p<2,1/r=1/p—1/2.

Writing down the integral expression for the solution

¢
v(t) = G(t) * vo + / VG(t — s) * [v(s) K *v(s)]ds,
0
where G(t) stands for the heat kernel, and taking norms we find

t
lo()llLr = IG(#) * vollLr +/ IVG(t = s) * [v(s) K * v(s)]l| v ds.
0
The integral terms decays faster than the rest, therefore
lo()llze ~ 1G(t) + vollLs < CL 5.

Recall that G(t) *vg is a solution of the heat equation with datum vy and
it belongs to LP for all 1 < p < oo for any t > 0 if vy € L'. Moreover,

IG(t) % vollo» < GO [0l 21 and | G(#)]|r» = C*F5.

. Let u be a solution of the incompressible Navier-Stokes equations in two
dimensions with initial datum vy € L' N L*(R?) such that div(ug) = 0.
Then u(t) € LP(R?) for 1 <p <2 andt > 0.

Proof taken from [6, 10]. The theory of classical solutions with L? data,
that is, ug € L?(R?) guarantees that u(t) € L>([0,00); L?>(R?)) and is
bounded by ||ugl||z2. By taking the divergence of Navier-Stokes equations

u— Au+u-Vu=Vp, div(u)=0,
we get an equation for the pressure
—Ap =div(u- Vu).

The pressure is then the convolution p = Es * div(u - Vu), where Es is
the fundamental solution of —A in R?, up to a function of time. Then u
satisfies the integral equation

u(t) = G(t) xug + / 0;G(t — s) xu;u(s)ds

0
t
+/ 0;G(t — s) * 0;VEs * u;u;(s)ds,
0



where 9; denotes partial derivative with respect to x;, u; are components
of u and summation with respect to repeated indices is intended. Since
u € L', G(t) xup € L9 for all ¢ > 1 and t > 0. On the other hand,
u(s) € L? implies that u;u;(s) € L'. Moreover,

t t

H / 0,G(t — 5)  uguy(s)ds|| o < C / (t—s)""" 072 uffads < Ot
0 0

for 1 < ¢ < 2. Thus, the first integral belongs to LY for 1 < g < 2. Let

us consider now the second integral. Since 9;G(t) belongs to the Hardy

space H'(R?) and 9;VEj is a Calderon-Zygmund kernel, we conclude that
GzG(t — 8) * 6jVE2 € L' and

10:;G(t — 8) % 0;VEy| 11 < Cll0:G(t — shn < C(t—s)7 .

Thus,
t t —1 1
H/O 0;G(t—s)*0;VEy*uju;(s)ds| 5/0 C(t—s)= |lu(s)||?2ds < Ctz.

In an analogous way, since 9;V Ej is a Calderon-Zygmund kernel, we con-
clude that 0;G(t —s) * 9;VE, € L1, 1 < g < 0o and

10:G(t = ) 9,V s 1s < COiG(t — 8)l|pa < Ot —5) 7572

Thus,

t t
H / 0, Gt — 5) 0,V Es # wsu;(s)ds|| o < / C(t—s)" 7 ||u(s)|32ds

forl <g<2.

8. A line vortex lying along a curve I' in an incompressible inviscid and
irrotational fluid is a solution of the following equations

div(u) =0, curl(u) = wodr(x),

where u is the fluid velocity, wy = 27y is the circulation around the vortex
and vy is the vortex strength. or is a Dirac function supported at the curve
I'. Express this solution in terms of a vector stream function.

Taken from [11]. We define a vector stream function U in R3 as the
solution of div(U) = 0, curl(U) = u. Then —AU = wydér(x). Using the
Green function for the Laplacian in R? we get U = = fr rlx,ldx’ .

9. Consider the convection diffusion equation

up — Au+ 9y (Jul? tu) = 0



10.

11.

set in R"™1 x R x RT, with x = (21,...,7p_1,y). Assume that V is a
solution with initial datum Vo € (L' N L) (R™) and v is a solution with
initial datum vy € (L* N L*°)(R™). Assume that

v,V € CH[0,T]; L*(R?)) N L*>([0,T]; H*(R?)) N L>=((0,T) x R?)

for every T'> 0. Then, v < V.

Proof taken from [7, 9]. The function w = v — V satisfies
wy — Aw + 9y (Jv]*"w) — 8, (|V]T'V) <0

and w(0) < 0. Multiplying the inequality by w™' and integrating by parts,
we obtain

d [lwt ()P

o 5 dx+/|Vw+(t)|2dx§ /aw+(t)8yw+(t)dx

where a(x,t) = w is a bounded function. Integrating in ¢

and applying Young’s inequality we get

“w+(t)||§ i V + 2d <K K + 2d ¢ v + Qd

T Vet G)lads S Ky | flwT(s)llads +e | [[VwT(s)ll2ds
0 0 0

for € as small as needed. Notice that w*(0) = 0. Gronwall’s inequality for

t
lwt ()2 < 2K, / o (s)12ds
0

implies w™ (t) = 0.
Prove that the solution of
z—Az=d-V(GY), z(0)=0
can be calculated in terms of heat kernels.
Taken from [19]. Set z =d - Vg where g, — Ag = G, ¢g(0) = 0, that is,

o(t) = /0 G(t — ) + G(s)ds.

Ezxpress the solution of the transmission heat problem

Uy — kAU =0, in RV \ Q; x (0, 00),
Ut — OéiliiAU = 0, n 97 X (0, OO),

U™ — Ut = Upe, on 9%; x (0,00),
ai%U_ - (%U"’ = %Uinc, on 9%; x (0,00),
U(,O)ZO, inRN,

in terms of Helmholtz problems using Laplace transforms.



12.

Taken from [41]. We define u;n. and u as the Laplace transforms in time
of Uine and U:

Uine (X, 8) = / e M Uine(x,t) dt,  u(x,s) = / e SU(x,t) dt, x € RV,
0 0

For each value of s, the function us(x) := u(x, s) solves

Aug + N} us =0, in RV \ Q,
a;Aug + A2 jus = 0, in Q;,
Uy — U = Uine,s, onT,
- + _
Q;jOnuy — Opug = OnUine,s, on I,
2 2 —
where \2 | := —s/ke, A = —s/k; and Uine,s(X) = Uinc(X,s). We set

= (“)QZ-.’ This problem has a unique solution satisfying the Sommerfeld
radiation condition at infinity,

lim T(N_l)/2 (arus - Z)\s,eus) =0, = |X|7
r—00

for all s € C\ (—00,0]. This characterization of us(x) can be used to
define and compute u(-, s) for all s € C\ (—o0, 0].

