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2 Non destructive materials testing

In many situations we need to extract information on the inner structure of
a medium from external indirect observations. Technology has provided many
tools for different purposes: ultrasound, radar, seismic imaging... All of them
are based on emitting some kind of wave which interacts with the medium under
study, and is then measured at a set of receptors. Knowing the data recorded
at the receptors and the emitted waves, we wish to reconstruct the internal
geometry and/or material properties of the medium. We consider here two
particular imaging set-ups for nondestructive testing of materials based on the
use of acoustic and thermal waves.

2.1 Acoustic imaging

Let us consider a medium where a number of objects are buried. To simplify,
we take the surrounding medium to be Ωe := R2 \ Ωi, Ωi ⊂ R2 being the
obstacle. Ωi is an open bounded set with smooth boundary Γ := ∂Ωi but
has no assumed connectivity. There may be an unknown number of isolated
components: Ωi = ∪d

j=1Ωi,j with Ωi,j open connected bounded sets satisfying

Ωi,l ∩ Ωi,j = ∅ for l ̸= j.
This configuration is illuminated by a time harmonic incident plane wave

Uinc(x, t) = eıωteı κ
0 x·d with frequency ω, wave number κ0 and propagation

direction d, |d| = 1. The incident wave interacts with the medium and the
obstacles, generating a scattered wave and a transmitted wave. The total wave
field is measured at detector locations placed on Γmeas, far enough from the
scatterers. Γmeas may be a circle enclosing the obstacles in simple tests or a
number of sites where receptors are located in more realistic reconstructions.
In real experiments, the total field is known on the set of receptors Γmeas for
several incident directions dj .

The interaction between the scatterers, the medium and the incident radia-
tion is described by a scalar transmission model for the acoustic wave. Since the
incident field is time harmonic, the solution U(x, t) = eıωtu(x) is time harmonic
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too. The amplitud wave field u = uinc+usc in Ωe and the transmitted amplitud
u = utr in Ωi satisfy∣∣∣∣∣∣∣∣∣∣∣∣∣

∇ · (αe∇u) + λ2
eu = 0, in Ωe,

∇ · (αi∇u) + λ2
iu = 0, in Ωi,

u− − u+ = 0, on Γ,

αi∂nu
− − αe∂nu

+ = 0, on Γ,

lim
r→∞

r1/2
(
∂r(u− uinc)− ıκ0(u− uinc)

)
= 0, r = |x|,

with real parameters

λe(x) ≥ λ1
e > 0, λi(x) ≥ λ1

i > 0, αe(x) ≥ α1
e > 0, αi(x) ≥ α1

i > 0.

The normal vector n points inside Ωi. u+ and u− denote the limits of u from
the exterior and interior of Ωi respectively. ∂n and ∂r stand for normal and
radial derivatives.

Knowing the values of the field u at a number of receptors, umeas, for differ-
ent incident waves we wish to obtain information on the objects buried in the
medium. We can look for domains Ωi which minimize an error in some sense.
This leads to a constrained optimization problem: minimize

J(R2 \ Ωi) :=
1

2

M∑
j=1

∫
Γmeas

|uj − uj
meas|2dl,

uj being the solutions of M forward transmission problems with incident waves
uj
inc(x) = exp(ı κ0 x · dj). This functional depends on the design variable Ωi

through the transmission problems, which act as constraints.
The topological derivative of this cost functional helps to locate the ob-

jects.The topological derivative of the shape functional J (R) is defined as

DT (x,R) := lim
ε→0

J (Rε)− J (R)

V(ε)
, x ∈ R,

whereRε isRminus a ball centered at x with radius ε. V(ε) is minus the volume
of the ball. In our case, V(ε) = −πε2. Asymptotic expansions provide a result
easier to implement [22, 24]: The topological derivative of the cost functional
in R = R2 \ Ω is given by

DT (x,R2 \ Ω) =
M∑
j=1

Re

[
2(αe(x)− αi(x))

1 + αi(x)
αe(x)

∇uj(x)∇pj(x)

+(λ2
i (x)− λ2

e(x))u
j(x)pj(x)

]
,

for any x ∈ R2 \Ω assuming the coefficients smooth. The forward field uj solves
the forward transmission problems with the j-th incident wave and Ωi = Ω.
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The adjoint field pj solves∣∣∣∣∣∣∣∣∣∣∣∣∣

∇ · (αe∇pj) + λ2
ep = (uj

meas − uj) δΓmeas
, in R2 \ Ωi ,

∇ · (αi∇pj) + λ2
i p

j = 0, in Ωi,

(pj)− − (pj)+ = 0, on ∂Ωi,

αi∂n(p
j)− − αe∂n(p

j)+ = 0, on ∂Ωi,

lim
r→∞

r1/2
(
∂rp

j + ıκ0pj
)
= 0,

with Ωi = Ω. Here, δΓmeas
is the Dirac delta function defined on Γmeas. Visual-

izing the topological derivative field for Ωi = Ω = ∅ we find information on the
objects: they are located at regions where the topological derivative is negative
and large. An iterative procedure allows us to improve it [24, 30, 45]. Different
conditions at the interface than transmission conditions, such as Dirichlet or
Neumann can also be considered [31, 22] for ‘hard’ and soft’ objects.

2.2 Damped waves and thermal imaging

Acoustic waves propagating in some media are subject to damping effects: the
obey wave equations with damping terms. When the incident waves are time
harmonic, their amplitude satisfies Helmholtz equations with complex wave
numbers. Otherwise, the formulation follows similar lines a before. However, in
this case one can mostly detect objects that are close to the surface. The reso-
lution improves when we superimpose frequencies weighting their contributions
[63].

A similar strategy can be applied to time dependent thermal waves [26],
which solve transmission heat problems

Ut − κe∆U = 0, in RN \ Ωi × (0,∞),
Ut − αiκi∆U = 0, in Ωi × (0,∞),
U− − U+ = Uinc, on ∂Ωi × (0,∞),
αi

∂
∂nU

− − ∂
∂nU

+ = ∂
∂nUinc, on ∂Ωi × (0,∞),

U( · , 0) = 0, in RN ,

Topological derivative methods allow us to approximate solutions of the inverse
problem for such waves [26]. Combining with gradient methods, it is also pos-
sible to find, not only the object geometry, but also its material constants κi,
αi, see [46].

2.3 Electrical impedance tomography

The impedance imaging problem consists in producing an image of the elec-
tromagnetic properties of a medium by applying electric currents to its exterior
surface and measuring voltages on it. The range of medical applications is wide,
because different tissues have different electromagnetic properties. For example,
we can think of monitoring for lung problems (embolies, clots, accumumation
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of fluids) or blood flow (internal bleeding, heart function), screening for breast
cancer, determining the boundary between dead and living cells, detecting tem-
perature changes in hyperthermia treatments...

We want to reconstruct the admittivity γ inside Ω from measurements on
the boundary. If we assume that Ω contains a number of inclusions Ωi,j , the
admittivity γ is a piecewise function in Ω with discontinuities at the boundaries
of the inclusions. We set Ωi = ∪d

j=1Ωi,j with Ωi,j open connected bounded sets

satisfying Ωi,l ∩ Ωi,j = ∅ for l ̸= j. The admittivity in the matrix Ωe = Ω \ Ωi

is γe. We define γi in Ωi as γi = γi,j in Ωi,j . To simplify, we assume γe to be
known. To identify the inclusions from the recorded data, we can solve the
optimization problem [40]

J(Ωi, γi) =
1

2

∫
∂Ω

|u− Vmeas|2dl

where u solves
∇ · γe∇u = 0 in Ωe, ∇ · γi∇u = 0 in Ωi,

u− − u+ = 0 on ∂Ωi, γi∂nu
− − γe∂nu

+ = 0 on ∂Ωi,

γe∂nu = j on ∂Ω.

