UNIVERSIDAD AUTONOMA DE MADRID

MASTER’S THESIS

Deligne-Hodge Polynomials of
Character Varieties of Doubly Periodic
Instantons

Author: Supervisors:
J. Angel GONZALEZ Prof. Marina LOGARES
Prof. Vicente MUNOZ

Department of Mathematics Tutor:
Prof. Rafacl HERNANDEZ

Master’s Thesis submitted in fulfilment of the requirements

for the Master’s Degree in Mathematics and Applications

Departamento de Matematicas

_UNIVERSIDAD_AUTONOMA
DE MADRID

September, 2015


http://www.uam.es
mailto:joseangel.gonzalezp@estudiante.uam.es
mailto:marina.logares@icmat.es
mailto:vicente.munoz@mat.ucm.es
mailto:rafael.hernandez@uam.es
Research Group Web Site URL Here (include http://)
http://verso.mat.uam.es/web/




“Let’s go by pieces.”

Jack the Ripper






ABSTRACT

Deligne-Hodge Polynomials of Character Varieties of Doubly Periodic Instantons

by J. Angel GONZALEZ
En este trabajo, estudiaremos un tipo especial de variedades algebraicas, las variedades de caracteres,
y calcularemos para ellas un invariante algebro-geométrico conocido como polinomio de Deligne-Hodge
o E-polinomio. Estas variedades de caracteres aparecen como espacios de moéduli de representaciones
del grupo fundamental de una superficie de Riemann compacta con algunos puntos eliminados, sobre

un grupo algebraico reductivo.

En concreto, nos centraremos en el caso representaciones del grupo fundamental de una superficie de
Riemann compacta de género 1, a saber, una curva eliptica, con uno o dos puntos marcados, sobre
SL(2,C). Calcularemos los polinomios de Deligne-Hodge para ambos casos e, incluso, para el caso
de un punto marcado, podremos ir un paso adelante y calcular sus nimeros de Hodge mixtos. Hasta
el momento actual, esta informacion algebraica era desconocida para el caso de holonomia fijada en
una clase de conjugacién de tipo Jordan. Para llevar a cabo este proposito, usaremos una técnica
recientemente desarrollada, basada en la estratificacién de la variedad de caracteres y el subsecuente

andlisis de piezas més simples.

inalmen xplicarem relacién vari r r n otr i méduli
Finalmente, explicaremos la relacién de estas variedades de caracteres con otros espacios de mdédul
que surgen de la fisica matematica. En particular, estudiaremos los fundamentos de teorias gauge y

teoria de Yang-Mills, culminando en el estudio de los fibrados de Higgs.

Palabras clave: FEspacios de maoduli, variedades de caracteres, polinomio de Deligne-Hodge.

In this work, we shall study a special kind of algebraic varieties, the character varieties, and we will
compute an algebro-geometric invariant of this varieties, known as the Deligne-Hodge polynomial or
E-polynomial. This character varieties arise as moduli spaces of representations of the fundamental

group of a compact Riemann surface with some removed points into a reductive algebraic group.

In particular, we focus on the case of representations of the fundamental group of a compact Riemann
surface of genus 1, that is, an elliptic curve, with one or two marked points, into SL(2,C). We compute
the Deligne-Hodge polynomials in both cases and, for one marked point, we also compute their mixed
Hodge numbers for all the cases. Until present, this algebraic information was unknown for the case
of fixed holonomy in a conjugacy class of Jordan type. For this purpose, we use a recently developed

technique based on stratifications of character varieties and subsequent analysis of simpler pieces.

Finally, we also put into context this character varieties, explaining their relation with other moduli
spaces that arise in mathematical physics. In particular, we study the fundaments of gauge theory

and Yang-Mills theory, reaching the vast area of Higgs bundles.

Key words: Moduli spaces, character varieties, Deligne-Hodge polynomial.
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Introduction

Given a topological space, X, with finitely generated fundamental group, m1(X), and a complex
reductive algebraic group G, the character variety of representations of m(X) into G, is, as explained

in section 2.2, the algebraic variety
Rc(X) :== Hom(m(X),G) | G

The quotient denoted by / is an special kind of quotient for the action of G on Hom(m (X), G) by
conjugation, known as the Geometric Invariant Theory quotient (usually shortened as GIT quotient).
This quotient confers good properties to the orbit space, making it a algebraic variety. It is treated in

section 2.2.4.

In particular, we will take G = SL(2,C) and X = X, — {p1,...,ps}, a compact Riemann surface of
genus g with s removed points, known as the marked points. We denote this character variety as
Mg = RSL(Q,(C) (X), that is

g S
MY = {(Al, ..y Ag,By,...,By,Ch,...,Cs) € SL(2,C)2 | [ A Brl [ C1 = Id} J SL(2,C)
k=1 I=1
with SL(2,C) acting by simultaneous conjugation. Moreover, we will focus on the case of an elliptic
curve, i.e. a compact Riemann surface of genus g = 1, and we will force the loops around the marked
points to live in some fixed conjugacy classes Cy,...,Cs C SL(2,C). The resulting variety is called the

parabolic SL(2,C)-character variety of and elliptic curve with s marked points

[A,B][[,C1=1d

Me,..c. =% (A B,Cy,...,C,) € SL(2,C)*"*
frt {( ' ) ( ) ‘01661,...,03665

} J SL(2,C)

This special kind of varieties are related with an important area of mathematical physics known as
gauge theory, since they are homeomorphic to the space of some special solutions of this theory, the

moduli space of Higgs bundles.

Gauge theory arose as a physical theory to explain the electromagnetic phenomena, but, in the present,
is used in nuclear and high energy physics, as quantum electrodynamics and the standard model of
particle physics. We will devote the chapter 1 of this work to explain the mathematical fundaments

of gauge theory.

In gauge theory, one of the main concerns are the Yang-Mills equations and its solutions, the Yang-Mills
connections. Since these equations are highly non-linear, a good aproach is to consider only special
kind of solutions, as instantons of self-dual connections. In this philosophy, when considering self dual
solutions of the Yang-Mills equations on the space-time R* which are invariant in two directions, we

can perform a technique, used in physics, known as dimensional reduction (explained in section 1.6.2),

Xiv



to restate these equations in R? in a special way known as the Hitchin’s self-duality equations

Fp+[9,9*] =0
Da® =0

where @ is a field called the Higgs field. Moreover, since these equations are conformally invariant,
we can consider solutions on any compact Riemannian surface. In this context, a solution of the self

duality equations is known as a Higgs bundle.

In order to study the possible Higgs bundles on a compact Riemann surface X, we consider the moduli
space of Higgs bundles on X, Mp,(X). This a variety whose points are Higgs bundles on X and
whose geometry reflects some notion of closeness of the solutions. The first part of chapter 2 is devoted

to explain the concept of moduli space.

Now, by a general theory known as non-abelian Hodge theory with tame singularities (briefly sketched
in section 2.3), we find that, for a special kind of Higgs bundles, called parabolic Higgs bundles,
the moduli space of traceless parabolic Higgs bundles of parabolic degree 0 and s marked points is
homeomorphic to the character variety Me, . c., where Cy,...,Cs C SL(2,C) are conjugacy classes of
semisimple elements. Moreover, via a physics-inspired mechanism, the Nahm transform, it is obtained
an homeomorphism between the moduli space of doubly periodic instantons and the parabolic character
variety with two marked points, Mc, c,, with Ci,Co € SL(2,C) conjugacy classes of semisimple

elements.

For this reason, the study of topological and algebraic invariants of character varieties and moduli
spaces of Higgs bundles, such as their Betti numbers and mixed Hodge numbers, becomes a subject
of high importance in mathematical physics. However, this is not an easy work and there is not a

general solution for this problem.

Nonetheless, there are several situations explored to the moment. For example, the Betti numbers
of the moduli space of SL(2,C)-Higgs bundles was computed by Hitchin in [35] and for SL(3,C) by
Gothen in [27]. In the case of non-complex Lie groups, Gothen in [28] computed the Betti numbers
fo the moduli space of U(2,1)-Higgs bundles. For the case of punctured Riemann surfaces, Betti
numbers were computed by Garcia-Prada, Gothen and Munoz in [61] for SL(3,C)-parabolic Higgs
bundles, and by Logares in [45] for U(2, 1)-parabolic Higgs bundles. To this point, the technique used
in these computations was Morse theory. Others techniques have also been introduced by Garcia-
Prada, Heinloth and Schmitt in [25] in order to compute the Betti numbers for some cases of moduli

spaces of Higgs bundles of rank 4.

Another approach to the problem of finding algebro-geometric information of these moduli spaces is
to consider a new invariant, called the mixed Hodge numbers. This invariant is computed via an
algebraic structure attached to the cohomology ring of the variety, called the mixed Hodge structure.
In contrast to other purely topological information, such as Betti numbers, the mixed Hodge numbers

depends on the algebraic structure of the variety. In particular, though the moduli space of (parabolic)



Higgs bundles and the corresponding character varieties are homeomorphic, they are not algebraically
isomorphic, so its mixed Hodge numbers do not agree. However, since this mixed Hodge numbers can

be added for obtaining the Betti numbers, some special sums do agree.

Until now, only this alternate sums of mixed Hodge numbers are known for the moduli space of Higgs
bundles, as computed in [33] by Hausel and Thaddeus. In this work, they discovered the first non-
trivial example of Strominguer-Yau-Zaslow Mirror Symmetry using the so called Hitchin system for

computing the stringy cohomology for the moduli space of SL(3,C) and PGL(3,C) Higgs bundles.

In the aim of finding another examples of non-trivial Mirror Symmety, Hausel introduced the study,
on character varieties, of an alternate sum of mixed Hodge numbers, collected in a polynomial
known as the Deligne-Hodge polynomial. For this purpose, Hausel and Rodriguez-Villegas intro-
duced, in [32], a new arithmetic technique based on the Weil conjectures. With this technique,
they computed the Deligne-Hodge polynomial of the G-character variety without marked points for
G =GL(n,C),SL(n,C) and PGL(n,C) in terms of generating functions.

In order to study this Deligne-Hodge polynomial for character varieties, in [47], Logares, Munoz and
Newstead introduced a new geometric technique based on the stratification of these spaces. The key
idea is that the Deligne-Hodge polynomial of a variety X, e(X), has very important properties similar
to the one of the Euler characteristic. In particular, if our space decomposes as X = Y Ul Z, then
e(X) = e(Y)e(Z) and, for some special kind of fibrations, which we call E-fibrations, F — X — B,
we have e(X) = e(F)e(B). In section 3.3.3, we explain these Deligne-Hodge polynomials and their

properties.

Therefore, we can compute the Deligne-Hodge polynomial of a character variety by chopping it in
simpler pieces that can be analyzed separately and, finally, adding up its correspondent Deligne-
Hodge polynomials. Using this idea, in chapter 4 of this work, we implement this technique for
studying parabolic SL(2,C)-character varieties with one and two marked points. This work is based

on the paper [47] written by Logares, Munoz and Newstead and [46] of Logares and Munoz.

For the case of one marked point, we compute the Deligne-Hodge polynomials of all the possible
parabolic character varieties, and, using this information, we recover its mixed Hodge numbers. Recall

that SL(2,C) has five different types of conjugacy classes, determined by the Jordan canonical forms

1 0 -1 0 1 1 -1 1 A0
Id: —Id: J+: J_: D)\:
0 1 0 -1 0 1 0 -1 0 A1t
for A € C* — {1}

The results can be summarized as follows.

Theorem 0.0.1. Let M be the parabolic SL(2,C)-character variety of an elliptic curve with one
marked point and holonomy in the conjugacy class C C SL(2,C). The mized Hodge information of

these varieties 8:



o ¢ (Mjg) = ¢*> + 1. Moreover, its non-vanishing mized Hodge numbers are

h2;0’0(./\/(1d) =1 h4;2’2<M[d) =1

o ¢(M_14) = 1. Moreover, its only non-vanishing mized Hodge numbers is

hO;O’O (./Vl_[d) =1

e (MJ+) = ¢%2 — 2q — 3. Moreover, its non-vanishing mized Hodge numbers are

hI;O’O(MJ+) =4 hZ;O’O(MJ+) =1 h3;1’1(MJ+) =2 h4;2’2(MJ+) =1

e (MJ,) = q2 + 3q. Moreover, its non-vanishing mixed Hodge numbers are

hl;O’O(Mtji) -1 h2;0’O(MJ7) -1 h2;1,1(MJ7) —4 hg;l’l(./\/lji) -1 h4;2’2(MJ7) =1

e(Mp,) = q* + 4q + 1. Moreover, its non-vanishing mized Hodge numbers are

R0 (Mp,) =1 R (Mp,) =4 W2 (Mp,) =1

Observe that, in particular, the mixed Hodge numbers of M ; were unknown and they are first

computed in this work.

For the case of two marked points, the analysis is more difficult and, in most cases, reduces to the
understanding of pieces that arises in the study of one marked point. In this case, we obtain the

following Deligne-Hodge polynomials.

Theorem 0.0.2. Let Mc, ¢, be the parabolic SL(2,C)-character variety of an elliptic curve with
two marked points and holonomy in the conjugacy classes C1,Co C SL(2,C). The Deligne-Hodge

polynomials of these varieties is:

o e (M [J+) ¢+ —q+T.



Observe that the polynomials e (M[J+]7[D>\]) and e (M[J_]’[D)\}) do not agree with those computed in

[46], due to an erratum found in section 4.1 of that paper.

Beyond this point, the problem becomes more difficult, since the computational cost of doing this kind
of calculations grows combinatorially with genus and number of marked points. However, recently, in
[50] and [52], the Deligne-Hodge polynomial of the character varieties of any genus has been computed
recursively. From this point, future work should be devoted to compute the Deligne-Hodge polynomial
of SL(2,C) character varieties with arbitrary large number of marked points and developing a Topo-
logical Field Theory to compute them as reassembled pieces. In addition, analogous computations for

G = SL(3,C) or, more general, G = SL(n,C) can be performed in the future following these ideas.






Chapter 1

Gauge Theory

1.1 Electromagnetism

One of the most important discoveries in physics was that electrodynamics can be completely captured
by a system of partial differential equations. All the electric and magnetic phenomena were be explaned
by a small set of laws. This laws are the well known Maxwell’s equations, stated between 1861 and

1862 by James Clerk Maxwell.

In this framework, there exist two 3-dimensional vector fields, the electric field E and the magnetic field
B which mutually interact each other creating the electromagnetic phenomena. The rules of variations
of this fields, in terms of the others, is determined by four equations, the Maxwell’s equations, that,

in appropiated units!, are

V-E=p Gauss’s Law V-B=0 Magnetic Gauss’s Law
VxE+ %—]? =0 Faraday equation VxB-— %—}f =j Ampere Equation

where the time-dependent scalar p is the charge density and the time-depentent vector field j is the

electric current density.

We can restate this theory in a geometric context, that allow us to generalize it to a more abstract
frame, the gauge theories. To this end, let us take, the space-time R? as a differentiable manifold. In

this manifold, let us define the 2-form F' given by
3 . .
F= Z E;dx* Adt + Z €ijk Bida? N da*
i=1 0<i<j<3

where €, is the sign of the permutation (ijk), E1, Eo, E3 are the components of the electric field

E and Bi, By, B3 are the components of the magnetic field B. Then, observe that, computing the

1Units in which the dielectic constant ey and the magnetic constant po are both 1.
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exterior differential of F'

8E3 8E2 dBl 2 3 8E3 8E‘l dBQ 1 3
dF = — dx” Ndx® ANdt — dx” Adz® A dt
< 022 " 08 )TN N\ Gt T g ) N
0E, OE; dBs 1 2 0By 0By 0Bz 1 2 3
— dr” Ndz® Adt dx” Ndz® ANd
* (83}1 a2 " ar ) . \ort "o T o) v v

So, equating component by component, we observe that dF = 0 is equivalent to V x E = 0, the

Faraday equation and V - B = 0, the magnetic Gauss’s law.

In order to restate the other two equations, the Gauss’s law and the Ampere equation, we need to
introduce more structure in the space-time R*. It can be seen that electromagnetism is, in fact, a
relativistic phenomenon, not a classical one. Hence, it is natural to introduce, in R*, the Minkowski
metric of signature (1,3) which is strongly linked with special relativity. In terms of coordinates

(t, !, 22, 2%) of R4, this metric, g1 3, is given by
g13 = —dt @ dt + da' @ da' + do? @ do* + do® @ da®

Let us denote this space R1? = (R%, g1 3). Let x : Q*(RM3) — Q**(R13) be the Hodge star operator
over R13.2 In this particular case, over the basis {dt, dz!, dz?, da? }, with semi-riemannian volume

form Q = —dt A dz' A dz? A da?, the Hodge star operator is the linear operator given on the basis by

*1 = —dt Adz' Adx?® A da? *dt A dx! Ada? Ada? = 1
* d = dzd A dak A dt *dt = da' ANda? A da?
*xdzt A dad = dz® A dt *dzt A dt = —dzI A dzF
xdzt Adz? Ndx? = dt xdt A\ dz' A dz? da®

where (i j k) is an even permutation of (123). With this operator, if we compute d x F' we obtain

3
- , oF OF OF
_ k i _ 1 2 3 1 2 3
dxF =d —i]ZkEZ‘jkEid:L']/\dl‘ —l—;Bld!E A dt __<0$1+6x2 ax3>d$ Adx* N\dzx
— — dx® Ndx® ANdt — dx’ Ndx® A dt
+ <85L‘2 ox3  dt > v v ot "o @ ) v
0By 0By dEj3 1 9
+<8x1_8x2_ 7 dx Ndx* Ndt
So we have that
0B; 0By dE; 1 0By 0B3 dFEs 9 0By 0B; dFEj3 3
dx F = — — d — — d — — d
ax <8:1:2 ox3 at )" * ox3 Ozt at ) * ozl Ox? at )
— V- -Edt

2See chapter 3.1.1 for the general definition of the Hodge star operator.
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Let us define the current form J = 23:1 jidx' — pdt, where ji,j2,j3 are the components of the
electric current density, Hence, by the previous computation, we have that the Gauss’s law and the
Ampere equations are equivalent to xd x F' = J. Therefore, in this setting, the Maxwell’s equations

are equivalent to

dF =0 wdx F =J]

In particular, if we are looking for equations in vacuum, J = 0 and the Maxwell equations can be

restated as

dF =0 dxF =0

As we will see, this is the starting point of a more general equation, the Yang-Mills equation, that is
in the core of a very more abstract theory, known as gauge theory. This theory, that can be used to
model high-energy physics, is, connects mathematics and physics in such a powerful way that, even

now, it is under very intense research.

1.2 Review of Lie Group Theory

First of all, let us note that along this section and the subsequents of this chapter, we will work

exclusively in the smooth category, that is, all manifolds and maps will be C'°*° differentiable.

Recall that a Lie group G is a manifold that also has structure of group, and such that the group
operations are C'™ maps. Intrinsically associated to the a real Lie group G is its Lie algebra g. By
definition, a Lie algebra g is a R-vector space with a anticommutative linear map [,-] : g X g — ¢
that satifies the Jacobi identity. The Lie algebra of G is the left-invariant vector fields with the Lie
bracket or, equivalently, the tangent space at the identity with the Lie bracket of their left-invariant
extensions. We can go back and forth between both worlds using the exponential map exp : g — G
(or, at least, defined on an neighbourhood of 0 € g). We will denote by L, : G — G and R, : G — G
the left-product and right-product automorphisms, respectively, that is Ly(h) = gh and Ry(h) = hg.

Given g € G, we can define the conjugation map ¢, : G — G given by c,(h) = ghg™'.

define the adjoint representation of G, Ad : G — GL(g) as Ad(g) = (cg)s,.> We will denote
Adg = Ad(g) € GL(g).

Hence, we

Suppose now that G is a matrix group, that is G C GL(V'), for some vector space V. In this case, the

adjoint representation is simple conjugation. Indeed, if £ € g and A € G, we have that

d

d d
Ada(§) = pn OcA(eq:p(tg)) == OAGIUP(tf) Al—24 (dt
t= —

exp(tf)) A7l = Aga!
t=0

3Furthermore, diferentiating one more time, we have the adjoint representation of g, ad = (Ad.). : g — gl(g). It holds
ad(§)(x) = [§, x] for all {,x € g.
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Moreover, for a differentiable manifold M and a Lie algebra g, we can extend the notion of k-forms to
the space of k-differential forms with values in g, Q¥(M, g) := g ® QF(M). In this space, we can

extend several operations:

e Exterior derivative: Let us fix a basis £1,...,&, of g. Then, using this basis, every w € QF(M, g)

can be written in an unique way
n
w= Z & ®w;

i=1

where w; € QF(M). Then, we define dw € Q¥F1(M, g) by
n

dw = Z & ® dw;
=1

This definition does not deppend on the basis choosen (essentially, because any change of matrix

is constant along M) so dw is well defined.

o Graded Lie bracket: Let w € QP(M,g) and let n € Q4(M,g). Then, we define the graded Lie
bracket of w and 7, [w,n] € QPTI(M, g), by

1

e Z Sign(g)[w(Xa(l)a cee 7Xa(p))7 T](Xo(p—f—l)a e aXa(p-l—q))]

[W»U](Xl, sy Xp+q) = p!q'

€Sp+q
for all vector fields X7,..., X}, on M. It satisfies the following identities

— Graded commutation: For w € QP(M,g) and n € Q4(M, g)
[w,n] = (=1)P7" [, 0]
— Graded Jacobi identity: For w € QP(M,g), n € Q4(M,g) and § € Q"(M, g)
(=D [lw,n], 6] + (=1)"[[n, 8], w] + (=1)""[[6,w], n] = 0
Remark 1.2.1. If w =n is a 1-form, we have

[w, w](X1, X2) = [w(X1),w(X2)] — [w(X2),w(X1)] = 2[w(X1), w(X2)]

e Wedge product: Let us fix a basis &1,...,&, of g. Let w € QP(M,g), n € Q4(M,g), written in
this basis as w = Y w; ® & and n = > 1 ® &;. Then, we define w A n € QPTI(M, g) as

n

wAn= Y [€&] @ (wi Amy)

,j=1
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Again, this definition does not depend on the basis choosen. Furthermore, it holds

w,n] =wAn+(-1)PnAw d(wAn)=dwAn+ (=1)’w Adn

For computational purposes, if G is a matrix group (so g is a vector subspace of the space of
matrices gl(n,R) for some n > 0 and the Lie bracket is the commutator) we can describe w A 7
in a more manegable way. Let us write w and 1 as matrices of p-forms and ¢-forms, respectively.
Then w A 7 is the matrix obtained by matrix product of w and n where the entries (elements of

Q*(M)) are multiplied by wedge product.