The solution of the time-dependent problem is recovered by inverting the
Laplace transform:

1
U(x,t) = 9 /c e u(x, s) ds.

Since u(+, s) exists for all s € C\ (—o0, 0] and depends holomorphically on
s, many different choices for the inversion path C are possible.
We know that the problem
gt — Ayg+v-Veg+ E(x,t) - V,g =0, x e R3 v eR®teRT,
g9(x,v,0) = go(x,V), x € R® v e R?,
with go € L*(R3 x R3) and bounded and Lipschitz E admits fundamental
solutions I'g. The solution of the initial value problem can be expressed as

g(x,v,t) = /FE(X,V,t;X’,V’,O)dX’dV’

and I'g satisfies the estimates

Te(x,v,t;x', v/, t)| < C(|EllLg,, T) G(x/2,v/2,t;x/2,v'/2,1),
G(x/2,v/2,1;x'/2,v' /2, 1)
(t_tl)l/Q :

|0y, TR(x, v, t;x', v/, )| < C(||E||L§<:t,T)

where G is the fundamental solution for the problem with E = 0. FExtend
these results to problems for which E is just bounded.

10



Taken from [12]. We regularize E by convolution and consider E5s =
E * s where 7s is a mollifying family of functions. Then E;s are bounded
and Lipschitz, so for each of them we can construct solutions gs of the
initial value problem and have estimates on the fundamental solutions I's.
Moreover, ||Es||lrx, < [[E|re, and Es — E as § — 0.

Since T's is bounded (locally in t) in any L , space, a subsequence con-
verges weakly (locally in t) in any L . (weakly * if p = 00) to a function
I'e and we can pass to the limit in the right-hand side of the integral
expressions for the solutions g5 in terms of T';.

Moreover, the integral expressions imply that gs are uniformly bounded in
any space L . with respect to ¢ and locally in t. Therefore, g5 converges
weakly (locally in t) in any L?, . space to a function g and their derivatives
also converge in the sense of distributions.

In the distribution sense, the derivatives of I's with respect to v converge
weakly to the derivatives of 'g. We can also pass to the limit in the
inequalities satisfied by I's and establish similar inequalities for I'g because
1Esllre, < [|EllLe,-

Now, multiplying the differential equation satisfied by gs by gs we get a
uniform L2,, bound on V,gs. If we multiply the equation by |v|* we get

zvt
a uniform L}, , bound on |v|?gs.

xvt
Multiplying the differential equations satisfied by gs by test functions,
we can pass to the limit in all the terms of the weak formulation of the
equation except in EsV, gs with the convergences already established. The
passage to the limit in this term is technical, see details in [12]. Finally,
g is a solution for the initial value problem with bounded E and I'g an
associated fundamental solution.

. Calculate the equilibrium solution of the Liouville-master equation

atp(xapvaat) + %azp(xvpa th) + <_mw3x + NZUiJiJrl) 8pP(fE,p,0',t)

i=1

N
= Z [Wz(Rla|xap)P(l‘7pa Rlo-7t) - WZ(U|I7P)P('r7p70?t)] .

i=1

Taken from [49]. The equilibrium solution of this equation is the canonical
distribution

1
Peq(,p,0) = Ze_m'[(%p,a) 7

where Z is the partition function

—+oo +oo
Z :/ dx/ deefﬁH(z’p’”),

and B = (kgT)~!. For a study of nonequilibrium behavior see [50].

11



14.

15.

Construct solutions of the scalar conservation law wy + (c(x)w), = x with
w(0) = wo.
Taken from [17]. We set v = cw. Then, v; + cv, = 0. Thus, v is constant

along the characteristic curves x(t) solution of z/(¢t) = c(x(t)), z(0) = =0,

because
%v(m(t),t) — oy (2(8), )2 (1) + vy (2(2), £) = 0.

Given (z,t) we may be able to calculate zq(z,t) such that the character-
istic curve with initial value xzo(z,t) satisfies x(t) = . Then v(x,t) =
v(x(t),t) = vo(xo(z,t)) and w(z,t) = % The feasibility of this
procedure will depend on the function c.

Solve the problem
or 0

Jds + %(
/ kr(s,k)dk = t,
0

limg_ok'/3r(s, k) = 2.

EY3r) =0,

Taken from [34]. Integrating the equation over k > 0 we find

d o0

— (s, k)dk = limg_ok'/?r (s, k) = 2¢(s).
ds Jo

Arguing as in the previous exercise, the method of characteristics yields

k(. k) = 2e(s — (k) H(s — a(k)),

a(k) = %1&/3,

in which H(x) is the Heaviside function (1 for positive x, 0 otherwise).

Differential-Difference Equations

. Consider the differential difference equation u} (t) = tpy1 — 2Up + Up—1 —

Asin(uy,), where A is a positive parameter. Prove that there is a monotone
solution such that u_o = 0 and use = 27 withug = ™ and u,—7 = T—uU_,
for all n.

Taken from [14]. We set ugp = = and vary uy in the interval (m,2m) to
find the desired solution. The condition uy = 7 ensures that u,, — 7 is an
odd function of n. We first choose € > 0 so that —Asin(u) > e(u — )
for 7 < w < 37. Then, we choose N large so that (N — 1) > 1. Next,
we choose u; — 7 small so that u; < %77 for 1 < j < N. We wish to

12



show that under these conditions, the finite sequence {uq,...,uy} is not
monotone increasing. It is convenient to let U,, = u, — . If {Uy,...,Un}
is monotone increasing, then 2 < j < N and U; < (2 — ¢)U;_1 — Uj_s.
Adding these inequalities results in Uy —Upn_1 < € Zi_zjg_l Ui+ (1—¢e)U.
Since we assumed that U; > Uy for 2 < ¢ < N, our lower bound on N then
shows that Uy < Un_1, a contradiction. Therefore, we have shown that
for sufficiently small U7, the sequence starts to decrease before crossing 7.
On the other hand, we have simply to choose U; > 7 to have the sequence
cross 7 before decreasing. Note that if the sequence increases until some
first V such that Uy = 7, then Uyyq > 7. If, finally, there is an N such
that the sequence increases up to n = N, with Uy < 7, and Uy = Uy 41,
then Uy42 < Un41 so that the sequence decreases before reaching .

. Let U;(t) and L;(t), i € Z be differentiable sequences such that

Ui (t) = dy(Us)(Uigr — Ui) — do(Us) (Ui 1 = Ui) = f(Us) >
Li(t) = di(Li)(Lit1 — Li) — do(Li)(Li—y — L) — f(Ls)

and U;(0) < L;(0) for all i, where f, di > 0 and da > 0 are Lipschitz
continuous functions. Then, U;(t) > L;(t) for allt > 0 and i € Z.