The unit normal n points outside Ωe but inside Ωi and u− and u+ denote the
limit values of u on ∂Ωi from outside and inside Ωi, respectively. Topological
derivative methods allow us to approximate solutions of the inverse problem
for such incident waves [40]. Instead of electromagnetic signals, other methods
monitor temperature recordings to locate unhealthy tissue.

2.4 Holography and microwave imaging

Digital in-line holography is a promising tool for high speed three dimensional
(3D) imaging of live cells and soft matter. It can achieve high temporal (mi-
croseconds) and spatial (nanometers) resolution while avoiding the usage of toxic
stains and fluorescent markers. Holograms are two-dimensional (2D) light in-
terference patterns that contain information about the 3D positions and optical
properties of an object or set of objects.

When the emitted light beams are time harmonic, that is, Einc(x, t) =
Re[e−ıωtEinc(x)], the resulting wave fields also happen to be time harmonic
EΩ,κ(x, t) = Re[e−ıωtEΩ,κ(x)] and the complex amplitude EΩ,κ(x) satisfies a
stationary version of the time dependent Maxwell equations, the so-called for-
ward problem:

curl ( 1
µe
curlE)− κ2

e

µe
E = 0 in R3 \ Ω,

curl ( 1
µi
curlE)− κ2

i

µi
E = 0 in Ω,

n̂×E− = n̂×E+, on ∂Ω,
1
µi
n̂× curlE− = 1

µe
n̂× curlE+, on ∂Ω,

lim|x|→∞|x|
∣∣curl (E−Einc)× x

|x| − ıκe(E−Einc)
∣∣ = 0,
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where µi, εi, κi and µe, εe, κe are the permeabilities, permittivities and wavenum-
bers κ2 = ω2εµ of the objects and the ambient medium, respectively. In bio-
logical media, µi ∼ µe ∼ µ0, µ0 being the vacuum permeability. The signs +
and − denote the values from outside and inside Ω. The vector n̂ represents the
outer normal vector.

The imaging problem becomes [53] finding objects Ω such that the equation:

Imeas(xj) = |EΩ(xj)|2, j = 1, . . . , N,

is satisfied. Alternatively, we can reformulate this equation as a constrained
optimization problem: Find the global minimum Ω of

J(R3 \ Ω) = 1

2

N∑
j=1

|IΩ(xj)− Imeas(xj)|2.

Here, IΩ = |EΩ|2 and EΩ is the solution of the dimensionless forward system.
Ω is the design variable in this optimization problem. The stationary Maxwell
system is the constraint. The true objects are a global minimum at which
the cost functional vanishes. By topological derivative techniques [53, 55] we
can obtain first guesses of the objects. We can also iterate to improve this
information. However, the iteration usually stagnates far from the true results.
We encounter the same situation with other ‘gradient’ methods, such as level
sets or deformation contours. Instead, hybrid schemes combining topological
derivative initialization and updates with iteratively regularized Gauss-Newton
corrections are able to produce good reconstructions of the number of objects as
well as their size, location and shape [59, 65]. Holography is an extreme case in
which only one incident beam is used and we use limited aperture data. When
information from multiple incident waves (incoming from different directions
and recorded at detectors distributed through large enough angles) is available,
the initial guesses provides by topological derivatives furnish already a good
reconstruction from the start, see [62] for microwave imaging tests.

2.5 Uncertainty Quantification

The methods just discussed are deterministic. Given recorded data, determin-
istic methods seek objects which would produce data as close as possible to
the recorded data. However, recorded data are always affected by noise, which
reflects uncertainty on the measurement device and the problem formulation.
Deterministic methods provide a solution for a realization of the noisy data.
No information on how the solution can change for other realizations or what
confidence can we have on the proposed solution is given. Bayesian formulations
of the inverse problem are used to quantify uncertainty in the result [61].

Bayesian formulations consider all unknowns in the inverse problem as ran-
dom variables. Given a recorded hologram Imeas we seek a finite-dimensional
vector of parameters ν characterizing the imaged objects. When we assume the
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presence of L objects, ν is formed by L blocks, one per object. Using Bayes’
formula

ppt(ν) := p(ν|Imeas) =
p(Imeas|ν)
p(Imeas)

ppr(ν),

where ppr(ν) represents the prior probability of the variables, which incorporates
our previous knowledge on them, while p(Imeas|ν) is the conditional probability
or likelihood of observing Imeas given ν. The solution of the Bayesian inverse
problem is the posterior probability ppt(ν|Imeas) of the parameters given the
data. Sampling the posterior distribution, we obtain statistical information
on the most likely values of the object parameters with quantified uncertainty.
Markov Chain Monte Carlo techniques provide a tool to extract and visualize
such information [61]. Time dependent problems with time dependent wave
constraints can be handled in a similar way [66, 69].

3 Mechanical behavior of modular proteins

Tissue elasticity in living organisms results from the extension and recoil of
proteins fastened to rigid structures that move under force. Polyproteins or
modular proteins, such as titin that plays an important role in muscle contrac-
tion, ubiquitin and other relevant proteins, comprise a number of repeated single
protein domains joined by short peptide linkers. A simple version of tissue elas-
ticity appears in most single-molecule experiments, like atomic force microscopy
(AFM), in which a biomolecule is chained to rigid platforms whose motion is
controlled. Force-clamp and length-clamp experiments provide information on
the protein structure, and can be interpreted by means of simple mathematical
models. This section is taken from [39, 44, 47, 49].

In real experiments, the tip of the cantilever can attach the polyprotein at
any point. Therefore, the numberN of protein monomers exposed to force varies
between one and the total number of monomers. Let the monomer positions be
xj , j = 1, . . . , N . The relative extensions of the monomers are uj = xj+1 − xj ,
j = 1, . . . , N and external forces ±F applied to the ends of the monomer chain
produce a potential −F

∑N
j=0 uj = Fx0 − FxN+1. Thus these forces on the

chain ends yield an equal effective external force F on each of the extensions
uj . The free energy of the jth monomer is V (uj ; δj), where V (u; δ) is a double-
well potential whose minima correspond to the folded (enthalpic) and unfolded
(entropic) states. The parameter δ can vary from monomer to monomer. The
monomers are connected to their next neighbors by harmonic springs (the link-
ers) and they undergo Brownian motion in the liquid in which they are im-
mersed. We assume that their inertia can be neglected and therefore that their
dynamics is overdamped. The resulting model is as follows [49]:

γj u̇j = F − V ′(uj ; δj)− kj+1(uj − uj+1)− kj(uj − uj−1) +
√

2kBTγj ξj(t),

⟨ξj(t)⟩ = 0, ⟨ξj(t)ξl(t′)⟩ = δjlδ(t− t′), j = 1, . . . , N.
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Here V ′(u; δ) = dV (u; δ)/du, kj = k for j = 1, . . . , N + 1. As explained before,
the force F provided by the AFM affects the effective potential of all monomers
between the AFM tip and the platform equally. There are two possible experi-
mental settings: (i) The force F is kept constant (force-clamp experiments); (ii)
the total extension of the chain is controlled and kept constant or increased at a
uniform rate(force-extension experiments). In case (ii), F (t) is a new unknown
that should be calculated. The boundary conditions for this chain are

u0 = 0, uN = 0.

We assume that the monomers at x1 and xN rigidly follow the platform and the
AFM tip so that u0 = uN = 0. For case (ii) we need to add the constraint that
the total length of the monomer chain, L, be kept constant so that the following
new equation holds:

N∑
j=1

uj = xN+1 − x0 = L.

