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Partial Differential Equations

. Consider the problem
V- v%Vu=0 inQ\Q, V- -vVu=0 in Q;,
u” —ut = on 09, v%Vu -n—~.VuT-n=0 on 09,
YeVu-n=j on 0.
with continuous and positive e, ~y;, up to the boundary. We assume €; C
Q, domains with smooth boundaries. The unit normal n points outside €2,
but inside ; and u~ and ut denote the limit values of u on 0€; from

outside and inside €);, respectively. Can we expect to have solutions for
any j € L?(0)? Can we expect uniqueness of solutions?

Taken from [57]. Integrating over Q and applying the divergence theorem,
we find

V - veVudx + / V - y=Vudx
Q\Q; Q;

:/ ’eru'ndﬁz/ jdé=0.
oN o0

We have a constraint on the boundary integral of j to be able to construct
solutions. Once this constant is satisfied, possible solutions are not unique,
since addition of any constant provides another solution.

. Calculate the solution of
Ap+Ap=adp xRV,

limrﬁmr¥(@ —\p) =0, 7r=[x|

or

where dr is a Dirac mass supported at a curve I

Taken from [63, 62]. The fundamental solution for the Helmholtz equation
AG 4+ X?G = -4 in the whole space satisfying this condition at infinity
(outgoing Sommerfeld radiation condition) is known in explicit form. The
solution for this particular right hand side is obtained by convolution

p(x) = - G(x —y)a(y)or(y)dy =

[ Gox=yyaty)iy.
. Given a continuous function a, find an explicit expression for the solution
of the problem

AP(x) + k2P(x) = a(x)dx, x€R?,

oP
lim,_o r (6‘ + zkeP) =0, r=|x|, x¢€ R3.
r



Taken from [69]. The complex conjugate Q = P satisfies a Helmholtz
equation with outgoing radiation condition at infinity:

AQ(x) + k2Q(x) = a(x)dx,, x € R?,

lim,_,q 7 (gQ — zk@Q) =0, 7=|x|, x0c€R3.
T

ezke\x|

Thus P =

The fundamental solution is known to be F(x) = T

—F % adx,, 64, being a Dirac mass supported at xo and

efzke|x7xo\

P(x) = (x0)-

747r|x — Xo| “

. Find an explicit expression for the solution of

curl (curl P) — k2P = d(x)dx, in R3,

lim x| o0 [X| ‘curlP X X — ZkeP‘ =0.

Taken from [77]. We take the divergence of the equation. Since div (curl A) =
0 for any vector A, we find divP = —k—gdiv d éx,. Making use of the vector

identity curl (curlP) = V(divP) — AP we have
—AP — k2P = 0x,d + 5 V(divd dy,).

We can solve the equations by convolution with the Green function of
Helmholtz equation:

P = Gy, *ddx, + 175G, * V(divddy,).

Notice that the right hand side can be rewritten as Gy, * déx, + 7= G, *
[curl curl déy, + Addy,]. Interchanging the derivatives in the convolution
we find

P(x) = k—gcurlcurl G, (x — x0)d(x0).

for x # xq.

. Given an interval [0, L], L > 0, we consider the problem

a% <d<z)f§) =k()C, z€l0,L]]

oC(0)
( ) CO > ’ an Y
with coefficients d,k € L*(0,L), d > dy > 0 and k > 0. Study if this
problem has a nonnegative solution C € H'([0, L]).



Taken from [90]. This is an elliptic problem with coefficients in L>°(0, L).
Let us define the Hilbert space H = {C' € H'(0,L)|C(L) = 0}, where
H'(0, L) is the standard Sobolev space. We set C' = ¢ + C, with C € H.
In variational form, this linear problem reads: Find C' € H such that

L1 8C ow .

L
— / kcwdz
0

for w € H. The left hand side defines a continuous bilinear form b(c, w)
in H x H, which is symmetric and coercive. The right hand side defines
a continuous linear form ¢(w) in H. By Lax Milgram’s theorem, there is
a unique solution C' € H. By Sobolev injections, C' € C([0, L]). Using the
positive part as a test function w = C* | we get Ct =0 and C < 0. On
the other hand,

L

oC ow

d—— + kCw|dz = 0.
/0 [ 0z 0z * w} :

Taking w = C~, we obtain C~ = 0. Therefore, 0 < C < ¢g.

. Given a smooth semicircle Q, with curved upper boundary OQF and lower
straight boundary 02~ , consider the problem

c
Ac = ky——— Q
dAc ksc+K5’ X €
c=c >0, x€I0”
ﬁ:0, x € 00T,
on

with positive parameters d, ks, K. Study if this problem has a nonnegative
solution ¢ € H'(Q) for some parameter range.

Taken from [60, ?]. The solution ¢ can be constructed as the limit of
iterates ¢(™ solution of linearized problems

ks

(m) _ (m)
dAc D 1 KSC , x€
™ =y >0, x€00
9elm)
c 0, xeoNt,
On

starting from ¢(®) = ¢y. Lax Milgram’s Theorem implies existence of a
unique solution (™ € HY(Q). Set a,, 1 = W We multiply the

equation by the negative part of ¢(™), (™=

d/ \Vc(m)7|2dx+/am_l\c(m)*|2dx:0,
Q Q
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because fQ a%(:) ¢y d = 0. Initially, ag > 0. Thus, M= =0 and ™ >0,
which implies a;. By induction, we conclude that ¢(™ > 0, a,, > 0 and
am < ks/K,. Writing ¢(™ = &™) 4 ¢, with é™) € H}(Q), we get

dAE™ = q,, 1™ 4 Am—1Co, X E N
dm=0>0, xe€d
o&(m)

on

=0, xe€onr .
Multiplying by ™ and integrating, we find

d/ ‘Vé(m)|2dx+/(lmfﬂé(m)‘gdxz‘/am,1005(7'0dx.
Q Q Q

ks Co

Using Poincaré’s inequality, ||E(m)HH5(Q) < C(Q)=5

. By Sobolev injec-
tions, we can extract a subsequence converging weakly in H}, strongly in
L? and pointwise to a limit é&. Moreover, we can prove strong convergence
of the whole sequence provided d is large enough. Passing to the limit in

the equation, ¢ = ¢ + ¢g > 0 is a solution to the original problem.
. Prove that the solution ® of the equation

P2 dk
_@CI)(%) = nD(‘r) - ~/]R 1+ exp(e(/ﬂ) - ‘I)(x))

with [go % = a fized and %2 € L? is unique.

Taken from [21]. Assume that there are two solutions ®; and ®, satisfying
such conditions. Set U = ®&; — ®,. Then, % € L? and

LU

dk dk
dx? /R 1+ exp(e(k) — ®1(z)) /R 1+ exp(e(k) — Pa(z))’

Let us assume first that U(z) > 0 everywhere. Then

- / dkdx - / dkdx .
g2 1+ exp(e(k) — P1(x)) g2 1+ exp(e(k) — P2(x)) 7
which is impossible.

Let us assume now that there is a unique point zg at which U(zg) = 0.
We take U(z) < 0 for x < zg and U(x) > 0 for > . Thus, ?127[2] < 0if
T < xg and ﬁl{ < 0if £ > x9. Then, % is decreasing if x < xg and %
is increasing if © > xp. On the other hand,

*

AU\ ? =AU\ < AU\ 2
/R<dx> dm*/m (m) d“/x* (dx> i



is finite. If there exists z* such that %f*) > 0 and z* < z¢ then

. NN
I (%)2dx > (%) [ _dx = co. This is impossible, so that
% < 0 for all x and U is decreasing. This contradicts our assumption on
xo. Therefore, we should have at least to points xg and x; at which U

vanishes.

Let o and x1 be such that U(xg) = U(z1) = 0. If xps is such that
2
U(zy) = max {U(z), 7o <z < z1} > 0, then <Y

ﬁ‘”) < 0 because the
maximum is attained at an interior point. However,

0

PU(xy) dk - dk
= dx? _/Rl—i-exp(e(k;)—(bl(xM)) /Rl—kexp(e(k)—d)g(xM))

since U(xps) > 0. Hence, max {U(z), 2o <z < x1} = 0. In an analogous
way, we conclude that U(z,,) = min {U(z), vo < z < x1} = 0. Therefore,
U =0 on [zg,z1].

Now we set g = min{z |U(x) =0} and x; = max {x |U(z) = 0}. Then,
U(x) < 0 for x < xo and U(z) > 0 for x > z1. Repeating the above
arguments, we would obtain ' ¢ [zg,z1] such that U(a’) = 0. This
contradicts the definition of g and x;. Therefore, U = 0 everywhere and
P = P,

>0,

. Consider balls B. = B(x,¢) centered at a point x of small radius e. Given
a smooth function u(x), let v. be the solution of

Av, + kv, =0, in R?\ B,
Ve = —u(x)7 on 835,
lim /2 (6U€ — Zkvg) =0.

r—00 or

What is the behavior of % ase—07?

Taken from [47]. The Dirichlet-to-Neumann provides an expression for
the normal derivative of v, on T';:

OnVe(x + £(cos 0, sin 6))
00 (1)y/
k (H,,)) (ke) 2=
= — L R inds / e 0=O)y(x 4 £(cos ©,5in ©))dO
27Tn:—oo H‘(;R (kE) 0
in polar coordinates. Here H I(il) denotes the Hankel function of the first
kind of order |n|. We choose the normal vector n pointing into B.. For
sufficiently small € > 0,

ov,
on

(HS")' (ke)
HSY (ke)

(x +e(cosf,sinf)) =k u(x) + O(e).



For small € > 0, the Hankel functions have the following leading parts:

—2log(ke) -2
H (ke) ~ ———==, (Hy)'(ke) = —H}V(ke) ~ — .

Thus,
(Hg") (ke) 1
Hél)(ke) ke log(ke)’

and 2= (x + £(cos 0, sin ) ~ mu(x).
. Given a bounded open set Q C RN, we consider the problem: Find v > 0
such that

—Au=u" x€q,
u=0 xe€09N,
u>0 xeq.

Prove that there is a solution when 1 < p+1 < p*, where p* = oo if N < 2
and p* < % when N > 2.

Consider the minimization problem

_ Jo IVul? dx .
I= MlnueH(}(Q)W = MmueHg(Q)J(U)-

The functional J(u) to be minimized is positive, thus, bounded from be-
low. Consider a minimizing sequence u,, € H}(Q), such that J(u,) — I

as n — oo. The sequence v, = Mﬁ is a minimizing sequence sat-
n LP

isfying also [[vy||ze+1 = 1. Then, [, |Vv,|?dx — I implies that v, is
bounded in H} () and v,, tends weakly in Hg to a limit v € H}(Q). By
Sobolev injections, v, is compact in LP*1 p + 1 < p*, thus v € LPTL(Q)
and ||vp||pe+1 = 1 — ||v||zp+1 = 1. By lower semicontinuity of weak con-
vergence, we have J(v) < limy,_y00J(v,) = I. Since v € Hi (), we have
I < J(v). Therefore, I = J(v) and the minimum is attained at v. More-
over, we can replace v by |v| and J(Jv|) < I(v), so that w = |v| > 0 is a
minimizer too and I = J(w). w # 0 because |w| pr+1 = 1.

Now, J(w) < J(w +tr), r € H(Q) for real t. An asymptotic expansion
first for ¢ > 0 then for ¢ < 0 leads to

/Verdx:c/wprdx
Q Q

for all » € HE(Q2) and some ¢ > 0. This implies —Aw = cwP. Setting
w=c P Dy we get —Au = uP and u > 0, u # 0. By the strong
maximum principle, u > 0.

Ifp+1=p*= % and N > 2 existence depends on the geometry of €,
see [1].



10. Prove that the function v(x,t) = [t|7T¢(x), 1 < p < p* — 1, where

» \?
0= () Pt xeq
p—1
¢=0 xe€d,
s a solution of the backward parabolic problem

—Av+ o P, =0 x € Q x (—00,0],
v=0 x€0Nx(—00,0]

Proof taken from [3, 8]. We see that
Do, -l
= —— t p—
o= =L 760,
P\ pan
it == () Pl o),

P r p i
~a0 = 100 = 177 () leor o).

so that the equation is fulfilled. Existence of ¢ follows from critical point
theory.

11. We work in variable domains 2, whose boundaries I't are generated from a
smooth curve T'Y € C? (twice differentiable) following a family of deforma-
tions I'" = {x +t V(x) |x € T} , along a smooth vector field V€ C*(I').
For t > 0, we denote by u' € H*(BR) the solutions of

b ut,w) = l(w), Yw € H'(Bg),

b Qs u,w) = fBR\ﬁt (VxtuV W — k2uw)dx® — fFRLuEde
+ Jor (BVxuV W — BrZuw)dx’, Yu,w € H'(Bg).

Change variables to reformulate the problems on Q0.

Taken from [79]. For small t > 0, I'* € C? is a perturbation of I'’. The
deformation x! = ¢f(x) = x + ¢ V(x) maps Q° to Qf. For small ¢, ¢
is a diffeomorphism and its inverse n* maps Q2 to Q°. The deformation
gradient is the jacobian of the change of variables

J4(x) = Vo' (x) = (52 (x)) = T+t VV(x),

and its inverse (J¢)~! = (git) is the jacobian of the inverse change of

variables. Then, volume and surface elements are related by

dx! = det J'(x) dx, dSy: = det J*(x)|| (J*(x))"Tnl|dSy,



12.

and the chain rule for derivatives reads Vyu(x!(x)) = (J!(x))? Vyeu(xt(x)),
that is, Vyeu = (J')~TVyu. For each component we have

g (x! (%)) = e (3 (%)) (J1) 5 ()

We define 4(x) = u’ o ¢*(x) = u’(x!(x)). Changing variables we have:

bg(Qt;ut’w) = th [5%€Xt)§? (xt) _ ﬁ/{?ut(xt)w(xt) dxt =
o B[220 () 0022 (0) () () — B2 ) et (o)
= bH(QO; @, ).