Taken from [15]. By contradiction, set W;(t) = U;(t) — L;(t). At ¢t =0,
W;(0) > 0 for all 4. Let us assume that W; changes sign after a certain
minimum time ¢; > 0, at some value of ¢, ¢ = k. Thus Wy(¢t1) = 0
and W, (t) <0, as t — t;. We shall show that this is contradictory. At
t = t1, there must be an index m (equal or different from k) such that
Wi (t1) = 0, while its next neighbor Wi,4;(t1) > 0 (j is either 1 or —1),
and W;(t1) = 0 for all indices between k and m. For otherwise W}, should
be identically 0 for all k. The differential inequality implies

W (t1) = di(Unn(t1)) Win1(t1) + do(Up (81))Win—1(t1) > 0.

This contradicts the fact that W) (¢) should have been nonpositive as
t — t1, for W,,(t1) to have become zero in the first place.

. Consider the equation
U'(t) = 21(F/A) + z3(F/A) — 2U (t) — Asin(U(t)) + F,

for |[F| < A, A >> 1 where z;(F/A) < z(F/A) < z3(F/A) are three
consecutive solutions of the equation sin(z) = F/A in one period. Prove
that there is a critical value F. such that this equation has three stable
constant solutions if 0 < F' < F, but one if F > F.. Characterize F,.

Taken from [18]. When F' =0, 21(0) = 0, 22(0) = 7 and 23(0) = 27. We
need to solve

2z 4+ Asin(z) = F + 2arcsin(F'/A) 4 2.
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As we increase F' from 0, we keep on finding three solutions z1(F/A) <
29(F/A) < z3(F/A) continuing these branches until F'+ 2arcsin(F/A)+ 27
hits the first local maximum of 2z + Asin(z) (remember that A is large).
The value F,. at which this happens is characterized by the existence of a
double zero, a value ug such that 2 4+ A cos(ug) = 0 and 2ug + A sin(ug) =
F.+2arcsin(F./A) + 2n. Then, ug = arccos(—2/A) and F. is the solution
of 2up(A) + Asin(ug(A)) = F,. + 2arcsin(F./A) + 27. Below F,. we have
three zeroes, at F, two collapse, above F, the collapsing ones, z;(F/A)
and z9(F/A) are lost.

z1(F/A) and z3(F/A) are stable while they exist. This picture corresponds
to a saddle node bifurcation in the system, see [18].

. The system of equations

a Ty by

(Big1 —2E; + E;_q) = J —v(Ey),

for i € Z admits traveling wave solutions of the form E;(t) = E(i — ct)
propagating at constant velocity ¢ when the parameter J is large enough.
Here, v, D are positive functions and v > 0 is large. v is a cubic, it grows
from 0 to a local maximum, decreases to a positive minimum, and increases
to infinity later. Justify that the wavefront velocity scales as (J — J.)'/?
where J. is the threshold for existence of travelling waves.

Taken from [20]. For v large, we can construct stationary solutions, which
can be approximated by

E1N21(J) 1 <0, E1N2’3(J) 1> 0,
for |J| < J., while Ey solves

v(Eo)

J = v(Eo) = == (Eo — 2.(J)) + D)

(Zd(J) — 2EU + Zl(J)) = O,

where z1(J) < z3(J) < z3(J) are solutions of J = v(z). At a value J,,
21(J.) = z2(J.) and these roots are lost for J > J., only z3(J) remains.
The reduced equation

dEq
dt

v(Ep)

= J — U(Eo) — T(EO — Zl(J)) + D(EO)

(z3(J) — 2Ep + z1(J)),

for the middle point undergoes a saddle node bifurcation at J. with normal
form

¢ = a(Je)(J = Je) + ﬁ(JC)¢27

which has solutions of the form /3 (J — Jc) tan(y/aB(J — Je)(t — to)),

blowing up when the argument of the tangent approaches +m/2, over a
time t—tg ~ w/y/aB(J — J.). This value J. separates the regime for which

14



we have stationary (pinned) wave front solutions and travelling wave front
solutions. It marks the depinning transition.

Now, for J > J. but close to J., simulations show staircase like wave pro-
files, in which a point stays near the vanished equilibrium Ey(J.) until it
moves following the tangent path given by the normal form and is replaced
at position Fy(J.) by a neighbouring one, once and again. The wave veloc-

ity is the reciprocal of the time this transition takes c¢(J,v) ~ 7“1[3(:_&),
see [20] for details.

. We consider a problem with noise

dui
dt

=Uip1 — 2u; +ui—1 + F — Asin(ui) + &,

where A > 0 is large and v > 0 characterizes the disorder strength and &;
is a zero mean random variable taking values on an interval (—1,1) with
equal probability. Show that the speed of the wavefronts for F larger than
the critical value F* scales as (F — F*)3/2,

Taken from [22]. Setting v = 0, we can repeat with this equation the
study done in the previous exercise and obtain a velocity that scales like
(F — F.)'/?. However, when we add noise, for each realization of the noise,
the threshold F, is shifted slightly up or down by the noise. The observed
velocity will be the average of the velocities observed for a large number
of realizations. If

erl ~ = /alFBENF — o)+ 18(Fo)eo

the average

1 N 1 ! 1/2 *13/2
C:N;cﬂ:%/ (aB(F — Fo) +yBE)/7dE ~ (F — F)

—1

where the new critical field is Ff = F, — 1.

. Consider the problem

du;
dt

with A large. Let z1(F/A) < zo(F/A) < z3(F/A) be the three consecutive
branches of zeros of F — Asin(z) = 0 which start at z1(0) =0, 22(0) =,
z3(0) = 2w. We know that for |F| < F.(A) the problem admits stationary
solutions increasing from z1(F/A) at —oco to z3(F/A) at co. When F
surpasses that threshold, we have travelling wave solutions. Write the
equation for such travelling wave solutions and find a formula for the
velocity.

=Ujy1 — 2u; +ui—1 + F — Asin(ui),
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Taken from [24]. Travelling wave solutions have the form u;(t) = u(i—ct),
where ¢ is a constant wave speed and wu(z), z = i — ct is a wave profile,
which solve

—cu,(z) =u(z+1) —2u(z) +u(z — 1) + F — Asin(u(z)), z€eR

with u(—o00) = 2z1(F/A) and u(oo) = z3(F/A). These type of travelling
wave solutions are called fronts. Multiplying the equation by u, and inte-
grating, we find

. The discrete Fitz Hugh-Nagumo system is a typical model for pulse prop-
agation

eu = d(uwipr — 2u; +ui—q) +ui(2 — wi)(u; —a) — vy,

vi = u; — Bu.
when the parameter values €,d > 0 and a are such that (0,0) is the only
constant solution. € is small and a is such that z(2 — z)(z — a) has three

roots z1(a) < za(a) < z3(a). Explain how to describe the evolution of pulse
solutions in terms of front solutions for Nagumo type equations

eu; = d(uipr — 2u; + ui—1) + ui (2 — ;) (u; — a) — w.