In force-extension experiments, L = µt+ ν, with a positive µ.

3.1 Folding and unfolding

In a typical force-clamp experiment, the force is first raised, kept at a large
value until all domains become unfolded and then abruptly lowered to a smaller
value. Immediately after the force increment, abrupt or stepwise unfolding of
the polyprotein follows. On the other hand, after the force is lowered, refolding
is similar for single module proteins and for homopolyproteins; the folding events
do not show traces of sequential folding for polyproteins.

Assuming infinitely rigid springs connect the protein to AFM cantilever and
platform, u0 = u1, uN+1 = uN . At zero external force and temperature T , we
use the effective potential:

V (u) = U0

[(
1− e−2b(u−Rc)/Rc

)2
− 1

]
+
kBTLc

4P

(
1

1− u
Lc

− 1− u

Lc
+

2u2

L2
c

)
.

It is a cubic, with three zeros, three of which are stable. Given F , the smallest
u(1)(F ) and largest u(3)(F ) zeros represent the folded and unfolded state for
each module. Folding and unfolding phenomena can be explained qualitatively
and quantitatively in terms of pinning and depinning of fronts in this system
[21].

3.2 Force-extension curves

As the polyprotein is pulled, one or more modules unfold at a typical force
that measures its mechanical stability. It should be stressed that the unraveling
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of a domain is a stochastic event and may occur in a certain range of forces.
These length-clamp experiments deliver a sawtooth force-extension curve (FEC).
Similar curves are obtained by stretching nucleic acids and other biomolecules.
When the force extension curve is swept at a finite rate, stochastic jumps be-
tween folded and unfolded states may be observed, and the unfolding force
increases with the extension rate.

A simple model of an oscillator coupled to Ising spins that undergo Glauber
dynamics [37] in contact with a thermal bath could explain qualitatively many
features of the force-extension curves measured in experiments with biomolecules
[39]. DNA force-extension curves correspond to cycling at different rates the
curves of the spin-oscillator first-order phase transition with the force as a con-
trol parameter. The spin-oscillator model is too simple to account for the saw-
tooth pattern observed in length-controlled experiments.

Studying stationary solutions of the model proposed above [44], we have a
global constraint in the minimization procedure leading to the equilibrium values
of the extensions. As a consequence, the force-extension curve has multiple
branches in a certain range of forces. The stability of these branches is governed
by the free energy: there are a series of first-order phase transitions at certain
values of the total length, in which the free energy itself is continuous but its
first derivative, the force, has a finite jump. This behavior is completely similar
to the one observed in real experiments with biomolecules like proteins, and
other complex systems. The effect of noise and unequal monomer presence are
studied in detail in [49].

4 Graphene mechanics

Graphene is a two dimensional material with promising mechanical and elec-
tronic properties. Its lattice structure consists of carbon atoms forming a hexag-
onal lattice. Different types of defects alter the hexagonal structure, as well as
the mechanic and electronic properties of the material as a consequence.

4.1 Dislocations and defects

Periodized discrete elasticity models can describe typical defects and their dy-
namics [25, 23], which can be explained in terms of dislocations.

Consider a planar hexagonal graphene lattice and ignore possible vertical
deflections. In the continuum limit, in-plane deformations are described by the
Navier equations of linear elasticity for the two-dimensional (2D) displacement
vector (u, v),

ρ2
∂2u

∂t2
= (λ+ 2µ)

∂2u

∂x2
+ µ

∂2u

∂y2
+ (λ+ µ)

∂2v

∂x∂y
,

ρ2
∂2v

∂t2
= µ

∂2v

∂x2
+ (λ+ 2µ)

∂2v

∂y2
+ (λ+ µ)

∂2u

∂x∂y
,
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where ρ2 is the 2D mass density and λ and µ are the 2D Lamé coefficients
(λ = C12, µ = C66, λ+ 2µ = C11).

At lattice level, we obtain a discrete elasticity model for the atom dynamics
as follows. We consider a point A in the hexagonal lattice with coordinates
(x, y). Its 9 (3+6) closest neighbours have coordinates

n1 =

(
x− a

2
, y − a

2
√
3

)
, n2 =

(
x+

a

2
, y − a

2
√
3

)
, n3 =

(
x, y +

a√
3

)
,

n4 =

(
x− a

2
, y − a

√
3

2

)
, n5 =

(
x+

a

2
, y − a

√
3

2

)
, n6 = (x− a, y),

n7 = (x+ a, y), n8 =

(
x− a

2
, y +

a
√
3

2

)
, n9 =

(
x+

a

2
, y +

a
√
3

2

)
.

Let us define the following operators acting on functions of the coordinates (x, y)
of node A:

Tu = [u(n1)− u(A)] + [u(n2)− u(A)] + [u(n3)− u(A)],

Hu = [u(n6)− u(A)] + [u(n7)− u(A)],

D1u = [u(n4)− u(A)] + [u(n9)− u(A)],

D2u = [u(n5)− u(A)] + [u(n8)− u(A)],

Taylor expansions of these finite difference combinations about (x, y) yield

Tu ∼
(
∂2
xu+ ∂2

yu
) a2
4
,

Hu ∼ (∂2
xu) a

2,

D1u ∼

(
1

4
∂2
xu+

√
3

2
∂x∂yu+

3

4
∂2
yu

)
a2,

D2u ∼

(
1

4
∂2
xu−

√
3

2
∂x∂yu+

3

4
∂2
yu

)
a2,

as a → 0. Now we replace in the motion equations Hu/a2, (4T −H)u/a2 and
(D1 − D2)u/(

√
3a2) instead of ∂2

xu, ∂
2
yu and ∂x∂yu, respectively, with similar

substitutions for the derivatives of v, thereby obtaining the following equations
at each point of the lattice:

ρ2a
2 ∂

2u

∂t2
= 4µTu+ (λ+ µ)Hu+

λ+ µ√
3

(D1 −D2)v,

ρ2a
2 ∂

2v

∂t2
= 4(λ+ 2µ)Tv − (λ+ µ)Hv +

λ+ µ√
3

(D1 −D2)u.
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The isotropic Navier equations have singular solutions such as

u =
a

2π

[
tan−1

(y
x

)
+

xy

2(1− ν)(x2 + y2)

]
,

v =
a

2π

[
− 1− 2ν

4(1− ν)
ln

(
x2 + y2

b2

)
+

y2

2(1− ν)(x2 + y2)

]
,

where ν = λ/[2(λ + µ)] for any a. These solutions represent edge dislocations.
We choose (x0, y0) different from a lattice point and solve a damped version of
the discrete Navier equations

ρ2a
2 ∂

2u

∂t2
+ γ

∂u

∂t
= 4µTu+ (λ+ µ)Hu+

λ+ µ√
3

(D1 −D2)v,

ρ2a
2 ∂

2v

∂t2
+ γ

∂v

∂t
= 4(λ+ 2µ)Tv − (λ+ µ)Hv +

λ+ µ√
3

(D1 −D2)u,

with γ > 0. Starting from (u(x − x0, y − y0), v(x − x0, y − y0)), the system
relaxes as time grows to a stationary solution that contains a typical heptagon-
pentagon defect (sometimes octagons). These are standard defects observed in
graphene.

To allow for motion and interaction of these defects taking into account
the lattice directions we change coordinates from cartesian coordinates to the
primitive lattice coordinates and periodize the differences along them with the
lattice constant periodicity [25, 23, 36]. Heptagon-pentagon pairs differently
oriented interact through their elastic far fields, attracting and repelling, to
form known defects, such as unstable Stone-Wales and different types of dipoles
and loops.