1.3 Connections on Vector Bundles

Recall that a vector bundle with base manifold M and fiber a vector space V is a fiber bundle
E 5 M such that each fiber has a vector space structure isomorphic to V and such that, for all
trivilizing neighbourhood U C M and diffeomorphism ¢y : 771 (U) — U x V the map ¢y|g, : Ex — V
is a linear isomorphism. Equivalently, the transition functions between trivializing neighbourhoods U,
and Ug, gag, defined by ¢, o gpgl(x, v) = (2, gap(x)(v)) are linear automorphisms for all z € U, N Usg,
that is gag : Ua NUg — GL(V). We will call the rank of E to the dimension of V.

In this context, we define a connection on a vector bundle as generalization of an affine connection on
the tangent bundle of a smooth manifold, as used in riemannian geometry. Good references for the
topic are [4], [42], [11] or [43].

Definition 1.3.1. Let £ = M a vector bundle over a differentiable manifold M. An affine connec-
tion (also known simply as connection or covariant derivative)isamap V : ['(E) — I'(E)@QY (M)

such that

o Additivity: V(o1 + o2) = V(o1) + V(02) for 01,09 € T'(E).

o Leibniz rule: V(fo) = fV(o)+o®df forall c e I'(E) and f € C*°(M).
We will denote the set of all affine connections over E by Ag. Given a vector field X over M, we will
denote by Vx : I'(E) — I'(E) the endomorphism defined as Vx (o) = V(0)(X) for all o € I'(E).

Example 1.3.2. The exterior diferential d is an affine connection on Q¥(M). In particular, d is an

afine connection on C*°(M), seen as R-vector bundle.

Example 1.3.3. Every connection V, in the sense of riemannian geometry, induces an affine connec-
tion on T'M.

Example 1.3.4. Let us take a trivial vector bundle E = M x V' 5 M. Let us take a basis of V,

v1,...,0, and we define e1,...,e, : M — M x V by ei(x) = (z,v1),...,ex(x) = (z,v,). Observe
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that ej(x),...,en(x) is a basis of E, for all x € M so, for every section o € I'(E) there exist unique
ol,...,0" € C®(M) such that o(x) = > o'(z)e;(x) for all x € M.

In this case, we have that the map d : T'(E) — I'(E) ® Q'(M) given by

o)=d (Zai@) = Zei ® do*

is an affine connection. Furthermore, if we take 1-forms Ag € QY(M) for 4,7 = 1,...n, then we can

define the affine connection d + A : T'(E) — I'(E) @ Q}(X) given by
(d+ A)(c) = (d+ A) (Za ez> =d (Za ez> + A (Za e,) =Y ei®@doi+ Y e;@0'Al
i i\j

Equivalently, gathering together the A; in a matrix of 1-forms A = (A]) . € QY M, End(V)) =
7]
QY (M, gl(V)) we have just define

(d+A) (o) = d(o) + A()(0)

Observe that A(-)(0) € Q' (M)®T(E). However, the key point is that all the connection on E = M xV

are of this form. Indeed, if V is any affine connection on F, it should satisfy
:V<Zaiei>:Zei®d0i+ZJiV(ez Zel®d0 +Z€J®J = (d+ A) (o)

where V(e;) = > ;€ ® Ag 4 Therefore, we have just prove that, in a trivial model, all the connections

are of the form d + A for some A € Q'(M, gl(V)). In this case, A is called the gauge potential of V.

In the general case, let E 5 M be any vector bundle of fiber V, and let o : 7Y (U) = U xV be a
trivialization of the bundle. Choosing a basis of V vy, ..., v,, we can take a basis of sections eq, ..., e, :
U— 7 YU) C E by e(z) = qﬁal(x,vi) for i = 1,...,n. Then, using the previous example, we can
locally write, with respect to this trivialization and basis, V| -1y = d+ Ay with Ay € QL U, gl(V)).
Therefore, locally, all the connections are of the form d + A for some A € QY(U, gl(V)).

Let us study how the gauge potential 1-forms change when passing from a trivializing neighbourhood
to another. Suppose that Uy, Us C M are two trivializing neighbourhoods of E with U, N Ug # 0.
Then, on U,, V = d + A, and, on Ug, V = d + Ag. Let us take bases of sections ef,..., el on
U, and e’f . .,eg on Ug. Using Einstein summation convention,® observe that ef

9ap : Ua NUg — GL(V) are the transition functions. Then, on U, N Ug we have

= gapje§ where

V(e]) = V(gasles) = e © d (gast) + 9051V (€]) = e @ d (gas? ) + galel © Aok

“In the riemannian jargon, ij = A] (a k) are the Christoffel symbols where V acts on T'M.
5That is, a repeated index up and down means an elipsed sum in that index.
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and, since V(e? ) = 6? ® Aﬂg = gaﬂ?f?% ® Ag{. Therefore, using matrix product and dg,g as a matrix

of 1-forms we have that

9apAg = dgag + Aagas

or, equivalently

Ap = 934905 + 955 Aagap

Remark 1.3.5. We can write this formula in the invariant form

A5(Xa) = (Lyiny 0 9as)_(Xo) + Ady1 .y (Aa( X))

Indeed, let v : (—¢,€) — U be a curve with 7/(0) = X,. Then, we have that

Ly (9op(Xa) = Ly (jt t:O gaﬁ(v(t))> = % . Ly1(0) (9a5(1()))
= % i 95 ()90 (7() = g5 () % s = Ias (@) dgas(Xa)

and, for the other term, we have only to remember that Ad in a matrix group is simple conjugation,

SO

Ady-1 ) (Aa(X2) = 905 (2) Aa(Xz)gop ()

In fact, this introduces the idea of what is the structure of the space of affine connections on a vector
bundle.

Proposition 1.3.6. Given a vector bundle E = M, the set of affine connections over E, Ag, is an

affine space with underlying vector space Q' (M, End(E)).

Proof. First of all, let V be an affine connection over £ and A € Q'(M, End(E)). Let us define
V' =V+A:T(E) = T(E)x Q' (M) by

Vix(0) = Vx(0) + A(X)(0)

where o € I'(F) and X is a vector field on M. Observe that V' is an affine connection, because it has

the additivity property (since V and A have it) and, for the Leibniz rule

Vix(fo) = Vx(fo) + AX)(fo) = X(f)o + fVx(0) + FA(X)(0)
=X(flo+ f(Vx(o) + A(X)(0)) = X(f)o + fVx(0)

so, V' is an affine connection on E.
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Now, recall that an affine space is a space with a transitive free action of a vector space. So, let
us define the action (on the right) of Q!(M, End(E)) on Ap by V- A =V + A, for V € Ag and
A€ QY (M, End(E)). We just have checked that - is an action on Ag, and it is free.

Therefore, it is enough to prove that this action is transitive or, equivalently, that, given two affine
connections Vi,V on E, Vi — Vg lives in QY(M, End(E)). Moreover, it is enough to check that
V1, V3 is a homomorphism of C*°(M)-modules Vi — Vs : I'(E) — QY(M) @ T'(E) since, in that case,

we will be a tensor so we will have that

V-V c QYM)@T(E)®T(E*) 2T(T*M ® E® E*) 2 T(T*M ® End(E)) = Q' (M, End(E))

Of course, additivity is easy, so the only non-trivial fact is the C°°(M)-lineality. For this, observe
that, given f € C*°(M) and o € I'(E) we have

(Vi —=V2)(fo) = Vi(fo) = Va(fo) = (c @df + fVi(0)) — (e @df + fVa(0)) = f (V1 — V2)(0)

as we wanted to prove. |

1.3.1 Covariant Exterior Derivative

Hereupon, let us fix a vector bundle E = M with fiber V. We can enlarge this vector bundle and

define the space of k-differential forms with values in F
OFE) :=T(E)® Q*(M) =T(E ® A*M)

Recall that a tensor product inherits the module structure of any of its factor. For example, since

O*(M) is a ring with the wedge product, we can define, for o € I'(F) and w,n € Q*(M)
(c@wW)An:=0® (wAn)

Therefore, given an affine connection V over E we can use this information to create a generalization
of the exterior derivative, called the covariant exterior derivative. This is defined, for all £ > 0 as

the map dy : Q¥(E) — QFF1(E) given on basic elements by
dy(c @w) :=V(o) AN\w+ 0 ® dw

Remark 1.3.7. If we take k& = 0, then, in this level, the covariant exterior derivative dy : Q°(E) =
[(E) - QYE) = T(E) ® QY (M) reduces to dy = V. If we take E = M x R, the trivial vector
bundle of rank 1, then T'(E) = C®(M) so Q¥(E) = Q¥(M). Furthermore, E admits the connection

V =d: Q%E) = C®(M) — QY(M), the usual exterior derivative in functions, so the covariant
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exterior derivative associated to this connection is the usual exterior derivative in forms dy = d :

QF (M) — QFFL(M).

Remark 1.3.8. The previous definition of covariant exterior derivative comes from a general construc-
tion. Suppose that we have two vector bundles F4 I M and Ey B3 M with affine connections Vi, Vo.
We can define a conection V on F; ® Fy given by

V(Ul ®O’2) = V1(0'1) X o9 +01 X VQ(O’Q)

for 01 € T'(E1), 09 € T'(E3). Observe that we have defined (01 ® w) ® 09 := (01 ® 02) ® w. Moreover,

V induces a conection on E*, V*, given by

d(pu(o)) = V¥ (u)(o) + 1(V(0))

for all o € I'(E) and p € T'(E*).

1.3.1.1 Connections and holomorphicity

Finally, let us do a brief digresion for the relation between connections and holomorphicity. Let us
suppose that M is a complex manifold and F — M is a C°°-complex vector bundle. In that case, the

almost complex structure on M induces a decomposition at the level of forms
QE(M) = P M)
pta=k
and, defining QP4(F) :=T'(E) ® QP9(M), this bigrading can be extended to a bigrading
QL(E) = P @)
p+q=k
Moreover, since the almost complex structure of M integrates, we have a decomposition of the exterior
derivative on M in terms of the Dolbeault and anti-Dolbeault operators

d=0+0

with 9 : QP4(M) — QPTLI(M) and 9 : QP4(M) — QP91 (M). Hence, since dy is a combination of V
and d, we also have a decomposition

dy = Oy +5V

with Oy : QP9(E) — QPYL9(E) and Oy : QP9(M) — QPI+HL(M), respectively called the anti-Dolbeault

and Dolbeault covariant exterior derivatives of V.

On the other hand, let us suppose that £ — M is, not only a C*°-complex vector bundle, but a

holomorphic vector bundle, i.e., E is a complex manifold and 7w : £ — M is holomorphic. In that
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case, we can define an operator

0 : Q°(E) - Q"Y(E)
be decreeing that

e Op(o1 +02) = gE(O'l) +5E(0'2) for 01,09 € T'(E).

e Op(fo)=0fo+ fOg(o) for f € C>®°(M) and o € T'(E).

e Jp(c) =0 on an open set U C M if and only if ¢ is an holomorphic section o : 7= 1(U) — U.

Remark 1.3.9. This operator dg : Q°(E) — Q%1(E) can be extended to and operator g : QP4(E) —
OP4(E) for any p,q > 0 by Jg(0 ® w) = 9g(0) ® w + 0d(w), for ¢ € T(E) and w € QP4(M).
Furthermore, this operator coincides with a natural one in a special case. Suppose than the com-
plex dimension of M is n, and let Kj; = Q™%(M) be the canonical bundle of M, with its natural

holomorphic structure. Then, it can be proven that, in the (n,0)-bigrading, the operator
0p : Q"Y(E)=T(E® Ky) = Q"YE) =T(E ® K)) @ QY (M)

coincides with the operator gy ,, for the holomorphic structure on E x Kjs. In particular, given
® € OY(E), we have that 9p® = 0 if and only if ® is holomorphic in E x K.

In some sense, this two concepts are equivalent, as explained in the following theorem, whose proof
can be found in [44].

Theorem 1.3.10. Let M be a complex manifold.

o Let E — M be a C®-complex vector bundle and let V be a connection on E. If we have
52V = Oy 0 Oy = 0, then there exists an unique complex structure on E such that E — M is a

holomorphic vector bundle and O = Ov.

o Let E — M be an holomorphic vector bundle. There exists an unique connection V on E such
that O = Ov .

1.3.2 Curvature on Vector Bundles

Let E be a trivial vector bundle with dy = d. In that case, we automaticaly have d o d = 0. However,

in general it is not true that dy o dy = 0, that is, the complex

is not necessary an exact sequence. The curvature mesures how far a connection is of having that

complex exact.
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Definition 1.3.11. Let E 5 M be a vector bundle with fiber V and structure group G € GL(V)

and let V be an affine connection on E. The curvature of V, Fy is the map
Fy:=dyody: Q(E) = Q*(E)

A connection V is called flat if Fy = 0.

Remark 1.3.12. In a trivial vector bundle with covariant exterior derivative dy = d we have Fy =
dod =0, so, V is flat.

Proposition 1.3.13. Fy is a tensor, that is, it is C°°(M)-linear.

Proof. Tt is simply a long computation. Let 0 € T'(E) and f € C*°(M) and let us write Vo = 0’ ® w;
for some ¢ € I'(E) and w; € Q'(M). Then we have

Fy(fo) = dy(dv(fo)) = dv(V(fo)) = dv(fVo + o @df) = dy(fVo)+ Vo Adf +o @ df
= dy(fo' @w;) + Vo Adf =V(fo') Aw; + fo' @ dw; + Vo Adf
= (o' ®@df + fV(0")) Awi + fo' ® dw; + Vo A df
=o' @df Aw; + V(o)) Aw; + fo! @ dw; + o' @ W' A df
= fV(o') Nwi+ fo' @ dw; = fdy(0' @w;) = fdy(V(0)) = fFy(0)

as we wanted to prove. |

As consequence of this proposition, since Fy is a tensor, it can be seen as living in
(QUE)* @ Q*E)=T(E)*®T'(E) ® Q*(M) 2T(E ® E* @ A*T*M) = Q*(End(E))

and, abusing of notation, we will also denote this tensor by Fy € Q*(End(E)).

1.3.2.1 Curvature in the trivial model

In this section, let us suppose that our vector bundle £ — M is trivial, that is £ = M x V for some
finite dimensional R-vector space V. Also, we will fix a basis v1,...,v, of V and an affine connection
V on E. This will allow us to do some explicit computations on E that will be easily translated to

the general case.

The first consequence of the triviality of the vector bundle is that the endomorphism bundle End(E)
is also trivial, that is End(E) = M x End(V) = M x gl(V'). Therefore, the space Q*(M, End(E))
is canonically isomorphic to Q*(M,gl(V)). The second consequence of this reductions is that the

connection V has the special form of
V=d+ A
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for some A € QY (M, End(E)) = Q' (M, gl(V)).

This space Q*(M, End(E)) = QY(M, gl(V)) will play a very important role in our computations. First
of all, we can extend the wedge product to a map A : QP(M, End(E)) x Q4(M, E) — QPT4(M, E). This
map, for basic elements T ® w and 0 @ n for T' € I'(End(E)), 0 € T'(E), w € QP(M) and n € Q4(M),
is defined as

(T@w)n(e@n):=T(0)® (wAn)
Remark 1.3.14. If 0 € T(E) = QY(M, E), then Q A o = Q(0) for all Q € Q*(M, End(E)).
Using this wedge product, we can rewrite the covariant exterior derivative in a more explicit way.

Proposition 1.3.15. Let E = M XV be a trivial vector bundle with an affine connection V =d+ A,
then
dv(Q) =dQ+ ANQ

for all Q € (M, E)

Proof. The proof is only a computation. Without lost of generality, we can suppose that € is a basic

element, let us say Q2 = 0 @ w for 0 € I'(F) and w € Q*(M). Then, we have

dv(c@w)=VoAw+oc®dw=((d+ A)o) Nw+ 0 ® dw
=doANw+ Ao ANw+ 0 R dw

While, for the other term, we have
dle@w)+ AN (0 Qw)=doAw+ocQ@dw+ AN (0 Qw)

Therefore, it is enough to prove that AA (0 ®@w) = Ao Aw. Let us write A = T;@Ag, where T]Z e gl(V)

does T;(ez) =¢; and ZI?(ek) =0 for k # 4, and 0 = o¥ej,. Hence, we have
AN (oc@w) = <T;®A§> A (o%e, @ w) :UkT;(ek)Q@Ag/\w:Uiej@Ag/\w
Ao Nw = (T]Z ®A{)(0kek) ANw = UkT;(ek) ®A{ Aw=d'e; ®Ag Aw

as we wanted. [ |

With this explicit form of the covariant exterior derivative, we can compute Fy explicitly, usually

known as the structure equation.

Corollary 1.3.16 (Structure equation). Let E = M x V be a trivial vector bundle with an affine
connection V = d + A. Then, it holds

1
Fv:dA+AAA:dA+§[A,A]



Chapter 1. Gauge Theory 13

Proof. Again,

Fy(o) =dvy(dvy(o)) = (d+ AN) ((d+ A)(0)) = (d+ AN) (do + AN o)
=d’c+d(ANo)+ANdo+ANANc=dANo —ANdo+ANdo+ANANG
= (dA+ AN A)(0)

where we have used that d(AAc) = dAAc+(—1)P ANdo for A € QP(M, End(E)) ando € Q4(M,E) R

Overlooking following questions, we need to examine the case of the endomorphism bundle End(E).
Recall that, given a affine connection V on E, we have automatically defined a connection on End(E),

also denoted by V, with the requirement that
V(B(o)) = (VB)(c) + B(Vo)

for Be I'(End(F)) and 0 € T'(E).

Proposition 1.3.17. Let E = M x V be a trivial vector bundle with an affine connection V=d+ A
and let End(E) = M x gl(V') be its endomorphism bundle. Then, the induced connection V on End(FE)

operates by means of the Lie bracket in the following way.
VB =dB + [A, B]
for all B € T'(End(E)).

Proof. Let us write A = T; ® Af Then, for 0 = o'e; € I'(E) and B = Bij’ € I'(End(E)) we have

Be; = Ble; so

V(B(0)) = V(B(c'e;)) = V(c'Ble;) = o'e; ® dB) + B/V(c'e;)
= aiej ® ng + B{ej ® do’ + szaiek ® A?

while, for the other term, we have

B(Vo) = B(V(o'e;)) = Ble; @ do’ + o'e; ® Al) = Ble; @ do’ + o' Bke @ Al

so, putting all together, we have
(VB)(0) = V(B(0)) — B(Vo) = o'e; ® dB] + Blo'e, ® A¥ — 0'Ble;, ® Al = dB(0) + [A, Blo
as we wanted to prove. |

With this computation in hand, we can prove
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Corollary 1.3.18 (Bianchi identity). Let E = M x V be a trivial vector bundle with a connection V,

covariant exterior derivative dy and curvature Fy. Then, it holds
dvFy =0

Proof. This computation uses the structure equation and the explicit formula for the connection on
End(E). Then, using that [4, A A A] = [A,1/2[A, A]] = 0 by the graded Jacobi identity, d(w A n) =
dw A n(=1)P1 1w A dn and [w,n] = —(—1)P[n,w] for w € QP(M, End(E)) and n € Q4(M, End(E)) we

have

dyFo = dFy + [A, Fy] = d(dA+ AN A) + [A,dA+ AN A = d(A A A) + [A,dA] + [A, AN A]
= dANA— ANdA+ A, dA] = [dA, A] + [A,dA] = 0

as we wanted to prove. |

1.3.2.2 Return to the general case

Now, let us take a general vector bundle £ — M with fiber V', not necessarelly trivial, with an affine
connection V on it. Let us fix a basis of V' an let us consider {Uy},cp a covering of M of trivializing
open sets. Then, for every a € A, we can consider V, := V| -1(y,). Since 7~1(Uy) is isomorphic to a
trivial vector bundle, then we have that there exists A € QY (U, End(E)) = Q' (U,, gl(V)) such that
Vo=d+ A,.

Let us write Fy,, € Q%(U,, End(E)) = Q?(U,, gl(V)) for the pullback of the curvature to this trivial-
izing open set U, C M. Then, since the connection only depends on a small neighbourhood around
the considered point and the curvature is tensorial, all the identities valid in a trivial model can be

translated to identities for Fy,. In particular, we have the structure equation.

Proposition 1.3.19 (Structure equation). Let E — M be a vector bundle with a connection V and
curvature Fy. Let Uy, € M be a trivializing open set and let Fy,, be the pullback of the curvature to
this open set. Then, if Vo = d+ A, we have

Fg,=dAs+Au NAy =dA, + %[AQ,AQ]

Furthermore, since the Bianchi identity can be stated pointwise, working locally in a trivial model and

using the Bianchi identity for the trivial model, we have

Corollary 1.3.20 (Bianchi identity). Let E — M be a vector bundle with a connection V, covariant

exterior derivative dy and curvature Fy. Then, it holds
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Remark 1.3.21. Using the structure equations, we can also recover the classical notion of curvature
in riemannian geometry. Indeed, let us take a vector bundle F — M with a connection V and let

n = dim M. By the structure equations, in a trivializing open set U C M, we have, locally
1
Fy=dA+ §[A, Al

s0, in particular, for the coordinate vector basis {%, cee %}, writing A; = A (%), we have

g 0 o 0 1 o 0
oy =Iv (ax axa> =dd <axax]> ol A <axax])

0 0 o 0
= i T gt A ([axaxD + [4i Al

0 0
= @Aj - @Ai + [A;, Aj]

However, this formula can be recognized as a more familiar formula. In fact, let us define the Riemann
curvature tensor R: I'(TM) @ I'(TM) — I' (End (E)) by

Ry (X,Y)o :=VxVyo - VyVxo—-Vixyo

it is a straighforward computation (see [4]) that, locally, the components of R are

0 0

Therefore, both tensor agree locally so, by tensoriality, they agree locally. That is, seen Fy as map
Fy:T'(TM)xT(TM)—T (End(E)) we have

Fy(X,Y) =Ry (X,Y)=VxVy —VyVx — Vix,y]

which agrees with the usual definition of curvature in riemannian geometry.