Taken from [25]. Pulse-like solutions take the form w;(t) = u(z), v;(t) =
v(z), z =1 —ct € R, with

—ceu,(z) = d(u(z4+1) — 2u(z) + u(z—1)) + u(2)(2 — u(2))(a — u(z))

— v,
—cv,(2) =0,

for z € R. For small enough v, we denote by z;(a,v) < z2(a,v) < z3(a,v)
the three roots of u(2)(2 — u(z))(a — u(z)) — v = 0. Since € is small, u;
and v; evolve in different time scales. We distinguish 5 regions in a pulse
like solution

e Pulse front: u; = z1(a,v;) and v, = z1(a,v;) — Bv;, which evolves to
(0,0) as i grows.

e Pulse leading edge: Described by a traveling solution of eu} = d(u;+1—
2u; +wi—1) +ui (2 — u;) (u; — a) — 0 which decreases from 2 to 0, with
v; ~ 0. It travels at speed c.

e Pulse peak: u; = 22(a,v;) and v} = z3(a, v;) — Bu;.

e Pulse trailing edge: Described by a traveling solution of eu} = d(u; 41—
2u; + wi—1) + ui(2 — u;)(u; —a) — w which increases from 0 to 2,
with v; ~ w, w selected in such a way that it travels with speed c
too.

16



e Pulse tail: u; = z1(a,v;) and v} = z1(a,v;) — Bv;, which evolves to
(0,0) as i decreases.

See [25] for a visualization. See [32] for an application of these ideas
to Hodgkin-Huxley models for myelinated nerves. Pulse solutions fail to
propagate when the leading pulse cannot move because for the parameters
we use the reduced from equation has only stationary front solutions, they
are pinned.

. Consider the system

’U; = d(Uj+1 — 2v; + ’Uj_l) + f(’Uj,’LUj),
wi = Ag(vj,w;),

with d,\ > 0 and X\ is small, for the two variables to evolve in different
scales. For w fized, f(v,w) is a ’bistable cubic’, that is, it has three zeros,
two of which are stable. When f(v,w) = 0 = g(v,w) has a unique solution,
which is stable, we have pulse like solutions for the differential system, as
for Fitz Hugh-Nagumo. When it is unstable, show that oscillating solutions
appear.

Taken from [33]. When g and f intersect at a stable zero, we have an
excitable system displaying pulse like solutions. When they intersect at
an unstable zero, limit cycle solutions (V' (¢), W(t)) with period T, T > 0
of

v = flv,w), w = \g(v,w),
for A small, play a role. The trajectories of the system behave like v, (t) =
V(t+ ¢;) and w;(t) = W(t + ¢;), for a slowly varying phase ¢; which

may become independent of ¢ as ¢ — oo. All the trajectories are then
synchronized.

. Let u; j(t) be a solution to
Qi
ot
for i,j € Z and u; ;(0) = oy, satisfying cit1,; — 204 + i1, € 12,
sin(ov,j—1—ai ) sin(ai i1~ ) € 1 and aqj € IS If (uije1—uig)(t) €
Nnez [—g + 2nm, § + 2n7r] holds for alli, j, t, then u; ;(t) tends to a limit

s;.; ast — 0 which is a stationary solution of the problem.
Taken from [23]. Define w; ;(t) = w; j(t+7)—u; ;(t) for some 7 > 0. Then

= ui*l,j — 21142'7]' + ui+1,j + A(sin(um—,l — um-) sin(ui,jJrl — ui,j))

% %Zhﬂz‘,j(tﬂz ==Y ((wiyr;—wi;)(#)* =D (sin((wi jy1—wi ;) (t+7))

= sin((w,j+1—i5) (1)) (Wi g1 — wi ) (E+7) — (Wi j41 — uij)(t)) < 0.

This implies w; ;j(t) — 0 as ¢ — oo for every ¢, j. In conclusion, u; ;(t)
tends to a limit s; ; which is a stationary solution of the problem.
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10.

11.

12.

We solve
7 = Uio1j — 22U+ uip g+ A(sin(ug o1 — ) sin(ug g1 — ui )

with boundary conditions s; ; = 0(i,7/v/A) + Fj where 0 is the angle
function from 0 to 2w and F > 0 is a control parameter. For F = 0,
the previous exercise ensures existence of stationary solutions. Can you
expect a change as F' grows?

Taken from [26]. As F grows, the condition

T T
(Wi j+1 — i ;) (t) € Npez b + 2nm, 5 + 2nm

will fail. Stationary solutions will disappear and travelling patterns will
be observed. Notice that if we linearize the spatial operator about s; j,
we have a discrete elliptic problem for F' small but it changes type as F
Srows.

We construct numerically solutions of

82ui7]‘ + (‘3ui,j
(%
ot? ot

+A(sIn(uij—1 — wig) sin(ui jp1 — wij))

= Ui—1,j — 2Ui 5 + Uit1,

in a square lattice i =1,..., N, j =1,..., Ny, with boundary conditions
u;; = F(j — (Ny +1)/2). This is equivalent to ’shearing’ the lattice. As
F grows, we observe that the initial zero solution for F = 0 changes into
slowly varying stationary solutions until we reach a point F. past which
the lattice structure is distorted in two main different ways. Linearizing
the problem at F = F, we find a zero eigenvalue for the resulting matriz,
while all the eigenvalues are negative for ' < F.. How do you explain
this?

Taken from [36]. The branch of stationary solutions s; ;(F') seems sta-
ble. At F' = F, and two new branches appear. The system undergoes a
pitchfork bifurcation.

We construct numerically solutions of

62111‘ 7 61}1‘ 7
Mo T
+A(sin(vi j—1 — vi5) sin(vi j41 — vi5))

=Vi—1,j — 20ij + Vig1,j

in a square lattice i = 1,..., Ny, j = 1,...,N,. We set the boundary
conditions representing a ‘push down’ from the central top part:

o Left-hand side: vi; = v ;.

o Right-hand side: vN, j = UN,+1,5-
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13.

Left-hand-side of the top layer (1 <i < p1): viN, = Vi N, +1-

Right-hand-side of the top layer (p2 <i < N,): Vi N, = Vi N,+1-

Bottom layer of the domain: v; o = 0.

Central atoms (p1 < i < pa) are pushed downwards according to:
ViN,+1 — Vi,N, = —f(i), where f has a triangular profile, pointing
downwards, with magnitude F > 0.

As F grows, we observe that the initial zero solution for F = 0 develops
localized lattice distortions that travel downwards. As we decrease F to
zero the distortions travel upwards and may disappear. How do you explain
that?

Taken from [45]. The branch of stationary solutions that starts at F' =0
develops bifurcations at specific values of F' at which lattice with different
distortions are created. Such new branches are stable for some ranges of
F, while the defects simply travel. The configuration bifurcates at new F
values, new distortions are created, that travel for while, and the process
is repeated as F' grows. When we decrease F', the process is reversed.
Created distortions travel upwards, and disappear.