4.2 Ripples

The first visualizations of atoms in suspended graphene sheets showed that they
were covered with ripples. These ripples are several nanometers long waves of
the sheet without a preferred direction. Ripples are expected to be important for
electronic transport in graphene, and there is active research about the effects of
ripples and strain on electronic properties, including possible strain engineering.
These long wrinkles are thermally induced and can be explained by continuum
elasticity [41, 42].

In the graphene sheet, carbon atoms have σ bond orbitals constructed from
sp2 hybrid states oriented in the direction of the bond that accommodate three
electrons per atom. The other electrons go to p states oriented perpendicu-
larly to the sheet. These orbitals bind covalently with neighboring atoms and
form a narrow π band that is half-filled. The presence of bending and ripples
in graphene modifies its electronic structure. Out-of-plane convex or concave
deformations of the sheet have in principle equal probability and transitions be-
tween these deformations are associated with the bending energy of the sheet.
A simple way to model this situation to consider that out-of-plane deformations
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are described by a double-well site potential that tries to set vertical deflections
of the sheet, w(x, y) to ±w̃0 and contributes the free energy:

FDW =
φ̃

4

∫
ρ2

[
1−

(
w(x, y)

w̃0

)2
]2

dx dy,

where ρ2 is the 2D mass density (mass per unit area) and φ̃ has units of velocity
square. The elastic free energy of the graphene sheet in the continuum limit is
that of a 2D membrane,[?]

Fg =
1

2

∫
[κ̃(∇2w)2 + (λ̃u2

ii + 2µ̃u2
ik)] dx dy,

uik =
1

2
(∂xk

ui + ∂xiuk + ∂xiw∂xk
w), i, k = 1, 2,

where (u1, u2) = (u(x, y), v(x, y)), κ̃, λ̃ and µ̃ are the in-plane displacement
vector, the bending stiffness (measured in units of energy) and the 2D Lamé
coefficients of graphene (measured in units of force per unit length), respectively.
∇ = (∂x, ∂y) is the 2D gradient and ∇2 the 2D laplacian. We have ignored the
small in-plane nonlinear terms ∂xiu∂xk

u+ ∂xiv∂xk
v.

From the total free energy F = Fg+FDW , we obtain the equations of motion

ρ2∂
2
t u = λ̃ ∂x

(
∂xu+ ∂yv +

|∇w|2

2

)
+ µ̃ ∂x[2∂xu+ (∂xw)

2]

+ µ̃ ∂y (∂yu+ ∂xv + ∂xw∂yw) ,

ρ2∂
2
t v = λ̃ ∂y

(
∂xu+ ∂yv +

|∇w|2

2

)
+ µ̃ ∂y[2∂yv + (∂yw)

2]

+ µ̃ ∂x (∂yu+ ∂xv + ∂xw∂yw) ,

ρ2∂
2
tw = P̃∇2w − κ̃ (∇2)2w +

(
1− w2

w̃2
0

)
φ̃ρ2
w̃2

0

w

+λ̃∇ ·
[(

∂xu+ ∂yv +
|∇w|2

2

)
∇w

]
+µ̃ ∂x[2∂xu∂xw + (∂yu+ ∂xv)∂yw + |∇w|2∂xw]
+µ̃ ∂y[(∂yu+ ∂xv)∂xw + 2∂yv∂yw + |∇w|2∂yw]

−(γ̃ + η̃w2)∂tw +

√
2θ̃(γ̃ + η̃w2) ξ(x, y, t),

⟨ξ(x, y, t)⟩ = 0, ⟨ξ(x, y, t)ξ(x, y, t)⟩ = δ(x− x′)δ(y − y′)δ(t− t′),

where P̃ is the membrane stress, θ̃ is the temperature measured in units of
energy and −(γ̃ + η̃w2)∂tw is a nonlinear friction force used by Eichler et al
to interpret their experiments with a forced damped graphene resonator. The
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intensity
√
2θ̃(γ̃ + η̃w2) of the white noise ξ(t) is related to the friction by the

fluctuation-dissipation theorem. All the parameters λ̃, µ̃, ρ2, κ̃, P̃ , w̃0, φ̃, γ̃, η̃
and θ̃ are positive.

The linear operators can then be replaced by periodized elasticity along the
primitive lattice direction. Ripples appear that interact con eventual defects
[38]. Another possibility consists in representing environmental conditions by
means of Glauber spins [41, 37, 33, 34]. Inserting initial conditions correspond-
ing to dislocations loops and dipoles in these models we are able to generate
defects with curvature effects and stress fields in accordance with experimental
observations [50].

5 Dislocations in crystals

Dislocations are line defects in an elastic crystal [6]. When a sufficiently large
stress is applied, these dislocations glide along the crystallographic planes of the
crystal and interact with other dislocations they find on their way. In addition,
new dislocations are observed to be generated at certain nucleation sites. As
a result they appear typically in very large numbers (1012 dislocations/cm2 in
heavily worked metals) and modify the mechanical properties of the material. In
particular, dislocations are thought to control the plastic properties of crystalline
solids (at low temperature).

It is well known that, under an applied stress, crystals deform elastically up
to a critical value of this stress, known as the yield stress. For higher stresses,
the deformation becomes plastic (irreversible) and ends up eventually in frac-
ture. The yield stress is thought to be the stress at which large numbers of
dislocations start moving. Once in the plastic regime, the generation, motion,
and interaction of dislocations results in the formation of complicated networks
of defects in the microscopic structure of the material. When these networks are
so dense that dislocations cannot move freely, the crystal hardens (work hard-
ening). This effect is very important when working with metals, since heavily
worked metals are stronger than unworked metals.

Dislocations can be described in many different ways, depending on the
lengthscale on which they are viewed. At the microscopic level, they appear as
defects in the crystalline lattice. Then, if the separation between dislocations
is not too small, there is a mesoscopic scale at which the dislocations may be
modelled as line singularities of the elastic stress evolving in a continuous ma-
terial. Finally, at a macroscopic scale containing large numbers of dislocations
we can think in terms of a continuous dislocation density.

5.1 Continuous models for pile-ups

In metal plasticity, we can define an outer length scale as that on which dislo-
cations can be regarded as a line singularity, i.e. the outer equations are the
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Navier equations of linear elasticity. The second order strain tensor is defined

ϵ = (∇u)S

where u is the elastic displacement, and the superscript S denotes the ’symmet-
ric part of’. The strain tensor is related to the stress tensor through Hooke’s
law

σ = λtr(ϵ)I+ 2µϵ

where λ and µ are the Lame constants. Finally, the equations of elastic equilib-
rium are

div(σ) = 0.

An isolated dislocation can be modelled as a singular solution of these equa-
tions in which the displacement is not single valued [1]. This is the classical
Volterra model of dislocations. In general, they may be characterized by their
tangent vector and a microscopic parameter known as the Burgers vector, which
measures the form of the local mismatch in the crystal lattice.

We obtain a model for the interaction of two families of edge dislocations.
We take the first family to be tangent to the z-direction and Burgers vector in
the x-direction, and the second family to have tangent in the y-direction and
Burgers vector in the x-direction. Thus, the first family has the xz-plane as its
slip plane, while the second family has the xy-plane as its slip plane, and if we
assume that the dislocations remain rectilinear then both families will glide in
the x-direction. We refer to them as ‘dislocations type 1’ and ‘dislocations type
2’, respectively. By symmetry considerations, the problem can be reduced to a
one-dimensional problem [2], giving two populations with densities w1(x, t) and
w2(x, t), respectively. We want to determine how these density profiles evolve
with time.