Finally, in order to complete this section, let us examine how the local expresion of Fy varies from a
chart to another. Suppose that we have two trivializing open sets Uy, Ug € M with U, N Ug # () and
let gap : Uo NUg — GL(V) be their transition function. Let us write Vo, = d+ A, and Vg =d + Ag

Recall that, under this change of coordinates, the change in the gauge potential A is
Ag = g.54908 + 9o Aabas
So, let us compute. For the exterior differential we have

dAg =d (9;51d9a5> +d (g;/%Aagaﬁ) = dg 3 Ndgas + dgos N Aagas + 9npAadas — GudAa N dgag



Chapter 1. Gauge Theory 16

and, for the wedge product

AgNAg = (ggédgaﬁ + 9op AaGass 9uhdgas + g;éAagag> = g 4dgas M g3 dgas
+ g;édgaﬁ N g;@l’Aagaﬁ + g;ﬁlAa A dgaﬁ + g;&Aa A Aagaﬁ
Hence, we have
Fyg=dAs+ Ag A Ag = (dggg A dgags +dgt A Aagas + g;éAagaﬁ>
+ (g;/gldgaﬂ A g;ﬁldgaﬁ + g;/gldgaﬁ A g;glAagocB + g;éAa VAN Aagaﬁ)

— GaiFagas + (4954 + 923905973 ) A dgap + (493 + 9330005974 ) A Aagas

= g;/glFVagaﬁ

where the last equality follows from
— (-1 _ -1 —1 -1 -1 -1 _
0= d(gaggaﬂ) = dgaggaﬁ + gagdgaﬂ = dgaﬁ + gagdgaﬁgag =0

Therefore, we have just computed its change of coordinates rule

FVB = g,;IBlFVocgaﬁ

1.3.3 Compatible Connections

In general, we do not want that the transtion functions of our vector bundles were completely free.
Indeed, we will impose a very specific way of acting on it, given by a group G. As we will see, this is

very important to achive a satisfactory framework to work with.

Let E = M be a vector bundle with fiber V. We will say that E has structure group® G C
GL(V) (or, more generaly, with respect to a faithful representation p : G — GL(V)) if there exists a
trivializing covering of M, {Uqs},cp such that all the transition functions between them lie in G, that

is gag : UoNUg — G. These kind of trivializing coverings are called compatibles with the G-structure.

The vector bundle E having structure group G C GL(V') corresponds to the idea that F has a structure
on it preserved by G. For example, if G = GL*(V), then E is a GLT(V)-vector bundle if and only
if it is orientable. Moreover, if G = SL(V'), then it corresponds to choosing a volume form on E
and all the transition functions preserving this volume form. In addition, if G = O(V), then E being
a O(V)-vector bundle corresponds to having a bundle metric an all the transition functions beeing
linear isometries with respect to this metric. Finally, if G = GL(n,C) C GL(2n,R), then E is a

GL(n,C)-vector bundle if and only if F admits an almost-complex structure.

5Gauge group for physicists, but we reserve this word for another notion.
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Now, suppose that our vector bundle E has structure group G C GL(V). Then, we can restrict our

attention only to connections that, in some sense, are compatible with the G-structure.

Definition 1.3.22. Let £ = M be a vector bundle with fiber V' (with a fixed basis) and structure
group G € GL(V). Let {Ua},cp be a trivializing covering of M whose transition functions lie on G,
that is gag : Uo N Ug — G. A connection V € Ag is called a affine G-connection or compatible
with the G-structure if, for all o € A, writting V|-1(y,) = d + Aa, we have A, € QY (M, g) C
QY (M, gl(V)). We will denote the set of G-connections as A% C Ag.

Remark 1.3.23. Recall that, from 1.3.5, we have the invariant form of the change of coordinates formula

A5(Xa) = (Lyiny © 9as)_(Xa) + Ady1 .y (Aa( X))

that is also valid when we consider a matrix group G € GL(V). In particular, if Uy, Uz € M are
compatibles with the G-structure of E, then g,5 : U, N Ug — G. Hence, since

Adg;;(m) g—g <Lg;g(z)ogaﬂ)* :TM— g

we have that if A, € Q'(M,g) then Az € QY(M,g). Thus, the definition of a G-connection does not

depend on the trivializing covering and the basis of V' used to compute de 1-form A, choosen.

Example 1.3.24. Intuitively, as in the case of the structure group, V beeing a G-connection corre-
sponds to the idea that V preserves the structure induced on E by G. Let us ilustrate this idea with
and example. Suppose that our vector bundle E has a bundle metric (-,-) 7. Then, a connection V is

said to be metric if, for all 1,09 € T'(E) we have
d{o1,02) = (V(01),02) + (01, V(02))
or, equivalently, for all vector field X on M

X{o1,02) = (Vx(01),02) + (01, Vx(02))

Suppose that we have a metric connection V on a vector bundle £ of rank n. Let {Ua} 5 be a covering
of M of trivializing neighbourhoods that induces a O(n)-structure group reduction on F, that is, such
that gag : Ua NUg = O(n) (gap(x) is an isometry of E, for all x € U, NUp). Let us take U, C M for
some o € A. Using the trivial model, we can find sections e, ..., e, : Uy — 7 5(U,) C E such that
e1(z),...,en(r) is an orthonormal basis of E; for all x € U,. Now, let us write V| —1,) = d+ A
for some A € QY(M,gl(V)) with respect to this basis of sections ej,...,e,. Then, since they are
orthogonal of each x € U,, we have

(ei,e5) = dij

"That is, (-,-) € ['(E* ® E*) which, in each fiber E,, (-,-) : Bz x E, — R is a inner product (bilinear, simmetric and
definite-positive). For example, if M is a riemannian manifold, the riemannian metric is a bundle metric of TM.
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that is a constant function. Moreover, since in the trivialized model the e; have constant coefficients,

we have that de; = 0. Hence, using that V is a bundle metric, for all vector field X on M we have

0= X(e;sej) = (Vx(ei),e5) + (ei, Vx(ej)) = (Ax(€i), e) + (ei, Ax(e;))

= (AF(X)en, ) + (ex, AS(X)ex) = AF(X)0g; + AB(X)05 = A](X) + 45(X)

SO Ag (X)= —A;- (X), that is, A(X) is skew-symmetric, or, equivalently, A(X) € o(n). Hence, we have
that A € QY(M,0(n)). Therefore, we have that, given a bundle metric, an O(n)-connection is the

same as a metric connection, that is, a connection that preserves the structure induced by O(n).

It is very remarkable that the definition of a compatible G-connection V can be given in a slightly
different way, maybe more intrinsic, in a more general framework. Let us fix x € M and T, :
T,F — T,E an endomorphism of T,FE. Let us take also a trivializing neighbourhood U, C M of
x compatible with the G-structure and diffeomorphism ¢, : 771(U,) — U, x V, and let us define
T := palp, 0 Ty o g, : V — V. We will say that T}, lives in G if T2 is of the form

T (v) = p(ga)(v)

for some g, € G. Analogously, T, : E, — E, lives in g if T @ is of the form

Tg(v) = Px (fa)(’U)

for some &, € g, where p, : g =T.G — T, GL(V) = End(V).

It can be checked that this definition does not depend on the trivialization (U,,¢q). Specifically,
it can be shown that if Ug is another G-compatible trivializing neighbourhood of z, then gg =
gaﬁ(m)gag;é(a:) € G in the case living in G and &3 = gag(a:)ggggﬁl(a:) = Ady, ;(2)(§) € Ad(g) in
the case living in g. However, as we have shown, g, € G and &, € g do depend on the trivialization

choosen, so we can say that T, lives in G (or g), but we can not assert which g € G (or £ € g) is.

In this context, a map 7" € End(FE) is said to live in G (resp. in g) if T, : E; — E, lives in G
(resp. in g) for all z € M. Therefore, a connection V € Apg is said to be compatible with the
G-structure if, for all trivializing U, C M compatible with the G-structure, the associated gauge
potential (A,)x : End(m~1(Uy,)) — End(x~1(Uy,)) lives in g for every vector field X on U,.

In fact, from this definition, we can identify the fiber bundle structure of the space of endomorphisms
of E that live in g, let us call it End(E)y. Let {Ua},cp be a covering of M of trivializing open
sets for E compatible with the G-structure of E. Then, for every U, let us define the map ¢, :
End(r=Y(Upa))g — Ua X g by ¢a(Ty) = (z,EL%), where T (v) = pu(€5%)(v) in the trivial model defined
by U,. Using charts it can be shown that ¢, is a diffeomorphism that commutes with the proyection

to M. Moreover, they are related by gas(z) = ¢l End(E), © gb;l]End(E)x 19— 0, Japlx) = Ady, 4 (2)-
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By the identification of fiber bundles with their transition functions, we have that End(E), is iso-
morphic to the vector bundle over M with fiber g, structure group G and transition functions
Gap = Ado gap : Uy NUg — Ad(G) C GL(g). We will call this vector bundle gg.

Example 1.3.25. In particular, if G = GL(V'), then we have that gl(V), = End(E) = E ® E*.

Putting all this information together and using proposition 1.3.6, we have just proven

Proposition 1.3.26. Given a G-vector bundle E = M, the set of affine connections over E compatible

with the G-structure, AS, is an affine space with underlying vector space Q' (M, gg).

1.3.3.1 Curvature of a G-connection

Let us suppose that & — M is a vector bundle of fiber V and structure group G and V is a G-
compatible affine connection on E. Recall that, from this connection, we can define its curvature
Fy € Q*(M, End(E)). However, observe that, in a trivializing open set U, C M where V1w, we

have, by the structure equation, that

FVa = dAoc + [Aaa Aa]

1
2
so, since A, € QY (U,, ), we can see Fy, € Q%(U,,g). Therefore, Fy € Q?(M,gg) that is, Fy is a

2-form with values in the bundle of Lie algebras gg, seen as a subbundle of End(E).

Recall that the change of coordinates rule for Fy for trivializing open sets U,,Ug C M is that
Fy, € 9%(Uy,,g) and Fygp e Q2(Ug, g) are related by®

FVﬁ = g;ﬁlFVagozﬂ = Adg;é o Fy

Observe that, in general, gg is not trivial, gz 2 M x g so we can not say that Fy € Q2(M, g). However,
if G is abelian (for example if G = U(1)) then Fyz = Fy,. Therefore, the Iy, can be reensambled
to form a global form Fy € Q%(M,g). This is a key point that makes the difference between abelian

gauge theories (with G abelian) and non-abelian ones.

1.3.4 Gauge Transformations on Vector Bundles

Let E 5 M and E' ™ M be two vector bundles with fiber V. A map f : E — FE’ is said to be a
vector bundle map if f|g, : E; — E. is a linear map for all + € M and the following diagram

commutes:
f

N

M

E E’

8Observe that, since gaos : Us NUs — G C GL(V), the change of coordinates preserves the living in g.
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Observe that, in this case, given x € M we can find a trivializing neighbourhood of z, U C M, for
both vector bundles, that is py : 77 1(U) C E — U x V and ¢}, : #'~1({U) C E' — U x V. Then since
7/ o f = m, we have that gp’Uofogpﬁl:U><V—>U><Visofthef0rm

(P/U © f © (Pl_fl(xvv) = (:B,fU(I')(U))

for some fy : U — GL(V). Therefore, if E and E’ has structure group G C GL(V), we will say that
f: E — E'is a G-vector bundle map if, for all z € M there is a common trivializing neighbourhood

of x, x € U C M such that fU lies in G, that is, fU U = G.

Definition 1.3.27. Given E = M a vector bundle with fiber V and structure group G C GL(V), a
gauge transformation is a diffeomorphism f : £ — FE which is a G-vector bundle map too. The set

of gauge transformation of E form a group, called the gauge group of F, denoted by Gg.

The gauge group also acts on the set of affine connections.

Definition 1.3.28. Let E 5 M be a vector bundle with fiber V and structure group G C GL(V),
let G be its gauge group and let Ag be it set of affine connections. Then Gg acts on Ag by
f-V=f1oVoffor fegGg andVG.Ag, that is

(fV)x(0)=f"oVx(foo)
for any vector field X on M and o € T'(E).

Let f € Gg and V € Ag. Let us take x € M and let U C M be a trivializing neighbourhood of z.
Then, locally in U, the connection V can be written as d+ A and the connection f-V as d+ A’. Thus,
following the proof of the transformation rule of connections under change of trivialization map, we

get that

A=l + AT

Furthermore, this later formula can be rewritten in a more invariant way, as in 1.3.5 so we have
A(X,) = (Lf_l(x) o f—1>* (Xa) + Adj_y ) (Aa(Xa)

for any * € U and X, € T, M. Thus, if A € QY(U,g), then A’ € QY(U,g). Therefore, if V is a

G-connection, then f -V is also a G-connection and, restricting, it defines an action of Gg on A%.

Moreover, analogously to the case of a change of coordinates, if Fy is the curvature of the GG-connection
V and Fy.y is the curvature of the G-connection f -V, then in a local trivialization U, C M they are
related by

Fry,=f""Fof=Ad; o Fy,
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so, returning to the global form, we have that
Fry(X,Y)(0) = [ o (Fy(X,Y)) (foo)

for all o € T'(E) and X,Y vector fields on M.

1.4 Connections on Principal Bundles

As we have seen, connections and their curvature on vector bundles are a very powerful tool. How-
ever, its understanding requires a large knowledge of differential geometry and it is plenty of tricks.
This difficulties can be overcomed using a different framework, but equivalent, via principal bundles.
This point of view allow us to have a sometimes easier sometimes complementary framework to cope
with connections, but loosing the geometrical intuition behind the affine connecions, very closed to
riemannian connections. Therefore, in this section, will show how to restate this formalism in terms

of principal bundles and, in the next one, how to translate between them.

Recall that, given a Lie group G and a base manifold M a principal G-bundle over M is a fiber
bundle P 5 M with a right free action? of G' such that m(p - g) = n(p) for all p € P, the action is
transitive in each fiber (hence, the fibers are exactly the G-orbits of P) and such that the trivilizing
functions are G-equivariant. This last hypotesis means that, if ¢y : 771(U) — U x G is a trivializing
function for some U C M, then for all g € G and p € P, opy(p- g) = vu(p) - g, where the action of G
in U x G is given by right product on the second coordinate (i.e. (z,h) g := (z,hg)). We will denote
the transition functions of the principal bundle between U, and Ug by g : Uy N Ug — G, acting on
the left and defined by ¢, © cpgl(x,g) = (2, gap(x)g). Moreover, we will abuse the notation and, if P
is a principal G-bundle, we will denote R, : P — P the right action of g on P, that is Ry(p) =p- g.

For our computations, we introduce the notion of fundamental field.
Definition 1.4.1. Let P 5 M be a principal G-bundle and let ¢ € g. We define the fundamental

field associated to &, X¢ as the vector field over P given by

d
(Xehpi= | p-empltc)
t=

for all p € P.

9The fact that the action of G was on the right is fundamental and it is linked with how the transition functions act
on G. Usually, the transition functions gog are defined as @q o @El(w, g) = (x,gas(x)g), In this case, if we want that the
action of G on P commutes with the transition function we need that G acts on the right. Indeed, in the local trivialized
model, we have

RpoLg,s(x,9) = (gop - (2,9)) - h = (,9apgh) = gap - ((%,9) - h) = Ly, © Ru(z, g)

and it does not hold if G acts on the left. Furthermore, as our computations will show, the right action of G is needed
in order to be able to translate connections on P to translations on the associated vector bundle.
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Remark 1.4.2. Given p € P, a vector X;, € Kermy, if and only if there exists {§ € g such that
(Xe)p = Xp

Definition 1.4.3. Given a G-principal bundle P 5 M, a connection or connection 1-form is a
1-form over P with values on g, A € Q'(P, g), such that
o A(X¢)=¢forall € €g.
o Ayp(Ry, Xp) = Ady-—1(Ap(Xp)) for all g € G, p € P and X, € T),P. In a more compressed form,
R{A = Ady-10A

We will denote the set of connection 1-forms on P as Ap.

Moreover, we can use the local formulation of the previous definition.

Definition 1.4.4. Let P 5 M be a G-principal bundle. A connection system is, for every local
trivialization ¢, : 71 (Uy) 5 U, x G, a 1-form over U, C M with values in g, call it A, € QY(U, g).
This set of 1-forms should satisfy the compatibility condition that, if U,,Ug are two trivializing
neighbourhoods with U, NUg # 0 and gap : UoNUp — G is its transition function, then, over U, NUg

AB(XI) = <Lg;31(1) © ga,@)* (Xw) + Adg;é(x)(Aa(Xz))

for all z € Uy, NUg, and X, € T, M.

Remark 1.4.5. Recall that, from remark 1.3.5, if G is a matrix group the change of coordinates formula

for a connection system can be rewritten'? as

Aﬁ = g;gldgozﬁ + g;éAagaB

where dg,p is the matrix of same size as g,g whose entries are d of the original entry.

Proposition 1.4.6. Definitions 1.4.3 and 1.4.4 are equivalent. More precisely, locally a connection
1-form forms a connection system and given a connection system, they can be glue together to build a

connection 1-form.

Proof. 1.4.3 = 1.4.4. To be more precise, given a local trivialization ¢, : 7= 1(U,) = U, X G, we can
define the local section o, : Uy — 7 1(U,) C P by ou(z) := ¢, (z,¢e). Then we define A, := o} A.
Observe that given U,,Ug C M we have that og(z) = oa(x) - gag(z). Hence, if X, € T, M and

10 A5 the sharp-sighted reader could have observed, this formula is the same as the one of the change of coordinates of
the 1-form A of a connection on a vector bundle (see 1.3). Of course, this is not a coincidence, but it will allow us to
translate between both worlds. However, if we had used use a left action of G on P instead of the usual right action, the
change of coordinates formula would not be this one, not allowing the translation.
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v :(—€,€) = M is a curve with 7/(0) = X, we have

d

05 (Xa) = | op(7(t)) = -

i aa(Y(t)) - gap(y(t))

t=0 t=0

= 0a() - <jt . gaﬁ(v(ﬂ)) + (fzit o

=@ (55| b0 ms00)) + Ry, (00 (X0)

aaw))) g (@)

- (XE)Uﬂ(:c) + Rga[;(:c)* (Ua*(Xw))

where £ = (Lg_é (@) © 9ag)+(Xz) € TeG = g. In this way, using the properties of the connection 1-form,
we have the rule of chart changing
Aﬁ(XE) = A(Uﬁ*XI) =A ((X£)05($)> +A4 (Rga,e(z)* (Ua*(Xm))> =&+ Adg*1 (A(0axXz))

B ()
= (Lg;g(m) © gaﬁ)*(Xac) + Adg;g(aj) (Aa(Xy))

as expected.

1.4.3 < 1.4.4. Suppose that we have a connection system {(Ua,Aq)},cp for some atlas of M of
trivializing open sets. Let us fix some U, and let o, : Uy, — W_l(Ua) C P be the local section as
before. Observe that o, induces an horizontal distribution onto its image, that is, for all x € M we
have the decomposition

Tso()P = 0ax(TeM) © V(o)

Hence, we can use the 1-form A, on « to define a 1-form with values in g on o(U,), A, by
Aga(z)(ga*(X:v) + Xe) = Aa(Xz) + €
Furthermore, we can extend A% to the whole 7~ (U,) by

A (g = Adg-r (R;*Aa>

oa(x)g

Observe that, by construction, A is right-invariant and if p = oy (z) for some = € U we have that

flga(x) (X¢) = € for all fundamental field X¢ with £ € g. For the general case, if p = 0,(7) - g then

A2(Xe,) = Ady-s ((R;,1 Ao)( Xﬁp)> = Ady (Aga(x)(Rgfl*Xg))
= Ady— (Aaa(m)((XAdgf)aU(x))> = Adg1 (Ady(§)) = ¢
Therefore, A% is a connection 1-form on 71(U,). Hence, it is enought to prove that for two trivializing

neighbourhoods U,,Ug € A we have that A=A in U, NT, 3. In this case, all this local forms could

be pasted together to form a global conection 1-form A, as we wanted.
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Let us check that A* = A% in 7= (U,NU, 3). First of all, observe that, by the right-invariance property,
it is enought to check it on og(U, N Ug). Moreover, cause they coincide on fundamental fields, it is
enought to check that fla(ag*Xx) = AP (08,Xz). But, in this case, by the previous computation,
writting £ = (Lg;é(z) © gop)«(Xy) we have

Agg(m) (UB*Xi) = Aa ((Xﬁ)ag(x) + Rgaﬁ(z)* (Ua*(Xx))> = 5 + Aa (Rgag(w)* (O'Oé*(Xw))>

=&+ Adggg(a;) (A?a(z)(ga*(Xw))) = (LQ;,BI(QC) © gaﬁ)*(Xa:) + Adg;gl(x) (Aa(X2))

= A o (Xe) = AT (05, X)

where the penultimate equality is the change of charts rule of the connection system. Therefore

A?B(x) = flfﬁ(x), completing the proof. -

Finally, we can give a geometric formulation of a connection in terms of horizontal distributions.

Definition 1.4.7. Given a G-principal bundle P = M, an Ehresmann connection or horizontal

distribution over P is a subbundle H of T'P such that, for every p € P and g € GG, we have that
1,P=V,® Hy Ry (Hp) = Hpyg

where V), := Ker my, C T, P is the vertical distribution.

Proposition 1.4.8. Definitions 1.4.7 and 1.4.3 are equivalent. More precisely, for p € P, given a
connection 1-form A, Hy, := Ker A, is an horizontal distribution and, given an horizontal distribution
H C TP — P the 1-form A € QY(P,g) given by Ap(Xgp + X;)L) = { where X¢ is the fundamental field
ofE€g andXI’} € Hp.