Consider the problem
uj +ou) = ujr — 2uj +ujo + F — Ag(uy),

where g(u) =u+1ifu <0 and g(u) =u—1 if u > 0. Construct traveling
wave front solutions.

Taken from [27]. A traveling wave front solution takes the form w;(t) =
u(i — ct)+, z =i — ct. The profile v(z) = u(z) + 1 satisfies

A, (2) — acv,(2) — (v(z +1) = 20(2) + v(z — 1)) + Av(2)
=F +2AH(-sign(cF)z), z€R,

with v(—o00) = 0 and v(o0) = 2. We have written g(u) = v+ 1 — 2H (u),
where u is the Heaviside function. Using the complex contour integral
expression for the Heaviside function

1 1kx
H(-z)=—— ¢

dk.
2m Jo k

C is a contour formed by a closed semicircle in the upper complex plane
oriented counterclockwise and another one oriented clockwise in the lower
half plane, which includes zero inside and forms a small semicircle around
it. The profile we seek admits the expression

™

o(z) = FoA / exp(k sign(cF)z)dk
A o kA+4sin®(k/2) — k2c2 — ik|c|asign(F)
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14.

Imposing v(0) = 1 we obtain a relation between the velocity ¢ and the
applied force F. Once we know ¢(F'), the above expression provides the
profiles v. Unlike previous exercises, such profiles are not monotonic, but
display oscillations, see [27].

Show that the initial value problem
uj +oul; = d(uji — 2uj +ujq) —uj + F,
uj(0) =uf, uj(0) = uj,
d >0, a > 0, admits solutions of the form
uj(t) = 1G04 (0) + G, /ZGMt—s 4 (s)ds
k

for adequate Green functions Gg,k and GJI,~c

Taken from [28]. Firstly, we get rid of the difference operator by using the
generating functions p(6,t) and f(0,1)

= u®)e ™, f0,0) =) fit)e .
J J
Differentiating p with respect to ¢ and using the equation, we see that p
solves the ordinary differential equation
P (0,t) + ap'(0,t) + w(0)*p(0,t) = £(0,t)

with w(#)? = 1+4dsin®(/2) and intial conditions for p from those for w;.
Fixed 6 we know how to calculate explicit solutions of this linear second
order equation with constant coefficients to get

p(6,1) = p(0,0)6°(0,1) + ' (6,0)g1(0, ) + / g1 (0.t — 5) (0, s)ds

for
o () _ g (0)

7”(9) OB a? /4 > w?(0),

°(0,t) = te—ot/? a?/4 = w?(0),

e—at/2 Sln%g)t)’ a2/4 < w2(9)’
eW””:iggg:ir:(;e))t?L(0)’ a2/4 > w2(9),
g 0,t) = te 2 (1+91), . a?/4 = w?(0),
e—at/2 (cos([(@)t) + %(19()9)”) , a?/4 < w?(0).

We recover u; as



15.

and find

GO, (1) = / B 19009,y GLe(t) = / B ti=1941(0,1).

2T 7

Use the expression of the solutions of the initial value problem established
before to define a nonreflecting boundary condition at n = 0 for truncated
problems set inn > 0, so that the solution we obtain is the same we would
obtain solving the system for all n.

Taken from [48]. We place an artificial boundary at n = 0 and restrict the
computational domain to the region n > 0. Thus, we need a boundary
condition to compute ug(t) and close the system. In principle,

d2U0

W = d(U1 — 2’U,0 + Ufl) + fO,

but u_1(t) is unknown unless we solve also for n < 0. The equation at
n = —1 can be rewritten as:
d27.l/,1
dt?

= d(O — 2U_1 —+ ’LL_Q) —+ f_1 —+ dUo.

Assuming we know ug(t), the problem for n < 0 with boundary condition
up(t) can be seen as a problem with zero boundary condition at the wall
and a modified source term: f,, + dd,,_1uo for n < 0. We can extend this
problem to the whole space setting:

Unp, n <0
Uy = 0 n=>0
—U_p, n>0

The extension v,, solves:

d?v,
— = AUng1 = 20 + 00 1) + g,
dv
— 0 %y _ 1
’Un(o) = Up, dt (O) Un»

for all n, where v2 and v} are odd extensions of u® and u). The source
gn is obtained extending f, + 0, _1up. We have included the boundary
condition ug as a force acting on u_; to allow for an odd extension with
vo = 0. Using the symmetry of the data:

™" dgo .
wlt) = ) = 3 [0, 0 G0+ T 0]
+/O > Gt =) (fur(s) + dbp yuo(s))ds, n <0

n’<0
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16.

where G) ., = GY,, — GY _, is the Green function for the half space
n < 0 with zero boundary condition at n = 0. In this way, we obtain the

desired formula for u_q:

ufl(t) =T- 1 +df0 g01 1(t—8)u0( )d37
0= oo 0200 (05 0) + 52 (0
+ fO ggl,n’(t - S)fn’ (S)ds] .

The term r_; () represents the contribution of the data in the outer region.
Our boundary condition at n = 0 takes the form:
d2U0
dt?

¢
= d<u1 —2up + d/ Go L (t— s)uo(s)ds) +dr_1 + fo,
0

where the kernel is:

u _ e—2i9
GO\, (t) = /_ ;lfrlww)sin(ww)t).

In a similar way, we can set no reflecting boundary conditions in finite
intervals —N <n < N, see [48].

Consider the initial value problem
uj = d(ujir — (2+71)uj +ujo1) + flu), j=1,...,N
uj(O):u?, u;(O)fu1 j=1,...,N
u0(t) = un1(t ) 0,

for a continuous function f. Set V(u) = —fO s)ds. Assume uf(u) +
220 + 1)V (u) > 0 for o > 0. Deﬁne the enerqy
1 %) d j=oc0o
B =L 3 w0+ LY w0420+ S Vi)
j=—00 Jj=—00 j=—00

If E(0) <0, then Zjvzl luj(t)]> = oo as t — T for some finite T > 0.

Taken from [29]. We define H(t) = Z;vzl lu;(t)|* + p(t +7)%, p,o >0 to
be selected so that (H=°)" =ocH "2((c +1)(H')> — HH") < 0. When
H(0) # 0 we have

HO (t) > H7H(0)(H (0) — otH'(0)) ™!

and H(t) blows up at some time 7' < H(0)/oH'(0) provided H'(0) > 0.
Let us explain how to do this. We calculate H' and H”, and use the
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equation to get

HH" — (0 +1)(H")* = 4(0 + 1)Q + 2HG,

2
N

N N
Q=D P +pt+)2 | | D [P +p| = | D wuf+pt+7)] ,
j=1

Jj=1 Jj=1

N
G:Zujf(uj)—Zuiaiyjuj—@(f—}—l) Z|u;\2+p ,
= 07 =

where A = (a;;) is the matrix defining the linear part of the system. We
have @ > 0. We estimate G’(t) to find G(t) > 0(20 +1) (=5 — E(0)) > 0
for p = —2E(0) > 0.