Conservation of dislocations for both families yields [6]

∂w1

∂t
+

∂

∂x
(w1v1) = 0,

∂w2

∂t
+

∂

∂x
(w2v2) = 0,

where vi is the velocity of family i. Then, in the absence of any interaction
between the families we would close the model with velocity laws such as

v1 = sign(σ1,2)|σ1,2|γ ,
v2 = sign(σ1,3)|σ1,3|γ ,

In our setting, the first family of dislocations can be seen as a set of lines parallel
to the y-axis, and the second family is another set of lines parallel to the z-axis.
Both families move along the x-axis. However, as dislocations from the first
family move they must cut through the dislocations of the second family. We
suppose that there is a strong resistance to this cutting depending on the density
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and we consider [2] velocity laws of the form

v1 = sign(σ1,2)(|σ1,2| − a
√
w1),

v2 = sign(σ1,3)(|σ1,3| − a
√
w2),

with a > 0. This is a system of conservation laws that may change type form
hyperbolic to elliptic. This corresponds to the onset of pattern formation, for-
mation of dislocation pile-ups. When regularized, we obtain a free-boundary
parabolic problem describing the process [6].

5.2 Lattice models for isolated defects

An elementary model for dislocation dynamics in crystal lattices is provided
by Frenkel-Kontorova type equations for the displacement un(t) of atoms from
their equilibrium position along a row in a cubic lattice

mu′′
n + αu′

n = d(un+1 − 2un + un−1)−Ag(un) + F.

All the parameters are positive: m represents the atom mass, α friction, d elastic
springs between atoms (interaction strength), F applied force to set the defect
in motion. g(un) is a periodic function, whose period is given by the lattice
constant a. At equilibrium, all atoms are located at lattice positions separated
by a distance a in cubic lattices. Dislocations in this framework are represented
by a front like solutions, that is, solutions that grow from a stable zero z1(F/A)
of −Ag(z) + F to the next stable zero z3(F/A), passing through the instable
zero z2(F/A). When F = 0, z1(F/A) = 0 and z3(F/A) = a.

If friction is high, the motion is overdamped and we may set m = 0 to study
it. One can find a threshold Fc(A) such that [3]

• If |F | ≤ Fc(A), there are stationary wave front solutions un increasing
monotonically from z1(F/A) at −∞ to z3(F/A) at ∞.

• If |F | > Fc(A) and is close to A, there are traveling wave front solutions
un(t) = u(n− ct) with wave speed c(F ) and profile u(z) solution of

−cu(z) = u(z − 1)− 2u(z) + u(z + 1)−Ag(u(z)) + F

increasing monotonically from z1(F/A) at −∞ to z3(F/A) at ∞. This
solution is unique modulo translations.

• traveling and stationary wavefronts cannot coexist.

Stationary wavefronts represent pinned dislocations. Traveling wavefronts rep-
resent moving dislocations. Fc(A) represents the Peierls stress needed to move
dislocations in the lattice. As |F | → Fc(A), c(F ) → 0, the profiles u(z) develop
steps and become discontinuous at Fc(A). This fact is related to a global bifur-
cation in the system, which is locally of saddle node type and can be used to
estimate velocities as |c(F )| ∼ α(Fc)(|F | − Fc(A))1/2, see [7, 12].
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In the absence of friction, or for small friction, we must study the problem
with inertia. For piecewise linear g, for instance, g(u) = u + 1 if u < 0 and
g(u) = u − 1 if u > 0, it is possible to construct explicitly all the branches
of traveling wave solutions [14]. In this case, the wave front profiles develop
wavy tails. In principle, different wave profiles and speeds are possible. In
practice, stability can be proven [15] for a family which displays oscillations
only in one tail, the leading edge is monotonic and whose speed surpasses a
critical value. We identify two thresholds, the static Peierls stress Fc(A), and
the dynamic Peierls stress Fd(A). As before, stationary wavefronts exist when
|F | ≤ Fc(A). Traveling wavefronts exist when |F | > Fd(A). Both coexist for
Fd(A) < |F | < Fc(A). Thus, the system displays hysteresis. As we increase
the applied force from zero, wavefront solutions representing dislocations start
too move when the force magnitude surpasses Fc(A). Once the dislocation is
moving, we can decrease the force below Fc(A), it will still move until it falls
below Fd(A). These simulations are done in finite lattices by computational
reasons and require nonreflecting boundary conditions, those derived in [32] for
instance.

We can study two dimensional dislocations in a cubic lattice by means two
dimensional lattice models [11, 13]. In the simplest version, the displacement
of the lattice points ui,j(t) in the direction of motion (say, the direction x) is
governed by

∂ui,j

∂t
= ui−1,j − 2ui,j + ui+1,j +A(sin(ui,j−1 − ui,j) sin(ui,j+1 − ui,j)), A > 0.

Solutions representing dislocations can be generated using elastic far fields of dis-
locations as initial and boundary conditions [11]. The system relaxes to station-
ary solutions that represent the corresponding lattice distortion. For instance,
if we choose initial and boundary conditions given by si,j = θ(i, j/

√
A) + Fj

where θ is the angle function from 0 to 2π and F > 0 is a control parameter,
we obtain stationary solutions representing edge dislocations for small F . As
F grows, stationary solutions will disappear and traveling patterns will be ob-
served [13]. Notice that if we linearize the spatial operator about si,j , we have
a discrete elliptic problem for F small but it changes type as F grows.

The idea can be extended to fully 2D and 3D situations by developing ‘pe-
riodized discrete elasticity lattice models’ [17, 20]. We discretize the derivatives
appearing the elasticity stress tensor with the required crystal symmetry by
means of finite differences in the principal lattice directions, with step equal to
the lattice constant, and then periodize, that is, we replace them by periodic
functions of the differences, with lattice period. Then, we derive the motion
equations with the resulting discrete and periodic stress tensor. For instance,
in two dimensions we find

Mu′′
1 = C11D

−
1 [g(D

+
1 u1)g

′(D+
1 u1)] + C12D

−
1 [g(D

+
2 u2)g

′(D+
1 u1)]

+C44D
−
2 [(g(D

+
2 u1) + g(D+

1 u2))g
′(D+

2 u1)],

Mu′′
2 = C11D

−
2 [g(D

+
2 u2)g

′(D+
2 u2)] + C12D

−
2 [g(D

+
1 u1)g

′(D+
2 u2)]

+C44D
−
1 [(g(D

+
1 u2) + g(D+

2 u1))g
′(D+

1 u2)].
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Similar equations are derived for 3D lattices. Dislocation solutions of the cor-
responding lattices are generated using the known elastic far field for each type
of crystal [17, 20].

5.3 Nucleation in lattices

We can use discrete periodized elasticity models to gain insight on the math-
ematical processes behind defect nucleation. Unlike the models used for large
scale molecular dynamics simulations, which implement cut offs to reduce the
computational cost, these models involve smooth nonlinearities and are amenable
to analysis.

Consider a bidimensional cubic lattice of lattice constant a = 2π. Let ui,j(t)
be the displacement of point (i, j) in the x direction, governed by

m
∂2ui,j

∂t2
+ α

∂ui,j

∂t
= ui−1,j − 2ui,j + ui+1,j

+A(sin(ui,j−1 − ui,j) sin(ui,j+1 − ui,j))

in a square lattice i = 1, . . . , Nx, j = 1, . . . , Ny. We enforce boundary conditions
ui,j = F (j − (Ny + 1)/2). This is equivalent to ’shearing’ the lattice [21].
As F grows, we observe that the initial zero solution for F = 0 changes into
slowly varying stationary solutions until we reach a point Fc past which the
lattice structure is distorted in two main different ways. Linearizing the problem
at F = Fc we find a zero eigenvalue for the resulting matrix, while all the
eigenvalues are negative for F < Fc. The branch of stationary solutions si,j(F )
is stable. At F = Fc two new branches appear. The system undergoes a
pitchfork bifurcation [21].