NEREE

A similar relation holds on B \ Q' defining b’ (Bg \ Q' ut, w) = b’ (Bg \
ﬁo; @, ). Therefore, we obtain the equivalent variational formulation:
Find @ € H*(Bg) such that

Bt(QO;a,w)=8§(Q°;a,w)+ég(33\ﬁ;a,w)—/ LawdSy = ((w),
'r

for w € HY(Bg).

Consider the problem

wAug + (p+ A)Vdiv(us) — Vp = IV ¢y, on (),
pAvVs + (4 A\)Vdiv(vs) = V', on {2,
knAp — div(vs) =0, on (,
Ap' = (2u+ N A€, on €,
P =Dexty D = Doy onT,
u=0, v=0, onl'_,

(6(us) — (p+Tg)n=g, (6(vi)—pIn=g, onTy,

with positive constants u, A, ky, II. We denote by H&,_(Q) the Sobolev
space of HY(Q) functions vanishing on T_. Let Q C R™, n = 2,3, be an
open bounded domain with C* boundary OS). Assume that ¢s € H'(Q)
and ¢ € H?(Q). Prove existence of a unique solution and establish its
reqularity.

Taken from [86]. The equation for p’ uncouples from the rest and provides
a solution p’ € H2() by classical theory for Laplace equations. Next, the
equation for v is a classical Navier elasticity system which admits a unique
solution v € [H?()]" x [Hj _(Q)]™ [?]. Since the source Vp' € [H'(Q)]",
elliptic regularity theory implies vs € [H3(Q2)]". Now, div(vs) € H?()
implies that the unique solution p of the corresponding Poisson problem
has H*(Q) regularity thanks to the C* regularity of Q. Finally, the
equation for ug is again a classical Navier elasticity system with L? right
hand side which admits a unique solution us € [H*(Q)]" N [Hj _(Q)]™.



13.

14.

Consider a membrane whose vertical deviation from a flat equilibrium is
governed by
0w
P o2
where p, d, k are positive constants. Would you expect this system to
develop oscillatory patterns with definite wave lengths?

= dAw — kA*w + f(z,y,t).

Taken from [58]. The elliptic wave-plate operator with zero Dirichlet
boundary conditions in a rectangular admits a sequence of positive eigen-
values A, ,, with eigenfunctions ¢, , given by combinations of sinus and
cosinus functions whose period is related to the spatial domain and varies
with the eigenvalue. Seeking a series solution by separation of variables,
we see that the problem admits solutions of the form

Z an,m(t)asn,m(x’ y)v

where ay, ., (t) is solution of

" _
Apom + An,man,m = fn,m,

therefore, a combination of sin(y/An mt) and cos(y/An mt), after express-
ing f(z,y,t) =3, . Jam(t)dn,m(x,y) as a series of eigenfunctions. More
complex models in which w is coupled to Navier equations for in-plane mo-
tion (u,v) and f is given by either spins or functional expressions informed
by them are used to explain ripple formation in graphene [59, 58, 54].

Given a solution u € WL (RT, HY(Q)) N W22 (RY, L2(Q)) of

ugy — Au+ afu [P uy =0 in L°(RY, HH(Q))

with « >0, 1 <p and p+ 1 < p*, we set
1 1
E(t)zf/ |Vu(x,t)|? dx—i—f/ lug (x, )|* dx.
2 Ja 2 Ja

Then, for some positive constant C(E(0)), we have

E(t) < C(E(0)t~¢®=D ¢ > 0.

Proof taken from [2]. We set ¢(t) = E®~1/2 [ uu, dx. Next, we differ-
entiate with respect to t to get

,a/ lug|PTdx <0,
Q

o) = E(t)PD/2 </ |ut|2dx—/ Vu|2dx—a/|ut|p_1utudx)
Q Q Q

-1
—|—pTE(t)(p*3)/2E'(t)/ uug dx
Q

&
<
—
o~
~
I

10



First, notice that E(t) < E(0) and — [, [Vu?dx = —2E(t) + [, |u:|* dx.
Moreover,

1 1
/uutdx < B(t)™! (/ |u|2dx+f/ |ut|2dx> < C(Q)
Q 2 Ja 2 Ja

for some positive constant C(€2) because Poincaré’s inequality implies

Bt~

3 Jo lul?dx < @ Jo IVul? dx. As a consequence, we get

o) < 2E(t)(p_1)/2/|ut|2dx—aE(t)(p_1)/2/ g |P ™ ugudx
) Q

2Bt/ p—1

5 C(Q)E(0)P~Y/2E/(¢).

Now we set ¢ (t) = (1+ K1) E(t) +e¢(t) with Ky = %C’(Q)E(O)(’"l)/?
We get

YLt) < 2eB()@D/? /

lug|? dx — ae E(t)P~1/2 / |ug|P T dx
Q

Q
_QEE(t)(p+1)/2 _ a/ Jue [P dx
Q

Notice that [Ju.[|2. < meas(Q)P=D/P+D( [ [u,[P+1)2/P+) | By Young’s
inequality

(p—1)

2
. _ 7T
2eE(t) % /\ut\ZdXSZE meas(Q) 57 B(t) 7 (/ |ut|p+1>
Q Q

<eE()™ +56/ g |PT
Q

for some positive § depending on €.

Using Sobolev injections for p + 1 < p* we find

/Q|ut|P*1utudx < </Q |y |PHY dx>pil ul| Lotr < SEQ)[Juell} pir [Vl 2.

Notice that ||Vullp2 < 2E(t). By Young’s inequality again

»sozE(t)(pfl)/Q/Q g [P ugu dx < saE(t)(pfl)/QS(Q)||ut||§p+1HVuHLz
<5 [l s enmrr

where 1 > 0 depends on E(0), 2, a and ¢, and tends to zero as € tends to
zero. Adding up, we get

VO < (<5 +e0) [ Pt +e(-1+ @) B,

11



15.

On the other hand, for € small enough,

1

gE(t) < (1 - K26)E(t) < :(t) < (14 Koe) < 2E(2).
Choosing ¢ small enough, we find

¢E(t)(p+1)/2.

g

YL(t) < _ZE(:UH)/? < _%

Integrating the inequality we find E(t) < C(F(0))t=/®=1 for t > 0.
Consider the scalar wave equation

p(x) uy = div(x(x)Vu) + p(x)h(t,x), x€ R, te€[0,T],
Vu-n=0, x € OR, t € 10,7,
U(O,X) - UO(X)a ut(O,X) = ul(x)v x € R,
for a C* domain R C R%. Assume that
® D, X, S LOO(R)y 0 < Pmin S P S Pmax 0 < Xmin S X S Xmax s
0< “Ymin < o < Ymax;
o ug € HY(R), uy € L3(R), h € C([0,T]; L*(2)).
Then, there exists a unique solutionu € C([0,T); H'(R))NC([0,T]; L*(R)).
This solution satisfies the wave equation in the sense of distributions.

Taken from [89] with v = 0, see also [88]. Formally, multiplying by w €
H(R), integrating by parts over [0, 7] x R and assuming that u is smooth
enough, we find the weak formulation

d

az |/, p(x)u(t,x)w(x) dx + /RX(X)Vu(t7 x)Vw(x) dx+

= / p(x)h(t, x)w(x) dx (1)
R
w(0) = ug, u(0) =uq,

for all w € H'(R), given f € L>(0,T; L*(R)).

The proof is based on the use of Galerkin bases and compactness argu-
ments. We can consider a Galerkin basis {¢1, ..., ¢, ...} C H'(R) formed
by eigenfunctions of an elliptic operator.

Step 1: Galerkin approzimation. For each M € N, we denote by VM
the space generated by {1, ¢Pa,...,¢n} and consider the approximate
problem: Find u™ (t,x) = Zle @, (t)pm (x) such that
%pruM(t)w dx + [ xVuM (t)Vw dx
:/ph(t)wdx, (2)
R



for all w € VM and t € [0,7T], where u}! = Z%Zl 0. m®m and uf =
Z%:l U1,m®m are the projections of ug and u; in VM,

Step 2: Change of variables. To achieve the necessary estimates, we change

variables and set u = etoM | 1 > 0, so that u}M = pertvM + ertpM

and upf = pet'oM 4 2uertoM + ertvll . Problem (2) becomes: Find
UM = Z%:l b?n (t)¢m(x) such that

£ Jr poM(twdx + [ xVoM (1) Vw dx
+ [ oM (wdx + & [, 2pp0M (H)w dx

=e M [ ph(t)wdx,
oM (0) = up’, v (0) = ui!,

for all w € VM and t € [0,7).

Step 3: Fxistence of an approrimant. This problem is equivalent to a
linear system of M second order differential equations for the coefficient
functions b,,

et V() [ POmbt X3y Vi (D241 [ pmbic dx
+ 2 et bin (1) [ XV 6 Vb dx
= e [ ph(t)dr. dx,
b (0) = wom, 0,00)=u1m, m=1,...,M,
for k=1,..., M. In matricial form,
Mb"” + Db’ + Ab = h(¢),

where h(t) € C([0,T]). This linear system can be written as a first order
linear system for b and a = b’, which has a unique classical solution
b= (b1,...,by) € C?([0,T]) for any M.

Step 4: Uniform estimates. We multiply by b}, and add over k to get

st Jr Pl (O)Pdx +2p [o, plof (1) ?dx+

L [ [ XIVOM (0)2dx + 22 [y plo™ (1) ]

= et [ ph(t)oM (t) dx.
For any v(t) € H'(R) with v,(t) € L?(R), we define the energy as

By (u(t)u(t) =3[ plucdx+3 [ [xIVul* +12plul?] dx,
Integrating over t it follows that
t
B, (M (@), 0 (1) + 20 [y [5 plvi (s)[Pdxds

= E,(u}!,ult) + fot Jre " ph(s)v}M (s) dxds.

13



Discarding positive terms and using the properties of p, we find
t
puinl [ (N2 () < 2Bu(ug”, wd”) + pmax fo 1A(5)[1 72y s
t
+Pmax fo ||U£4(3)||2L2(R)d8’

thanks to Young’s inequality. Notice that E, (u}!,u}’) — E,(ug,u1) as
M — oo due to strong convergence in H'(R) and L?(R). Then, Gronwalls’
inequality yields a uniform bound on HvtIV[||Lao(O7T;L2(R)) in terms of T,
Ik, E(ug,u1), and p. Inserting this uniform estimate in inequality (3)
we obtain uniform bounds on ||“tM||L2(0,T;L2(8R\§))7 oM Lo (0.7 12 (0R\S))
and ||'UMHL°°(O,T;H1(R)) when p > 0.

Step 5: Compactness. By classical compactness results, we can extract a
subsequence v converging weakly star in W1:>°(0, T'; L?(R))NL>(0,T; H'(R))
to a limit
v e Wh>(0,T; L*(R)) N L>(0,T; H'(R))
converging weakly in L2(0,T; L2(OR \
M ‘c’)R\f converging weakly star L>(0,T; L?(0R\
d* M’ d?

Y)) to a limit v’aR\i' Moreover, $=v" — Zzv in the sense of distribu-

/ : M’
as M'" — oo, with traces v; ’aR\E

3)) to alimit v, |aR\§ and v

tions.
Step 6: Passage to the limit. To find the equation satisfied by u, we take
w = ¢p, multiply by 1(t) € C°([0,T)) and integrate over ¢ to obtain

Jo S oo™ budn dxds + [ppur mtb(0)dr dx — [rpuomibe(0)dr dx
+ [ [ X VoM Vo dxds
+ fOT fR pu2UMl¢k1/} dxds + fOT fR 2p,tth/¢k1/1 dxds
= Jo €7 [ h(s)onep dxds,
for k < M’. Letting M’ — oo we find
o vy dxds + [opurth(0)dr dx — [rpuote(0)dy dx
+ [T [ X VoV dxds
+ o [ prPvont dxds + [ [ 2ppvedntd dxds
= [ e [ h(s)pwp dxds,
for all ¢p. The identity extends to all w € H'(R) by density. Taking

Y € C.(0,T) and ¢ € C.(R) in (3), and integrating by parts, we see that
v satisfies the equation pvy — div(xVv) + 2ppvy + puv = e #h in the
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16.

17.

sense of distributions in [0, 7] x R. Undoing the change of variables, we
have constructed a solution w of

pug — div(xVu) =h inD'(0,T) x R (4)

in the sense of distributions.

Sinceu € L*(0,T; H*(R)), uy € L*(0,T; L*(R)) and uy; € L*(0,T; (H(R))"),
after eventually modifying a set of zero measure, u € C([0, T]; H(R)) and
u; € C([0,T]; L2(R)). Then, u(0) € H'(R) and u,(0) € L*(R). We take
€ C([0,T)) and ¢ € C.(R) in (3), integrate by parts, and use (4), to
get u(0) = up and u¢(0) = uy. Therefore, we have constructed a solution
u € C([0,T]; H(R)) N C([0, TT; L*(R)).

Consider the scalar wave equation

puUtt — dlv(uvu) = f(t)g(x)7 X € Ra > Oa

u(x,0) = ug, us(x,0) = uq, X € R,

(5)

where p = p(x),p = p(x) € L2(R), g € C®(R), f € C*([0,00)) and
R C R? a C' domain. Furthermore, p > po > 0 and p > po > 0.
This problem is know to have a unique solution u € C([0,7]; H(R)),
ug € C([0,7); L2(R)), uy € L?(0,7; (H*(R))'), for T > 0 andug € H*(R),
uy € L*(R). Assume ug = u; = 0. Would the regularity increase to
ue C([0,7]; H3(R)), us € C([0,7]; HY(R)), uy € L2(0,7; L?(R))?