We have (H~°)” < 0 and H(0) # 0. Moreover, H'(0) = 23 uduj +

j=1
207 > 0if 7> —p7! Zjvzl u?u}.

17. Let un(t) be a solution of
Uy, = d(n) (Unt1 = 2n +tn—1) +0(un) (Un-1 — un) + f(un),

with non negative initial data and a strong reactive source f, such that
f(u) > CuP, with p > 1, C > 0, when u > 0 large. We set a(u) =
—(2d(u) +v(w))u + f(u) and assume that d(u) > 0,d(u) + v(u) > 0 grow
slower than uP for u large. For any component k such that a(u(0)) > 0
and o' (u) > 0 when u > uy(0)

> ds

up(t) 200 as t=>T<T,= — < 00.
ug (0) a(s)

Taken from [44]. In all cases, a maximum principle ensures the positivity
of u,(t) everywhere. Using up41,ur—1 > 0, we obtain the differential
inequality u} (t) > a(ux). By hypothesis, a(u) > a(ux(0)) > 0 for v >
ug(0). Then ug(t) is increasing and it is bounded from below by the
solution y(t) of ¥'(t) = g(y), y(0) = uk(0), which is given implicitly by:

y() g
= [
uk(O) a(s)
The integral fzf:(o) % < oo due to the growth condition a(s) >> sP, p >

1 for s large, since a(u) > 0 for u > u(0). When t — T}, = qu:(O) % <

00, y(t) — oo.

18. Consider the Becker-Doring equations

kak =p> 07
k=1

P;c :jk—l *jkv k 2 27
gk = d(e*PT % p1pp — pry1)
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19.

for a given sequence € > 0 with D€, = €41 — €k, with a and p positive
constants. Calculate the equilibrium distributions.

Taken from [30]. We set ji = 0. Then p; = p¥e®*. This system admits
traveling wavefront solutions, see [30].

Consider the kinetic system

d
% = (k= 1)Y3D(k = r—1 — k/3D(k)re, k>3,
d
T2 _ 9eD(1) — 23 D(2)rs,
ds
d
cd—g +4c¢*D(1) + cMy =1,
a _1
ds ¢

Find an expression for r in terms of the parameter problems.

Taken from [51]. Notice that the equations for s and ¢ start from a singu-
larity at s = 0. Laplace transforming the equations:
d
2 _ 9eD(1) — 2Y3D(2)r,
ds
d
% = (k= 1)Y3D(k — 1)re_1 — KV3D(k)re, k> 3.
s
we find:
2D(1) s
c4+23D(2)
k—1)5D(k -1
( )31( J iy k>3
o+ k3zD(k)

fg(O’) =

(o) =

Therefore,

)

2D@)7a(0) = ] + 023(3(2)—1

\ —1)3 -
k3D (k) (o) = (k )f)(k 1>f'k,17 k> 3.
1+ k= D(k)~!

By iteration,

where

10 = 5 [t = o [ ettsyas

2m 514100



we find 7, as a function of the inverse transforms Ry, of Rk:

NEON — 8" )e(s)ds'
o) = o ) R = ea k2

1 . 1 81 —100 N 1 L .
Ry(t) —/eStRk(s)ds :—/ et f(s)ds= lim 2—/ e Ry (15)ds,
C s

2m 271 J 5) 4ac0 L—oo 2T J_7,

where C is an inversion contour. A classical choice for inversion paths
are Bromwich contours s; — is, parallel to the imaginary axis and located
to the right of the singularities of Ry (s). In this case, we may select the
imaginary axis s; = 0. For numerical purposes, the best choices of the
inversion contour are those along which this inversion formula can be
approximated by a quadrature formula involving a few points. We may
resort instead to deformations of Bromwich contours, such as Talbot paths
or hyperbolic paths.

Numerical methods
. Given a profile ¢, > 0, functions p(x) > 0, n(x) > 0, u(x) and constants
a, R > 0, we consider the following free boundary problem. We must find

x* such that

"(x) + au(z)d (z) = Rp(z)n(z)?(c(z) — co(x)), 0<z < M,
)

Taken from [42]. We write c¢(z) = 1 + $=%¢(x) where

¢"(z) + au(z)¢'(z) =0, = >0,
¢(0) =1, ¢(o0) =0,

that is,

oo 0o —1
(b(x) = / e I3 u(:cl)dx’dy (/ e~ Iy u(m’)dac/dy> )
@ 0

To calculate x,, we start from a trial value z,. Next, we define c(z) for
x > x, as explained above for a trial value of .. Then, we solve ¢’(z) +
au(z)c (z) = Rp(z)n(x)/3(c(z) — co(z)), 0 < < x, with ¢(z,) = ¢, and
d(zy) = (e — 1)‘2;((5**)). Finally, we compare ¢(0) with ¢.(0). Depending
on whether it is larger or smaller we increase or decrease z, until the
difference is small enough.
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2. Consider the hyperbolic problem
0’E oF OF aJ

E(x,0) =0, z € (0,L),
E(0,0) = pJ(1), >0,

L
/ E(z,t)dx = ¢, t>0,
0

where p, ¢, L are positive and A, B,C, D are bounded functions, A and
B positive, while C' is negative. What would be an adequate numerical
scheme to solve this problem?

Hyperbolic problems are typically discretized in explicit ways. However,
in this case i) we have an integral constraint which couples all the values
at each time level, ii) the hyperbolic operator is given in non characteristic
form. We use forward finite differences of first order for first order time
derivatives of F and J. We use a second order backward approximation
scheme for the space derivative of E because the use of central differences
leads to instabilities. The second order derivarive F,; is approximated
combining the space and time derivative approximation just described.
At the left end we use for the first order spatial derivative of E a first
order backward difference formula. The integral constraint is discretized
by means of a composite trapezoidal rule. For a proof of the convergence
and stability properties of the scheme see [16].

3. Consider the Navier equations for crystals with cubic symmetry in two
dimensional situations, defined by three positive constants c11, €22, Caq:

62u1 8QUQ 82U1 82UQ
Mu =C C C C
“ 1 ox? + o1 021022 +lu 03 +Cus 021022’
82U2 82U1 8271/2 82U1
Mu =C C C C
2 1 0x3 + O 021022 +Cus 0z? +Cus 021022’

where M > 0. Propose a stable finite difference discretization.

Taken from [31]. Let us construct a rectangular mesh. We denote by D;"
and D; the first order progressive and regressive finite difference equations
in the direction ¢, that is,

(04 dz1,m) —u;(€,m)

Difu;(t,m) = 52, ;
_ wi(l,m) —u; (£ —dxy,m
Dy - )0 m)

for ¢ = 1 and analogous expressions for ¢ = 2. In view of the presence of
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cross terms, we choose

Ml — O Dy Dfuy Dy D5 uy D5 Diuy D5 Dy ugy
! H dx? 12 5102, 4 53 M S 0y
Ml — O D3 D3 us D5 Difuy Dy D uy Dy D uy
2 H o3 12 51020 4 dx? M S 0y

See [35] for extensions to three dimensional crystals and lattices with two
bases.