Proof. 1.4.3 = 1.4.7. Taking the kernel subbundle Ker A — TP we observe that H = Ker A is, in
fact, a subbundle of T'P.

o Direct complement of V: Let us take X, € Ker A, N Kermy,. Since X, € Kermy,, we have
that there exists a fundamental field X, for some { € g such that Xgp = X,. Hence, we have
that A,(X,) = Ap(Xgp) = ¢ so X, € Ker A, if and only if £ = 0 which is equivalent to X, = 0.
Moreover, from this computation, we have that, if X|) € V), is the vertical part of some X, € T}, P,
then A, (Xp) = Ap(X}) so X, — X € Ker A and, therefore T,P =V}, © H).

e Right-invariance property: Observe that, by dimension, it is enought to check that R, (Ker Ap,) C
Ker Apg. Let X, € Ker Ap. Recall that Ay 4(Ry, Xp) = Adg-1(Ap(X)p)), so, cause Ap(Xp) =0
we have Ap.g(Rg*po) =0, that is, Rg*po € Ker Ay, as we wanted to prove.

1.4.3 < 1.4.7. Given X, € T),P, let us denote X;} € H? and X € V), its horizontal and vertical part,
respectively, such that X, = X7+ X;L € Vp @ Hyp. Observe that, since X € V), = Ker m,,, there exists
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a unique fundamental field X¢ such that Xe, = X,. Hence, the 1-form (possibly discontinous) with
values in g A,(X,) := A (Xh + Xe, ) = ¢ is well defined.

e Behaviour on fundamental fields: By construction A(X¢) = £ for every fundamental field Xe.

e Smoothness: Observe that for all p € P, locally, there exists a neighbourhood U C P of p,
vector fields on U, Yi,...,Y, and &,...,& € g such that Yip,.- Yo

(Xe,)ps -+ (Xe,)p is a basis of V, for all p € U. Then, we have that A4,(Y;,) = 0 for all
i=1,...,7rand A (ng )=¢; for j =1,...,s, which is smooth on U.

is a basis of H, and

o Right-invariance property: Let us prove that Ap.g(Rg*po) = Adg-1(Ap(Xp)) forallge G,pe P
and X, € T,P. To this end, observe that, if X, € H), the result is trivial, since 4.4 (Rg*pX ) =0,
(cause Ry, ,Xp € Hpg by the right-invariance property of H) and Ady(Ap(Xp)) = Ady(0) = 0.
Hence, it is enought to check it for X, € V},, let us say X, = (X¢), for some £ € g. But, in this

case, we have that

Ap~g(Rg*X£p) = Apyg (c;lt t—oR q(p - exp(t€) > <jt t—op exp(t&)g >
= Ap. (;i . (p-9) g 'exp(td)y > Apyg (jt (r-9)- ea:p(tAdgl(f))>

= Ay ((Xag, () ) = Ady1(€) = Adyr (4y( X))

as we wanted to prove.

1.4.1 Gauge Transformations on Principal Bundles

Let P55 M and P’ ™ M be two G-principal bundles. A map f : P — P’ is said to be a principal
G-bundle map if f is G-equivariant (i.e. f(p-g) = f(p)-g for all g € G and p € P) and the following

p—r»t s p
M

Observe that, in this case, given x € M we can find a trivializing neighbourhood of z, U C M, for
both principal bundles, that is ¢y : 77 1(U) C P — U x G and ¢}, : #"(U) C P’ = U x G. Then
since 7’ o f = 7, we have that go’Uofocpal U x G —= U x G is of the form

diagram commutes:

(:DIUOfOSDEI(xMQ) = (xafNU'g)

for some fy: U — G.
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Definition 1.4.9. Let P 5 M be a principal G-bundle. A gauge transformation is a diffeomor-
phism f : P — P which is a principal G-bundle map too. The group (under composition) of gauge
transformations of P is call the gauge group of P, and denoted by Gp.

Moreover, we can do that the gauge group acts on the set of connection 1-forms on P, Ap.

Definition 1.4.10. Let P = M be a principal G-bundle with gauge group Gp and set of connection
1-forms Ap. Then Gp acts on Ap by
f-A=f(4)

for f € Gp and A € Ap.

Remark 1.4.11. The action of the gauge group is well defined, in the sense that it sends connection
1-forms to connections 1-forms. To check it, note that, of course, f - A € Q'(P, g) so we just need to

prove that f - A is well behaved on fundamental fields and right-invariant.

First, let £ € g and let X its fundamental field on P associated. Then, since f is G-equivariant and

A preserves fundamental fields, we have

d

&.

(F+ AlXe) = (P 0ulX6) = Ap £ Xo) = g (5|

d
= Af(p) <dt f(P) exp tf ) ( f(P))

f (p- emp(%)))

t=0

For the right-invariance, observe that, since f is G-equivariant Ry o f = f o Ry and f*(Ady o A) =
Adg o f*A for all g € G. Therefore, we have

Ry*(f - A) = Ry(f*A) = (f o Rg)" A = (Rg 0 f)"A = [ (R A)
— [*(Ady-1 0 A) = Ady1 0 f*A= Adyr o (f - A)

1.4.2 Curvature on Principal Bundles

Let us suppose that we have a principal G-bundle P — M with a connection A. Let H C TP be its
horizontal distribution. Given a vector X, € TP, we will write X}, = X + X;L € Vp, ® H,, where
Xy €V, and X)' € Hy.

Let w € QF(P, g), we define w" € QF(P, g) as
WX, X)) = w(XE X

for all Xq,..., X} vector fields on P. With this definition, we define the covariant exterior deriva-
tive of P with respect to A, da : Q¥(P,g) — QF(P, g) as daw = (dw)H
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Definition 1.4.12. Let P — M be a principal G-bundle with a connection 1-form A € Q'(P,g). We
define the curvature of A, Fy € Q?(P,g), as

Fy=da(A)

A very important formula that allow us to compute in a easy way is the known as structure equation

for principal bundles. The proof, that is simply a computation, can be found in [7].

Theorem 1.4.13 (Structure equation in principal bundles). Let P — M be a principal G-bundle with

a connection 1-form A € QY (P, g). Then, its curvature can be written
1
Fy=dA+ §[A,A]
As we will see, this definition of curvature is analogous to the one given for vector bundles. In fact, it

satisfies similar identities.

Theorem 1.4.14 (First Bianchi identity). Let P — M be a principal G-bundle with a connection
1-form A € QY(P,g) with curvature Fa. Then, we have

dFs = [Fa, 4]

Proof. 1t is a computation using the structure equation. First of all, since d[A, A] = [dA, A]—[A,dA] =
2[dA, A] we have
1 1
dFy =d <dA + 2[A,A]> =d’A+ 5d[A,A] = [dA, A]

Moreover, since [[A, A], A] = 0 by the graded Jacobi identity we have
dFy = [dA, A] = [dA + %[A, A],A] = [Fa, A]

as we wanted to prove. |

Corollary 1.4.15 (Second Bianchi identity). Let P — M be a principal G-bundle with a connection
1-form A € QY(P,g) with curvature Fa. Then, we have

Proof. Recall that the horizontal distribution induced by A is exactly the kernel of A, so A kills every
horizontal vector field. Therefore, by the first Bianchi identity, we have for all vector fields X7, X9, X3
daFa(X1, Xa, X3) = (dFa)" (X1, X, X3) = dFa(X{, X3, X)) = [Fa, A|(X{, X3, X})

1 .
=3 > sign(o)[Fa(XF 1y, X2p)), A(X )] =0

TgES3
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Finally, let us write the connection F4 in local coordinates. Let {As},cp be a covering of M of
trivializing open sets with transition functions g.g : Uy N Ug — G. Recall that, associated to each
trivialization on U,, we have a local section o, : U, — TI'_I(Ua) C P and such that, as in the proof of

proposition 1.4.6, the local system associated to A is given by A, = 0 (A) € QY (Uy, g).

Analogously to this local system, we define the local curvature Fa, € Q%(U,,g) by
Fpa =04(Fa)

Observe that F4, also satisfies the structure equation and first Bianchi identity since the exterior

derivative and the Lie bracket commutes with pullbacks

FAa — dAa + [Aa, Aa] dFAa = [FAOH AOJ

1
2

For the change of chart rule, remember that, by the proof of 1.4.6, we have that, for all vector field X
on U, N Uﬁ

06,(Xs) = (Xe)os(x) + Bgop(e), (Tax(Xz))

for some ¢ € g. Observe that, since X is vertical and F4 = (dA)" we have that F kills every vertical
field, so for every x € U, NUg

Fag(Xe,Ye) = 05(Fa)(Xe, Yz) = Fa(op,X,08,Y)

= FA(Rgaﬁ(x)* (aa*(X)) 7Rga3(z)* (Ua*<Y))) = UZ (R;aﬁ(m)FA(Xxv Yx))

Let us compute the pullback under R. Recall that, since A is a connection 1-form, RjA = Ady-10 A
for all g € G. Therefore, using that the pullback commutes with the Lie bracket, for the curvature,

we have
RyFa = Ry (dA+ 3[4, 4]) = d(R;4) + 3[Ry, Ry A)
zwaAquoA)+%Lm%_loAH«%_loA]

:A%lo@A+;Am>:A%lqm
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where Ad,-1 commutes with the Lie bracket since it is a homomorphism of Lie algebras. Therefore,

returning to our previous computation, we have

Fag(Xy,Ya) = o7, (R;aﬁ(x)FA(Xx, YI)) . (Adg;[; 0 © FA)

— Adga_ﬁl(x) O O'Z (FA) = Adg;ﬁl,(ac) O FAa

So, in particular, if G is a matrix group, we have the change of coordinates rule

Fag= Q;glFAaga,B

Remark 1.4.16. Again, as in the case of vector bundles, if G is an abelian Lie group, then, using this

local form, we can define a globally defined form Fs € Q%(M, g).

1.5 From Vector Bundles to Principal Bundles

Let us fix a base manifold M, a Lie group G and a finite dimensional vector space V. We define the
category of G-principal bundles over M, PB?;/[ to be the category whose objects are the principal

G-bundles over M and whose morphisms are principal G-bundle maps.

Analogously, if there exists a representation p : G — GL(V), we define the category of vector
bundles of fiber V and structure group G (seen as a subgroup of GL(V) via p), VB¥ (p, V). The
objects of this category are the vector bundles of fiber V and structure group G and the morphisms

are the G-vector bundle maps.

A very important functor between this categories is the associated bundle functor, that allow us to turn
a principal bundle an viceversa. For this, we need to suppose that the representation p : G — GL(V)

is faithful. As we will see, we are going to define two mutually inverse functors between this categories

Ap
PBY T T VB{(pV)
f

which are known as, the associated vector bundle functor A, and, the frame bundle functor

F.

Remark 1.5.1. The requirement of p being faithful will appear when we want to construct the frame
bundle, that is, the principal bundle associated to a vector bundle using the functor F. However,
the reverse construction, via A,, from principal bundles to vector bundles do not require to the

representation to be faithful.
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1.5.1 Associated Vector Bundle

For the functor A, : PBg[ — VBg(p7 V), let P = M be a principal G-bundle. Then, can associate

to it the bundle over M
PxV

G
where G acts on P x V on the right by (p,v)-g = (p-g,p(g)"*(v)). In this case, we define the map
' Px,V — M by 7'[p,v] = w(v). With this definition, P X, V becomes a vector bundle.

AP)=Px,V =

Remark 1.5.2. Sometimes in the literature, especially when the representation p is clear, this associated

vector bundle is simply denoted by P xg V.

Analogously, if f : P — P’ is a morphism of principal G-bundles over X, let us define
ffiPxV P xV
given by f'(p,v) = (f(p),v). Observe that f’ is G-equivariant, so it descends to a map
Ay (f) : Ap(P) =P x,V = A,(P')=P' x,V

given by A,(f)[p,v] = [f(p),v].

This construction can be stated only in terms of local trivializations of the principal bundle. Let us
take a principal G-bundle P = M, and a covering {U,} aca Oof M of trivializing neighbourhoods of
the bundle, with transition functions g.g: Uo NUg — G.

With this information, we can describe completely the associated vector bundle computing its transi-

tion functions.

Proposition 1.5.3. The associated vector bundle to P is the unique vector bundle whose transition

functions on the covering {Ua}ocp 7€ Gag := p© gap : Ua NUg — GL(V), that is

where (z,v) € Uy x V ~ (2/,0") € Ug x V if and only if x = 2’ and v' = op(z)(v).

Furthermore, the induced morphism A,(f) : P x, V. — P’ x,V is gwen, in local terms on Uy, by
A (f)[z,v] = [z, p(fa(x))(v)] where f, in the trivial model, is given by f(z,g) = (x, fa(x)g) for some
fa Uy — G

Corollary 1.5.4. If P — M is a principal G-bundle, then P x,V has structure group G (seen as a
subgroup of GL(V') via p). Therefore, the functor A, : PBY — VBY (p,V) is well defined.

Example 1.5.5. The most important associated bundle used in gauge theory is the well known

adjoint bundle. Recall that, associated to any Lie group G we have the adjoint representation
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Ad : G — GL(g) which is faithful (the inverse of Ad, is Ad,-1). Therefore, to every principal G-
bundle P — M we can form the adjoint bundle Ad(P) := Auq(P) = P X4 g which is a vector
bundle with fiber g. Moreover, in this cases, the functor A g : PB]\G/[ — VBAG/[ (Ad,V) is usually called
Ad: PBY — VBY (Ad, V).

Remark 1.5.6. Let us take a G-vector bundle E. If E = Ad(P) for some principal bundle P over M,
then, by the previous proposition, we have that gp = Ad(P) = E.

With the definition of the adjoint bundle, in [44] is proved the following proposition, that identify the

algebraic structure of the space of connections as an affine space.

Proposition 1.5.7. Given a principal G-bundle P = M, the set of connections on P Ap, is an affine
space with underlying vector space Q' (M, Ad(P)).

1.5.2 Frame Bundle

The reverse functor of the associated bundle functor is the frame bundle functor F : VB¥ (p, V) —
PBY.

To introduce this construction, let us first suppose that G = GL(V'). Then, the frame bundle functor
asigns, to every vector bundle E 5 M with fiber V, the principal bundle of its fiberwise basis, known

as the frame bundle.

In order to specify this, first of all, observe that, given a finite dimensional vector space W, we
can consider B(W) the set of (ordered) linear basis of W. More specifically, B(W) is the space of all
isomorfisms R¥™W 5 177 topologized with any norm topology (remember that they are all equivalent)
for example the norm as operator between Banach spaces or the topology as space of matrices, chosen

a basis on W.

Now, returning to vector bundles, we can build the space

F(E)= || B(r ' (2))
xeEM
and topologize it analogously as the tangent bundle of M is topologized. With this topology, it becomes
a fiber bundle F(E) ™ M. In fact, GL(n,V) = GL(V), n =dim V, acts on F(E) by change of basis,

and this action of free an transitive fiberwise, so it becomes F(FE) ™ Mina principal GL(V')-bundle.

In other cases, if G = GL*(V'), we should take only the bundle of positive oriented basis of V, in the
case of G = SL(V) only basis of a fixed volume and, in the case G = O(V'), we have to consider only

the bundle of orthonormal basis of V.

However, in the general case, the construction should be given in terms of a trivializing covering glued

via transition functions. Let {Uas},cp be a covering of M of trivializing neighbourhoods of the vector
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bundle E, with transition functions g.5 : Uo N Ug — p(G) € GL(V). Then, since p is faithful, it is

injective, so we can form the transition functions g,g := p~lo 9ap : UaNUg — G.
Then, the G-frame bundle is the bundle

L] Ua xG
F(E) = ach

where (z,9) € Uy x g ~ (2/,¢') € Ug x V if and only if z = 2’ and ¢’ = gos(z)g.

With respect to the morphisms, given a map of G-vector bundles f : E — E’, we can define its image
under F as a map of G-principal bundles F(f) : F(FE) — F(E’). To this end, let us define, for each
o € A, the maps f, : Uy x G — U, x G given by f/(z,9) = (x, (p~" o fo)(2)g) where f, in the trivial
model Uy, is written as f(z,v) = (, fo(z)(v)) for some fo : Uy — p(G) € GL(V). Then, putting all

this maps together, we can form the map

f = Ufa: |_|Ua><G—> |_|Ua><G
a€eA aEA a€A
It can be checked that this map respect the equivalent relations induced by the pasting of E and E’,
so it descend to a map F(f) : F(E) — F(E').

By proposition 1.5.3, this functor F : VB% (p,V) — PBAG/[ is the inverse of the associated vector
bundle functor A, : PBAG4 — VB% (p, V), completing the relation between this two types of fiber
bundles.

Remark 1.5.8. Extending remark 1.5.6, let us take a matrix Lie group G C GL(V) for some vector
space V and let us take E a G-vector bundle with fiber V. Then, gr = Ad(F(E)). Observe that, in
general Ad(F(E)) is not isomorphic to F, since F(FE) is computed using the inclusion as representation

and Ad using the adjoint representation of G.

1.5.3 Connections in Vector and Principal Bundles

Once described the relation between vector and principal bundles, we can go one step futher and
study the interelation of its connections. Let us fix a base manifold M and a Lie group G together
with a faithful representation p : G — GL(V) for some finite dimensional vector space V. Via this

representation, we can identify G and p(G) and consider G as a matrix group.

Let us take a principal G-bundle P — M and let {Ua}, 5 be a covering of M of trivializing open sets
for P. Recall that, by proposition 1.4.6, a connection on a principal bundle P — M can be given by

a connection system, that is, for every a € A, a g-valued 1-form on Uy, A, € Q' (Uy, g).
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Now, let us take the associated vector bundle P x,V and let us take the set of 1-forms fla = py0 Ay €
QY Uy, p<(9)) € QY Uy, gl(V)). Recall that the change of coordinates rule for the A, is

Ag = 9,3d908 + 9opAabas

so, for the A, we have that!'!
Ap = G5 dGas + GugAadas
Therefore, the A, satisfy the change of coordinates rule for the local version of an affine connection

so they define a connection V on P x, V.

Analogously, let us take a vector bundle E — M with structure group G (strictely p(G)) and let
{Ua}acn be a covering of M of trivializing open sets for E. Then, choosen a basis for V, for every
affine connection on E we have an uniquely determined A, € Q(U,, gl(V)) for every a € A. Therefore,
considering fia = p*_1 0A, € Ql(Ua, g) as before we have that the rule of transtion of the fla is the
same that the one for the A,, that is exactly the one required for defining a connection system on the

G-frame bundle F(E), that uniquely determines a connection on F(E). Thus, we have just prove

Proposition 1.5.9. Let us fix a base manifold M and a Lie group G together with a faithful repre-

sentation p : G — GL(V') for some finite dimensional vector space V.

o Given a principal G-bundle P, there is an isomorphism of affine spaces between the space of
connections on P, Ap, and the set of affine connections on the associated vector bundle P x,V,

G
‘AP><,,V‘

o Given a vector bundle E with fiber V and structure group G, there is an isomorphism of affine
spaces between the space of affine connections on FE, Ag, and the set of connections on its

G-frame bundle F(E), Ar ).

Furthermore, in both cases, the local form of the connection, seen as and element of Q*(U,,g) for
{Ua} e @ covering of M of trivializing open sets, agree in the original connection and the induced

one. In particular, the original is flat if and only if the induced one is flat.

Example 1.5.10. If our G-vector bundle E is the adjoint bundle of some principal G-bundle P,
E = Ad(P), then we have that A% = Ap. Recall that the later is an affine space modelled on
QY (M, Ad(P)) = QY(M, E) while the first one is modelled on Q' (M, gg) = QY(M, E), as expected.

1This can be checked composing with p, in the more invariant form

Ap(X,) = (Lg;g ) © gaﬂ) (Xe) + Ad, 1, (Aa(X2)
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1.6 Yang-Mills Equation

Now, with our understanding of connection in both frameworks, principal and vector bundles, we can

define the most important concept of this work, the Yang-Mills equation.

First of all, we need to define a very important operator known as the Hodge star operator. Here we

will give a brief introduction to this map, whose complete definition will be explained in 3.1.1.

Let us take an oriented differentiable manifold M with a riemannian metric'? g and volume form €.
Using this metric on vector fields, we can define bundle metric on QF(M) — M, g¢*, for all k& > 0.
Then, we define the Hodge star operator, * : Q’;(M) — Qgik(M), where n = dimg M as the unique
map that, given 7, € Q’;(M ), *1)p is the unique (n — k)-form such that

wp A (51)p = Gp(Wp, 7p)

for all p € M. The most important shorthand for computing it is the following proposition, which will

be proven in 3.1.1.

Proposition 1.6.1 (Computation of the Hodge Star Operator). Let (M,g) be a compact oriented
riemannian manifold of dimensionn and letp € M. Letwy, ... ,w, be a positively oriented orthonormal
base of Ty M with respect to the induced inner product on 1-forms. Then, over k-forms, the Hodge

Star operator can be computed as
*(wip Ao Awgy) = sign(o) - wj, A Awj,

(1 2 -k k+1 k+2 -+ n
where o = . . .

o ‘ is a permutation of {1,...,n}.
o2 e J1 J2 o JIn—k

Remark 1.6.2. From this characterization for the Hodge Star, is very simply to observe that x~! =
(—1)’“(”_’“)*, SO ** = (—1)k(”_k).

With this operator x : Q*(M) — Q*(M) we can extend it to the case of forms valued on any vector
bundle F — M, Q*(F) =T'(F) @ Q*(M), by

*x(0 @w) =0 ® (xw)

for o € I'(F) and w € Q*(M).

Definition 1.6.3. Let E — M be a vector G-bundle with an affine connection V on it with covariant
exterior derivative dy : Q*(E) — Q*T!1(E). V is said to be a Yang-Mills connection on E, or a

solution of the Yang-Mills equations on vector bundles if

12We can also consider the case of a semi-riemannian metric with exactly the same definition.
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In order to state the Yang-Mills equations for a principal bundle P — M, we need to define some kind
of Hodge star on Q*(P, g), the home of the curvature; as in the case of vector bundles, where we have
defined it on Q*(M, End(E)), the home of the curvature of vector bundles. However, as in the case
of vector bundles, given a Hodge star operator on Q*(P) we have an unique extension to Q*(M,g).

Therefore, our problem reduces to induce a Hodge star operator in Q*(P) given the one on Q*(M).