Taken from [85]. Differentiating with respect to t, u; solves a similar
problem with f replaced by f’, ug = 0 and u; = f(0)g(x)/p(x) € L*(R).

Set v (x,t) = u(x,t) + ¢ (x,t) in (x;,vi11) where u is a solution of

ou %y u .
T c%+§zf+, l‘E(Z‘i,xi+1)=(l,Z+1),t>O
u(zi,t) =0, u(zip1,t) =0,
),

u(z,0) = h™(z,0

with
+ _ ] X Ti+1 ) Xr — T
g (z,t) = wvi(t) Ti — Tigt +vi+1(t) Tirl — @
+ +
+ _ q(zt) g
f (:Cat) - R at (Ivt)a
h+($70) = v(a:,O)—q"'(x,O).

Obtain an explicit expression for v.

Taken from [53]. Let \; = D.(im)*+% and ¢;(z) = sin(v/\;z) ( fol Sin(\[\iz)Qdm)_l

be the eigenvalues and orthonormalized eigenfunctions of the operator

15



18.

—chz—g + 4 =0 in (0,1) with zero boundary conditions. We expand f*
and h* as a Fourier series of the eigenfunctions

Fr@t) =3 700, 150 = [ 17+ anos,

=0

[e%s) 1
hH(@,0)=> higi(x), hi= / W (z + 24,0)i(2)dz.
i=0 0

The explicit expression we seek is then given by

vt(z,t) = ¢t (x,t) + Z e M ()i (x — )
. =0 )

+ Z e Ntgi(x — x) / s £ (s)ds,
i=0 0

where

- V; d’UZ' ! Vi4+1 dUi+1 !
== %) [ a- o+ (B2 [ aga

Consider the convection diffusion equation

up — Au+ 9y (Jul?tu) = 0

set in R"™1 x R x RT, with x = (21,...,7p_1,y). Assume that V is a
solution with initial datum Vo € (L' N L>®)(R™) and v is a solution with
initial datum vo € (L' N L>)(R™). Assume that

v,V e CY([0,T]; L*(R?)) N L>([0, T; H*(R?)) N L>((0,T) x R?)
for every T > 0. Then, v <V.
Proof taken from [7, 9]. The function w = v — V satisfies

we— Aw + 9y ([0l v) — 9, (V]*V) <0

and w(0) < 0. Multiplying the inequality by w' and integrating by parts,
we obtain
d [|wt(®)f

o dx+/|Vw+(t)|2dx§ /aw+(t)3yw+(t)dx

—1 —1
where a(x,t) = W is a bounded function. Integrating in ¢

and applying Young’s inequality we get

Hw*(t)”% ! + 2 ! + 2 ¢ + 2
— ; [Vw™(s)][2ds < K1 ; [w™(s)|l2ds + ¢ ; [Vw™(s)|2ds
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19.

20.

for € as small as needed. Notice that w*(0) = 0. Gronwall’s inequality for

t
lw (1) < 2K, / e (s))[2ds

implies w™ (t) = 0.
Prove that the solution of
z—Az=d-V(G?), 2z(0)=0
can be calculated in terms of heat kernels.
Taken from [19]. Set z = d - Vg where g; — Ag = G4, g(0) = 0, that is,

g(t) = /0 G(t — s) * G(s)ds.

Ezxpress the solution of the transmission heat problem

U — ke AU = 0, in RV \ ©; x (0, 00),
U; — a;k; AU = 0, in Q; x (0, 00),

U~ — Ut = U, on 99; x (0,00),
aia%Uf — a%U* = %Umc, on 9%2; x (0,00),
U(-0) =0, in RY,

in terms of Helmholtz problems using Laplace transforms.

Taken from [41]. We define u;n. and u as the Laplace transforms in time
of Uipe and U:

Uine (X, 8) = / e M Uine(x,t) dt,  u(x,s) = / e SU(x,t) dt, x € RV,
0 0

For each value of s, the function us(x) := u(x, s) solves

Aug + A} us =0, in RV \ Q,
a;Aug + A2 jus = 0, in Q;,
Uy — U = Uine,s, onT,
- + _
Q;jOnuy — Onug = Online,s, on I,
2 2 —
where \2 | := —s/ke, A = —s/k; and Uine,s(X) = Uinc(X,s). We set

= (“)Qi.’ This problem has a unique solution satisfying the Sommerfeld
radiation condition at infinity,
N-1)/2

lim 7

Ortts — 1As,etts) = 0, r=|x|,
T—>00

for all s € C\ (—00,0]. This characterization of us(x) can be used to
define and compute u(-, s) for all s € C\ (—o0, 0].

17



21.

The solution of the time—dependent problem is recovered by inverting the
Laplace transform:

U(x,t) = ﬁ /c et u(x, s) ds.

Since u(+, s) exists for all s € C\ (—o0, 0] and depends holomorphically on
s, many different choices for the inversion path C are possible.

When the bounded coefficient a > 0, any positive solution p of the initial
value problem

%p(t,x, V) — 0 Axyp(t,x,v) + a(t,x,v)p(t,x,v) = f(t,x,V),

p(ov X, V) = pO(Xa V)v

when (x,v) € R2xR2, t € [0,00), with a € L>=([0,00) x RZxR?), o € RT,
f € L>=(0,00; L N L' (R? x R?)) and pg € L>= N L' (R? x R?), is bounded
from above by a solution of a heat equation with the same initial and source
data. Moreover, the following estimates hold for any q € [1, c0]:

Ipllg < llpollg + t maxseqo, 1l f(s)llg;

Ipll: < Cat™GT D F |Ipglg + Cat ™™ HE max e o)1 £(5) g,

provided r > q, (% — %)% < 1, n =2 being the dimension.

Taken from [70]. Notice that p is the solution of the heat equation with
source g = f —ap < f. Let u be the solution of:

%u(t,x, v) — o Axvu(t,x,v) = f(t,x,v), u(0,x,v)=po(x,V).

This solution admits integral expressions in terms of the heat kernel G(¢,x, v).
It is then straightforward that:

p@zG@*m+ACWfﬂ*WﬂfdﬂMﬂm

gMU=G®*m+A(W—ﬂ*ﬂﬂM,

where x denotes convolution in the x, v variables. Setting f = 0, the well
known L" — L7 estimates for heat operators |lull, = ||G(t) * po||, follow

=
<
N

IG®1llpollg < llpollq:
_(L_1yn
Gl lIpolly < Cot™(a—%

=
3
IN

pollgs 1/r=1/q+1/¢ -1,

for r > q. When f # 0 we find similar estimates for u. They extend to p
since p < u.

18



22.

23.

We consider a diffusion problem of the form

%C(Xﬂf) = dAxc(x,t) —ne(x,1)j(x,t) + h(x,t), x€Q,t>0,
@(x,t) = Cro (X, 1), X € Spy, %(x,t) =0, x €Sy, t >0,

or or

C<Xa O) = CO(X)’ x €4,

where d,n > 0, ¢, < 0 and j(x,t) a bounded positive function. The
domain Q = {x € RN |ry < r = |x| < 1}, with boundaries S,, = {x €
RN | [x| = ro} and S,, = {x € RN ||x| = ri}. Let ¢ € C([0,T]; L*(2))
be a solution with initial datum co € L*(Q) and boundary condition c,, €
C([0,T); L?(0%)). If co > 0, h > 0 and ¢,y <0, then ¢ > 0.

Taken from [72]. Multiplying the equation

o e, t) = Ay, 1) — me(x, 0 (x,1) +

by ¢~ = Max(—c,0) and integrating, we get
1 2 ' 2 2
Sl @13+ [ [ 196+ nile ) =
0J/Q

1 ¢ Oc ¢
—|le™ (0 2—// —c_—/ he™ <0,
5 e ()12 | on N

since, in our case,

Oc Oc Oc Jc
— - = — - — e - _ ve - < )
” 8nc /T_T1 8r(r1)c —I—/T_TO ar(ro)c /T_TO 874(7’0)0 <0

This implies that ¢~ =0 and ¢ > 0.

Consider the wvorticity equation in two dimensions. Let v = curlu €
C((0,00); WHP(R2)), 1 < p < 00, be the solution of

v —Av+u-Vo=0, x € R? x R
v(x,0) = v, x € R?,

for a divergence free velocity field u and an initial datum vy € L*(R?).

Prove 1) that the mass fR2 vo dx does not change with time and 2) that
1

[o(t)|| Lo (rey < Ct~ 7 for t > 0.

Proof taken from [4, 5]. Notice that u- Vv = div(uv) = 0. Integrating
the equation, using the divergence theorem, and the fact that v vanishes
at infinity we get

d

= dx = 0.
dt Jro 0
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24.

The velocity vector is given by

1 _
u(x,t) = K xv(x,t) = by /}R2 (ig;’zyl)v(x -y, t)dy

where the kernel K € L** and ||K * v < ||K ||12,00[v][ e for r > 2,
l<p<2,1/r=1/p—1/2.

Writing down the integral expression for the solution
t
v(t) = G(t) * vy + / VG(t — s) * [v(s) K x v(s)]ds,
0
where G(t) stands for the heat kernel, and taking norms we find

¢
[o(@)][r = G (#) * vol|Lr +/ IVG(t = 5) * [v(s) K * v(s)]]| Lo ds.
0
The integral terms decays faster than the rest, therefore

()]l ~ |G (t) % vollL» < Ct™1F5.

Recall that G(t) *vg is a solution of the heat equation with datum vy and
it belongs to L? for all 1 < p < oo for any t > 0 if vg € L. Moreover,

|G (&) vollr < |G@) o [vollzr and [G(#)]2r = CEHF5.

Let u be a solution of the incompressible Navier-Stokes equations in two
dimensions with initial datum ug € L' N L*(R?) such that div(ug) = 0.
Then u(t) € LP(R?) for 1 <p <2 and t > 0.

Proof taken from [6, 10]. The theory of classical solutions with L? data,
that is, ug € L?(R?) guarantees that u(t) € L>([0,00); L?>(R?)) and is
bounded by ||ug||z2. By taking the divergence of Navier-Stokes equations

w—Au+u-Vu=Vp, div(u)=0,
we get an equation for the pressure
—Ap =div(u- Vu).

The pressure is then the convolution p = Es * div(u - Vu), where Es is
the fundamental solution of —A in R?, up to a function of time. Then u
satisfies the integral equation

t
u(t) = G(t) *ug + / 0:G(t — s) * u;u(s)ds
0
t
+/ 0;G(t — s) *x 0;VEs * u;u;(s)ds,
0

where 0; denotes partial derivative with respect to z;, u; are components
of u and summation with respect to repeated indices is intended. Since
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26.

u € LY, G(t) xug € LY for all ¢ > 1 and ¢t > 0. On the other hand,
u(s) € L? implies that u;u;(s) € L*. Moreover,

t t

H/ B;G(t — ) usu;(s)ds| e < c/ (t—s) 03| ul|2.ds < Cta— 2
0 0

for 1 < g < 2. Thus, the first integral belongs to L? for 1 < g < 2. Let

us consider now the second integral. Since 9;G(t) belongs to the Hardy

space H'(R?) and 9;VEj is a Calderon-Zygmund kernel, we conclude that

&G(t — 8) * 8]-VE2 e L' and

10:;G(t — 8) % 0;VEy| 11 < Cll0:G(t — shr < C(t—s)= .
Thus,

t t
H/o 0,G(t — 5) %0,V By sty (s)ds|| s g/o Cli—s)7 [u(s)|2eds < Ct1.

In an analogous way, since 9;V Ej is a Calderon-Zygmund kernel, we con-
clude that 0;G(t — s) * 9;VEy € L, 1 < ¢ < 0o and

10:G(t = 5) % 9,V Ex|| o < C0,G(t = 5)l|zo < Ot =) a2
Thus,

t t
H / Bt — 5) % 0,V By sy (s)ds]| o < / C(t— )™+ H u(s)|ds
0 0

forl <g<2.

A line vortex lying along a curve I' in an incompressible inviscid and
wrrotational fluid is a solution of the following equations

div(u) =0, curl(u) = wodr(x),

where u is the fluid velocity, wy = 27y is the circulation around the vortex
and 7y is the vortex strength. or is a Dirac function supported at the curve
I'. Express this solution in terms of a vector stream function.

Taken from [11]. We define a vector stream function U in R? as the
solution of div(U) = 0, curl(U) = u. Then —AU = wydr(x). Using the
Green function for the Laplacian in R? we get U = b fF rlx,ldx’ .

Construct solutions of the scalar conservation law wy + (c(x)w), = x with
w(0) = wo.
Taken from [13, 17]. We set v = cw. Then, vy + cv, = 0. Thus, v is
constant along the characteristic curves z(t) solution of a'(t) = e(x(t)),
x(0) = zg, because
d
@’U(a?(t),t) = v, (x(t), )2 (t) + ve(x(t),t) = 0.
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27.

28.

Given (z,t) we may be able to calculate z((z,t) such that the character-
istic curve with initial value xo(x,t) satisfies x(t) = x. Then v(x,t) =

v(z(t),t) = vo(xo(x,t)) and w(z,t) = % The feasibility of this

procedure will depend on the function c.
Solve the problem

or 0 1/3 _
95 TorF =0,

/ kr(s,k)dk =t,
0

limk_>0k‘1/3r(s, k) = 2c.

Taken from [34]. Integrating the equation over k > 0 we find

d o0

— (s, k)dk = limg_ok'/3r(s, k) = 2¢(s).
ds 0

Arguing as in the previous exercise, the method of characteristics yields
EY37(s, k) = 2c(s — a(k))H(s — a(k)),
3
k)= k¥
alk) = 5K,

in which H(x) is the Heaviside function (1 for positive x, 0 otherwise).