. Consider a planar hexagonal graphene lattice and ignore possible vertical
deflections. In the continuum limit, in-plane deformations are described
by the Navier equations of linear elasticity for the two-dimensional (2D)
displacement vector (u,v),

0%y 0%y 0%u 0%v

— = (A +2u) —= — A —_—
0%v 20 02%v 9%y
— == A+20) — A —

where py is the 2D mass density and A and p are the 2D Lamé coeffi-
cients (A = Cia, p = Cgs, A+ 2 = Cy1). Propose a finite difference
discretization in a hexagonal lattice of constant a.

Taken from [40]. Consider a point A in the hexagonal lattice with coordi-
nates (z,y). Its 9 (346) closest neighbours have coordinates

m=(z—2y——2) ny= x+g — L) ns= (= +i

e e ) T )
3 3

ng = m—g,y—M , Ny = 36—1-972/—M ;e = (z—a,y),
2 2 2 2

a av'3 a aVv'3
o (gt - (gt

Let us define the following operators acting on functions of the coordinates
(z,y) of node A:

Tu =

[u(n1) — w(A)] + [u(n2) — u(A)] + [u(nz) — u(A)],
Hu = [u(ng) = u(A)] + [u(ng) — u(A)],
Diu = [u(ng) — u(A)] + [u(ng) — u(A)],
Dau [u(ns) — u(A)] + [u(ng) — u(A)],
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Taylor expansions of these finite difference combinations about (z,y) yield
2
a

4

S
S
2

(O2u+ 6§u)
Hu ~ (0%u)a?,

1 V3 3

D1u ~ <4 8§u+ 783;83/&4— 435’&) a2,
1 3 3

Dou ~ <4 0u — g 0-0yu + 1 6§u> a?,

as a — 0. Now we replace in the motion equations Hu/a?, (4T — H)u/a?
and (D1 — Dy)u/(v/3a?) instead of 02u, 92u and 9,0, u, respectively, with
similar substitutions for the derivatives of v, thereby obtaining the follow-
ing equations at each point of the lattice:

0%u A+
22— = 4uT A Hu+>~—X(D;-D
P20 s wTu+ A+ p) Hu + 7 (D, 2)v,
0% A+ p
2 _
P20 5y = AN+ 2p)Tv— (A + p)Ho + 7 (D1 — Ds)u.

5. Consider a planar hexagonal lattice of lattice constant a. The isotropic
Navier equations have singular solutions such as

v = et O )
a — Vv a? ’ i
v o= %[_41(1_21/) 1“( ;y>+2<1—v>y(x2+y2>]’

where v = A/[2(A 4+ p)] for any a. We choose (xo,y0) different from a
lattice point and solve a damped version of the discrete Navier equations
formulated in the previous exercise. How would you expect the system to
evolve starting from (u(x — 2o,y — Yo), v(x — 2o,y — Yo)) ?

Taken from [38]. The damped equations take the form

0%u ou A+ p
2= — = 4uT H —_—
p20” 5 +78t pTu+ A+ p) Hu+ 7

A+
AN+ 2p0) To — (A + ) Ho + “ 2 (D) — Do),
V3
with v > 0. We expect the system to relax to a stationary configuration
behaving like (u(z — 20,y — o), v(z — 20,y —yo)) at a distance of (zg, yo).
Such solutions represent lattice defects with the chosen elastic far fields.

(Dl - DQ)U7

p (IZ@ _;’_,y@
o T ot

6. Write the Helmholtz equation set in the whole space
Au+ k2u =0, x € RV,

0
E(u — Uine) — k(U — Uine)) = 0,

. N-1
hmT:|x|Hoo|x\ T (
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in an equivalent variational form set in a bounded domain by means of the
Dirichlet-to-Neumann operator.

Taken from [37]. Let Bg be a sphere of radius R and I'g its boundary. The
Dirichlet—to—Neumann (also called Steklov—Poincaré) operator associates
to any Dirichlet data on I'p the normal derivative of the solution of the
exterior Dirichlet problem:

L:HY>(I'g) — H Y?*Tg)

P
f — %

where w € HE (RN \ Bg), Bg := B(0, R), is the unique solution of

loc

Aw + k2w =0, in RV \ Bg,

w=f, on I'g,

ow
i N-1/2,9W _
Tlgglor ( o kw) = 0.
H'Y?(T'r) and H'/?(Tg) are standard trace spaces. One can study an
equivalent boundary value problem in Br with a non-reflecting boundary
condition on its boundary I'g:

Au+k2u:07 in BR7
%(uiuinc) = L(ufuinc)y on FR-

The solution u also solves the variational equation

{ u € H'(Bg),
b(u,v) = £(v), Vv € H'(BgR),

where

b(u,v) = /B (VuVU—kQUW)dxf/F Luwdl, Yu,ve H'(Bg),

tv) = /(agi“—Luim)wz, Vv € H'(Bg).
I'r n

7. Write the transmission Hemholtz problem

V- (. Vu) + X2u = 0, in R%\ €,
V- (a;Vu) + N (k)?u =0, in Qi
u” —ut =0, on 0);,
ai%—ae%zo’ on GQZ,
0
1 1/2 P — U — — U = =
Tlglgor (87’ (U — Uine) — 2Ae(u umc)> 0, r=|x|,
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in variational form and calculate the derivative of J(k) = [ |u(k) — d|*dl
with respect to k.

Taken from [39]. Arguing as in the previous exercise we have

u € HI(BR)a
S5 u,v) = L(v), Vv € H'(Bg),
where
S(Qiu,v) = / (0 VuVT — Aiu@)der/ (; VuVT — A uv)dx
Br\Q; Q;

—/ a.Luvdl, Yu, v € H'(BR),
I'r

£(v)

0 inc _
/ Oée( - - Luinc) 'Udl; VU S Hl(BR)
T'r on

where L denotes the Dirichlet-to-Neumann operator defined by

V- (@ Vw) + Nw = 0, in R? \ B,

w=f, on I'g,
lim rl/z(a—w — 2 ew) =0
r—»00 or ¢ ’

Differentiating J with respect to k& we see that
dJ ——

_— = 2 —
=2 [ Gl = du iyt

where the derivative uy (k) = dqfi(kk) € H'(Bg) is a solution of

/ (e Vug (k) VD — Nuy (k)0)dx + / (i Vg (K)VT — N (k)*ug (k)0)dx
- / oo L (k) Tl = 2 / s (B)N,(Byu(k)Tdx,
I'r

Q;

for all v € H*(Bg) and u(k) the solution of the Helmholtz problem for
Ai(k).