Suppose that we have fixed a connection A on a principal bundle P 5 M, from which we have defined
a horizontal distribution H C TP and let n = dim M. Recall that m, : TP — T M restricts to an
isomorphism 7| : H — T'M so we can pullback the metric g on M to a bundle metric § = 7|};g on
H,'3 seen as a vector bundle H — P. Likewise, given the volume form Q € Q"(M) we can define the
volume form Q = 7|5,Q € Q"(H).

From this metric and volume form, analogously to the case of a metric in the tangent bundle, for every

p € P we can define a Hodge star operator %, : /\k Hy — /\nfk H;M by requiring that

wp A (5N)p = Gp(wWp, 7p)

for every wy,m, € A\ Hy.

With this operator in hand, we can extend it to a global operator %, : Q]Ij (P) = A" P — Qg_k(P) =
A"F TyP. Given wy, € QF(P) let us denote wp|g, € /\ Hjy its restriction. Then, for w, € QF(P) we

define

*pWp 1= (kp (Wp|Hp))h

where, given n € A H", n € Q' (P) is the form (X1, .o, Xom) = n(XP, .., X)) for Xq,..., X, €
T,P. Therefore, since it varies differentiably, we have extend the Hodge star operator to a map
*: QF(P) — Q"7*(P) called the induced Hodge star operator on P.

Remark 1.6.4. In contrast with the Hodge star on M, this map is no longer an isomorphism, since in

dim Q4 (P) = (d“;l P > £ @T]lj) — dim QF(P)

general

However, if we call QF (P) the space of differential forms on P that vanish on the vertical distribution
V C TP, dim (Q}),(P) = (}), so the Hodge star is again an isomorphism  : Qj (P) — Q;(P).

Finally, extending the induced Hodge star to a map x : Q*(P,g) — Q*(P,g) (or an isomorphism
*: QU (P,g) — Q5 (P, g)) we can define

130bserve that, if G would be a discrete group, then P — M would be a covering space and, only in this case, the
global pullback 7*g would be a non-degenerated symmetric 2-tensor, since dim P = dim M. If G is not discrete, we
have to eliminate the degeneration induced by the vectical distribution, so we can only pull it back to the horizontal
distribution.

“That is, A\ H* is the space of differential forms on P that only can eat vectors of H C TP.
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Definition 1.6.5. If P — M is a principal G-bundle with a connection A on it, A is said to be a

Yang-Mills connection on P, or a solution of the Yang-Mills equations on principal bundles if

Remark 1.6.6. Using the translation between principal and vector G-bundles, we have that a connection
on a vector bundle (resp. principal bundle) is a Yang-Mills connection if and only if its correspondend

is a Yang-Mills connection in the frame bundle (resp. associated bundle).

Moreover, the Yang-Mills connections are gauge invariant, as shown in [42].

Proposition 1.6.7. The Yang-Mills equations are gauge invariant, that is, every connection in the

orbit of a Yang-Mills connection under the action of the gauge group is a Yang-Mills connection.

Example 1.6.8. From a mathematical point of view, a G-gauge theory for G a Lie group is the study
of Yang-Mills connections in a principal G-bundle (or, equivalently, a vector G-bundle). The first

example of a gauge theory is electromagnetism, which can be stated as a U(1)-gauge theory.'®

Indeed, let us take M = R* with the Minkowski metric of signature (1,3), called it R'3, and let us
consider the trivial principal bundle P = U(1) x RY3. Given a connection A on P, since U(1) = C*
is an abelian Lie group, by remark 1.4.16, using the curvature of A we can define a global form
Faq € Q2(RY3 u(1)) =2 Q?(RY3), since u(1) = R. Hence, together with the second Bianchi, A is a

Yang-Mills connection if and only if

’dAFAZO dA*FAZO

which are, exactly, the Maxwell equations in the differential form framework. Furthermore, it can be
shown that, since R'3 is contractible, H*¥(R'3) = 0 for k > 0, every 2-form satisfying the previous
equations is the curvature of a connection A on P. Therefore, looking for solutions of the Maxwell
equations is equivalent to looking for solutions of the Yang-Mills equations on P = U(1) x R3, so

electromagnetism is a U(1)-gauge theory.

1.6.1 Self-dual Connections and Instantons

A very special type of Yang-Mills connections are those that have any kind of self-similarity. These
self-similar solutions are of enormous importance in mathematical-physics in general, due to its special

properties, and the main concern of this work.

Let us restrict to the case of a 4-dimensional riemannian manifold (M,g) (that, in mathematical

physics, play the role of spacetime). In this manifold, the Hodge star operator is an endomorphism of

5Those gauge theory based on an abelian Lie group are called abelian gauge theories, while, in the non abelian case,
are known as non-abelian gauge theories. Therefore, electromagnetism is an abelian gauge theory, but the standard
model of particle physics is a non-abelian gauge theory over U(1) x SU(2) x SU(3).
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the 2-forms, because x : Q?(M) — Q*2(M) = Q%(M). Furthermore, by remark 1.6.2, we have that,
on Q2(M) it satisfies
sk = (—=1)24" D Idga 5y = Tdgz(any

SO *2 = Idg2(py, that is,  is an involution of Q?(M). Therefore, « has eigenvalues +1, with cor-
responding eigenspaces Q2 (M) and Q% (M) for +1 and —1, respectively. Furthermore, given any
w € Q?(M) defining

1
w+::§(w—|—*w) w ::i(w—*w)

we have the decomposition w = wt 4+ w™ for w* € Q% (M) and w™ € Q% (M).

Let us take, now, a G-principal bundle P — M and a connection A on it. For the induced Hodge
star on P, we have x : Q2(P,g) — QiiQ(P,g) = 2(P,g) so % is again an involution of Q7 (P, g) so
analogously, we have eigenspaces (22)4 (P, g) and (Q3)_(P,g) for eigenvalues +1 and —1 and we can

decompose w = wT +w™ for every w € Q2 (P, g) with w™ € (97)+(P,g) and w™ € (27)_(P, g).
In particular, since the curvature of A Fy € Qi(P, g), we can decompose it
Fy=F[+F;
for F{ € (Q2)4(P,g) and F; € (93)_(P,g). Using this dual and anti-dual parts of a connection we

define the concept of instanton.

Definition 1.6.9. Let (M, g) be a riemannian 4-dimensional manifold and let P — M be a principal

G-bundle. A connection A on P is called an instanton or a self-dual connection if F;, = 0 that is,

if

Analogously, it is called an anti-instanton or an anti self~-dual connection if FX = 0, or equiva-
lently
*Fq=—Fy

Remark 1.6.10. Analogous considerations can be done for a vector G-bundle over a 4-dimensional
manifold and a connection on it. A connection on a principal bundle is self-dual (resp. anti self-dual)
if and only if its induced connnection on its associated adjoint vector bundle is self-dual (resp. anti

self-dual), and viceversa.

Corollary 1.6.11. Fvery instanton or anti-instanton is a Yang-Mills connection.

Proof. 1t is enough to prove it in the case of a principal bundle P — M. Let A be any self-dual (resp.

anti-self-dual) connection on P. Then, by the second Bianchi identity (see corolary 1.4.15) we have
da*Fgqg==2daF4 =0

so A is a Yang-Mills connection. |



Chapter 1. Gauge Theory 38

1.6.2 Dimensional Reduction and Higgs Fields

Given a principal bundle P, the study of the Yang-Mills connection on P is a extremelly difficult task,
as shown, for example, in [2]. Therefore, a common strategy to deal with this situations is to simplify
the problem considering some special cases, like self-dual connections or instantons. However, in this
simplification procedure, we can arise to some special solutions of the Yang-Mills equations whose
study leads to extremelly powerful considerations. One of the most important articles that explores

this approach is [35], in which Higgs bundles are introduced and deeply studied.

Specifically, we are going to consider connections over R* that are invariant in two directions. In
this special-kind connections, we will discover that the equations for their self-duality can be rewriten
over R? in a special way that is conformally invariant. This clever trick, very common in theoretical

physics, is usually called dimensional reduction.

Let us consider our base manifold as M = R* and let G be the compact real form of a complex Lie
group. . Let P be a principal G-bundle over R* and Ad(P) be the adjoint bundle of P, that is, the
G-vector bundle associated to the adjoint representation. Finally, let us take a connection A on P

with curvature Fly.

From now on, we will work on a trivializing chart U C R* of P, in which 7z'(U) C P = U x P
and maqp)-1(U) C Ad(P) = U x g. Hence, considering the connection system associated to this

neighbourhood, we can write A € QY(U, g) and F4 € Q?(U, g). Let us write explicitly

4
A:ZAZdSCZ Fy = Z Fijdxi/\d:cj
i=1 1<i<j<4

for some A;, F; : U C R* — g. Hence, since
*xFy = Flada® A dzt — Figda? A da* + Frada?® A da® + Faadat A da® — Fogdat A da® + Fog dat A dz?

we have that A is self-dual (i.e. xF4 = F'4) if and only if

Fiog = F3y
Fis = —Fyy (1.1)
Fiy = Fog

Recall that, by remark 1.3.21, if V is the covariant derivative on Ad(P) associated to A, then we have
that
Fa(X,Y)=VxVy = VyVx —Vixy
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so, in particular, writing V; = V o _, we have that F;; = V;V; — V;V; = [V}, V}], so equation (1.1)
oz
can be rewriten as

V1, Vo] = [V3,V4]
V1, V3] = —[V2,V4] (1.2)
V1, V4] = [V, V3]

Now, let us suppose that A only depends on the coordinates (z1,z2) of R* and is independent of
(3,x4). This is the key simplification from which we can apply the dimensional reduction procedure.

In that case, let us redefine ¢ := A3 and ¢y := Ay, so the equations (1.2) become

V1, Vo] = [¢1, 0]
[Vi,1] = —[V2, )] (1.3)
[Vi,¢2] = [V2,61]

where we have used that, since A; does not depend on x3 we have

0 0
V1, Vsl = Fis = 5743~ 503

0

0
A+ A, As] = == A3+ [A, A3] = [(‘3:51—1—141143

9l } = [V1, ¢1]

and similarly for the other terms.

There is a crafty way to rewrite these equations in a more compact form. Let us consider G¢ the
complexification of G with Lie algebra gc = g®C. In this Lie algebra, we can see as complex-Lie algebra
valued functions ¢1, ¢s : U — gc, so we can define the complex Higgs field ¢ := ¢1 — i : U — gc.
In this terms, if -* : gc — gc is the anti-involution on the complex Lie algebra, using equations (1.3)

we have that

(¢, "] = [p1 —ip2, 1 +ia] = [P1, 1] +i[d1, P2] — i[p2, D1] + @2, P2] = 2i[01, P2 = 2i[V1, Vo] = 2i[

[V1+iVa,¢] = [V1,¢1] + [Va, 2] + i ([V2, 1] = [V1,¢2]) =0

Therefore, equations (1.3) are equivalent to

{ Fia = 3i[¢, ¢*] (1.4)
[

Vi+iVa, ¢] =0

Finally, we can rewrite this equations in an even more invariant form. Observe that, since A only

depends on the coordinates (x1,23), we can define a connection on R? by

A= Ay dz' + Ay da?
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Now, let us introduce the usual complex estructure on R? in the way that the holomorphic coordinate
is 2z = x1 + iwy. We define the Higgs field ® € Q"0(R?, g¢) by

1
o = §¢d2§

so, using the natural extension of the anti-involution of the complex Lie algebra to 2-forms, we have

o* = %(ﬁ* dz. Thus, equations (1.4) can be rewriten in a form known as the self-duality equations

{FA+ (@, %] =0 w5

0;2=0

where 9 ; : QP4(R?, g¢) — QP97 (R?, g¢) is the Dolbeault covariant exterior derivative of A on Ad(P),

seen as a trivial complex vector bundle on R? (see section 1.3.1.1).

Since this self-duality equations are conformally invariant, they can be generalized to a general Rie-

mann surface,

Definition 1.6.12. Let M be a compact Riemann surface, let G be the compact real form of a
complex Lie group and let F — M be a C'*°-complex vector bundle with structure group G. Given a
connection A on E and ® € Q'0(M, gg), we will say that (E, A, ®) is a Higgs bundle if and only if
the self-duality equations

Fq+[®,9*]=0
049 =0

hold. In that case, ® is called the Higgs field.

Example 1.6.13. Given a complex vector bundle £ on a compact Riemann surface M, taking ® = 0,
we have that (F, A,0) is a Higgs bundle if and only if A is a flat connection. Therefore, flat bundles

are particular cases of Higgs bundles.

Remark 1.6.14. Let E — M be a C*°-complex vector bundle on a compact Riemann surface M,
with canonical bundle Ky = Q1%(M), and let A be a connection on E. A automatically induces a
connection on gg, also denoted by A, and we consider 04, the Dolbeault covariant exterior derivative

associated to A on gg.

Observe that, since M is a surface, QV3(E) = I'(E) ® Q%2(M) = 0, so, automatically, 5124 = 0.
Therefore, A satifies the integrability condition required by theorem 1.3.10, so there exists an unique
complex structure on E such that £ — M is an holomorphic vector bundle and O = 04. Analogously,
there exists an unique complex structure on gg such that gz — M is an holomorphic vector bundle

and 59E =04 on 9E-

In that case, if (E, A, ®) is a Higgs bundle, then 94, ® = d4® = 0, so, by the digresion of remark
1.3.9, the last equation of (1.6) is equivalent to ® € QV9(M,gg) = I' (gg ® Kjs) been holomorphic

with respect to the natural complex structure on gg ® K.
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Therefore, an equivalent definition of a Higgs bundle on a compact Riemann surface M is a triple
(E, A, ®) with E an holomorphic vector bundle, A a connection on E compatible with the holomorphic
structure and ® € H(gg ® Kjy) (i.e. ® is holomorphic) such that

Fa+[®,®=0



Chapter 2

Non-abelian Hodge Theory

2.1 Moduli Spaces

The concept of moduli space dates back to the XVIII century, when Riemann tried to clasify all posible
complex structures on a given surface of a given genus. In general, moduli spaces arise in the context
of clasification problems, in whith there are a large space of non-isomorphic possibilities without any

simple structure.

Moduli spaces try to solve this problem, introducing a geometric space M which parametrices all the
posibilities of the clasification problem, and whose topology is strongly linked with some notion of
closeness in the clasification problem. It should be noted that the construction of this spaces is a very

dificult task, that usually requires a very deep insight in the problem itself.

Along this section, we will work over a algebraically closed field k (for our purposes, it will be £ = C), in
the way that all the considered varieties will be varieties over k. Let us suppose that we are studying
a colection of objects, A. Moreover, in A we have defined an equivalent relation ~ so we want to
understand the clasification problem of A under ~, that is, we want to understand the quotient set

Af ~.

Remark 2.1.1. In general, we should take A to be a proper class, because A will be large enough to
not be a set in a strict sense. However, this will no cause any logical problem, because, usually, our

quotient A/ ~ (the main focus of attention) will be a set.

In order to have a better insight on the clasification problem, we can introduce some sort of closeness
notion in A/ ~. Hence, given a variety S, suppose that we have defined a notion of a family
parametrized by S. Setwise, a family parametrized by S is a subset of A, but the main point is
that we want that the geometric properties of S translates to the families parametrized by S. Given a
variety S, let us denote the set (or class) of families parametrized by S by Fg, so Fg C P(A). In order

to have a well-possed moduli problem, we want that our families satisfy the following properties.

42
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e For each variety S, there is an equivalent relation ~g on Fg.

e For any single point variety x, a family parametrized by * is single-element set with an element
of A. In this sense, we can consider F, C A and, with this identification, ~, must be equal to ~
in F,.

e For every morphism of varieties ¢ : S — S” we have a map ¢* : Fs» — Fg such that

— Ifidg : S — S is the identity, then id§ : Fg — Fg is the identity.
— Given ¢1 : S — 5" and ¢2 : 8" — S”, then (¢2 0 ¢1)* = ¢ 0 ¢5.

— ¢* preserves the equivalent relation ~ in the sense that, given X, X’ € Fg/, if X ~g X'
then ¢*X ~g ¢o*X'.

Remark 2.1.2. Given a variety S and a family X € Fg, let us denote, for every s € S, X, :=i:X €
Fy = A, where i : {s} — S is the inclusion map. Using this construction, for any X € Fg we can
build a map ¢g : S — X C A given by ¢g(s) = X, which justifies the name family parametrized by
S.

Remark 2.1.3. If X and X' are two families parametrized by a variety S, since i} : Fg — Fyq = A
preserves the equivalent relation, we have that if X, X’ € Fg are X ~g X', then X ~ X/ for all s € S.
However, the reciprocal is not true and we can have that, for all s € S, X; ~ X, but X g X'.

Remark 2.1.4. Without further modifications, the same ideas can be applied to the more general case
of schemes instead of varieties. However, in the present work, we will not need this generalization, so

we will focus on this more restrictive case.

Example 2.1.5 (Hypersurfaces in P™). Suppose that we want to understand the clasification problem
of hypersurfaces on a given P”. Given a variety S a family X € Fg is a algebraic set X C 5§ x P
such that, for every s € S, X5 := X N{s} x P" is a hypersurface of P". The equivalent restriction on
a family could be, for example, up to isomorphism as varieties or up to action of PGL(n + 1). Given
¢ : 8" — S the restriction ¢* : Fg — Fg is given by ¢*(X) = ¢~ 1(X) where ¢ : &' x P* — § x P" is

the natural extension of ¢ which is the identity on P™.

The concept of family is necessarily very vague, cause it should be applicated to a large range of
problems. Of course, it strongly depends on the clasification problem studied and determines all the

constructions. Let us see some examples.

In this context, if we have defined, for every variety S, a notion of family parametrized by S, FJ,
we can define a contravariant functor F : Var — Set given, on objects, by F(S) = Fs/ ~g and, on
morphisms ¢ : S" — S by F(¢) = ¢* : F(S) — F(S’). This functor is call the family functor and
captures all the information about the moduli problem, in the way that all the problem can be stated

in terms of F.

Definition 2.1.6. A family functor is a contravariant functor F : Var — Set from the category of

varieties to the category of sets.



Chapter 2. Non-abelian Hodge Theory 44

Remark 2.1.7. Once given a family function, the notion of family is only philosophycal and in not
need for the mathematical formulation of the problem. In fact, the moduli problem can be completely
stated without any reference to families, selecting any functor F : Var — Set. However, only when
the family function F arises via a choosing of families, the problem is well-possed, in the sense that

the moduli problem solves a real clasification problem.

Hence, the moduli problem is the problem of better understanding F. Maybe the most easy way to

understand it is representing it in terms of the homomorphism to a single variety M.

Definition 2.1.8. Let F be a family functor. A fine moduli space of F is a pair (M, ®) where M

is a variety and ® : F — Hom(-, M) is and isomorphism of functors, that is, ® co-represent F via M.

Remark 2.1.9. If (M, ®) is a fine moduli space for F, given a single point variety x, we have that
O(%) : F(x) — Hom(x, M) =

we have a bijection between M and A/ ~, that is, every point of M is a element of the clasification

M is an isomorphism. Hence, recalling that F(x) = F,/ ~= A/ ~,

problem.

Example 2.1.10. Maybe the first example of moduli space is P" as the moduli space of vectorial
lines (i.e. lines through 0) in £". As family functor, we take F : Var — Set that, for every variety
S, define F(S) = Fg as the set of line bundles L — S (i.e. L € Pic(S), the Picard group of S) that
are contained in the trivial bundle S x k™. Of course, given a regular map of varieties f : S — S’ we
define F(f) : F(S') C Pic(S") — F(S) C Pic(S) as the restriction of the pullback-of-vector-bundles
mapping f* : Pic(S") — Pic(S).

Now, observe that we can define a natural transformation ® : ¥ — Hom(-,P") given, for any S € Var,
by ®(S) : F(S) C Pic(S) — Hom(S,P"), that, for L € F(S) and s € S sends

where L € P" is the fiber of L over s, seen in the trivial bundle S x k™. Since taking fibers commutes
with pullbacks, ® is a natural transformation, so ® co-represents F via P". In this sense, (P, ®) is a
fine moduli space for the family functor F, that is, it is a fine moduli space for the space of vectorial

lines in k™.

Example 2.1.11. Every variety X is a fine moduli space for some moduli problem. Indeed, let us fix
a variety X and let us define the family functor F : Var — Set by F = Hom(-, X). Trivially, there
exists a natural transformation id : F — Hom(-, X) so (X,id) is a fine moduli space for the moduli
problem described by F.

From this construction, we observe that, in general, not every fine moduli space is smooth, partially
solving a question addressed to us by Prof. M. Logares. Thus, we should restrict our attention to
geometric hypothesis, for example, restricting to family functors that arise as classes of isomorphism

of families parametrized by a variety, as described above.
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An equivalent way of determining a fine moduli space is via a special family.

Definition 2.1.12. Let F be a family functor. A fine moduli space of F is a pair (M, U) where
M is a variety and U € F(M), known as the universal family, such that, for every variety S and

every equivalent class of family X parametrized by S (i.e. X € F(S)) there exists an unique regular
morphism ¢x : S — M such that X = F(¢x)(U).

Proposition 2.1.13. Definitions 2.1.8 and 2.1.12 are equivalent.

Proof. If U is an universal family over M for F, we define the natural transformation ¢ : F —
Hom(-,M) by ®(S)(X) = ¢x for any variety S and X € F(S). By uniqueness of ¢x, it is well

defined and, by existence, it is an isomorphism.

Reciprocally, let us suppose that ® : F — Hom(-, M) co-represents F. Then let us take U :=
D(M)~L(idpg) € F(M) and, for every variety S and every X € F(S), let us define ¢x : S — M by
px = P(9)(X). It is enough to prove that F(¢x)(U) = X. To this end, recall that, since ® is a

natural transformation, the following diagram commutes

FM) —2 Hom(M, M)
f((bx)l lHom(-,M)M)x)
F(S) 5 Hom(S, M)

so we have that

Fox)(U) = F(ox) (PM) ™! (idp)) = F(px) 0 ®(M) ™! (idag) = @(S) ™" (Hom(-, M)(¢x)(id )
= ®(5) 7" (ida 0 ox) = D(S) " (dx) = ®(5) 7 (2(9) (X)) = X

as we wanted to prove. |

In most of cases, a fine moduli space cannot be achived cause the topology of M does not capture
completely the complexity of F. However, we can use a weaker version of moduli space that is enought

in most of the cases.