Obtain an equation for the upper moving boundary xs = h(z1,x2,t) of a
three dimensional region with lower boundary xs = 0 in such a way that
the field v satisfies divv = 0 in it.

Taken from [76]. We integrate divv = 0 in the vertical direction to get

h s h N h A
/ (v -%xq) dis +/ O(v - X3) dis +/ O(v - X3) dis =0,
0 ory 0 0xo 0 Oz

X1, X2 and X3 being the unit vectors in the coordinate directions. By
Leibniz’s rule:

ho(v - %) 9 o A
/0 Txld%_amz /O(V'Xi)d.rg —Vv-X;

Therefore

52 [Jo (v - %0) das] + 52 [fo'(v - o) ds

—v~&1‘h%—v-i2|h§—£+v-ﬁ3’h:v~5<3‘0.

on
haxi’

i=1,2.
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30.

Notice that v-%; = 4 i = 1,2,3. Differentiating z3(t) = h(z1(t), z2(t), t)

with respect to time we find

. dxs d oh Oh dx; Oh dxo
k3| = —2 = —h(x1(t), 22(t),t) = b b
vk =g = gh@®) a0 ot " 0wy dt | 0wy di
= @—ﬁ—v'f{ on +v-X a—
T Y, 0x1 2|, 022

Inserting this identity we obtain the equation

oh 9 | [ . o | " . .
825—'_(9%1[/0 (v -%x1)dzxs +8a:2[/0 (V'Xz)deB,}—V'XB

Find self-similar solutions h(r,t) for
3 1 ghty
hi — K(14 S)Re*=(rh,h*), =0, K= hi.
t ( +2) € T(T ) ) 3§§ous(1*¢oo)230 0
Taken from [78]. We have solutions of the form
-2t -2t 3 o9y1 7 3\ 3t i
h=R e f(r)=R 6(1751")3, R= gK(1+§)(e -1)+1

The plane 2 X 2 strain € and stress o tensors for a circular plate are given
by

Ogx = m(%x t0eyy), Oy = ﬁ(fyy + 0aa), Oay =

1-—

i (owe w06 0N
2\ 0z Ora Or4015)° -y

Eap

where u = (uy, uy) are the in-plane displacements in the directions x and
y, while £ is the out-of-plane displacement in the direction z. The Féppl-
Von Karman equations for the equilibrium of a plate of thickness h yield

DA2§—ha< o¢ ) =0,

3:1;‘5 aaﬁm
0oap 0 B Eh3
org C12(1 - 0?2)°

Characterize radial solutions with radial and angular displacements of the
form u, = ar + %, ug = 0, where r, 6 are the standard polar coordinates.
The boundary conditions are u, = —f at r = 1/2 and 0. =0 at r = 1.
The equations are set in the corona 1/2 < r < 1.

Taken from [65]. We find

1 1
Orp = —Q 1——2 , Ogg = —Q 1—}——2 .
r r
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31.

The equilibrium equations become

9% 39¢ 1 02
a2t rar Tzaaz>—0’
9%  19%  10¢
2 [ — _—
AC=r e o

A%+l + = (—

with boundary conditions £ = 0, % =0 at the fixed edge r = 1/2 and

_OrAg 0% N _
or 002 oroe? )

1 /(0%  o¢
A£+(U—1)2<892+ 8) 0,

at the free end r = 1. We have solutions of the form &(r, §) = ((r) cos(m#)
with integer m. To find them we realize that all possible ¢ are combina-
tions of two basis solutions ( of a linear differential equation satisfying that
(¢€(1/2),¢'(1/2),¢"(1/2),¢"(1/2)) is equal to (0,0,1,0) and (0,0,0,1). To
select ¢ fulfilling the conditions at » = 1 we need to choose a(m,1/2)
numerically, and then choose m. These patterns provide an example of

corona instability in flat plates. For helical instabilities in filaments see
[68].

Calculate a solution u = (u1,uz) of Au = (—ba,b1)d(z)0(y) for arbitrary
b1, bo € R, § being the standard Dirac mass supported at zero.

Taken from [67]. The function

1
u = (bl,bg)f

1
o arctan(%) + (b, b1)% In((z? + y2)1/2).

This function also satisfies div(u) = 0 and [, ‘?;jl dxr+ 8“’ dy =b;,i=12,
for contours C encircling (0,0). These singular solutlons represent defects
in elastic materials.

Integrodifferential Equations
We know that the problem

gt — Apg+v-Veg+E(x,t) - V,g=0, x e R® veR?teRt,
g(X,V,O) = gO(Xa V), X € ]R?),V S RB,

with go € L*(R3 x R3) and bounded and Lipschitz E admits fundamental
solutions I'g. The solution of the initial value problem can be expressed as

g(x,v,t) = /FE(X,V,t;X/,V/,O)dX/dV/
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and I'g satisfies the estimates

|FE(X7 v, 1 Xla vlv tl)‘ < O(”E”L;"ta T) G(X/2a V/2v t; XI/2a V//Qv tl)a
G(x/2,v/2,t;x'/2,v'/2,t)
(t—tl)l/Q ?

|0y, TE(x, v, t;x', v/, )| < C(|El|rg,, T)

where G is the fundamental solution for the problem with E = 0. Extend
these results to problems for which E is just bounded.

Taken from [12]. We regularize E by convolution and consider Es =
E x5 where 7s is a mollifying family of functions. Then E; are bounded
and Lipschitz, so for each of them we can construct solutions gs of the
initial value problem and have estimates on the fundamental solutions I's.
Moreover, ||Es||z, < [|ElL>, and E; — E as 6 — 0.

x,t —
Since T's is bounded (locally in t) in any L , space, a subsequence con-
verges weakly (locally in t) in any L . (weakly * if p = 00) to a function
I'g and we can pass to the limit in the right-hand side of the integral

expressions for the solutions g5 in terms of I';.

Moreover, the integral expressions imply that g5 are uniformly bounded in
any space LY . with respect to ¢ and locally in t. Therefore, g5 converges
weakly (locally in t) in any L?, . space to a function g and their derivatives
also converge in the sense of distributions.

In the distribution sense, the derivatives of I's with respect to v converge
weakly to the derivatives of ['g. We can also pass to the limit in the
inequalities satisfied by I'y and establish similar inequalities for I'g because
1Es| e, < IEl|L,-

x,t —
Now, multiplying the differential equation satisfied by gs by gs we get a
uniform L2, bound on V,gs. If we multiply the equation by |v|* we get

zvt
a uniform Ll , bound on |v|?gs.

zvt
Multiplying the differential equations satisfied by gs by test functions,
we can pass to the limit in all the terms of the weak formulation of the
equation except in E5V, gs with the convergences already established. The
passage to the limit in this term is technical, see details in [12]. Finally,
g is a solution for the initial value problem with bounded E and I'g an
associated fundamental solution.

. Calculate the equilibrium solution of the Liouville-master equation

6‘t'P(x,p,O',t) + %8TP(I7P7 U7t) + (mwg‘r + H20i0i+1> 8p77(:c,p,0',t)

i=1

N
= Z [WZ(R,LO'M',]D)'P(SC,]?, R’Lo-7t) - WZ(0'|CC,p)'P(£C,p,O'7t)] :
=1
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Taken from [49]. The equilibrium solution of this equation is the canonical
distribution

1
Peq(w,p,0) = Ze_m'[(%p,a) 7

where Z is the partition function

—+o0 +oo
Z:/ dx/ dee_[m(a”’p"’)

and 8 = (kgT)~ . For a study of nonequilibrium behavior see [50].
. Consider the Fokker-Planck equation for p(n,t)

N2
p Ty =2
ot Z < ; On; ( ) ;1 ;O

with n € RY and t > 0, and G(n) = A(n) — FL. Prove that if F and L
are constants, there are explicit stationary solutions.

Taken from [66]. Check that distributions of the form p(n) ~ e=¢/T
solve the equation.

. The hazard rate h(t), aging acceleration q(t) and survival probability p(t)
of an organism according to the DEB (dynamic energy budget) theory are
governed by the system

W =q—ah, ¢ =bg+c, p = —ph.
Find an explicit solution given initial data at t = 0.

Taken from [73]. Integrating in cascade we find

p(t) = p(0)e™ Js M),
. Given a bounded field F(t,x) and o > 0, k > 0 the initial value problem
p(t,x, v)+v-Vyp(t,x,v)+Vy [(F(t,x)—kv)p(t,x, V)| — 0 Ayp(t,x, V)

= .f(tv X, V)a
p(0,%,v) = po(x,V),

875

admits a positive fundamental solution T'w(t,x,v;T,&,v) satisfying

/ /FF (t,x,v;7, & v)dedy = eNFE=T)
RN J RN
/ /FFtXVTﬁ, v)dxdv = 1.
RNJRN
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Prove that fort € [0,T)

t
(@)l < llpollr +/0 1 (T)1dr,

¢
lp(®)lloe < €™ lpolo +/ NI F () | o
0
Taken from [71]. The solution of the initial value problem is

p(t7X,V):A2N /ﬂ%N FF(t,X,V;O,€7U)po(é,l/)dsdl/+

/ot /,RN /,RN Ir(t,x,v;7,&v)f(1,€ v)d€dvdr.

The estimates on p follow from the estimates on I'g.

Numerical methods

. Given a profile ce > 0, functions p(x) > 0, n(x) > 0, u(x) and constants
a, R > 0, we consider the following free boundary problem. We must find
x* such that

that is,

e} oo -1
d)(x) _ / e @ I3 u(w')dm’dy </ e Iy u(x')dr'dy) ]
T 0

To calculate x,, we start from a trial value z,. Next, we define c(z) for
x > x, as explained above for a trial value of z,. Then, we solve ¢’ (z) +
au(z)c (z) = Rp(z)n(x)/?(c(z) — co(z)), 0 < x < x, with c(z,) = ¢, and
d(zy) = (cx — 1)4;/((;:)). Finally, we compare ¢(0) with ¢.(0). Depending
on whether it is larger or smaller we increase or decrease z, until the
difference is small enough.
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2. Consider the scheme

cirl = [14&/{} Chont

ni,n2 (53’:2

ﬁ/<;[C’z

¢ 14 14
Sx2 n1+1,n2+Cn1—1,n2+Cn1,nz+l+cn1,nz—l}

with [1—46‘%/@] >0, in a finite lattice of steps dx and dt. If the initial and
boundary data are positive, so is Cfll,m everywhere. Moreover, |C’fl17n2| 18
bounded from above by the maximum absolute value of the initial data if

the boundary data is zero.

Taken from [75]. First, we procede by induction. If C3 ., > 0 every-
where, and the data at the nq, ng lattices borders too, then the recurrence
implies that C ,. | > 0 everywhere. In the same way, if C}, >0
everywhere, and the data at the n,no lattices borders too, Cﬁﬁzz—l >0
everywhere.

1,m2—1

Now, set V¢ = maxp, n,|C§, ,,,_1|- The recurrence implies that

ot ot
V < {1 4—(5302 n] V +4—6x2 KV Ve <VY

3. Consider the hyperbolic problem
0’FE oF OF aJ

E(z,0) =0, ze(0,L),
E(0,1) = pJ(b), t>0,

L
/ E(z,t)dz = ¢, t>0,
0

where p, ¢, L are positive and A, B,C, D are bounded functions, A and
B positive, while C' is negative. What would be an adequate numerical
scheme to solve this problem?

Hyperbolic problems are typically discretized in explicit ways. However,
in this case i) we have an integral constraint which couples all the values
at each time level, ii) the hyperbolic operator is given in non characteristic
form. We use forward finite differences of first order for first order time
derivatives of E and J. We use a second order backward approximation
scheme for the space derivative of E because the use of central differences
leads to instabilities. The second order derivarive F,; is approximated
combining the space and time derivative approximation just described.
At the left end we use for the first order spatial derivative of E a first
order backward difference formula. The integral constraint is discretized
by means of a composite trapezoidal rule. For a proof of the convergence
and stability properties of the scheme see [16].
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4. Consider the Navier equations for crystals with cubic symmetry in two
dimensional situations, defined by three positive constants c11, Ca2, Ca4:

82u1 a2U2 82u1 aQ’LLQ
Mu) =C C C C
1 1 oz? A 0x10%s + 0z} +lu 0x10xs’
82U2 32u1 82uQ 3211,1
Mu =C C C C
2 1 0z3 + 02 0x10%s + 0z? +lu 0x10xs’

where M > 0. Propose a stable finite difference discretization.

Taken from [31]. Let us construct a rectangular mesh. We denote by D;"
and D; the first order progressive and regressive finite difference equations
in the direction i, that is,

~ui (04 0z, m) —uy(€,m)

Df'uj(é, m) = 6,(61 )
_ u;(,m) —u; (£ —dx1,m
D1 uj(&m): J( ) 5;5 1 )7

for + = 1 and analogous expressions for ¢ = 2. In view of the presence of
cross terms, we choose

D; D u; D; DFus D5 Dfuy D5 D us
M "n_ O 1 1 C 1 2 C 2 2 C 2 1
b H dx? 12 5102, e dx3 M S 0y
D3 D uy Dy D uy D; D uy D; Dfuy
M " C 2 2 C 2 1 O 1 1 C 1 2 .
2 H dx3 12 s 102s 44 dx? +lu 0x10%s

See [35] for extensions to three dimensional crystals and lattices with two
bases.