. Consider the cost J(a, k) = 2%21 Jp um — dim|?, where up, solves
div(a.Vu) + k2u =0, in RV \Q,, div(aVu) + k*u =0, in
um=ut, ol = aeag,‘%7 on 08,

r(N=1)/2 (% — tke(u — u{ﬁc)) =0, asr:=[x|]— occ.

Given aj, kj, find descent directions for

J(5) = J(aj + 5¢,kj + 5¢),
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where § > 0, in order to implement an optimization procedure.

Taken from [46]. We seek §, ¢ and ¢ such that d{ig‘s) < 0. Differentiating
we find

dJ

do

/Q (6 VU VW, — 20k umW,y,] dz |,

J

M
= - Z Re
m=1

where u,, solves the forward problem with a = a;, and k = k;. The adjoint
fields w,,, solve

6=0

div(aeVwy,) + k2w, = (dm — tm)or, ..., in RV \ Q,
div(a; Vw,,) + kawm =0, in Q;,

_ dw,, i)u)jq
Wy, =W, 0 G = ae 5, on 09,
r(N=1)/2 (Lg’;n + mewm) — 0, as r — oo.

Setting

M M
$(x)=>_ Re (Vi (X) VW (x)), $(x)==_ Re (tupn(X)Tm(x)), X € Q;,
m=1 m=1
i1 = ay —+ (5(;5, /Cj+1 = kj + (51/),
we guarantee J(a;y1, k1) < J(aj;, k;) for 6 small.

9. Ezplain how to solve the following equations using the deterministic par-
ticle method:

O, f + ﬁmm@f+%F@f:

2hv M

;[ﬂ““%uﬂm)—<1+me)f%-wm3ﬂ%—ki),

2Wen 2Wen

2V =0,F=n—1
1 [" 1 ["
n=o [ fahnae= g [ 5P ) dk
2r J_ 2 J_.
FP (k) = aln[1 + exp (u — 0 + G cos(k))]
UM o A
VenTo T 2%kpT’

The boundary conditions are, for x = 0:

N O 0o B
f :ﬁF_jgmM@f@dhKﬂmM@f dk
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with
2who F)yy

B: GAND

and for x = L/xg:

_ o 1 N
= e P roa <1 2w/ / dk)

The boundary conditions for the electric potential V' are

¢ L
V(0,t) =0, ~
0) =0, V(LO=dr~ po.
The initial condition is
> o 1—=jF/1e .pp
FOk;n) = exp (1jk) ————=f"(n
(ksn) j}_oo ( T 2 F)R (n)

£72) = = [ £ s ) cos() i
0

with © € [0,L = L/xzo] and f periodic in k with period 2w. The average
energy E is defined as

B [T e® @k tydk [T (1 cosk) f(x, k,t) dk

T kT kg [ flakt)dk J7 fak, t) dk

Taken from [43]. We rely on particle description of the distribution func-
tion, which means that f(x,k,t) is written as a sum of delta functions

(x,k,t) szfz O(x —z;(t)) ® 6(k — ki(t))

where w;, fi(t), x;(t) and k;(t) are, respectively, the (constant) control
volume, the weight, the position and the wave vector of the ith particle.
N is the number of numerical particles. The motion of particles is governed
by collisionless dynamics, whereas the collisions are accounted for by the
variation of weights. Large gradients in the solution profile arise from
appropriate particles acquiring large weights, not by accumulating many
particles in the large gradient regions. The evolution of the particles is
determined by their positions and wave vectors which are the characteristic
curves of the convective part of the equation. Their equations are:

d 7. d Al
"= G 2hy, )
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The evolution of the distribution function over these characteristic curves
is given by the ordinary differential equation:

d 1 v v;
Rl D I I Vimp ¢ FD|
dt 17[ ( +2uen>f+21/enf( R+ f ]

The system of ordinary differential equations is now discretized by using
a modified Euler method:

1 ; ; _
fln _ finfl +di= |:_ (1 + Vzmp) finfl + anpfi( k) +leD7n1:|
n

2Wep, 2Wen,

with fi(_k) = f(xn_l’ 7k?_17tn71)7

K3

k= kTl b dt
n

xp = x?_l + dt

sin (k') .

—sin (k)

For stability reasons, we use k' to update x}'. We have also used multi-
step methods but they yield worse results.

The boundary conditions are taken into account as follows:

o If k' > m, we set kK = k' —2n. If k' < —7, we set k' = k] + 2.

o If 27 > L, we set a7 = 27 — L and f]""' = fF. If 27 < 0, we
set o7 = a? + L and f~' = f;. Here f;" and f; are calculated
by discretization of the integrals using Simpson’s rule on an equally

spaced mesh K,,, with step Ak.

To calculate z;, k; and f; at the next time step t"+!, we need to update
the electric field and the Fermi-Dirac distribution in the equations for the
particles. This updating requires an interpolation procedure to generate
an approximation of the distribution function on a regular mesh X,,,, K,
which is then used to approximate the electric field and the chemical
potential. To approximate the values of the distribution function over the
mesh, f7 ./, we use its values for the particles, f;*. The idea is obtain a
weighted mean by:

1w

m,m’

19|20

n 17
m,m’ —

i
W

i=1

where

% I‘(”L xZL| |1<7”' k;zn‘
A 1 —_ . 1 e E—
“/mml lllaX{O, max 0, L

and Az and Ak are the spatial and wave vector steps.
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An approximation for the density and average energy at the mesh points,
n(Xm,t") ~ n" and (kpT) ' E(Xpm,t") ~ (kgT) " E", are obtained

using Simpson’s rule and the interpolated values of the distribution func-
tion on the mesh.

We calculate the nondimensional chemical potential ¢ by using a Newton-
Raphson iterative scheme to solve the equations. The extended Simpson’s
rule is employed to approximate the integrals for n(u) and dn(p)/du. Once
we know the chemical potential p, we find the Fermi-Dirac distribution
function at mesh points, f¥? (K,,/;n" ), which is then interpolated to get
the Fermi-Dirac distribution function for the particles.

To compute the electric field at time t", we use finite differences to dis-
cretize the Poisson equation on the grid X,, :

1 — 2V + Vo =ng — 1,
n _n
Fn _ m—+1 m—1

m 2Ax

Here V (0,t") = 0 and V (L,t") = ¢L.. Let V! and F denote our
approximations of V (X,,,t") and F (X,,,t") on the equally spaced mesh
X . Finally, the electric field is interpolated at the location of the particle

i
n o _ Xm+1 — ‘r:l n :I’.;l - Xm n
F; —( Ar )Fm+< Ar )Ferl'
The total current density J is given by
< L T
J(t) = Z/ U sin(k) f (z, k, t) dk} dz,
0

in which
A

¢ e

We use the Simpson rule to approximate J(t").
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