Changing the geometry we can study other geometries, as for instance, crys-
tal indentation by means of indenters. Now vi,j(t) denotes the vertical displace-
ment, governed by

m
∂2vi,j
∂t2

+ α
∂vi,j
∂t

= vi−1,j − 2vi,j + vi+1,j

+A(sin(vi,j−1 − vi,j) sin(vi,j+1 − vi,j))

in a square lattice i = 1, . . . , Nx, j = 1, . . . , Ny. We set the boundary conditions
representing a ’push down’ from the central top part:

• Left-hand side: v1,j = v0,j .

• Right-hand side: vNx,j = vNx+1,j .

• Left-hand-side of the top layer (1 ≤ i < p1): vi,Ny = vi,Ny+1.

• Right-hand-side of the top layer (p2 < i ≤ Nx): vi,Ny
= vi,Ny+1.

• Bottom layer of the domain: vi,0 = 0.
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• Central atoms (p1 ≤ i ≤ p2) are pushed downwards according to: vi,Ny+1−
vi,Ny

= −f(i), where f has a triangular profile, pointing downwards, with
magnitude F > 0.

As F grows, we observe that the initial zero solution for F = 0 develops local-
ized lattice distortions that travel downwards. As we decrease F to zero the
distortions travel upwards and may disappear [29]. The branch of stationary
solutions that starts at F = 0 develops bifurcations at specific values of F at
which lattice with different distortions are created. Such new branches are sta-
ble for some ranges of F , while the defects simply travel. The configuration
bifurcates at new F values, new distortions are created, that travel for while,
and the process is repeated as F grows. When we decrease F , the process is
reversed. Created distortions travel upwards, and disappear.

6 Bubble and particle formation

6.1 Homogeneous nucleation of particles

Homogeneous nucleation occurs in many examples of first order phase tran-
sitions such as condensation of liquid droplets from a supersaturated vapor,
glass-to-crystal transformations, crystal nucleation in undercooled liquids, and
in polymers, colloidal crystallization, growth of spherical aggregates beyond the
critical micelle concentration (CMC), and the segregation by coarsening of bi-
nary alloys quenched into the miscibility gap.

Consider a model nucleation in a lattice in which there are many more bind-
ing sites, M , than particles, N . We shall consider the thermodynamic limit,
N → ∞, with fixed particle density per site, ρ = N/M . Let pk be the number
of clusters with k particles or, in short, k clusters, and let ρk = pk/M be the
density of k clusters. Particle conservation implies that the total particle density
ρ is constant

∞∑
k=1

kρk = ρ.

In the Becker-Döring kinetic theory of nucleation, a k cluster can grow or decay
by capturing or shedding one monomer at a time. Then the evolution with time
is given by

ρ′k = jk−1 − jk, k ≧ 2,

jk = dk(e(ϵk+1−ϵk)/(KBT )ρ1ρk − ρk+1).

The monomer density ρ1 can be obtained from the conservation identity that
relates it to the other cluster densities. Different eras in the process of cluster
formation can be analyzed by adequate asymptotic methods [16, 18].
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6.2 Heterogeneous nucleation

Heterogeneous nucleation happens at preferential sites where irregularities are
located.

6.2.1 Bubble formation in radioactive waste

The formation and growth of helium bubbles due to self-irradiation in plutonium
has been modeled by discrete kinetic equations for the number densities of
bubbles having k atoms. This is an important phenomenon which occurs in
radioactive waste and may end up damaging containers resulting in radioactive
pollution of the environment. As an alloy ages, there is an initial transient stage
during which self-irradiation produces dislocation loops that tend to saturate
within approximately two years. The alpha particles created during irradiation
become helium atoms. These atoms come to rest at unfilled vacancies generated
during their slowing-down process, before they are captured at existing helium
bubbles. A helium atom diffuses through the lattice until it finds another helium
atom thereby forming a stable dimer or until it finds a helium bubble (a stable
cluster with k atoms or, in short, a k-cluster), which absorbes it. Helium bubbles
are attached to lattice defects, do not move and do not shed helium atoms
because the binding energies of helium to any cluster are extremely high.

We denote by ρk(t) the number density of k clusters having effective radii
ak (when the centre of a monomer comes within distance ak of the cluster
centre, it is absorbed). ρ1(t) is the number of monomers per unit volume, D
is the diffusion coefficient and g(t) is the number of monomers created per unit
volume and per unit time. The following kinetic model describes the process

ρ′k = 4πDρ1ak−1ρk−1 − 4πDρ1akρk, k ≧ 3,

ρ′2 = 8πDρ21a1 − 4πDρ1a2ρ2,

ρ1 +

∞∑
k=2

kρk =

∫ t

0

g(s)ds

Asymptotic studies [19] show that this system generates a wave profile describing
the evolution of the number of clusters of different sizes with time. A more rig-
orous analysis is possible after reformulating the system with adequate changes
of variables and transforms [35].

6.2.2 Deposition of vapour and particles

Heterogeneous condensation of vapours mixed with a carrier gas in the stagna-
tion point boundary layer flow near a cold wall is considered in the presence of
solid particles much larger than the mean free path of vapour particles. The
supersaturated vapour condenses on the particles by diffusion, and particles and
droplets are thermophoretically attracted to the wall.

Consider a dilute vapour of number density c(x) in a carrier gas that contains
a small amount of solid single-size particles. The mass fraction of vapour and of
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solid particles are sufficiently small with respect to the mass fraction of the car-
rier gas, so that the velocity and temperature fields (assumed to be stationary)
u(x) and T (x) are not affected by the condensation and deposition processes.
The solid particles can act as condensation sites for the vapour. Let n∗ be the
volume of a particle divided by the molecular volume of condensed vapour, so
that a solid particle is equivalent to n∗ molecules of vapour. Then a droplet of
liquid coating on a solid particle is equivalent to n(x) vapour molecules, in the
sense that n equals the volume of a droplet (particle plus condensed vapour)
divided by the molecular volume of condensed vapour. Thus, the number of
liquid molecules coating a given solid particle is n(x) − n∗. Let ρ(x) be the
number density of droplets, so that ρ(x)[n(x)−n∗] is the number density of the
condensate.

Let us fix a flow geometry, a stagnation point flow near a wall. The equations
for u(x), n(x), T (x) and c(x) are [27]

u′′′ + uu′′ + 1− (u′)2 = 0, x > 0,

u(0) = u′(0) = 0, u′(∞) = 1,

T ′′ + Pr uT ′ = 0, x > 0,

T (0) = Tw, T (∞) = 1,(
u+ α

T ′

T

)
ρ′ = −αρ

(
T ′

T

)′

, x > 0,

ρ(∞) = 1,(
u+ α

T ′

T

)
n′ = −Nn1/3(c− ce) x∗ > x > 0,

n(x∗) = 1,

ce(x) =
Td

T (x)
exp

[
1

ϵ

(
1

Td
− 1

T (x)

)]
,

c′′ + Sc uc′ = Rρn1/3(c− ce), 0 < x < x∗,

c(0) = ce(0), c(x∗) = ce(x∗),

c′′ + Sc uc′ = 0, x > x∗,

c(x∗) = ce(x∗), c
′(x−

∗ ) = c′(x+
∗ ) c(∞) = 1,

where the point x∗ comes with the solution of the free boundary problem [27].