5. Consider a planar hexagonal graphene lattice and ignore possible vertical
deflections. In the continuum limit, in-plane deformations are described
by the Navier equations of linear elasticity for the two-dimensional (2D)
displacement vector (u,v),

0%y 0%y 0%u 0%v

— = (A +2u) —= — A

0%v 0%v 02v 9%y
— = U= A+20) — A —

where py is the 2D mass density and A and p are the 2D Lamé coeffi-
cients (A = Cia, p = Cgs, A+ 2u = Cy1). Propose a finite difference
discretization in a hexagonal lattice of constant a.

Taken from [40]. Consider a point A in the hexagonal lattice with coordi-
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nates (z,y). Its 9 (346) closest neighbours have coordinates

n_<ma a) n_(ﬁa a) n_<x +a>
1— Q’y 2\/§ s 102 — 2,2/ 2\/3 y 103 — Y \/ga

B a aVv3 B +a a3 y )
Ng= 1|2 27?/ 2 , s = | T 272/ 2 , g = (T a,y),

a av'3 a aVv/'3
nr = (¢ +a,y), ns = (x_27y+\2f>,n9= <x+2,y+\2[>.

Let us define the following operators acting on functions of the coordinates
(z,y) of node A:

Tu = [u(n) —uw(A)] + [u(ng) — u(A)] + [u(nz) — u(A)],
Hu = [u(ng) = u(A)] + [u(ng) —u(A)],
Diw = [u(ng) — u(A)] + [u(ng) — u(A)],
Dyu = [u(ns) — u(A)] + [u(ng) — u(A)],

Taylor expansions of these finite difference combinations about (x,y) yield

2

a
Tu ~ (aiu + 8§u) R
Hu ~ (0%u)a?,
1 3 3
Diu ~ <4 83u+ g&taqur 43§u> a?,
1 V3 3
Dou ~ <4 Qiu— 78m8yu—|— 43§u> a?,

as a — 0. Now we replace in the motion equations Hu/a?, (4T — H)u/a?
and (D1 — Dy)u/(v/3a?) instead of 02u, E?ju and 0,0, u, respectively, with
similar substitutions for the derivatives of v, thereby obtaining the follow-
ing equations at each point of the lattice:

0%u A+ pu
- = 4T A Hu+~—X (D, -D
p20” o pTu+ A+ p) Hu + 7 (D1 — Dy)v,
0% A+
2 _
P20 5y = AN+ 2p)To — (A + p)Ho + 7 (D1 — Ds)u.

. Consider a planar hexagonal lattice of lattice constant a. The isotropic
Navier equations have singular solutions such as

= e () )
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where v = MN/[2(A 4 p)] for any a. We choose (xg,y0) different from a
lattice point and solve a damped version of the discrete Navier equations
formulated in the previous exercise. How would you expect the system to
evolve starting from (u(x — xo,y — yo),v(x — 0,y — Y0)) ?

Taken from [38]. The damped equations take the form

0%u ou A p

2

pP2a W_F’YE = 4MTH+()\+M)HU+W(D1_D2)U,
0% ov

AA+2u)Tv — (A + p)Ho + Atn (D1 — Dy)u,
V3

with v > 0. We expect the system to relax to a stationary configuration

behaving like (u(x — x0,y — y0), v(z — zo,y — Yo)) at a distance of (z, yo).

Such solutions represent lattice defects with the chosen elastic far fields.

A wide variety of defects is studied in [52, 55].

27 PR
P20 52 T

. Consider the following asymptotic approzimation of a kinetic model

o) 1 t
a—f + divy (Fp) — %Axp =pup-— Fp/o p(x, s) ds,

aly n «a (14 1
= - — n —
a— 2r(1 + o2) a2 ]|’
D 00x,1) = KA 1) — x1 Ol 1) plx 1),
x [T \/1+V2+2Vcosg0 v
X1 = ;/0 [ﬂ ERAUZETY eV VdVde,

the marginal density being related by p(x,v,t) ~ %e“"“’“'zp(x, t) to the
true density. How can you generate a high order positivity preserving
discretization?

Taken from [83]. Low order positivity preserving schemes use explicit
forward time discretization, upwind treatment of transport terms, and
centered schemes for Laplacians. Integral terms can be discretized using
composite Simpson rules [75]. To obtain a higher order scheme, we re-
sort to positivity preserving WENOS schemes for spatial operators. To
maintain positivity and stability, we work with strong stability preserving
(SSP) time discretizations. Usual choices for third order accuracy are a
third order SSP multistep method [?]

u(tpi1) = 35 (u(ty) + 30t r(u(tn))) + 33 (u(tn—3) + {36t r(u(ta—3))) ,
and a third order Runge Kutta method

u = u(ty) + dtr(ulty)),
u® = Ju(ta) + qul) + Lot r(ul)),
u(tng1) = %u(tn) 4 %u@) + %5”(“(2))'
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8. Consider a flexible 2D cell with boundary T' immersed in a fluid. The
dynamics of the fluid about it are described by Navier-Stokes equations
with a source:

Ou

a—i—u'Vu:l/Au—%Vp—%-%f, div(u) =0, (6)

where u(x,t) and p(x,t) are the fluid velocity and pressure, while p, v = %

stands for the fluid density, kinematic viscosity, respectively. The source
f represents the force density, that is, force per unit volume. The force
f(x,t) created by the immersed boundary (IB) on the fluid is given by

£(x, 1) = /FF(G,t)é(x—X(ﬁ,t))dG,

where X(0,t) is the parametrization of the immersed boundary T', and
F(0,t) the force density on it F, = 8% (K%—%). The evolution equation for
the membrane

ox = [ u(x,t)d(x —X(0,t)) dx + A(Fy - n)n,

is obtained from the no-slip condition corrected to allow for growth, were
F, represents growth forces. Fluid-structure interaction is mediated by
delta functions 6. Introduce a simple discretization for this problem in
two dimensions.

Discussed in [84] using immersed boundary techniques. We define in the
computational region a square mesh x; ; = (z;,y;), 4,7 = 0,..., N, with
step dr = dy = h and nodes x; = x¢ + idx, y; = yo + jdy, where zg =
yo = 0, zpr = yn = L. The immersed boundaries are parametrized by the
angle 6 € [0, 27]. We use a mesh 0, = kdf, k =0, ..., KC, on them. We use
the standard specific discretization of the Inmersed Boundary model by
Fourier transforms. To prevent the distances between mesh points which
form the immersed boundary becoming too large as it grows, we increase
the number of points at a certain rate, adding single points at the sites
where the distance between two neighboring mesh points is larger. This
leads to work with a non uniform angle mesh and with angle dependent
elastic moduli, which change as points are added. Given a mesh 6 for a
boundary X;, with steps dfy = 0, — 0r—1, k = 1,...,K, we include a new
point between sites i — 1 and 4 as follows:

e Set df; = d01/27 d9i+1 = d91/2, and d92+m = d8i+m717 1<m<

K—i+1.

e Set 0, =0,_1 +d01, 9i+1 =0+ d9i+1, and 9i+m = 0i+m—17 l<m<
K—i+1.

e Set Xj(Hi) = w, and Xj(9i+m) = Xj(9i+m—1)a 0<m<
K—i+1.

32



e Set Kj (91> = 2Kj (92), Kj (9i+1) = 2Kj (91), and Kj (9i+m> = Kj(9i+m,1),
1 <m < K—i+1, to prevent the reduction in the angle from changing
the continuum limits.

o Set =K+ 1.
9. Write the Helmholtz equation set in the whole space

Au+ k2u =0, x € RV,

N-—-1 8
2

lim, — x| 00| X| (E(u — Uine) — k(U — Ujne)) = 0,

in an equivalent variational form set in a bounded domain by means of the
Dirichlet-to-Neumann operator.

Taken from [37]. Let Bg be a sphere of radius R and I'g its boundary. The
Dirichlet-to-Neumann (also called Steklov—Poincaré) operator associates
to any Dirichlet data on I'p the normal derivative of the solution of the
exterior Dirichlet problem:

L:H'Y?Tg) — HY*(IR)
fo b

where w € H}. (RN \ Bg), Bg := B(0, R), is the unique solution of
Aw + k*w =0, in RV \ Bg,
w=f, on I'g,
: N-1/2,0W
lim r (5= —kw) = 0.
0
H'Y?(Tg) and H-'/2(I'p) are standard trace spaces. One can study an

equivalent boundary value problem in Br with a non-reflecting boundary
condition on its boundary I'g:

Au+ k?u =0, in Bg,
%(u — Uinc) = L(u — Uine), on I'p.

The solution u also solves the variational equation

u € H'(Bg),
b(u,v) = £(v), Vv € H'(BgR),

where
blu,v) = / (VuVo — k*uv)dx —/ Luvwdl, Yu,ve H'(Bg),
Br I'r
auinc _ 1
lv) = (22 — Lugne)0dl,  Yv e HY(Bg).
T'r 81’1

33



10. Write the transmission Hemholtz problem

V(. Vu) + A2u = 0, in R%\ €,
V- (q;Vu) + N (k)*u = 0, n Q;,
u” —ut =0, on 08);,
ai%_ae%zq on 0%);,
0
1 1/2 _ — U — — U = =
7_1510107" (87’ (U — Uine) — 2Ae(u umc)> 0, r=|x|,

in variational form and calculate the derivative of J(k) = [ |u(k) — d|*dl
with respect to k.

Taken from [39]. Arguing as in the previous exercise we have
u < Ifl(BR)7
S(Q;u,v) = £(v), Vv € HY(BR),

where

S(Q;u,v) = / (e VuVT — N2uw)dx + / (i VuVT — \N2um)dx

—/ a.Luvdl, Yu, v € H(BR),
I'r

£(v)

0 inc _
/ ae( - - Luinc) 'Udl; VU S Hl(BR)
T'r on

where L denotes the Dirichlet-to-Neumann operator defined by

V- (a.Vw) + N2w = 0, in R%2\ Bg,

w = f, on I'g,

ow
1 1/2 _— =
Tlgn T (81" W)

Differentiating J with respect to k we see that

o / (alk) — dyug ()L,

where the derivative uy (k) = difi(kk) € H'(Bg) is a solution of

/ (e Vug (k)Vo — Nuy(k)v)dx + / (i Vg (k)VT — X\ (k)*ug (k)0)dx
BR\Qi Qi
_ / oo L (k) Tl = 2 / s (B)N,(Byu(k)Tdx,
FR Qi

for all v € H'(Bg) and u(k) the solution of the Helmholtz problem for
(k).
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11.

Consider the cost J(a, k) = 2%21 Jp |um — dim|?, where up, solves

div(a.Vu) + k2u =0, in RN\ Q,, div(aVu) + k*u =0, in €,

_ - +
u” =ut, a%:ae%, on 98,

p(N=1)/2 (76@5?;;}0) —1ke(u — ul™ )) — 0, asr:=|x|— oco.

Given a;, kj, find descent directions for
J(6) :== J(a; + 0, kj + 61),

where § > 0, in order to implement an optimization procedure.

Taken from [46]. We seek §, ¢ and ¢ such that déga) < 0. Differentiating

we find

dJ

dé

/Q (6 VU, VW, — 200k wnWy,| dz| |

=0 j

M
= — ZRe
m=1

where u,, solves the forward problem with a = a;, and k = k;. The adjoint
fields w,,, solve

div(aeVwy,) + k2w, = (dm — tm)or, ..., in RV \ Q,
div(a;Vwn) + k3w, =0, in €,

w,, = w, ai% :aeagf", on 0%,
p(N-1)/2 (%”—Tm + mewm) — 0, as r — 00.

Setting

M M
$(x) =Y Re(Vum(x) VI (x)), ¥(x)==) Re(um(x)Wn(x)), xeQ,
m=1

and
aj+1=a; +060,  kjy1 =k + 09,

we guarantee J(aj41,k;+1) < J(a;, k;) for § small.

12. An epidemic spreading in a population formed by individuals displaying
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different susceptibility is governed by the compartmental model

ds

ditl — _ﬁ51 (t) I(t)“rqEJE;.)-'rZJ(t) ,

ds

ditZ _ *ﬂpSQ (t) I(t)+qE]E]t)+fJ(t) ,

dFE

T = OSuE) + pSa() HHHEEE — (1),
dl

T kE(t) — (471 +90)I(1), (7)
dJ

pr al(t) — (v +0)J(t),

dR

P Yl (t) + 72 (1),

dD

i .

= SI(t) + 8J (1)

Here N = S14+ S+ E+I1+J+ R+ D is the total population number, which
s a conserved quantity, assuming the system is closed. The transmission
rate B represents how susceptible S = Sy + So individuals become virus
spreaders. The risk of infection for S is lower than the risk for S1 by a
factor p, representing contention measures enforced. The reduced impact
of diagnosed individuals J on transmission, compared to exposed E and
undiagnosed infected I, is represented through the parameter . D quanti-
fies the dead and R the recovered. Recovery rates are 1 for the infective
and o for the diagnosed, while their mortality rates are denoted by 6.
These rates satisfy a > 1 and v3 * =7 —a~* [81]. We wish to identify
the reduction factor p representing the protective measures enforced on the
population Ss who obeys the rules. Therefore, we will consider the cost
C(p) given by

2

C o
— 8
+5p , (8)

(86616 +pata) T EIFIERIEENE) )

1 M
Miny,e(o,1) 52
=1

where %pQ, ¢ > 0 represents the cost of enforcing such measures, subject
to the differential constraint (7). Develop a scheme to solve this problem.

Taken from [82]. We can approximate the solution of this optimization
problem by Newton techniques [?], which requires the knowledge of the
first and second order derivatives of the cost (8).

Let us denote F (i, p) = B(S1(t;)+pSa(t:)) I(ti)+qE%i)+e‘](ti) —kE(t;). Then

iC & [
%—Z (i,p) " Fp (i, p) + cp. 9)
=1

We can apply gradient methods to optimize or exploit the characterization
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of minima in dimension one:
dC(p) _ , ¢C(p)
dp T od%p
This equation can be solved by standard methods for nonlinear equations,
such as Newton-Raphson schemes [?]