Definition 2.1.14. Let F be a family functor. A coarse moduli space of F is a pair (M, ®) where

M is a variety and ® : F — Hom(-, M) is a natural transformation such that:

e For every single point variety x € Obj(Var), ®(x) : F(x) = Hom(x, M) = M is a bijection.

e For every manifold N and every natural transformation ¥ : F — Hom(-, N) there exists a

unique natural transformation ¢ : Hom(-, M) — Hom(-, N) such that ¥ = ¢ o @, that is, the
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following diagram commutes

Proposition 2.1.15. Evary fine moduli space is a coarse moduli space.

Proof. 1t is a simple check. Let (M, ®) be a fine moduli space for the family functor F. Since ® is a
natural isomorphism, ®(x) is a bijection and, given ¥ : F — Hom(-, N) for some variety N, we can
define ¢ : Hom(-, M) — Hom(:,N) by ¢ = ¥ o &L, [

Moreover, playing with the definitions, we obtain that coarse moduli spaces are unique up to isomor-

phism, as shown in [59].

Proposition 2.1.16. Fine and coarse moduli space, if exist, are unique up to isomorphism of varieties.

2.1.1 Moduli Space of Stable Vector Bundles

Let us fix an algebraic variety X and let us study the space of algebraic vector bundles on X, that is,

we want to study the set
Ayp(X)={E — X algebraic vector bundle}

Remark 2.1.17. By GAGA theory (see appendix A.4), if X is a smooth projective variety (for example,
if X is a Riemann surface) then there exists a correspondece between algebraic vector bundles on X
and holomorphic vector bundles on X, with respect to the inherit complex structure. Hence, for X

smooth projective, we have a natural bijection
Ayp(X) = {E — X holomorphic vector bundle}

In that way, we will simply say vector bundle when refering to an algebraic vector bundle when we see
X as an algebraic variety, and to holomorphic vector bundles when X is a smooth projective variety,

seen as compact Kahler manifold.

On this set Ay p, we define the equivalence relation ~ by declaring that two algebraic vector bundles
E I are equivalent, written £ ~ F'is and only if E and F' are isomorphic as algebraic vector bundles

(or, equivalently, as holomorphic vector bundles in the case X smooth projective).

In this set Ay p, we define the equivalence relation ~ be declaring that, for any two algebraic vector
bundles E, F, E ~ F is and only if F and F are isomorphic as algebraic vector bundles (or, equivalently,

as holomorphic vector bundles in the case X smooth projective).
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In order to consider the corresponding moduli problem, let us define families of vector bundles on
X. Let S be an algebraic variety (resp. smooth projective variety), a family of vector bundles on X
parametrized by S is a vector bundle £ — X x S. Therefore, the space of families parametrized by
S, Fs(X) is

Fg(X) ={E — X x Svector bundle}

Moreover, given a morphism ¢ : S — S’ we define ¢* : Fg/(X) — Fg(X) by ¢*(E — X x S) = ¢*E,
the pullback of the vector bundle F by the morphism ¢. Observe that, in particular, for a single point

variety * we have
Fy = {E — X x x vector bundle} = {F — X vector bundle} = Ay p(X)

and, the induced map i; : Fs(X) — F,(X), for s € S and is : {s} = S the inclusion map, is just
the restriction i5(E — X x §) = Elx sy — X X {s}.

Therefore, in order to completely define a moduli problem, it is enough to define a equivalence relation
=g on Fg(X) for any variety S. Of course, the first idea is to use the obvious extension of ~ and
declare that £ — X x S and F' — X x S are equivalent via =g if and only if they are isomorphic as
vector bundles on X x S. In that case, the family functor is Fx : Var — Set, Fx(S) = Fs(X)/ =g

However, with this definition, there not exists a fine moduli space for the moduli problem. Indeed,
if Myp exists, it must be Myp = Ayp(X)/ ~. In that case, the only posibility for & : Fx —
Hom(-, My p) is to define, for any variety S, ®(S) : Fs(X)/ =g— Hom(S, Myp) given by

() ([El=s)(s) = [Elxxqsyl~

where £/ — X x S is a vector bundle, F|x (s is the restriction F|x,(q — X x {s} = X and [F]~

S

and [F]. are the equivalence classes of F and F' under =g and ~, respectively.

However, this map @ is not an isomorphism. Indeed, let S be a variety with a non-trivial line bundle
L — 5. Let m: X xS — S be the projection and let us consider the pullback line bundle on X x S,
7L — X x §. For a general family F — X x S parametriced by S, we have that F and F ® 7*L are

not isomorphic. However, for any s € S, (7*L); is a trivial line bundle, so we have
Elxxisy 2 (E@7L) | xx(s)
and, thus
() ([El=s)(s) = [Elxxsil~ = [E @7 Llxxqs}]~ = P()([E @ 7" L] )(s)

for [Fl~y # [E®@7*L]~,. Therefore, () is not injective so, in particular, ® it is not an isomorphism

of functors.
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The solution to this pathological problem, as always in the theory of moduli spaces, is to restrict our
attention to a more specific class of vector bundles. First of all, recall that, given an algebraic vector

bundle on X, ' — X, there exists two important invariants

e The rank or E, rk(E), that is the dimension of the fiber £, for any z € X.

e The degree of E, deg(F). In the case of line bundles L, the divisors theory give us a well
defined integer deg(L) € Z. Indeed, if L — X is a line bundle, it is associated to a Weil divisor
Dy, € Div(X), so we define deg(L) := deg(Dyr). For the case of vector bundles of higher rank
E, we define deg(E) := deg(det(E)), the degree of the determinant bundle, det(E) = \" E, for

n = dim X, which is a line bundle.

Recall that, for a Riemann surface X, there exists a more sofisticated definition of deg(L) for
a line bundle L. Recall that the first Chern class, ¢, is the map in cohomology ¢; : Pic(X) =
HY(X,0%) — H*(X,Z) & Z, with Pic(X) the Picard group of X, that is, the group of line
bundles on X. Thus, it can be proved that (see [29]), seen ¢1(L) € Z, we have ¢1(L) = deg(L).

With this notions, we can define a fundamental property of vector bundles.

Definition 2.1.18. Let £ — X be an algebraic vector bundle over an algebraic variety X. We say
that F is stable if, for any subbundle FF C E — X we have

deg(F) _ deg(E)
rk(F) rk(E)

and it is called semi-stable if, for any subbundle F' C F — X we have

deg(F) _ deg(E)
rk(F) — rk(E)

Remark 2.1.19. Due to this definition, usually, given an algebraic vector bundle £ — X, the slope of
E, u(E) is defined as

_ deg(E)

- rk(E)

W(E)

With this definitions, we can restrict our moduli problem. Instead of considering the space of vector
bundles over a fixed Riemann surface X, we will focus on the space of stable vector bundles with fixed

rank n and degree d, A}, 5(X,n,d), that is
Ay p(X,n,d) = {E — X stable vector bundle with rk(E) = n and deg(F) = d}

Of course, since the rank and degree is preserved under pullbacks of bundles, we can analogously define
the familis as restriction of the previous, that is F§(X,n,d) is the set of stable bundles £ — X x S
such that rk(E) = n and deg(F) = d and the pullback of families is simply the vector bundle pullback.
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However, the equivalence relation on Fg(X,n,d), =g, should be slightly changed. As we shown above,
using isomorphism of vector bundles as the relation =g is not useful, since we cannot expect to have a
fine moduli space. However, that counterexample give us the correct form of =g that should be used.
Indeed, given E, F' € Fg(X,n,d), we define F =g F' if there exists a line bundle L — X of degree 0
such that ' and F ® n*L are isomorphic as vector bundles, i.e. E ~ F ® n*L. This idea is based
on the fact (see [59]) that, in the context of stable bundles, such a line bundle exists if and only if

FE|xx{s} 1s isomorphic to F|x . for any s € S.

In that case, we have a satisfactory solution of the problem, as shown in [58] and [59], or in [19] in the

context of gauge theories.

Theorem 2.1.20 (Narashimhan-Seshadri). Let us fiz a Riemann surface X, n > 1 and d € Z. The
moduli space of stable vector bundles of rank n and degree d, M*(X,n,d), exists and is a coarse moduli
space. Furthermore, in the case of n and d co-primes, M?*(X,n,d) is smooth and it is a fine moduli

space.

Remark 2.1.21. For n and d not co-primes, the moduli space M?*(X,n,d) is not fine, as shown in [62].

2.1.2 Moduli Space of Higgs Bundles

Once studied the space of algebraic vector bundles on a fixed algebraic variety, we can enrich the

moduli problem using Higgs fields.

Let us suppose that X is smooth complex variety, let G be a complex Lie group and let H C G a

maximal compact subgroup of G. From an algebraic point of view, given a G-holomorphic vector
bundle £ — X, a G-Higgs field is a ® € H°(X,gr ® Kx) such that

PANDP=0

In that case, (E, ®) is called a Higgs bundle.

Remark 2.1.22. Over a compact Riemann surface, the condition ® A ® = 0 always holds, so a G-Higgs
field is just an element ® € HY(X, g ® Kx).

Indeed, we can translate the stability condition from the case of holomorphic vector bundles to the

more general setting of Higgs bundles.

Definition 2.1.23. Let X be a smooth algebraic variety, G be a complex Lie group and let (E, ®) be
a G-Higgs bundle on X. We say that E is stable if, for any subbundle /' C F — X that is ®-invariant
(i.e. ®(F) C F® Kx) we have

_ deg(F) _ deg(E)
W) =3 < k(B

= u(E)
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and it is called semi-stable if, for any subbundle F' C E — X ®-invariant we have

_ deg(F) _ deg(E)

HE) = k) = k()

= w(E)
Finally, a G-Higgs bundles is called polystable if there exists a direct sum decomposition

(E, @) = P, &)
with each pu(E;) = pu(FE) and (E;, ®;) are stables.

Remark 2.1.24. Let us fix a G-holomorphic vector bundle £ — M with M a compact Riemann surface
and ® € H(gg ® Kj). In order to recover a Higgs bundle, in the gauge-theoretical sense of section

1.6.2, we have to find a connection A on E, compatible with the holomorphic structure, such that
Fo+[®,2"]=0

However, it is a general fact that we can always find such a A. The following theorem was first proven
by Hitchin in [35] for the case G = SO(3), and later by [67].

Theorem 2.1.25. Let X be a Riemann surface of genus g > 2 and let (E,®) be a polystable G-Higgs
bundle. Let us take any G-connection Ag compatible with the holomorphic structure. Then, there
exists an automorphism f of E, unique modulo H-gauge transformation, such that (A, ®") = f- (A, ®)
satisfies the Hitchin self-duality equations

Fa+[®, 0% =0

Therefore, using this correspondece, we have that polystable G-Higgs bundles corresponds with our

gauge-theoretical notion of Higgs bundles, as explained in section 1.6.2.

In this setting, we can form the moduli problem of G-Higgs bundles over X. In this case, given a
smooth complex variety S, a family of G-Higgs bundles is a G-Higgs bundle (E,®) — X x S such
that (E|x (s} Plxxgsy) = X x {s} = X is a G-Higgs bundle on X for all s € S.

Analogously to the case of vector bundles, we define that two families of G-Higgs bundles parametrized
by an smooth algebraic variety S, (E,®) — X x S and (F,¥) — X x S, are equivalent under =g
if there exists a line bundle . — S and an isomorphism f : E = F ® n*L such that the following

diagram commutes

E L FE® Kx
fl lf@idxx
Forl—Y-FermL oKy

In this setting of moduli problem, in [35] is proven the following.
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Theorem 2.1.26. Let X be a compact Riemann surface of genus g > 2 and let L — X be a fized line
bundle of degree d. The moduli space of polystable SL(2,C)-Higgs bundles (E,®) — X of rank 2 such
that det E = L exists and is a smooth variety of dimension 6(g — 1). Moreover, the moduli space does
not depend on L with fized degree, so it can be denoted by M%OZ(X, SL(2,C)).

And, in the general case, we have the theorem proven in [70].

Theorem 2.1.27. Let G C GL(n,C) be a complex Lie group, let X be a compact Riemann surface
and let us fix d € Z coprimer with n. The moduli space of polystable G-Higgs bundles (E,®) — X of
degree d exists and it is a smooth manifold. Moreover, the moduli space does not depend on L with
fixed degree, so it can be denoted by M%ol(X, G).

Furthermore, in the case G = GL(n,C), we have that M%,_,(X,GL(n,C)) has dimension n?(2g—2)+2.

Moreover, defining the map

Apol : ME(X,GL(n,C)) — M, (X,GL(1,C))
(E,®) — (det E, tr ®)

we have that M%,,(X,SL(n,C)) = ApL(L,0) for any line bundle L — X. The dimension of

M4, (X, SL(n,C)) is 2(n? — 1)(g — 1).

2.1.2.1 Parabolic Higgs bundles

Finally, we need to understand a more general setting, in which we endow the holomorphic vector
bundle with an extra structure, known as the parabollic structure. Good references for this setting

are [61] and [26].

Definition 2.1.28. Let V be a finite dimensional complex vector bundle. A parabolic structure
on V is a finite decreasing flag
V=V2k2..0V={0}

together with a set of real numbers, called the parabolic weights
0<o<ag<...< <1
We define the multiplicity of the parabolic structure on the k-th step by
my, = dim V, — dim Vg4

Definition 2.1.29. Let X be a compact Riemann surface and let us take s distinct points py,...,ps €
X, called the marked points, the parabolic points or the punctures. This points are grouped
in a effective Weil divisor D = p; + p2 + ... + ps. A parabolic vector bundle respect to D is an
holomorphic vector bundle £ — X with, for any p € D, a parabolic structure on E,. If ({E, 1}, {op i })
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is the parabolic structure on E,,, we define the parabolic degree of the bundle £ — X, pardeg(E)
by
lp
pardeg(E) := deg(F) + Z Z Mp kO
peD k=1
Definition 2.1.30. Let X be a compact Riemann surface and let us take s distinct points py,...,ps €
X, called the marked points, the parabolic points or the punctures. This points are grouped
in a effective Weil divisor D = p1 + ps + ... + ps. A parabolic vector bundle respect to D is an
holomorphic vector bundle E — X with, for any p € D, a parabolic structure on E,. If ({E, 1}, {opi})
is the parabolic structure on E,, we define the parabolic degree of the bundle £ — X, pardeg(E)
by

lp
pardeg(E) := deg(E) + > Y mypapi
peD k=1

In this setting, the condition of Higgs bundles translates as follows.

Definition 2.1.31. Let G be a complex Lie group, let X be a compact Riemann surface and let us
an effective Weil divisor D = p; + pa + ... + ps. Let us denoted Kx (D) the twisted line bundle via
the divisor D. Given a parabolic G-vector bundle E — X, a morphism ® € H°(X,gr ® Kx (D)) is
called a Higgs field if ® is parabolic, that is, if it preserves the parabolic structure on the parabolic
points, that is

Oy (Epr) € Epr @ Kx (D),

for all p € D. Analogously, ® is called strongly parabolic if
Oy (Epk) € Eppi1 @ Kx(D)y
In that case, (E, ®) is called a parabolic G-Higgs bundle.

Finally, the generalized notion of stability is the following.

Definition 2.1.32. Let G be a complex Lie group, let X be a compact Riemann surface and let us
take an effective Weil divisor D = p1+pa+...+ps. Given a parabolic G-Higgs bundle (FE,®) — X, is is
called stable if, for any parabolic subbundle F' C E — X that is ®-invariant (i.e. ®(F) C FR Kx (D))

we have
_ pardeg(F)  pardeg(E)

m(F) = =10 k(E)

= up(E)
and it is called semi-stable if, for any parabolic subbundle F' C E — X ®-invariant we have

() = PTTED < POE) )

Finally, a parabolic G-Higgs bundle is called polystable if there exists a direct sum decomposition

(E7 (I)) = @(Eu (I)i)
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on parabolic G-Higgs bundles, such that p,(E;) = pp(E) and (E;, ®;) are stables.

In this case, we can also state a moduli problem for parabolic Higgs bundles, obtaining the following

result, proven in [77].

Theorem 2.1.33. Let G € GL(n,C) be a complex Lie group, let X be a compact Riemann surface, let
us take an effective Weil divisor D = p1+pa+...+ps, a parabolic systiem of weights o on the parabolic
points and let us fix d € Z. The moduli space of polystable parabolic G-Higgs bundles (E,®) — X of
degree d and parabolic weights «, M%‘;‘I(X, G) exists and it is normal, quasi-projective variety. For
G = GL(n,C), the dimension of M%z‘l(X, GL(n,C)) is (29 — 2+ s)n? +1

Remark 2.1.34. For the case of degree d = 0 (i.e. topologically trivial bundles) we will simply use
Mpo(X,G) to denote the moduli space of polystable G-Higgs bundles (E, ®) — X of degree 0 and,
in the parabolic case M, ,(X,G) denote the moduli space of polystable parabolic G-Higgs bundles
(E,®) — X of degree 0 and parabolic weights a.

2.2 Character Varieties

2.2.1 Representations of Algebraic Groups

Let G be a complex algebraic group and let I' be a finitely generated group. A group homomorphism
p: ' — G is called a representation of I' into G. In that case, p is called irreducible if p(T)
is not contained in any proper parabolic subgroup of G and p is called completely reducible or
semi-simple if for every parabolic subgroup P < G such that p(I') C P then p(I') C L C P for L the
Levi subgroup of P.

Let us explain briefly the notions appearing in the reducibility conditions. For general references, see
[9] and [36]. First of all, recall that a group G is called solvable if there exists a decomposition series

of subgroups, each one normal in the next
1=Gy<xGi1<Ge«...<G, =G

such that every factor group Gj/Ggi1 is abelian. Remember that, in Galois theory, this concept

captures the idea of solvability by radicals by means of the Galois group.

Then, given an algebraic group G, a subgroup B < G is called a Borel subgroup if B is a maximal
Zariski closed solvable connected algebraic subgroup of G. For example, in the case G = GL(n,C),
a Borel subgroup is the subgroup of invertible upper triangular matrices (and it can be proved that

every other Borel subgroup is conjugated to it).

With this notion, a parabolic subgroup of G is a algebraic subgroup P < G such that there exists
a Borel subgroup B < G with B < P < G. It can be proved that, for G affine, a closed algebraic
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subgroup P < @ is parabolic if and only if the quotient G/P is a projective variety. In this sense,
Borel subgroups are minimal parabolic subgroups. Finally, it can be proved that, again for G affine,
every parabolic subgroup P < G admits a semi-direct decomposition, called a Levi decomposition of
P, as P = R x L, where R is the unipotent radical of P and L is a closed reductive! group, which is

called the Levi subgroup of P.

In the case of G = GL(V) for some finite dimensional complex vector space V' (the important one for
our purposes) it can be proved that, since the Borel subgroup of upper triangular invertible matrices
is the unique Borel subgroup up to conjugation, then the parabolic subgroups of GL(V) are the
subgroups that preserve flags. More preciselly, given a closed algebraic subgroup P < GL(V), P is

parabolic if there exists a flag
0=VCcWnchc..CV.=V

such that all the elements of P are exactly the automorphism of V' that preserve this fixed flag. Observe
that, in particular, the Borel subgroup of GL(V') of upper triangular invertible matrices corresponds
to the parabolic subgroup of automorphism that preserves a full flag of 1-dimensional steps, which is

minimal among them.

Analogously, from this description we have that the maximal proper parabolic subgroups M < GL(V)
are exactly the subgroups of automorphism for which there exists a proper subspace 0 C W C V
preserved by M (i.e. f(W) C W for all f € M). Hence, a subgroup H < GL(V') is not contained in

any parabolic subgroup of GL(V') is H has no proper invariant subspaces.

In particular, a representation p : I' — GL(V), or in general p : I' — G with G a linear group, is
irreducible if p(I") has no proper invariant subspaces. Therefore, for linear representations p : I' —
G C GL(V), the concept of irreducibility correspond to the usual one used in representation theory,
that is V' is a simple I'-module via p. In the same spirit, it can be proved that p: T' - G C GL(V) is
semi-simple if and only if there exists a decomposition V' = €, V; with V; invariant under p(I") such

that ply, : I' = GL(V;) is irreducible. In this case, V itself is called a semi-simple I'-module.

2.2.2 Representation Varieties

Let T be a discrete finitely generated group and let G be a complex algebraic group. Let Hom(T', G)
be the group of representations of I' into G. Let us choose a finite set of generators of I', S =
{71,...,7n} so I' = (S). Recall that any representation is uniquely determined by the image of the
set of generators S. Hence, we can give to Hom(I', G) the structure of an algebraic variety, known as

the representation variety, via the injection

vs Hom(I',G) — GN
P — (p(1)s -5 p(YN))

1This notion will be explained later.
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Indeed, if S hasrelations {Ro},cp € Niz1, 27, ..., 2N, 2], (e if T = Free(S)/(Ra(v1s - -, YN))aen)

then, we have that

ws(Hom(T',G)) = {(glj...,gN) eaV | Ra(g1,---,9n) =1, Va e A}

which is an algebraic subvariety of GV and, thus, an algebraic variety itself. Moreover, observe that,
by the Hilbert’s basis theorem, G is a néetherian space. Hence, the, possible infinity, set of equations

Ro(g1,...,9n) =1 for @ € A reduces to

Ral(gla"‘7gN) = 1
ps(Hom(I,@)) = 4 (g1,-..,9n8) € GY :

R, (915--,9n) = 1
for some ayq,...,q, € A.

Example 2.2.1. If I' = Free(yy,...,yn) is the free group in N generators, then every N-tuple
(91,-.-,9n) determines a representation via p(vy;) = gx for k = 1,..., N, since there is no relations

between the ;. In that case, we have that Hom(T',G) = G¥, inheriting its algebraic structure.