7 Biofilm spread

Biofilms are bacterial aggregates attached to wet surfaces and encased in a self-
produced polymeric matrix. This makes them hard to eliminate. At hospitals,
they are a major cause of hospital acquired infections. In industry, biofilm in-
duced damage in materials causes substantial losses. On the other side, they are
elementary cell aggregates which grow to develop patterns, providing a simple
toy system for models of tissue development.
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When spreading in flows, biofilms elongate with the current forming threads.
The shape of the thread adapts to geometrical constraints, seeking to minimize
adequate energies. Its time evolution until an equilibrium shape is reached can
be described by discrete rod models. We tackle here two different experimental
frameworks: biofilms in networks of cylindrical tubes and biofilms in channel
flows. In the latter case, hybrid models combining cellular automata descriptions
of cell activity and continuous descriptions of macroscopic fields for chemicals
and flows reproduce a rich variety of patterns. Whereas biofilms in flows tend
to form filamentary structures, biofilms spreading on agar/air interfaces adopt
wrinkled shapes. Hybrid models incorporating elastic fields are also successful
reproducing wrinkle formation processes. This section is taken from [43, 48, 51,
52, 54, 57, 58, 64].

7.1 Biofilms in tubes

Consider the typical flow circuits used in medical systems. Injecting bacteria
of the Pseudomonas genus inside, tubes fill with helical biofilms which wrap
around the walls [51]. Vortical motion drive bacteria to the walls creating biofilm
nucleation sites. The biofilm then elongates following the streamlines until it
undergoes a helical instability.

Discrete rod models describe the process. The filament is discretized using
a sequence of nodes xi along the filament γ, plus a reference system at each one
(the material frame) that measures the twist. This frame is obtained at each
location twisting the Bishop frame (a fixed untwisted frame) a certain angle
θi. The dynamics of the discrete filament is then governed by equations for the
angles θi, and for the node positions xi.

The equations for the angles follow from energy arguments. When the un-
deformed configuration of the filament is straight and its elastic response is
isotropic, the elastic energy due to torsion and bending takes the form:

E =

n∑
i=1

β
(θi − θi−1)2

ℓ
i

+

n∑
i=1

α

2ℓ
i

i∑
j=i−1

∥wj
i −wj

i∥
2,

where α and β are the bending and torsion moduli, respectively. ℓ
i
is the

length of the segments ei = xi+1 − xi in a reference undeformed configuration
{x0,x1, ...,xn+1}. The vectors wj

i , w
j
i , j = i − 1, i, are material curvatures in

the deformed and undeformed configurations, respectively. The material frame
is updated in a quasistatic way. Imposing

∂E

∂θi
= 0,

for all segments i not fixed by a boundary condition, this system of equations
determines the angle configuration that minimizes the energy of the thread.
Clamped ends are accounted for assigning the material frame for i = 0, i = n.
No boundary condition corresponds to a stress free end.
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We keep track of the filament position displacing the nodes according to
Newton’s second law:

M
d2x

dt2
= −dE

dx
+ f ,

where f represents the external forces and −dE
dx the elastic forces. M is the mass

matrix, we set M = mI. Biofilm filaments live inside tubes of a certain shape.
A simple way to incorporate this restriction and reproduce helical instabilities
in tubes is a penalty method [51, 57].

7.2 Biofilms in channels

Discrete rod models also allow us to reproduce the dynamics of filaments in
corner flows, for instance [57]. The dynamics of biofilm layers covering channel
walls, instead, is more appropriately described by means on hybrid models cou-
pling continuous descriptions of flow and chemical fields with cellular automata
models of cell activity [43, 52, 58].

Cellular automata provide a simple strategy allowing for an easy transfer
of information into macroscopic models. The film is divided in tiles, each of
them of the size of a cell. We have to decide for each cell whether it is dead
or deactivated, it moves, it detaches or it divides creating a newborn cell that
displaces the rest. That is done resorting to probabilities that depend on the
relevant concentrations. This approach allows us to use the same grid of tiles
to discretize the equations for the concentrations and the displacements.

The fluid surrounding the biofilm is governed by the incompressible Navier-
Stokes equations:

ρut − µ∆u+ u · ∇u+∇p = 0, x ∈ Ωf , t > 0

divu = 0, x ∈ Ωf , t > 0

where u(x, t) is the velocity and p(x, t) the pressure. ρ and µ stand for the
density and viscosity of the fluid. The non-slip condition on the velocity holds
at the biofilm/fluid interface Γ.

Biomass tiles C located on the surface of the biofilm detach due to shear
forces exerted by the flow [52]

Pe(C) =
1

1 + γ
τ(C)

=
τ(C)

τ(C) + γ
.

γ is a measure of the biofilm cohesion. τ(C) measures the shear force felt by cell
C. The probability for biomass motion in the x directions is defined as:

Px(C) =
1

1 + γ
|Fx(C)|

=
|Fx(C)|

|Fx(C)|+ γ
.

Fx is the force exerted by the flow in the x direction (on cell walls normal
to the x direction) weighted with a geometrical factor accounting for neighbor
protection. Similar expressions are used in the y and z directions.
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The concentrations of nutrients and oxygen inside the region containing the
biofilm and the boundary layer are governed by:

cs,t −Ds∆
2cs = k2

cs
cs +Ks

co
co +Ko

,

co,t −Do∆
2co = ωk2

cs
cs +Ks

co
co +Ko

,

with zero flux conditions at the substratum. One of them will act as limiting
concentration cl, that is, the concentration that limits biofilm growth. The cells
will divide with probability:

Pd(C)) =
cl(C))

cl(C) +Kl
,

where cl denotes the limiting concentration and Kl its saturation coefficient in
the Monod law. Whenever neighboring grid tiles are empty, the daughter cell
is placed in any of the empty tiles with equal probability. Otherwise, the new
cell will shift one of the neighbors. The cell offering the minimal mechanical
resistance is chosen [43].

This kind of hybrid models allows us to reproduce a variety of patterns, such
as ripples, mounds and streamers, as well as erosion and fragment detachment,
on channels of different geometry and roughness [43, 52, 56].

7.3 Biofilms on surfaces

We can reproduce wrinkle branching in an expanding biofilm resorting to Föppl-
Von Karman descriptions of the interface biofilm/agar:

∂ξ

∂t
=

1− 2νv
2(1− νv)

hv

ηv

[
D(−∆2ξ +∆CM ) + h

∂

∂xβ

(
σα,β(u)

∂ξ

∂xα

)]
− µv

ηv
ξ,

∂u

∂t
=

hvh

ηv
∇ · σ(u)− µv

ηv
u,

where hv is the thickness of the viscoelastic substratum and µv, νv, ηv its rub-
bery modulus, Poisson ratio, and viscosity, respectively. The bending stiffness

is D = Eh3

12(1−ν2) , where E and ν represent the Young are Poisson moduli of the

biofilm, whereas h is the film thickness. ξ stands for the out of plane displace-
ment and u the in plane displacement. α and β stand for x, y and summation
over repeated indices is intended. Stresses σ and strains ε are defined in terms
of in-plane displacements u = (ux, uy):

εα,β =
1

2

(
∂uα

∂xβ
+

∂uβ

∂xα
+

∂ξ

∂xα

∂ξ

∂xβ

)
+ ε0α,β ,

σxx =
E

1− ν2
(εxx + νεyy), σxy =

E

1 + ν
εxy, σyy =

E

1− ν2
(εyy + νεxx).
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The residual strains ε0α,β are expressed in terms of the growth tensor as:

ε0α,β = −1

2
(gαβ + gβα + gzαgzβ) ,

and should be computed from cellular activity.
Using a cellular automata description of cell activity, we can calculate growth

tensors due to cell division, death, and water absorption processes, and estimate
the residual stresses. Performing ensemble averages, the averaged stresses repro-
duce spatial variations reflecting cellular activity. Filtering the resulting fields
using image processing techniques yields smooth approximations with a clear
spatial structure averaging just a few runs. These fields are smooth enough to
be plugged in Von Karman’s equations without causing numerical instability,
allowing to reproduce behaviors that resemble observed patterns [48, 58, 60].
A rigorous existence and stability theory in this type of models is developed in
[67, 68].