> 0. (10)

a2C(pm)\ "t de(pn
pn-i-l _ pn _ (p ) (p ) (11)
d?p dp
These schemes involve the second order derivative
20 )
B = 2T @GP Frp(ip) + Xm0 p)] e (12)
i=1

which fails to exist when F'(p) = 0, points at which, if encountered, the
iteration should be modified switching to a gradient scheme. We can
obtain all the required first and second order population derivatives with
respect to p by simply differentiating twice the (7) system with respect to
p and solving the resulting systems of differential equations. Setting

R(p) = W,Rp(p) — W’RW@) _ Ipp + qE]\p}p +€Jpp)
we have
dfﬁ’p = —BSIOR(1) = B (1) R(D),
d% = —BpSa(t)R,(t) — BpS2,(t)R(t) — BS2(1)R(L),
dd% = B(S1(t)+pS2(t))Ry(t) + B(S1,p(t)+pSa,,(t)) R(t) 1)
—kE,(t) + BS2(t)R(t) = Fp,
%p = kE,(t) — (a+7 +0)Ip(t),
% = alp(t) = (v2+9)Jp(t),
dSl-pp
= TBSIORy() = BSpp(R(E) — 2891, (D) Ry(1),
% = —BpSa(t)Ryp(t) — BpS2pp(t)R(t) — 28pS2,p(t) Ry (1)
—BS2p(t)R(t) — BS2(t) Ry(t),
dffp = B(S1(t) + pS2(t))Rpp(t) + B(S1,pp(t) + pS2,pp(t))R(t) — kEp(2)
+2B(S1,p(t) + pS2,p (1)) Ry (t) + BS2,p () R(E) + BS2(t) Ry (t) = Fp,
% = kEpp(t) — (a+m +0)Ip(t),
djip = alp(t) = (2 +0) (1),
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13.

14.

with zero initial data.

An object is defined by parameters v minimizing the cost

M K
1 e 1 _
JW) = 5og— D 3 [ 0, ta) = di' P 4 5 (v = o) Gammay,! (v — vo), (15)

noise =1 =1

where uy, is the solution of a wave problem with object ) parametrized by
v

pug — div(pVu) = g(x,t), x€ R, t>0,
u(x,0) = 0,u:(x,0) =0, x € R,

where

o ={ 0 xEg

pi, XE€ Q7
[ u, x€ER\Q,
M(X) B { pi, X € Q7

The parameters p, p;, i, pi are positive and the source g(x,t) has compact
support in time. 'y, denotes the inverse of a definite positive matriz. The
points (ry,0), k =1,..., K, and the times t,,, m =0,..., M, are equally
spaced. Propose a scheme to optimize this functional.

Taken from [85]. Starting from an initial guess v° = v, we can implement
the Newton type iteration 2711 = pi 4+ €71 where €71 is the solution of

(H?) + w;diag(H(w7))) €1 = —g(v?), (16)

where H(v) and g(v) represent the Hessian and the gradient of the cost.

Let Br be a sphere centered at (0,0,0) with radius R and k. > 0, k; > 0
two constants. Calculate solutions of

Au+ k2u =0, in R?\ Bg,

Au+ k2u =0, in Bp,

U :’LL++U, on aBR;

BOpu~ = Oqut + 0,U, on OBg,
lim r(@ru — zkeu) =0,

r— 00

for given smooth functions U as a series expansion.

Taken from [74]. We have

u(x) = Z Z anmhﬁl)(kelxl)Yﬁ(ﬁ), x| > R,

n=0m=-—n

SN bumda(kilx)Y(R), x| <R,

n=0m=—n

£
X
I
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15.

where x = |x|X, j, are the spherical Bessel functions of the first kind,

h%l) are the spherical Hankel functions and Y,)* are the standard spherical
harmonics,

Y0, 6) = V P (o0

for associated Legendre polynomials piml.

expanded as

More precisely, if U can be

U(X) = Z Z unm]n(ke|x|)yrzn(§()

n=0m=—n
in a ball containing Bp, the coefficients are computed as follows.
On the boundary of the sphere |x| = R, the transmission conditions hold.
We impose these relations on the inner and outer series expansions and
equate the coefficients of Y, (X) since the spherical harmonics form a basis
in L2(0By). This yields the relations:
unm]n(keR) + anmhgzl)(keR) - bnmjn(klR) =0,
Upmkelh (ke R) 4 anmkehY (ke R) — Bbumkijl (kiR) = 0.
Solving the system we obtain the value of the coefficients:
ke]n(sz)];z(keR) — ﬂkz];z(sz)Jn(keR)
Bkijt, (ki R)BS (ke R) — kejn (ki R)BS (ke R)
kejn (ke R)I (ke R) — keju(keR) (1) (ke R)
" Bkt (ki R)BD (ke R) — ke (ki R)RS (ko R)

Gnm = Unman(R) = u

To calculate these coefficients, notice that the spherical Bessel function is
related to the Bessel functions of the first kind by jn(s) = /3 Jn+1/2(s).
The spherical Hankel function is related to the Hankel functions of the
first kind by hi(s) = V/a=H, 1 1/2(s). Their derivatives are evaluated
using the formula f (s) = 2 f.(s) — fns1(s), which holds for both j, and
&Y.

Ezxplain how to solve the following equations using the deterministic par-
ticle method:

Al Te _
O f + Shons sin(k)0, f + ;Fakf =
L1 srpay,. _ Vimp Yimp p0
e ) = (1 5 ) £ g )

2V =0,F=n—1
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_ 1 T _ 1 " FDayy..
nege [ fadndi= g [P ) ak
F7P9(ks ) = aln [1 + exp (1 — 6+ d cos(k)
VM - A
VenTo T 2%pT’
The boundary conditions are, for x = 0:
1

+ ) 0 . —
N KN TSYIOrT: /_ﬂsm (k) f~dk

with
_ 2mhoFy

ﬁ_ GAND
and for x = L/x:

R i LM
I = Wen P roa <1 27r/o / d’“)

The boundary conditions for the electric potential V are

¢ L
t) = Lt)=¢p ~ ——.
V(07 ) Oa V( ) ) d)L FM o
The initial condition is
> 1 —=F/Te .pp
FO(k;n) = exp (1jk) ————5 P (n)
j:z_:oo 1 +J2 (F)2 !

£ =2 [ 570 ) cos() d
0

with x € [0,L = L/xzo] and f periodic in k with period 2w. The average
energy E is defined as

B [T e® @k tydk [T (1 cosk) f(x, k,t) dk

kBT kT [T f(a kot dk J7 o f ko t) dk

Taken from [43]. We rely on particle description of the distribution func-
tion, which means that f(x,k,t) is written as a sum of delta functions

N
f(@,k,t) ~ Zwifi(t)5($ — (1)) @ 0(k — k(1))

where w;, fi(t), x;(t) and k;(t) are, respectively, the (constant) control
volume, the weight, the position and the wave vector of the ith particle.
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N is the number of numerical particles. The motion of particles is governed
by collisionless dynamics, whereas the collisions are accounted for by the
variation of weights. Large gradients in the solution profile arise from
appropriate particles acquiring large weights, not by accumulating many
particles in the large gradient regions. The evolution of the particles is
determined by their positions and wave vectors which are the characteristic
curves of the convective part of the equation. Their equations are:

d d Al
—k=2F —zx=
i = 0 @t T 2hoy

sin (k) .

The evolution of the distribution function over these characteristic curves
is given by the ordinary differential equation:

i 71 . Vimp Vimp _ FD
dt n[ <1+2uen)f+2umf( SR

The system of ordinary differential equations is now discretized by using
a modified Euler method:

1 Vim n— Vim - n—
gt |- (1 ) ooty Ym0 o)

with fz’(_k) = f(xn_l, 7k?_17tn71)7

K3

kln _ k;L—l + thFin_l,
Ui

Tl = x;’_l + dt

3

sin (k") .
ooy S (k)
For stability reasons, we use k' to update x}'. We have also used multi-
step methods but they yield worse results.

The boundary conditions are taken into account as follows:

o If K} > m, we set k' = k' —2m. If k]! < —m, we set k' = k' 4 27.

o If 27 > L, we set 2! = a7 — L and f""' = ft. If 27 < 0, we
set o7 = a? + L and f~' = f;. Here f;" and f; are calculated
by discretization of the integrals using Simpson’s rule on an equally

spaced mesh K,,, with step Ak.

To calculate z;, k; and f; at the next time step "1, we need to update
the electric field and the Fermi-Dirac distribution in the equations for the
particles. This updating requires an interpolation procedure to generate
an approximation of the distribution function on a regular mesh X,,,, K,
which is then used to approximate the electric field and the chemical
potential. To approximate the values of the distribution function over the
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mesh, f ./, we use its values for the particles, f;*. The idea is obtain a
weighted mean by:

s

n 7
T W

n . 1=1
m,m’ — N .
Z W;m,m’
i=1
where
. X, — 2 Ky — k7
W7Z.,l7m/ = maX{O, 1-— M} . maX{O,l — W“;Z}

and Az and Ak are the spatial and wave vector steps.

An approximation for the density and average energy at the mesh points,
n(Xm,t") ~ n" and (kpT) ' E(Xpm,t") ~ (kgT) " E", are obtained

m m?

using Simpson’s rule and the interpolated values of the distribution func-
tion on the mesh.

We calculate the nondimensional chemical potential p by using a Newton-
Raphson iterative scheme to solve the equations. The extended Simpson’s
rule is employed to approximate the integrals for n(u) and dn(u)/du. Once
we know the chemical potential p, we find the Fermi-Dirac distribution
function at mesh points, f? (K,,/;n" ), which is then interpolated to get
the Fermi-Dirac distribution function for the particles.

To compute the electric field at time t”, we use finite differences to dis-
cretize the Poisson equation on the grid X,, :

1 — 2V + Vo =ng — 1,

m 2Ax

Here V (0,t™) = 0and V (L,t") = ¢L. Let V' and F} denote our approx-
imations of V (X,,,t") and F (X,,,t") on the equally spaced mesh X,,.
Finally, the electric field is interpolated at the location of the particle ¢

X — o — X
n __ m+1 3 n q m n
Ej _<ﬁx )Fm—’—(ﬁx )Fm+1'

The total current density J is given by

n _yn
Fn _ m—+1 m—1

J(t) = Z/OL UW sin(k) f(z, k, t) dk} da,

—1T

in which

A
ST dnhoy

We use the Simpson rule to approximate J(t").
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16. Consider a set of particles at points r; in a rectangular box. We use them
as seeds to gemerate a Voronoi tesselation of the rectangular region, with
vertices r,. Sketch equations for the motion of the vertices due to self
interaction.

Taken from [80]. Each configuration of the mesh has the following associ-
ated energy

N
Evm = Z {I;Z (Ai — AD)* + I;ZPE] + Z Ay L -
i=1 (m,v)

Here N is the total number of polygon, A; is the area of polygon i, AV is
its reference area, and K; is the area modulus, i.e., a constant with units
of energy per area squared measuring how hard it is to change the area of
the polygon. P; is the polygon perimeter and I'; (with units of energy per
length squared) is the perimeter modulus that determines how hard it is
to change perimeter P;. [, is the length of the junction between vertices
pand v, and A, is the tension of that junction (with units of energy per
length). The sum in the last term is over all pairs of vertices that share
a junction. The area A; of polygon €);, given by the following discrete
version of Green’s formula:

1
Ai = 5 Z (I‘u X I'M_;,_l) . N,L',
HEQ;

where r,, is the position of vertex u, and Nj is a unit vector perpendicular
to the surface of the polygon. The sum is over all vertices of the Voronoi
polygon and we close the loop with ¢+ 1 = 1 when u equals the total
number of vertices in the polygon, Ng,. The polygon perimeter is

1
Pi = 5 Z |I'M — I'M+1|.
HER;

The relation between the vertices r,, of the Voronoi polygons and the
vertices r; of the Delaunay triangles (seeds of the Voronoi polygouns, i.e.,
centers) is
_— A1 4 Aot + Asry
D VD VD W
The usual dynamics for the polygon centers is a gradient flow of the energy
with forces F;

yr; =F;
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with

al K, 0 {1y
Fi = — Z 7 (Ak — Ak) Z [ry+1,l/71 X Nk] ari

k=1 veQy,
N Or
~ ~ T v
_ Zrkpk Z (ry,y—l - ry+1,1)) |:(9I'Z:|
k=1 veQy
N
R N or,
- Z Z [Aufl,uru,ufl - Al/,u+1ru+1,u]T |:6 :|
r;
k=1veQ
r, — I'j
+k» (2a—|r; —r;]) ——=0(2a — |r; — rj|).
i — 1

(4,1)

Here [g’;”} is the 3 x 3 Jacobian matrix connecting coordinates of cell
centres with coordinates of the dual Voronoi tessellation, and the non-
commutative row-matrix product [-]” []is a 3x 1 column vector. ©(z) = 1
if x > 0, else ©(z) = 0, is the Heaviside unit step function. We have in-
cluded a range repulsive force of short range a that avoids self intersections

of the triangulation for very obtuse triangles.

Differential-Difference Equations

. Consider the equation

"y 1 1+ tanh?(z/0)

SRR AEP) o v — H — tanh(Z) = 0.
2001 — tank®(z/0)" anh(G)

Study the equilibria and the behavior of the trajectories in terms of the
control parameters 6 and H.