Example 2.2.2. Let us take the group I' = (a1, ..., a4, 51,...,0,) for some g > 1 with an unique
relation ;
R(al,"'vagvﬁla-“aﬁg) = H[akaﬁk] =1

k=1

then, by the previous digression, we have that

g
Hom(T,G) = {(Al,...,Ag,Bl,...,Bg) e 6| [[14w Bl = 1}
k=1

This example will be of crucial importance in the following sections, since we are going to study

character varieties with I' of this form.

Proposition 2.2.3. The algebraic structure given to Hom(I',G) does not depend on the choosen set

of generators.

Proof. Let 8" = {~},...,7),} be another sets of generators of I, we will prove that the map pg nggl :
ps(Hom(I',G)) € GN — ¢s(Hom(T,G)) C GM is a biregular mapping, so both varieties will be

isomorphic as algebraic varieties. By symmetry, it is enough to chech that ¢g/ o gogl is regular.

Since S is a set of generators, for all k = 1,..., M, there exists monic monomials py € Z[z1,...,TN]

such that
Y = Pk(V1, - YN)
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Let f: U — C be a regular function on an open set (in the Zariski topology) U € GM™. Then, we have

that, for all representation p: I' - G

Fol(psiopsh) (ws(p) = fles(p) = f (p(W)), = f (p(Pr(70)i))k
= f(oe(p(vi)i)), = f(p1(@s(p)), -, P (ps(p)))

which is a regular function, since the product in G is a regular function. Therefore, f o (gpsf o gpgl) is

a regular function for every regular function f, so g/ o gpgl is regular, as we wanted to prove. |

2.2.3 The Conjugation Action

A very important action that will have to consider in our space of representations is the following.

Definition 2.2.4. Let I' be a discrete finitely generated group, let G be a complex algebraic group
and let Hom(T', G) be space of representations of I into G. We have that G acts on the right by
conjugation on Hom(I', G) by

g-p(v)=gp(v)g™"

forge G,pe Hom(I',G) and v € T.

Remark 2.2.5. Writing down coordinates, it can be seen that the conjugation action of G on Hom(T', G)

is an algebraic action, that is, the induced map G x Hom(I',G) — Hom(I', G) is a regular map.

Remark 2.2.6. For linear groups, the conjugation has a very important geometric meaning. Suppose
that G is a linear group, so the representations are group homomorphisms p : I' — GL(V) for some
complex finite dimensional vector space V. Then V becomes a I-module via p by v - v := p(v)(v).
Hence, given two representations of I', p; : I' - GL(V) and po : I' = GL(W), amap f: V — W is
called T'-equivariant or intertwining if f(v -1 v) =9 f(v) for v € V, v € T" and the action given

by the respective representations.

In this context, two representations p; : I' = GL(V) and py : I' — GL(V) are called isomorphic if
there exists a I'-equivariant linear isomorphism f : V' — V. In this case, this is equivalent to have, for

alyelandveV

fopi(M®@) = flp1(M©)) = fly1v) =72 f(v) =p2(7)(f(v) = p2(7) o f(v)
so, for all y € T
pa(y) = fop(Moft=fp(y)

seen f € GL(V'). Hence, for linear groups, two representations are isomorphic if and only if they are

conjugated.

Therefore, by the previous remark, if we want to study the space of representations of some finitely

generated group I into an algebraic complex group G (that we can think as linear), we have to kill the
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redundacy induced by isomorphic representations or, equivalently, by conjugations. Hence, our first
candidate would be the quotient
Hom(T',G)/G

However, in general this quotient will not be an algebraic variety nor a complex manifold. Briefly, this
happens because some of the orbits of the action of G are too much closed such that, in the quotient
topology, they are topologically pasted together despite they are different points. More preciselly,
there are two orbits such that the open neighbourhoods of one always contains the other, violating

the T} separation axiom, required in any complex manifold or algebraic variety.

2.2.4 A Brief about Geometric Invariant Theory

The solution to this problem of bad-behaved quotients is studied by a powerful algebraic technique
known as Geometric Invariant Theory (or GIT abbreviated). The idea is to detect this kind of
phenomena and make them collapse. For this, GIT uses invariant functions under the action of G,
since, if two orbits are too close, then the G-invariant functions will not see any difference between

them and, automatically, they identify them.

Example 2.2.7. Let k be any field (for our purposes, the important case is k = C, but this is irrelevant
for this example). Let us take the (affine) variety X = k? and let us define the action of G = k* on X
by A (x,y) = Az, \"ly) for A € k* and (x,y) € X.

FIGURE 2.1: GIT problem for the action of k* on k2.

Observe that, in this case, the orbits are the hyperbolas H. := {zy = ¢} for all ¢ € k*, shown in
blue in figure 2.1, the orbits A, := {(x,0) |z € k*} and A, := {(0,y) |y € k*}, shown in red, and the
point {(0,0)}, shown in green. The orbits H. are Zariski closed sets. However, the axis A, and A,
are not Zariski closed, and, in its Zariski closure is the point (0,0). Therefore, in order to have a
quotient with good properties, we have to identify this three orbits in just one, in a procedure called
the S-equivalence. Therefore, under this identification, the GIT quotient is the orbits H. plus one

more corresponding to the S-equivalence. Hence, the GIT quotient is just a k-line.
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We will focus in the case of affine varieties, the one needed for our purposes. Let X be an affine
algebraic variety with an algebraic action of an algebraic group G. Using the completation functor
7 : Varc — Sche from the category of complex varieties to the category of schemes of finite type over
C (see [30]), we can complete X to an scheme X := 7(X). In the particular case of affine varieties,
this functor can be easily decribed. Indeed, since X is affine, it is X = V/(I) C A for some n > 0
and some ideal I C Clxy,...,x,). Then, taking the coordinate ring A := Clz1,...,z,]|/I (a finitely
generated C-algebra) of regular functions on X, we can identify the scheme X = Spec(A).

Now, let us consider the action of G on A by

(9-f)(z)=flg~" - 2)

for f € A (seen as a regular function on X), g € G and z € X. Let us take the ring of invariants

A9 :={feAlg-f=fVgeG}

Definition 2.2.8. Let X be an complex affine algebraic variety with coordinate ring A and let G be a
complex algebraic group acting algebraically on X. We define the GIT quotient of X by G, denoted
by X / G as the affine scheme

X /) G := Spec(A%)

The digression of when X // G is, in fact, an affine variety is a very deep question. Of course, it can be
reduced to the question of when A is a finitely generated C-algebra. Indeed, if AY would be a finitelly
generated C-algebra, it will be AY = C[zy,...,2,,]/J for some m > 0 and ideal J C Clzy,...,Tm).
Then, the associated affine variety to the scheme Spec(A%) (via 7) would be X J G :=V(J) C A%,

The problem of when A% is a finitely generated C-algebra is, in fact, a version of the well known

Hilbert’s 14th problem. In general, the answer is no, as Nagata shows in [55] and [56].

However, it can be proved (see [59]) that, if G is a complex reductive group, then A% is, in fact, a

finitely generated C-algebra. So, in this case, we can improve our previous definition.

Definition 2.2.9. Let X be a complex affine algebraic variety with coordinate ring A and let G be a
complex reductive algebraic group acting algebraically on X. We define the GIT quotient of X by
G, as the affine variety X / G whose coordinate ring is A.

Remark 2.2.10. Recall that a algebraic group G is reductive if it is a linear algebraic group whose
unipotent radical is trivial. Equivalently, if G is complex as in our case, seen as a complex Lie group,
G is reductive if and only if its Lie algebra g can be decomposed g = a+ b with a abelian (i.e. the Lie
bracket is trivial there) and b semi-simple (i.e. direct sum of simple Lie algebras, Lie algebras with no
proper subalgebras). For example, the classical complex linear groups GL(n,C),SL(n,C), PGL(n,C)
and PSL(n,C) are reductive.
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2.2.4.1 Properties of the GIT quotient

In some sense, the GIT quotient is universal in a categorical framework. In order to make this idea

precise, we have to introduce some categorical machinery.

Recall that a category C is call locally small if for every X,Y € Obj(C), Hom(X,Y) is actually a
set (not a proper class). Given two objects X,Y € Obj(C), a product of X,Y, denoted by X x Y is
an object of C with two morphism m; : X XY — X and w3 : X X Y — Y such that, given morphisms
Z8 X and 2z B Y, there exists an unique morphism f = (f1, f2) : Z — X X Y such that fy =m0 f
and fo =m0 f.

Z- A
~
s
XxYtsXx
f2 \XQi
Y

Using an universal-type argument, it can be proven that, if exists, the product is unique up to isomor-
phism. A category is said to admit products, or simply with products, if any two objects have a

product.

Now, let us take a locally small category C with products and a terminal object * (i.e. * € Obj(C)
and, for every X € Obj(C) there exists a map X — %). An object of C, G, is called a group object
if there exists maps 1 : x—G (from which we can form the map 1: G — * — G), m: G x G — G and

1. G — G such that the following diagrams commute

idxm (id,1) (-—Lid)oA
GxGxGE——GxG G——Gx G G GxG
mxidl \Lm (l,id)l X im (id,-_l)oA\L \ lm

GxG—= G GxG——=@G GxG"—@

where A : G — G x G is the diagonal morphism.

Remark 2.2.11. Recall that the diagonal morphism is the unique morphism defined by the limiting
property of the following diagram
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Analogously, given maps f: X - Y and g: X' =Y/, we can defineamap f xg: X x X' =Y x Y’

Xx X 25X f
e N
™ ~

/ 3 ) ™M
X Y xY' —Y

N

Finally, let us take C a locally small category with products and a terminal object. Let us take

G € Obj(C) a group object of C and X € Obj(C). An action (in the categorical sense) of G in X is a

as the limiting map

morphism p: G x X — X.

Definition 2.2.12. Let C be a locally small category with products and a terminal object. Let us take
G € Obj(C) a group object of C, an object X € Obj(C) and an action p: G x X — X. A categorical
quotient of X by G is a object Y € Obj(C) together with a morphism 7 : X — Y such that:

e 7 is G-invariant: That is, m o p = 7 o w9, where my : G x X — X is the second projection.

e Y is universal: In the sense that, given any G-invariant morphism f : X — Z for some Z €

Obj(C), there exists an unique morphism f : Y — Z such that for = f

Remark 2.2.13. Using the usual universal-type argument, it can be proven that the categorical quo-

tient, if exists, is unique up to isomorphism.

Definition 2.2.14. In the category of algebraic varieties with regular morphisms, a categorical quo-
tient m : X — Y under the algebraic action of an algebraic group G is called a orbit space if for

every y € Y, 7 1(y) is a single orbit of G.

Definition 2.2.15. Let X be a variety and let G be a algebraic group acting algebraically on X. A
good quotient of X by G is a variety Y with a regular morphism 7 : X — Y such that

e 7 is a quotient map, that is, 7 is surjective and every U C Y is open if and only if 7~1(U) C X
is open.

e 7 is affine, that is, if U C Y is an affine open set, then 771 (U) C X is affine.

e 7 is G-invariant.



Chapter 2. Non-abelian Hodge Theory 61

e For every open set U C Y the induced map
™ AU) = A(ntU)¢

is an isomorphism.
o If C' C X is closed and G-invariant, then 7(C') C Y is closed.

o If C1,Cy C X are closed and G-invariant with C; N Cy = ), then 7(Cy) N7 (Cy) = 0.

Maybe the most important consequence of this definition is that, in the affine case, a good quotient is

also a categorical quotient. The proof of this statement can be found in [59].

Theorem 2.2.16. Let X be an affine variety and let m : X — Y be a good quotient of X by a algebraic
group G. Then, Y is a categorical quotient by G in the category of algebraic varieties and reqular maps.

Moreover, for every open set U CY, U is a categorical quotient of 7~1(U) C X by G.

In fact, in a good quotient, some other important consequences follows easily from its properties. First

of all, automatically, we have some improvements of the last property of good quotients.

Proposition 2.2.17. Let 7w : X — Y be a good quotient by a algebraic group G. If x,y € X satisfy
m(z) = w(y) then G- NG -y # 0.

Proof. Let us take Cp := G - z and Cy = G - y the closed G-invariant subsets of X. Then, if C;NCy = (),
then, by the last property of good quotients, 7(C1) N 7w(C3) = 0. But n(x) € n(C1) and 7(y) € 7(C2)
so it must be m(x) # w(y). |

Proposition 2.2.18. Let w : X — Y be a good quotient for an action of an algebraic group G on
X, and let us fix an open set U CY. If C1,Co C w=Y(U) are closed in 7=Y(U) and G-invariant with
CyNCy =10, then n(Cy) N7w(Cy) = 0.

Proof. Let us take C1,Cy C X be the closures of C; and Cy in X. Suppose that there exists x €
7(C1)N7(Cy). Then, Z := 7~ 1(x)NC; C X is a closed G-invariant set of X. Hence, together with Ca,
by the last property of a good quotient, since 7(Z) N7 (Cs) # (), then ZNCqy = 71 (x)NC1NCy # 0.

But this is impossible, because the superset
7T_1(U) ﬂél ﬂéz =CiNCy=10

since Cy and Cy are closed in 7= 1(U). [

Corollary 2.2.19. Let X be an affine variety and let m : X — Y be a good quotient for some algebric
action of some algebraic group G. If U CY is an open set satisfying that 7= (U) C X is G-invariant

with closed orbits on 7= (U), then U is an orbit space and it is homeomorphic to 7~ *(U)/G.
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Proof. First of all, since we known (prop 2.2.16) that in the affine case, any good quotient is categorical,
we have to prove that, if y € U then 7~ !(y) C 7! (U) is exactly a G-orbit. Of course, since  is
G-invariant, 7~ !(y) contains complete orbits of G so it is enought to prove that if x,y € 71 (U) are
not in the same orbit, then m(x) # m(y). To this end, let us take C1 = G -z and Cy = G - y. Then, if
m(x) = m(y), we have that

m(C1) = 7(G - x) = w(x) = 7(y) = (G - y) = 7(Ca)

Hence, in particular, 7(C1) N w(Cs) # 0 so, by the previous proposition 2.2.18, C; = Cs. Therefore,

G -x =G -y sox and y are in the same orbit, as we wanted to show.

Finally, for the homeomorphism U 2 7=1(U)/G, observe that the surjective map 7 : 7= 1(U) — U is
G-invariant, so it descends to a surjective map 7 : 7~ 1(U)/G — U. Moreover, by the properties of
the quotient topology, 7 is open and continuous, so it is enough to prove that 7 : 7=1(U)/G — U is

injective. But this is exactly the previous checking, so the proof is finished. |

Remark 2.2.20. Suppose that X is an affine algebraic variety with an algebraic action of an algebraic
group G on it. Suppose that there exists a good quotient for the action of G on X. Then, if all the
orbits of the action of G are closed, then, by the previous corolary, X/G (with the quotient topology)
is homeomorphic to an algebraic variety, unique up to isomorphism. Identifying this spaces, we will
say that we have endow X /G with the structure of an algebraic variety. This type of identifications

will be intensively used in the computation of chapter 4.

The most important result of GIT that we will use is the existence of good quotients for affine varieties.

Of course, this good quotient is, in fact, the GIT quotient. See [59] for further references.

Theorem 2.2.21. Let X be a complex affine reductive variety and let G be a complex reductive
algebraic group acting on X algebraically. The GIT quotient X = X /| G is a good quotient and, in

particular, a categorical quotient.

Remark 2.2.22. Continuing with this type of descriptions of quotients, if X is a variety with an algebraic
action of an algebraic group G whose orbit space X /G is a variety, X/G is called a geometric quotient

if X/G is also a good quotient. We will not need this fact anywhere in this work.

The case of general projective varieties is so rather more dificult and requires the analysis of some
special points in the variety that behaves well under the action of G, known as stable and semi-stable
points. In this particular sets, the GIT behaves well and can be applied as in the affine case. For a

complete introduction to this fascinating area, see, for example [59].

2.2.5 Character Varieties via GIT Quotients

With this notion of GIT quotient, we can finally define what is a character variety. However, to this

end, we need to restrict our attention to algebraic groups G which are reductive, in order to obtain
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a well behaved GIT quotient, as explained before. Observe that, in this case, taking G as a complex
reductive group, G is affine, so for any finitely generated group I', Hom(I', G) is an affine variety and

the previous Geometric Invariant Theory can be applied.

Definition 2.2.23. Let I' be a finitely generated group and let G be a complex reductive algebraic
group. Let Hom(I',G) be space of representations of I" into G with its structure of affine algebraic

variety. Then, the character variety of I' into G, Rg(I") is the GIT quotient
Rg(T) := Hom(T',G) ) G

where G acts on Hom(I', G) by conjugation.

Remark 2.2.24. Let us take G = GL(V) for some complex vector space V and let us consider a
representation p : I' = GL(V). The character associated to p is the homomorphism x, : I' = C
given by x,(g9) = tr(p(g)), the trace of the induced map.

Of course, since the trace is invariant under change of basis, we have that, if p1,pe : ' = GL(V) are
isomorphic representations (or equivalently, conjugated) then x,, = X,,. However, if we restric our
attention to irreducible representations, then the reciprocal is also true, that is, two representations
are isomorphic if and only if they have the same character. Therefore, if Homy(I', GL(V')) denotes
the set of irreducible representations of I', then we have that the space of characters can be identified
with the quotient

Homy(T',G)/G

Hence, in this sense, the character variety Rg(I') = Hom(I',G) // G can be seen as a extension of the

space of characters, becoming a algebraic variety, which justifies its name.

Definition 2.2.25. Let X be manifold with finitely generated fundamental group 71 (X) and let G be

a complex reductive algebraic group. The G-character variety of X, Rg(X) is the algebraic variety
Rc(X) := Rg(m (X)) = Hom(m(X),G) | G

Remark 2.2.26. Every compact manifold has a finitely generated fundamental group and, moreover,
every compact manifold with a finite number of removed points has a finitely generated fundamental
group. In particular, we can take X to be a compact Riemann surface, or a compact Riemann surface
with a finite number of removed points (called the punctures, the parabolic points or the marked
points).

Remark 2.2.27. Since the compact orientable surfaces are topologically clasified in terms of its genus,
the G-character variety only depends on the genus of X. Hence, if X is a compact Riemann surface
of genus g > 0, then X is homeomorphic to X, the orientable surface of genus g, so its fundamental
group is

g9
771(29) = <Oé1,... 7a97617~--7ﬁg| H[O‘k‘aﬂk] = 1>

k=1
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Therefore, using this presentation, we have that the G-character variety is
g
Ra(2,) = {(Al,...,Ag,Bl,...,Bg) € G¥| [ (A, Brl = 1} /G
k=1

Usually, due to its relation with other moduli spaces, it is denoted M%(G) = Mp(24, G) := Ra(Zy).
When G = SL(2,C) we will simply write MY.

Example 2.2.28. Concretely, we will discuss the case of SL(2, C)-character variety of an elliptic curve

(i.e. a compact Riemann surface of genus g = 1). In this case, we will denote M = M!, having

M = {(A,B) € SL(2,C)* | [A, B] = Id} /) SL(2,C)

2.2.5.1 Parabolic character varieties

In this work we will study deeply the case of a SL(2,C)-character variety of an elliptic curve, that is
a smooth complex projective curve of genus 1 or, equivalently, a compact Riemann surface of genus 1,
with a finite number of punctures, sometimes called SL(2,C)-parabolic character varieties. Let
us suppose that our elliptic curve X has s punctures, that is, s removed points, so the fundamental

group of this surface is

Wl(X) = 771(21 - {plv""pé’}) = <Oé,,8,’yl,...,’}/8 | [a’B]H’Y’L = 1>
=1

so, analogously to the previous example, the SL(2, C)-character variety, that we will called M is
S
M, = RSL(2,<C)(21—{]91, ce ,ps}) = {(A, B,C4,..., Cs) S SL(Z,C)2+S ‘ [A, B] HCz = Id}//SL(Q, (C)
i=1

where the action of SL(2,C) is by simultaneous conjugation. In particular, we will focus on the case

of only one puncture, that is, the variety
M ={(A,B,C) € SL(2,C)* |[A, BIC = 1d} ) SL(2,C)

Remark 2.2.29. Of course, the genus 1 case is only important in order to simplify the computations,
so, analogously, we can define the SL(2,C)-parabolic character variety of a curve of genus g > 1 with

s punctures

g S
MY = {(Al,...,Ag,Bl,...,Bg,Cl,...,Cs) € SL(2,C)** | T][Aw Bel ][ C:i = Id} J SL(2,C)
k=1 =1

with SL(2,C) acting by simultaneous conjugation.
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Remark 2.2.30. Even more general, for an affine reductive complex group G, the parabolic character

variety with s punctures on a compact Riemann surface X is

g S
Mp (X, G) = {(Al,...,Ag,Bl,...,Bg,Cl,...,Cs) e ¥ | []1An Bl ] Ci = Id} /G
k=1 =1

with G acting by simultaneous conjugation.

However, due to its relations with other moduli spaces, we will have to restrict the possible represen-
tations of the loop arround the puncture, . In particular, we will fix a conjugacy class on SL(2,C),
called it C C SL(2,C), and we will only focus on representations p : m(X; — {x}) — SL(2,C) with
p(v) € C. In this setting, it is usually said that the loop arround the puncture has prescribed mon-
odromy. In this case, the SL(2,C)-character variety of this special representations will be called Mg,
being the space

[A, B]C = Id

Me =< (A,B,C)e SL(2,C)?
c {( ) (2,C) Cec

} J SL(2,C)

This space admits two possible isomorphic (as complex varieties) presentations. First of all, observe

that the map

{(A,B) € SL(2,C)|[A,B] € C} +— {(A,B,C) € SL(2,C)? x C[A, BIC = id}
(A, B) — (A,B,[A,B]™Y)

is an algebraic isomorphism. Moreover, since [PAP~!, PBP~!]| = P[A, B]P~! for A, B, P € SL(2,C),
this map respects the conjugation, so it descends to the quotient under the action of SL(2,C) by

conjugation, inducing an isomorphism of algebraic varieties

M= {(A,B) € SL(2,C)* |[A,B] €C} J SL(2,C)

For the other presentation, let us take some element & € C and define

Me ={(A,B) € SL(2,C)* | [A, B] = ¢ } // Stab(¢)

where Stab(§) is the stabilizer of £ under conjugation on SL(2,C).