8 Propagation of electric impulses in semicon-
ductors

Semiconductors are materials of great interest in microelectronics, and are the
basis of many devices that exploit the formation of patterns and oscillations in
the electric field.

8.1 Discrete models for domain walls in superlattices

Semiconductor superlattices are formed by a sequence of layers of different semi-
conductor materials. The dynamics of domain walls separating regions with
different electric field in semiconductor superlattices is described by systems of
the form

dEi

dt
+

v(Ei)

ν
(Ei − Ei−1)−

D(Ei)

ν
(Ei+1 − 2Ei + Ei−1) = J − v(Ei),

for the electric field Ei at well i. Here, v,D are positive functions and ν > 0 is
large. v is a cubic, it grows from 0 to a local maximum, decreases to a positive
minimum, and increases to infinity later. For a range of J , we have three zeros
z1(J) < z2(J) < z3(J), two of which are stable. For ν large enough, we can
construct wavefront solutions [4] and the situation is similar to that described for
one dimensional discrete dislocation models. We find thresholds Jc1(ν) < Jc2(ν)
such that [8]

• If Jc1(ν) < J < Jc2(ν), there are stationary wave front solutions Ei in-
creasing monotonically from z1(J) at −∞ to z3(J) at ∞.

• If Jc1(ν) > J or J > Jc2(ν), there are traveling wave front solutions
Ei(t) = E(i− ct) with wave speed c(J) and profile E(z) increasing mono-
tonically from z1(J) at −∞ to z3(J) at ∞. Such waves travel with speeds
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of opposite sign for each range of J , some of them in the same sense as
electrons, some contrary to them.

• traveling and stationary wavefronts cannot coexist.

Stationary wavefronts represent pinned domain walls. Traveling wavefronts rep-
resent moving domain walls. As J → Jc1(ν) or J → Jc2(ν), c(J) → 0, the
profiles E(z) develop steps and become discontinuous at the critical values of J .
This fact is related to a global bifurcation in the system, which is locally of saddle
node type and can be used to estimate velocities as |c(J)| ∼ |α(Jc)|(|J−Jc|)1/2.

We can add noise γξi to the applied current J , where γ > 0 characterizes
the disorder strength and ξi is a zero mean random variable taking values on
an interval (−1, 1) with equal probability [10]. Setting γ = 0, we can repeat
with this equation the study done in the previous exercise and obtain a velocity
that scales like |J − Jc|1/2. However, when we add noise, for each realization
of the noise, the thresholds Jc is shifted slightly up or down by the noise. The
observed velocity will be the average of the velocities observed for a large number
of realizations. For J > Jc,

|cR| ∼
1

π

√
α(Jc)β(Jc)(J − Jc) + γβ(Jc)ξ0

the average

c =
1

N

N∑
R=1

|cR| =
1

2π

∫ 1

−1

(αβ(J − Jc) + γβξ)1/2dξ ∼ (J − J∗
c )

3/2

where the new critical field is J∗
c = Jc − γ

α .
As ν → 0, only fronts traveling in one direction remain, same as for the

continuous limit, a reaction-convection-diffusion equation:

dE

dt
+ v(E)Ex −D(E)Exx = J − v(E).

8.2 Hyperbolic and kinetic models for the Gunn effect

When we add boundaries and wish to describe the so-called Gunn effect, that
is, generation of successive electric pulses at one end which travel and die at
the other end, triggering the creation of a new one [5]. This phenomenon is
captured at a macroscopic level by the system

∂2E

∂x∂t
+A

∂E

∂t
+B

∂E

∂x
+ C

∂J

∂t
+D = 0, x ∈ (0, L), t > 0,

E(x, 0) = 0, x ∈ (0, L),

E(0, t) = ρJ(t), t ≧ 0,∫ L

0

E(x, t)dx = ϕ, t ≧ 0,
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where ρ, ϕ, L are positive and A,B,C,D are bounded functions, A and B pos-
itive, while C is negative. E(x, t) represents the electric field and J(t) the
current, while ϕ is the voltage.

More detailed microscopic models for this phenomena lead to kinetic Boltz-
mann equations for semiconductors [9, 28] for the carrier density f(x, k, t) such
as

∂tf +
∆l

2ℏvM
sin(k)∂xf +

τe
η
F∂kf =

1

η

[
fFDa(k;µ(n))−

(
1 +

νimp

2νen

)
f +

νimp

2νen
f(x,−k, t)

]
,

∂2
xV = ∂xF = n− 1

n =
1

2π

∫ π

−π

f(x, k, t) dk =
1

2π

∫ π

−π

fFDa(k;µ(n)) dk

fFDa(k;µ) = α ln [1 + exp (µ− δ + δ cos(k))]

η =
vM

νenx0
δ =

∆

2kBT
.

The boundary conditions are, for x = 0:

f+ = βF − f (0)∫ π

0
sin (k) f (0) dk

∫ 0

−π

sin (k) f− dk

with

β =
2πℏσFM

e∆ND

and for x = L/x0:

f− =
f (0)

(1/(2π))
∫ 0

−π
f (0) dk

(
1− 1

2π

∫ π

0

f+ dk

)
The boundary conditions for the electric potential V are

V (0, t) = 0, V (L, t) = ϕL ∼ ϕ

FM

L

x0
.

The initial condition is

f (0)(k;n) =

∞∑
j=−∞

exp (ıjk)
1− ıjF/τe

1 + j2 (F )
2 f

FD
j (n)

fFD
j (n) =

1

π

∫ π

0

fFD(k;µ(n)) cos(jk) dk
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with x ∈ [0, L = L/x0] and f periodic in k with period 2π. The average energy
E is defined as

E =
E

kBT
=

∫ π/l

−π/l
ε(k)f(x, k, t) dk

kBT
∫ π/l

−π/l
f(x, k, t) dk

= δ

∫ π

−π
(1− cos k) f(x, k, t) dk∫ π

−π
f(x, k, t) dk

.

This model implements a BGK approximation of the collision kernel in the
equation for the carrier density. The full model involves a nonlocal collision
kernel and equations for different types of carriers [9].
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spread of helical Pseudomonas biofilms in cylindrical flow systems, Scientific
reports 6, 27170, 2016

[52] A. Carpio, B. Einarsson, D.R. Espeso, In G Russo, V Capasso, G Nicosia,
Romano, V. (eds) Progress in Industrial Mathematics at ECMI 2014. Math-
ematics in Industry, vol 22. Springer, 2016

[53] A Carpio, TG Dimiduk, ML Rapún, V Selgás, Noninvasive imaging of
three-dimensional micro and nanostructures by topological methods, SIAM
Journal on Imaging Sciences 9 (3), 1324-1354, 2016

[54] B Birnir, A Carpio, E Cebrián, P Vidal, Dynamic energy budget approach
to evaluate antibiotic effects on biofilms, Communications in Nonlinear Sci-
ence and Numerical Simulation 54, 70-83, 2018

30



[55] A Carpio, TG Dimiduk, V Selgas, P Vidal, Optimization methods for in-
line holography, SIAM Journal on Imaging Sciences 11, 923-956, 2018

[56] Dynamics of Pseudomonas putida biofilms in an upscale experimental
framework DR Espeso, E Mart́ınez-Garćıa, A Carpio, V de Lorenzo Jour-
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