Taken from [56]. We introduce the potential V(x; H,0) = % — Hx —
fIncosh(%). Typically, 6§ € (0,1). The equation becomes

"+ ! R(z,0)2' = V'(z;H,0) =0

200

with R(z,0) = %ﬁg?g; > (0. For H =0 and 6 < 1, the potential has
two equally deep minima at symmetric positions. In view of the presence of
a damping term, trajectories wrap around these points (spiral atractors).
For |H| < H., there are two minima x4 > 0 and x_ < 0, each of them

with a basin of attraction.

. Consider a system with energy A(n,Y) = Z;\le ani;Y), m=(n,...,nn)

under the constraint Zj\;l n; = L. Given F, study the minima of A(n,Y")—
FL, where F = F(L) is a Lagrange multiplier to be calculated in such a
way that the constraint holds.
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Taken from [61]. The curve F(L) has N+1 branches, that we can compute
imposing g—% = F for all j.

. Consider the differential difference equation ul (t) = tupy1 — 2Up + Up—1 —
Asin(uy,), where A is a positive parameter. Prove that there is a monotone
solution such that u_s = 0 and use = 27 withug = ™ and w,—7 = T—uU_,
for all n.

Taken from [14]. We set ug = = and vary uq in the interval (m,2m) to
find the desired solution. The condition uy = 7 ensures that u,, — 7 is an
odd function of n. We first choose € > 0 so that —Asin(u) > e(u — )
form < u < %w. Then, we choose N large so that e(N — 1) > 1. Next,
we choose u; — 7 small so that u; < %77 for 1 < j < N. We wish to
show that under these conditions, the finite sequence {uq,...,uy} is not
monotone increasing. It is convenient to let U,, = u, — . If {Uy,...,Un}
is monotone increasing, then 2 < j < N and U; < (2 — e)U;_1 — Uj_s.
Adding these inequalities results in Uy —Upn_1 < € 2;21\2/71 Ui+ (1—¢e)U.
Since we assumed that U; > Uy for 2 < i < N, our lower bound on N then
shows that Uy < Unx_1, a contradiction. Therefore, we have shown that
for sufficiently small Uy, the sequence starts to decrease before crossing 7.
On the other hand, we have simply to choose U; > 7 to have the sequence
cross 7 before decreasing. Note that if the sequence increases until some
first V such that Uy = 7, then Uyyq > 7. If, finally, there is an N such
that the sequence increases up to n = N, with Uy < 7, and Uy = Un 41,
then Uy 42 < Un41 so that the sequence decreases before reaching .

. Let Ui(t) and Li(t), i € Z be differentiable sequences such that

Ui (t) — di(U;)(Uigr — U;) — do(Us) (Ui—1 — U;) — f(U) >
Li(t) — di(Li)(Lig1 — Li) — do(Ls)(Li—1 — Li) — (L)

and U;(0) < L;(0) for all i, where f, di > 0 and d2 > 0 are Lipschitz
continuous functions. Then, U;(t) > L;(t) for allt > 0 and i € Z.

Taken from [15]. By contradiction, set W;(t) = U;(t) — L;(t). At t =0,
W;(0) > 0 for all i. Let us assume that W; changes sign after a certain
minimum time ¢; > 0, at some value of ¢, i = k. Thus Wy(¢t1) = 0
and W, (t) <0, as t — t;. We shall show that this is contradictory. At
t = t1, there must be an index m (equal or different from k) such that
Wi (t1) = 0, while its next neighbor Wi, 1;(t1) > 0 (j is either 1 or —1),
and W;(t1) = 0 for all indices between k and m. For otherwise W}, should
be identically 0 for all k. The differential inequality implies

Wi, (t1) = di (U (t1)) W1 (t1) + d2 (U (1)) Win—1(t1) > 0.

This contradicts the fact that W), (¢) should have been nonpositive as
t — t1, for W,,,(¢1) to have become zero in the first place.
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5. Consider the equation
U'(t) = z1(F/A) + 23(F/A) — 2U(t) — Asin(U(t)) + F,

for |[F| < A, A >> 1 where z1(F/A) < z(F/A) < z3(F/A) are three
consecutive solutions of the equation sin(z) = F/A in one period. Prove
that there is a critical value F. such that this equation has three stable
constant solutions if 0 < F < F, but one if F > F,.. Characterize F,.

Taken from [18]. When F' =0, z1(0) = 0, 22(0) = 7 and 23(0) = 2m. We
need to solve

2z + Asin(z) = F + 2arcsin(F/A) + 27.

As we increase F from 0, we keep on finding three solutions z1(F/A) <
z9(F/A) < z3(F/A) continuing these branches until F'+ 2arcsin(F/A)+ 27
hits the first local maximum of 2z + Asin(z) (remember that A is large).
The value F,. at which this happens is characterized by the existence of a
double zero, a value ug such that 24+ A cos(ug) = 0 and 2ug + A sin(ug) =
F,. + 2arcsin(F,/A) + 2m. Then, ug = arccos(—2/A) and F, is the solution
of 2ug(A) + Asin(ug(A)) = F,. + 2arcsin(F./A) + 27. Below F,. we have
three zeroes, at F, two collapse, above F, the collapsing ones, z1(F/A)
and z9(F/A) are lost.

z1(F/A) and z3(F/A) are stable while they exist. This picture corresponds
to a saddle node bifurcation in the system, see [18]. These bifurcations
are essential to understand a variety of biological phenomena, see [64].

6. The system of equations

W—i_ v (Ei = Eia) = v

(Ei+1 — QEZ + Ei—l) =J- ’U(Ei),

for i € Z admits traveling wave solutions of the form E;(t) = E(i — ct)
propagating at constant velocity ¢ when the parameter J is large enough.
Here, v, D are positive functions and v > 0 is large. v is a cubic, it grows
from 0 to a local mazimum, decreases to a positive minimum, and increases
to infinity later. Justify that the wavefront velocity scales as (J — J.)*/?
where J. is the threshold for existence of travelling waves.

Taken from [20]. For v large, we can construct stationary solutions, which
can be approximated by

ElNZ1(J) 1 <0, ElNZ:;(J) 1> 0,
for |J| < J., while Ey solves

J —v(Ep) — @(Eo —z1(J)) +
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where 21(J) < z2(J) < z3(J) are solutions of J = v(z). At a value J.,
z1(Je) = z2(J.) and these roots are lost for J > J., only z3(.J) remains.
The reduced equation

Po_ o) - "B, o)) +

for the middle point undergoes a saddle node bifurcation at J, with normal
form

PO oy (1) — 20 + 21(7),

¢/ = a(JC)(J - JC) + ﬁ(JC)(bgv

which has solutions of the form /3 (J — Jc) tan(y/aB(J — Je)(t — to)),

blowing up when the argument of the tangent approaches +m/2, over a
time t—tg ~ w/+y/aB(J — J.). This value J. separates the regime for which
we have stationary (pinned) wave front solutions and travelling wave front
solutions. It marks the depinning transition.

Now, for J > J. but close to J., simulations show staircase like wave pro-
files, in which a point stays near the vanished equilibrium Eqy(J,) until it
moves following the tangent path given by the normal form and is replaced
at position Ey(J.) by a neighbouring one, once and again. The wave veloc-

(J l/) -~ veaB(J—Je)

T )

ity is the reciprocal of the time this transition takes c
see [20] for details.

. We consider a problem with noise
dui
dt

where A > 0 is large and v > 0 characterizes the disorder strength and &;

is a zero mean random variable taking values on an interval (—1,1) with

equal probability. Show that the speed of the wavefronts for F larger than
the critical value F} scales as (F — F¥)3/2.

= Uj+1 — QUZ + U;—1 + F— ASIH(UZ) + 7&,

Taken from [22]. Setting v = 0, we can repeat with this equation the
study done in the previous exercise and obtain a velocity that scales like
(F— Fc)l/ 2. However, when we add noise, for each realization of the noise,
the threshold F, is shifted slightly up or down by the noise. The observed
velocity will be the average of the velocities observed for a large number
of realizations. If

lenl ~ +/alEBENE — Fo) + 1BV

the average
1 ZN 1!
i - F—F 1/2 NF_F*B/Q
c N = ‘CR| 27_[_ / (aﬁ( C) + 755) d€ ( c)

—1

where the new critical field is F} = F, — L.
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8. Consider the problem

dui

dt
with A large. Let z1(F/A) < z3(F/A) < z3(F/A) be the three consecutive
branches of zeros of F' — Asin(z) = 0 which start at z1(0) = 0, 22(0) =,
z3(0) = 2w. We know that for |F| < F.(A) the problem admits stationary
solutions increasing from z (F/A) at —oco to z3(F/A) at co. When F
surpasses that threshold, we have travelling wave solutions. Write the
equation for such travelling wave solutions and find a formula for the
velocity.

= Uij+1 — 27,L1 + u;—1 + F — ASin(Ui),

Taken from [24]. Travelling wave solutions have the form u;(t) = u(i—ct),
where ¢ is a constant wave speed and u(z), z = i — ¢t is a wave profile,
which solve

—cuy(2) =u(z+1) —2u(z) + u(z — 1) + F — Asin(u(z)), z€eR

with u(—o00) = 2z1(F/A) and u(o0) = z3(F/A). These type of travelling
wave solutions are called fronts. Multiplying the equation by u, and inte-
grating, we find

fc/oc u?dz = F[z3(F/A) — 2, (F/A)].

— 00

9. The discrete Fitz Hugh-Nagumo system is a typical model for pulse prop-
agation

eu; = d(uipr — 2u; +ui—1) +uwi(2 — wi)(u; — a) — v;,

/
v; = u; — Bv;.

when the parameter values €,d > 0 and a are such that (0,0) is the only
constant solution. € is small and a is such that z(2 — 2)(z — a) has three
roots z1(a) < z3(a) < zz(a). Ezplain how to describe the evolution of pulse
solutions in terms of front solutions for Nagumo type equations

euy = d(uipr — 2u; + wi—1) + w2 — ug) (u; — a) — w.

Taken from [25]. Pulse-like solutions take the form wu;(t) = u(z), v;(t) =
v(z), z =1 —ct € R, with

—ceu,(z) = d(u(z4+1) — 2u(z) + u(z—1)) + u(2)(2 — u(2))(a — u(z)) — v,

—cv,(2) =0,
for z € R. For small enough v, we denote by z;(a,v) < z2(a,v) < z3(a,v)
the three roots of u(z)(2 — u(z))(a — u(z)) — v = 0. Since € is small, u;

and v; evolve in different time scales. We distinguish 5 regions in a pulse
like solution
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10.

11.

e Pulse front: u; = z1(a,v;) and v, = 21(a, v;) — Bv;, which evolves to
(0,0) as i grows.

e Pulse leading edge: Described by a traveling solution of eu} = d(u;4+1—
2u; +ui—1) +u; (2 —u;)(u; — a) — 0 which decreases from 2 to 0, with
v; ~ 0. It travels at speed c.

e Pulse peak: u; = 2z3(a,v;) and v} = z3(a,v;) — Bo;.

e Pulse trailing edge: Described by a traveling solution of eu!, = d(u;41—
2u; + ui—1) + ui(2 — u;)(u; — a) — w which increases from 0 to 2,
with v; ~ w, w selected in such a way that it travels with speed ¢
too.

e Pulse tail: u; = z1(a,v;) and v} = 2 (a,v;) — Bv;, which evolves to
(0,0) as i decreases.

See [25] for a visualization. See [32] for an application of these ideas
to Hodgkin-Huxley models for myelinated nerves. Pulse solutions fail to
propagate when the leading pulse cannot move because for the parameters
we use the reduced from equation has only stationary front solutions, they
are pinned.

Consider the system

v = d(vsr — 205 +vj-1) + f(vj,w05),
w;' = )\g(Ujij)a

with d,\ > 0 and X\ is small, for the two variables to evolve in different
scales. For w fized, f(v,w) is a ’bistable cubic’, that is, it has three zeros,
two of which are stable. When f(v,w) = 0 = g(v,w) has a unique solution,
which is stable, we have pulse like solutions for the differential system, as
for Fitz Hugh-Nagumo. When it is unstable, show that oscillating solutions
appear.

Taken from [33]. When ¢ and f intersect at a stable zero, we have an
excitable system displaying pulse like solutions. When they intersect at
an unstable zero, limit cycle solutions (V' (t), W(t)) with period T, T > 0
of

’U/:f(U,U)), w’z)\g(v,w),

for X small, play a role. The trajectories of the system behave like v;(t) =
V(t + ¢;) and w;(t) = W(t + ¢;), for a slowly varying phase ¢; which
may become independent of ¢t as t — oo. All the trajectories are then
synchronized.

Iui 5

ot

= i1, — 2u4j + i1 j + A(sin(ug -1 — uij) sin(ug j1 — 4 5))
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12.

13.

fori,j € Z and u; ;(0) = «;; satisfying ciy1; — 205 + a1 € 2,
sin(ai j1—aij)sin(q jy1—ou ;) € 12 and aij € IS, If (i jp1—uij)(t) €
Nnez [—g + 2nm, 5 + 2n7r] holds for alli, j, t, then u; ;(t) tends to a limit
855 ast — 0 which is a stationary solution of the problem.

Taken from [23]. Define w; ;(t) = w; j(t+7) —u; ;(t) for some 7 > 0. Then

% %Z|wi,j(t)l2 == ((wigr;—wi;)(#)* =D (sin((ui jy1—ui ;) (t+7))

= sin((us,j4+1—4,5) () (Wi 541 — wi ) (E+7) — (Wi j41 — i 5)(t)) < 0.

This implies w; ;j(t) — 0 as ¢ — oo for every ¢, j. In conclusion, u; ;(t)
tends to a limit s; ; which is a stationary solution of the problem.

We solve
8ui7j
ot
with boundary conditions s;; = 0(i,j/vA) + Fj where 0 is the angle
function from 0 to 2w and F > 0 is a control parameter. For F = 0,

the previous exercise ensures existence of stationary solutions. Can you
expect a change as F grows?

= i1 = 2u5 + wipry + A(In(u o1 — v g) sin(ui g1 — ui )

Taken from [26]. As F grows, the condition

T T
(ui,j+1 — UiJ)(t) € Npez —5 + 2nm, 5 + 2nm

will fail. Stationary solutions will disappear and travelling patterns will
be observed. Notice that if we linearize the spatial operator about s; j,
we have a discrete elliptic problem for F' small but it changes type as F'
grows.

We construct numerically solutions of

82um + 8ui,j
m Q
ot? ot

+A(sIn(ui -1 — wig) sin(ui jp1 — wij))

=Ui—1,; — 2U4 5 + Uip1,;

in a square lattice i =1,..., N, j =1,..., Ny, with boundary conditions
u;; = F(j — (Ny +1)/2). This is equivalent to ’shearing’ the lattice. As
F grows, we observe that the initial zero solution for FF = 0 changes into
slowly varying stationary solutions until we reach a point F. past which
the lattice structure is distorted in two main different ways. Linearizing
the problem at F = F, we find a zero eigenvalue for the resulting matriz,
while all the eigenvalues are negative for F' < F.. How do you explain
this?

Taken from [36]. The branch of stationary solutions s; ;(F') seems sta-
ble. At F = F,. and two new branches appear. The system undergoes a
pitchfork bifurcation.
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14.

15.

We construct numerically solutions of
8215 j 8’[}1‘ 7

m ’ a—

a2 o
FA(sin(vij—1 — i) sin(vi g1 — vij))

=Vi—1,j — 20ij + Vig1,j

in a square lattice i = 1,...,Ny, j = 1,...,N,. We set the boundary
conditions representing a ’push down’ from the central top part:

o Left-hand side: vij = v ;.

o Right-hand side: v, j = UN,+1,5-

e Left-hand-side of the top layer (1 <i <pi): vin, = Vi N, +1-

e Right-hand-side of the top layer (p2 < i < Ng): Vi N, = Vi N,+1-
o Bottom layer of the domain: v; o = 0.

e Central atoms (p1 < i < pa) are pushed downwards according to:
Vi N, +1 — Vi,N, = —f(i), where f has a triangular profile, pointing
downwards, with magnitude F > 0.

As F grows, we observe that the initial zero solution for F = 0 develops
localized lattice distortions that travel downwards. As we decrease F to
zero the distortions travel upwards and may disappear. How do you explain
that?

Taken from [45]. The branch of stationary solutions that starts at F' =0
develops bifurcations at specific values of F' at which lattice with different
distortions are created. Such new branches are stable for some ranges of
F, while the defects simply travel. The configuration bifurcates at new F
values, new distortions are created, that travel for while, and the process
is repeated as F grows. When we decrease F, the process is reversed.
Created distortions travel upwards, and disappear.

Consider the problem
uj +ou} = ujr — 2uj +ujo + F — Ag(uy),

where g(u) =u+1ifu <0 and g(u) =u—1 if u > 0. Construct traveling
wave front solutions.
Taken from [27]. A traveling wave front solution takes the form w;(t) =
u(i — ct)+, z =i — ct. The profile v(z) = u(z) + 1 satisfies

Av,.(2) —acv,(2) — (v(z +1) = 20(2) +v(z — 1)) + Av(2)

= F+2AH(—sign(cF)z), z€R,

with v(—o00) = 0 and v(o0) = 2. We have written g(u) = u+ 1 — 2H (u),
where v is the Heaviside function. Using the complex contour integral
expression for the Heaviside function

1 ezk:v

3 |

H(—2z) =

o1
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C is a contour formed by a closed semicircle in the upper complex plane
oriented counterclockwise and another one oriented clockwise in the lower
half plane, which includes zero inside and forms a small semicircle around
it. The profile we seek admits the expression

) F A / exp(ek sign(cF)z)dk
v(z) == — .
A o kA+4sin®(k/2) — k2c2 — ik|c|asign(F)

™

Imposing v(0) = 1 we obtain a relation between the velocity ¢ and the
applied force F. Once we know ¢(F'), the above expression provides the
profiles v. Unlike previous exercises, such profiles are not monotonic, but
display oscillations, see [27].

Show that the initial value problem

uj +oul; = d(uji — 2uj +ujq) —uj + F,
ui(0) = uf,  uj(0) = uj,

d >0, a >0, admits solutions of the form

t

ui(t) =Y (G ()up,(0) + G 1. (H)uk (0)] + /0 D Gt — ) fr(s)ds
k k

for adequate Green functions Gg,k and G;k.

Taken from [28]. Firstly, we get rid of the difference operator by using the
generating functions p(6,t) and f(0,1t)

p(e,t) = Zuj‘(t)e—’tjﬂ’ f(&t) — ij(t)e—zjé.

Differentiating p with respect to ¢ and using the equation, we see that p
solves the ordinary differential equation

P (0,t) + ap'(0,1) + w(0)*p(6,t) = f(0,1)

with w(0)? = 1+4dsin?(/2) and intial conditions for p from those for w;.
Fixed 6 we know how to calculate explicit solutions of this linear second
order equation with constant coefficients to get

p(6,1) = p(0,0)6°(0,1) + ' (6,0)g1(0, ) + / 9" (0.t — 5) (0, s)ds,

for

o+ (O _ r_(0)
7:_(9)—7’_(0) , o a?/4>w?(0),
g°(0,t) = teot/2 a?/4 = w?(0),

e—oct/? Singéé‘?)t% a2/4 < w2(9)’
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e+ Dy (9)—e"=Dtr_(9) a2/4 > w2(0),

(0= (0) :
g (0,t) = te=t/2(1+9¢), a?/4 = w?(0),
e—ot/2 (cos(I(G)t) 4 2EL ) Si;I((Ie()g)t)) . a?/4 < w?(0).

We recover u; as

T de
O )

—T

" dg g
Gty = [ Sreig 6.0, Gyl = [ e,

- iy

Use the expression of the solutions of the initial value problem established
before to define a nonreflecting boundary condition at n =0 for truncated
problems set inn > 0, so that the solution we obtain is the same we would
obtain solving the system for all n.

Taken from [48]. We place an artificial boundary at n = 0 and restrict the
computational domain to the region n > 0. Thus, we need a boundary
condition to compute ug(t) and close the system. In principle,

d2U0
dt?

= d(ur — 2ug +u_1) + fo,
but u_1(t) is unknown unless we solve also for n < 0. The equation at
n = —1 can be rewritten as:

d2u_1
dt?

= d(O —2u_q + u_g) + f-1 + dug.

Assuming we know ug(t), the problem for n < 0 with boundary condition
ug(t) can be seen as a problem with zero boundary condition at the wall
and a modified source term: f, + dd,,—1up for n < 0. We can extend this
problem to the whole space setting:

Up, n <0
Vp = 0 n=2>0
—U_p, n>0

The extension v,, solves:

d?vy,
= (o = 20, 4+ 0m0) + g
dv
n 0 = 0 - O == .
v ( ) Ups dt ( ) Un,

for all n, where v2 and v} are odd extensions of u® and ul. The source
gn is obtained extending f, 4+ d,,—1up. We have included the boundary
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condition ug as a force acting on u_; to allow for an odd extension with
vg = 0. Using the symmetry of the data:

dun/ dgg,n’
un(t) = vat) = 3 (62,00 2 (0) + Z2 (1) (0)]

n’/<0

/ > Gt = 9)(fur(8) + b —1uo(s))ds, n <0

n’/<0

where G) ., = GY ., — G _, is the Green function for the half space
n < 0 with zero boundary condition at n = 0. In this way, we obtain the
desired formula for u_:

u_1(t) =r_1( +df0 G 1(t—8)U0( )ds
ro1(t) = Y (G20 () 22 (0) + S22 (1) (0 )
+ [y G0t ) h(s)d 5]

The term r_; (t) represents the contribution of the data in the outer region.
Our boundary condition at n = 0 takes the form:
d2UQ
dt?

t
= d<u1 —2up + d/ GO, L (t— s)uo(s)ds) +dr_1 + fo,

0
where the kernel is:

T do1—e 20
GO\ () = /4 o SO

In a similar way, we can set no reflecting boundary conditions in finite
intervals —N <n < N, see [48].

Consider the initial value problem

u;’ =d(ujyr — 2+ r)uj+uj—1)+ f(u;), j=1,...,N
w(0) =, 0)=wj, j=1....N

u0(t) = uNH(t) ~0,

for a continuous function f. Set V(u) = —fo s)ds. Assume uf(u) +
220 + 1)V (u) > 0 for o > 0. Deﬁne the energy

j oo

B =L 3 w0+ LY - w0420+ Y Vi)

j=—00 Jj=—00 j=—00
If E(0) <0, then Zjvzl luj(t)]> = oo as t — T for some finite T > 0.

Taken from [29]. We define H(t) = Z;V=1 lu;(t)|* + p(t +7)%, p,o >0 to
be selected so that (H=°)" = acH °"2((c + 1)(H')?> — HH") < 0. When
H(0) # 0 we have

H(t) > H7"(0)(H(0) — otH'(0)) ™"
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and H(t) blows up at some time 7' < H(0)/0cH'(0) provided H'(0) > 0.

Let us explain how to do this. We calculate H' and H”, and use the
equation to get

HH" — (o +1)(H")* = 4(0 + 1)Q + 2HG,

2
N

N N
Q=D P +pt+0) | | D[P +p| - | D wuf+pt+7)]| ,
j=1

Jj=1 Jj=1

N
G:Zujf(uj)—Zuiaiyjuj—(QJ—kl) Z|u3—\2+p ,
=1 i =

where A = (a;;) is the matrix defining the linear part of the system. We
have @ > 0. We estimate G’(t) to find G(t) > o(20 +1) (-5 — E(0)) >0
for p = —2E(0) > 0.

We have (H=?)” < 0 and H(0) # 0. Moreover, H'(0) = 25 w0ul +

J=1"3"7J
201 > 0if 7> —p~! Eévzl uu;.

Let u,(t) be a solution of
wp, = d(ty) (Unt1 — 2Up + Un—1) + 0(Un) (Un—1 — Up) + f(un),

with non negative initial data and a strong reactive source f, such that
flw) > CuP, withp > 1, C > 0, when u > 0 large. We set a(u) =
—(2d(u) + v(uw))u + f(u) and assume that d(u) > 0,d(u) + v(u) > 0 grow
slower than u? for u large. For any component k such that a(ug(0)) > 0
and o/ (u) > 0 when u > ug(0)

< ds

up(t) 200 as t—-T<T,= — < 00
u (0) a(s)

Taken from [44]. In all cases, a maximum principle ensures the positivity
of u,(t) everywhere. Using wugi1,ux—1 > 0, we obtain the differential
inequality u}(t) > a(ux). By hypothesis, a(u) > a(ug(0)) > 0 for u >
ug(0). Then ug(t) is increasing and it is bounded from below by the
solution y(t) of ¥/ (t) = g(y), y(0) = ug(0), which is given implicitly by:

vt ds
t= / s
ug (0) a(s)
The integral f;:(o) % < oo due to the growth condition a(s) >> sP, p >

1 for s large, since a(u) > 0 for u > ug(0). When ¢t — T = qu:(O) a‘f‘;) <

00, y(t) — oo.
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20. Consider the Becker-Déring equations

k=1

p;f :jk—l 7jk7 k > 27
Jk = di (e pipr — pria)
for a given sequence € > 0 with D€, = €1 — €k, with a and p positive
constants. Calculate the equilibrium distributions.
Taken from [30]. We set ji = 0. Then p;, = p¥e®er. This system admits

traveling wavefront solutions, see [30].

21. Consider the kinetic system

d
% = (k= 1)Y3D(k — 1)re_y — k3D (k)ri, k>3,
d
T2 _ 9eD(1) — 23 D(2)rs,
ds
d
cd—g +4c¢®D(1) + cMy =1,
a _ 1
ds ¢

Find an expression for ri in terms of the parameter problems.

Taken from [51]. Notice that the equations for s and ¢ start from a singu-
larity at s = 0. Laplace transforming the equations:

s _ 5ep(1) - 25 D(2)rs,
ds
% = (k—=D)Y3D(k — V)ry_1 — KY3D(E)ry,, k> 3.
we find: 2D(1)
ro(0) = ————¢,
o+23D(2)
—1)sD(k—1
fuoy = EZEDE D)5 ks,
o+ k3sD(k)
Therefore,
25 D(2)7o(0) = 21?1(1) ¢,
14027 D(2)"!
k5 D(k)ik(0) = - DEDk 1)721«717 k>3.

1+0k= D(k)!

By iteration,

k3 D(k)#y, = 2¢D(1) Ry,



where

Jj=2
Using the inversion formula
ft) = L/estf(s)ds _ L e f(s)ds
2m Je 270 S, tuoo ’

we find 7, as a function of the inverse transforms Ry, of Ry:

2D(1)

ri(s) = m

/ Ri(s — s')e(s")ds', k> 2,
0

$1—100 L R
Rk(t)—i/eStRk(s)ds _ 1 e’ f(s)ds= lim Qi/ " Ry (15)ds,
c

2m 271 J gy 4100 L—oo 27 J_p,

where C is an inversion contour. A classical choice for inversion paths
are Bromwich contours s; — is, parallel to the imaginary axis and located
to the right of the singularities of Rk(s) In this case, we may select the
imaginary axis s; = 0. For numerical purposes, the best choices of the
inversion contour are those along which this inversion formula can be
approximated by a quadrature formula involving a few points. We may
resort instead to deformations of Bromwich contours, such as Talbot paths
or hyperbolic paths.
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