Remark 2.2.31. In this case, we should restrict the action of SL(2,C) to the action of Stab(&). Indeed,
if P € SL(2,C) and A, B € SL(2,C) satisfies [4, B] = £, then [PAP~!, PBP~!| = ¢ if and only if
P¢P~1 = ¢ that is P € Stab(¢). Therefore, the action is well-defined only restricting to Stab(€).
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To see that this space Mg if algebraic isomorphic to M¢, observe that, the map

o : Mg — Me
(A, B) - Stab(¢§) —— (A,B)-SL(2,C)

is clearly well defined since Stab(§) < SL(2,C) and, if (A, B) - Stab(§) € Mg then [A,B] = £ so
[A, B] € C. Moreover, it is surjective since, if (A, B) - SL(2,C) € Mg, then, there exists P € SL(2,C)
such that [PAP~!', PBP~'] = P[A,B|P~" = ¢ so (A, B) - SL(2,C) = (PAP~', PBP~). SL(2,C)
and (PAP~!,PBP™1) - Stab(¢) € Mg is a contraimage via ¢.

Finally, for the injectivity, suppose that (A, B) - Stab(¢) and (A’, B') - Stab(§) satisfy ¢((A, B) -

Stab(€)) = ¢((A', B') - Stab(€)). Then, we have that (A, B) - SL(2,C) = (A, B’) - SL(2,C) so there
exists P € SL(2,C) such that A’ = PAP~! and B’ = PBP~!. In this case, P should satisfies

¢ =[A,B|=[PAP !, PBP ! = P[A,B]P~! = p¢P!

so & € Stab(§) and, therefore (A, B) - Stab(§) = (A’, B') - Stab(§).

Remark 2.2.32. This kind of arguments will be extensively used in the computations of chapter 4
without further details. The complete proof of those statements is a straightforward application of

these ideas.

Finally, we will also study the case of two puntures on a elliptic curve. Then, the desired SL(2,C)-
parabolic character variety with prescribed monodromy on conjugacy classes Ci,Co € SL(2,C) around

the punctures is

(A, B|C1Cy = Id

M =< (A,B,C,Cy) € SL(2,C)*
e {( ! 2) ( ) Clécl, Cy € Cy

} J SL(2,C)

with SL(2,C) acting by simultaneous conjugation.

2.3 Relations between Moduli Spaces

The relations between the moduli spaces of Higgs bundles, moduli spaces of flat connections and
character varieties is a very deep and active area of reseach, known as non-abelian Hodge theory.
In this section, we will sketch the fundamental points of the theory, maybe in a little non-rigurous

way. For a detailed account on his wide subject, please check [69] or [31].

As the name sugests, the starting point of this theory is the following interplay between algebro-
geometric objects. Let us fix a compact Riemann surface X and denote H} n(X,C) the de Rham

cohomology of X with complex coefficients. Since every compact Riemann surface is a compact
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Kéhler manifold, classical Hodge theory (see theorem 3.1.31) give us a decomposition
1 ~ 771,0 0,1
Hpr(X,C) = Hp,(X) & Hpp (X) (2.1)

where HPZ (M) is the Dolbeault cohomology of X.
Now, observe that, considering Dolbeault cohomology as a sheaf cohomology (see remark A.1.3), if QP
denote the sheaf of holomorphic p-forms, we have isomorphisms

HJN(X) = HO(X, Qb HY(X)~ H'(X,0°%) = H'(X,Ox)

where we have used that 2° = Oy, the sheaf of holomorphic funcions on X (also known as the

structure sheaf). Finally, observe that
HY(X,0x) = Pic(X)

the Picard group of X, that is, the group of holomorphic line bundles on X.

Therefore, via this isomorphisms, 2.1 can be reinterpreted as
Hhp(X,C) = Pic(X) @ HY(X, Q")

that is, is the same to have a 1-cohomology class as to have a pair of an algebraic line bundle and a

holomorphic 1-form.

On the other hand, if Hg(X,C) is the singular cohomology of X with coefficients in X (also called
Betti cohomology), then de Rham theorem give us an isomorphism Hp(X,C) = Hpr(X,C). However,

by Hurewicz theorem (see [18]) we have that Hp(X,C) = % ®z C= Hom(m(X),C).

Philosofically, non-abelian Hodge theory translates this abelian framework to the more general setting
of moduli spaces. Along all this section, let G C GL(n,C) be a complex reductive linear group. In the

sense of non-abelian Hodge theory, the non-abelian analogues of the previous one are the following:

e De Rham cohomology: Its non-abelian analogous is the moduli space of flat G-connections,

MDR(Xv G)

e Dolbeault cohomology: Its non-abelian analogous is the moduli space of G-Higgs bundles,

MDol (Xa G)
e Betti cohomology: Its non-abelian analogous is character variety, Mp(X,G).
The first step in this non-abelian Hodge theory is to understand the relation between flat G connections

and representations 71(X) — G. The key point here is a geometric tool called the monodromy

representation.
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Definition 2.3.1. Let II;(X) be the fundamental groupoid of X, that is, the category whose objects
are the points of X and whose morphism between z,y € X are the homotopy classes of paths between
z and y. For example, if z = y, then Homy, (x)(z,z) = m1(X, 7). A local system of R-modules is a

functor

V:1;(X) — R — Mod

from the fundamental groupoid of X to the category of R-modules.

Given a local system V of complex vector spaces on X (usually just called a local system), and fixed
any zo € X, denote Vy, := V(xp). Then, we define a group homomorphism py : 71(X) — GL(Vy,)
given, for [y] € m (X) = Hom, (x) (0, o)

p(0]) = V(1)) € GL(Vey) = Hom(Vay, Virg)

A local system V of complex vector spaces is called a G-local system if py : m1(X) — G C GL(Vy,).

Proposition 2.3.2. There is an injective mapping from G-local systems on X, modulo natural equiv-

alence, and representations w1 (X) — G modulo conjugation.

{G — local systems on X} {m((X) — G}
~ ~ G

Moreover, given a G-local system of complex vector spaces V, using it, we can define a sheaf on X,

Fy, whose stalks are (Fy), = V(x). This sheaf has a very special property

Definition 2.3.3. Let X be a complex manifold and let F be a sheaf on X. F is called a locally
constant sheaf if there exists a covering {U;} C X such that, for all U; and z € U;, the passing-to-

stalk morphism p; : F(U;) — F, is an isomorphism.

In this case, Fy is a locally constant sheaf. This is because, since X has a basis of simply-connected
open sets, then for every z,y € X close enough, the unique class of path between z and y give us
an isomorphism between (Fy), and (Fy),. Moreover, quotienting by isomorphisms, we obtain the

following result.

Proposition 2.3.4. There is a 1-1 correspondece between G-local systems on X, modulo isomorphism,

and locally G-constant sheaves on X, modulo sheaf isomorphism.

Finally, since a locally constant sheaf of modules is automatically locally free (because F(U;) is iso-
morphic to F, for any x € U;) using the relation between locally free sheaves and vector bundles with

a flat connection (see [60]), we have the following result.

Proposition 2.3.5. There is a 1-1 correspondece between locally constant sheaves on X, modulo sheaf

isomorphism, and flat G-vector bundles, modulo gauge equivalence.
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Therefore, putting together these correspondences, we have a mapping from flat G-vector bundles,
modulo gauge equivalence, to representations m1(X) — G modulo conjugation. This identification
which respects the topology, is the so called Riemann-Hilbert correspondence, whose proof can
be found in [71].

Theorem 2.3.6 (Riemann-Hilbert correspondece). The moduli spaces of G-flat connections Mpr(X, G)

and the character variety Rg(X) = Mp(X,G) are analytically isomorphic.

Even more, we can twist this spaces in order to obtain an even more general Riemann-Hilbert corre-

spondence. For this, let us define the twisted character variety

9 )
MdB(X, G) = {(Al, ce. ,Ag,Bl, . ,Bg) e G% ’ H[Ak7Bk] = e2TrrLZdId} // G
k=1
Theorem 2.3.7 (Riemann-Hilbert correspondece, twisted case). The moduli spaces of G-flat connec-
tions on X —{po} holonomy e*%* Id around po, M3 (X, G) and the character variety M% (X, G) are

analytically isomorphic.

Now, we can also focus our attention to the moduli space of G-Higgs bundles or, more restrictive,
of holomorphic vector bundles. In this context, the starting point of the theory was a result of
Narasimahan and Seshadri that relates polystable holomorphic vector bundles of rank n and unitary
character varieties. In the original proof in [58], they used only algebraic methods to stated the
theorem. However, Donaldson, in a later paper [19] gave a new proof of this theorem using gauge-

theoretical methods, that iniciate the study of this theorem from the point of view of Higgs bundles.

Theorem 2.3.8 (Narasimhan-Seshadri). The moduli space of polystable holomorphic vector bundles of
rank n degree 0, My p(M,n,0), is homeomorphic to the character variety Ry ) (X) = Mp(X,U(n)).
Analogously, for general degree d € Z we have that M*(M,n,d) is homeomorphic to M%L(X,U(n)).

Hitchin in [35] proved a generalization of this theorem for the case of SU(2)-Higgs bundles using a
totally different proof based on gauge theory. Later, the combined work of Donaldson, Corlette and

Simpson in [20], [14] and [70], among others, proved the following version.

Theorem 2.3.9. Let G C GL(n,C) be a reductive Lie group. The moduli space of polystable G-vector
bundles n degree 0, Mpo(M,G) is homeomorphic to the character variety Rg(X) = Mp(X,QG).
Analogously, for general degree d € 7 we have that M%Ol(M, G) is homeomorphic to M%(X,G).

Therefore, with this result, the relation between moduli spaces is the following, where C indicates

continuos isomorphism (that is, homeomorphism) and C* analytical isomorphism.

ML(X, Q)

MdDR(X7 G)
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Remark 2.3.10. This three different points of view allow us to introduce a very special structure on

this spaces, known as a hyperkéahler structure, which consists of three compatible Kéhler structures.

Finally, in the context of parabolic G-Higgs bundles, Metha and Seshadri in [53], first, and later

Simpson in [68], proved the following non-abelian Hodge correspondence for parabolic Higgs bundles.

Theorem 2.3.11. Let G C GL(n,C). Let us choose parabolic points p1,...,ps € X, and let us define
the effective Weil divisor D = p1 + ...+ ps. Let us fix conjugacy classes C1,...,Cs C G given by

semisimple elements. Then, we have

o The moduli space of parabolic G-bundles of parabolic degree O with parabolic structures o on D
Yo (X, G) is homeomorphic to the parabolic character variety of X with s marked points and

holonomies in Cy,...,Cs around p1,...,ps, respectively, Mc, . c.(X,G).

e The moduli space of flat logarithmic G-bundles with poles in D Mppgs(X,G) is analytically
isomorphic to parabolic character variety of X with s marked points and holonomies in Cy,...,Cs

around pu, ..., ps, respectively, Mc, . c.(X,G).

Me, ..c.(X,G)

MDR,S (Xa G)

ol %Ol (X7 G)

Corollary 2.3.12. Let us take SL(2,C) C GL(2,C). Let us choose parabolic points p1,p2 € X, and
let us fix different conjugacy classes C1,Co C SL(2,C) of semisimple elements. Then, Mc, c,(X) :=
Me, ¢, (X, SL(2,C)) is homeomorphic to the moduli space of traceless parabolic Higgs bundles of rank
2 and parabolic degree 0 with a fized parabolic structures o, M, (X, SL(2,C).

2.3.1 Nahm Transform

In this interplay between moduli spaces, there is a fundamental tool, known as the Nahm transform
that allow us to relate different types of solutions to the Yang-Mills equations (of which Higgs bundles

are a special case). Good references for this topic are [41], [40] and [38].

The first example of the Nahm transform appears in the Atiyah-Drinfeld-Hitchin-Mani construction
(usually shortened to ADHM construction) of instantons in R*, see [3] or [21]. Later, Nahm adapted
this method for constructing time-invariant anti self-dual solutions of the Yang-Mills equations, which
he called monopoles [57]. This paper, based on physical arguments, was later formalised in a paper of
Hitchin [34].

Corrigan, Goddard, Braam and van Baal realized that these constructions are special cases of a more

general construction, which they called the Nahm transform. The Nahm trasform, at least in its
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primary state, is a mechanism that transforms anti self-dual connections on R* that are invariant

under some subgroup of translations A C R* into dual instantons on (R*)* which are invariant under

A" ={a e R [a()) € Z,¥A € A}

In this context, some constructions of instantons arise in this way.

e For A = {0}, the Nahm transforms is related to the ADHM construction.
e For A =R, it reduces to the study of monopoles, as studied by Hitchin in [34].

e For A = Z*, it defines an hyperkéhler isometry on the moduli space of instantons over two dual

4-tori, as explained in [10] and [21].

e For A = 7Z?, the A-invariant anti self-dual connections on R* are called doubly periodic
instantons. Therefore, the Nahm transform gives a correspondence between doubly periodic
instantons and certain tame solutions of Hitchin’s equations on a punctured two-torus. See [40],
[39] and [6].

e For A = R x Z, we obtain periodic monopoles, as studied in [13].

Indeed, using the Nahm transform, in [40] is proven the following theorem, that justifies the name of

this work.

Theorem 2.3.13. The moduli space of doubly periodic instantons over an elliptic curve X is diffeo-
morphic to the moduli space of traceless parabolic Higgs bundles of rank 2 and parabolic degree 0 with
a fized parabolic structures o, M, ,(X,SL(2,C).

Therefore, using corolary 2.3.12

Corollary 2.3.14. Let X be an elliptic curve with two marked points p1,ps € X. Let us fix distinct
conjugacy classes C1,Co € SL(2,C) of semisimple elements. Then, Mec, ¢,(X) is homeomorphic to

the moduli space of doubly periodic instantons over X.

Remark 2.3.15. In the notation of chapter 4, the moduli space of doubly periodic instantons over
an elliptic curve is homeomorphic to the parabolic character variety M[DM]:[sz] with A1 # Ao, Ay L
studied in sections 4.3.3.1, 4.3.3.2 and 4.3.4.6.
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Hodge Structures

3.1 Classical Hodge Theory

3.1.1 L? Product on Manifolds and the Hodge Star Operator

Let (M,g) be a differentiable compact manifold without boundary, oriented with volume form (.
Using the inner product g, : T,M x T,M — R for each p € M, we can define a product in Q’;(M),
g]’,f : Q’;(M) X Q’;(M) — R for each p € M given, on elemental forms, by

it it
g;;(w; /\.../\w;f,nzl,/\.../\n;;) = det (gp(w; 1T ))

where -f : TyM — T,M is the isomorphism with the dual space induced by gp, i.e. wf, is the unique

vector such that w,(X) = gp(wg, X) for all X € T,M. Furthermore, we can extend this product to a

product g : (M) — Q7 (M), decreeing that Q’;l(M) is orthogonal to Q’I?(M) for ky # ko.

With this pointwise product, we can define a global product in Q*(M), known as the L? product by

(wym) 2 = /M Ip(wp, np) Q

We can introduce a shorthand for this product defining the Hodge star operator x : Q’; (M) —
Qg*k(M), where n = dimg M. Indeed, given 7, € Q’;(M), *1)p is the unique (n — k)-form such that

wp A (¥1)p = gp(Wp, Mp)

Moreover, we can extend this operator to a global operator x : QF(M) — Q"¥(M) and, with this

operator, we have that

<w,n)L2=/ w A *7
M

72
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Remark 3.1.1. x preserves the orthogonality law between form of different degree, that is, if w € QF1 (M)
and n € QF2 (M) with k1 # ko, we have that w A xn = 0.

In fact, there is a very simple way of compute the Hodge star operator in local coordinates, using the

following proposition.

Proposition 3.1.2 (Computation of the Hodge Star Operator). Let (M,g) be a compact oriented
riemannian manifold of dimensionn and letp € M. Let w1,...,w, be a positively oriented orthonormal
base of Ty M with respect to the induced inner product on 1-forms. Then, over k-forms, the Hodge

Star operator can be computed as

*(Wzi AREE /\wik) = Sign(o') S T ARRRAN )

1 2 -k k+1 k+2 --- n
where o = | ' ' ' ) is a permutation of {1,...,n}.
o2 J1 J2 o In—k
Proof. Observe that, since wy, . ..,w, is a positively oriented orthonormal base, we obtain that it holds

g;,f (wil A Awg,, sign(o) - wj A /\anfk) =1land wi A - Aw, = Q. Hence, in this way

2

(wiy A Awiy) A (sign(o) - wjy A+ Awj, ) = sign(o)’wi A+ Aw, = Q

Therefore, sign(o) - wj, A--- Awj, _, satisfies the property required to be de Hodge Star of w;; A--- A

Wi, - [ |

Remark 3.1.3. From this characterization for the Hodge Star, is very simply to observe that x+~! =

(—1)FM=R)y 50 sk = (—1)k=k),

Remark 3.1.4. Using the same definition, we can extend the definition of the Hodge Star operator
to semi-riemannian manifolds. In this case, the previous proposition is analogous up to a sign that
apears when we act on time-like covectors. Therefore, it can be shown that, in this case, we have

*x = §(—1)¥"F) where s = +1 is the signature of the semi-riemannian metric.

3.1.2 Laplace-Beltrami Operator

Definition 3.1.5. Let (M, g) be a differentiable oriented compact manifold. Let T': Q*(M) — Q*(M)
be a linear operator (not necessarely bounded), we say that 7% : Q*(M) — Q*(M) is a formal adjoint
of T over Q*(M) if, for all w,n € Q*(M) we have

<w, T’I’]>L2 = <T*w, 7’]>L2

Moreover, if T* =T we say that T is a symmetric operator.
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Proposition 3.1.6. Let d : QF(M) — QFY(M) be the eaterior differential over a compact oriented
riemannian manifold (M, g). Then, the linear operator d* : Q¥ (M) — QF(M) given by

d* — (_1)n(k+1)+1 % dx
is the formal adjoint of d over Q*(M) with respect to the L? inner product.

Proof. Let w,n € QF(M), then, using the distributivity of d and the remark 3.1.3 we have

d(n Axw) = dn Axw + (=1)n A d(xw) = dn A *w — 1 A *(d*w)

So, integrating over M and using the Stokes theorem in its boundaryless version

0= /n/\*w:/d(nA*W)Z/dnA*w—/n/\*(d*w):<dn,w>L2—<n,d*w>L2
M M M

oM

as we wanted to show. [ |

Definition 3.1.7. Let (M, g) be a compact oriented riemannian manifold with exterior differential
d: Q*(M) — Q*TY(M), whose formal adjoint operator, with respect to the L? norm, is d* : Q*(M) —
Q*~1(M). The Laplace-Beltrami operator, A : QF(M) — QF(M), is given by

A=dd" +d"d

Moreover, a differential form w € Q*(M) is said harmonic if Aw = 0.

Remark 3.1.8. Using the explicit formula for d* in terms of the Hodge Star, we can rewrite the

Laplace-Beltrami operator A : QF(M) — QF(M) in its classic form

A= (—1)"F DG d ok (1) wdxd

Moreover, with this explicit expresion, its easy to recover the classic laplacian operator for C'*° func-
tions (i.e. elements of Q°(M)) in a flat manifold. Let us suppose that, there exists a local isometry
@ : U — R"™ for some open set U C M'. Therefore, using this map, we can take coordinates (z1, ..., z,)

in U, such that 8%1

,...,axnp

is a orthogonal basis of T),M, for all p in U.
P

1This can be achieved if, for example, the sectional curvature is zero in an open set of M.
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Let f € C*°(U) and note that d*(f) = 0, so we have

of
aflfi

Af:d*d(f):—*d*d(f):—znj*d* dx;
=0

:—Z(—l)"*d<§g‘3f‘ dml/\---/\c@/\‘--/\dm’n>

:_Z(—l)l* %C&j/\d%l/\'“/\dmi/\--ﬁ\dmn
ekt

I
o
<
i

n 2 n 2
:—g a—*(dxl/\~~/\da:n):— a—];
: ; izoaxi

where, in the third line, the sum is cut because the 7, j term is not null if and only if i = j (otherwise,

it contains two dz;). Hence, in summary, over Q°(U) we have

0? 0?
A= —+...0 —
<8:L‘%+ +8x2>

n

as usual in analysis (up to sign).

Furthermore, if we use the adjointness of the operators used in the definition of the laplacian, we
obtain that, for all w,n € Q*(M)

(Aw,n)r2 =((dd* +d"d)w,n)r2 = (w, (d*d+dd*)n)r2 = (w, An) 2

Hence, with this simple computation, we have just prove

Corollary 3.1.9. The Laplace-Beltrami operator is symmetric with respect to the L? product, that is

(Aw,m) 2 = (w, An) 2

for allw,n € Q*(M).

Indeed, repeating the computation with the same form, we obtain a characterization of the harmonic

forms, which by definition are solutions of a second-order PDE, in terms of a system of first-order
PDE.

Corollary 3.1.10. A differential form w € Q*(M) is harmonic if and only if dw = 0 and d*w = 0.

Proof.
(Aw,w)r2 = ((dd" + d" d)w,n) 2 = (dw,dw) 2 + (d*w,d* w) 2

Hence, cause the inner product is positive defined, Aw = 0 if and only if dw = 0 and d*w = 0. |
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3.1.3 Hodge Decomposition Theorem

The most important result in classical Hodge theory is the theorem known as the Hodge Decomposition,
that allow us to have a better understanding of the space of differentiable forms. As we shall see, this

insight becomes very useful for topological and geometric considerations.

Recall that a differentiable k-form w € QF(M) is call harmonic if Aw = 0, and let us denote the space
of harmonic differentiable k-forms as H"*(M).

Theorem 3.1.11 (Hodge Decomposition). Let (M,g) be a compact oriented riemannian manifold
of dimension n, with Laplace-Beltrami operator A : Q*(M) — Q*(M). Then, for each 0 < k < n,
HF (M) is finite dimensional and we have the split

QF (M) = AQF(M) & HF(M)

Furthermore, this decomposition is orthogonal with respect to the L* norm.

Corollary 3.1.12. For each 0 < k < n we have the orthogonal decomposition

QF (M) = dQF Y (M) @ d* QML (M) @ HF (M)

Before its proof, let us discuss some of its consecuences. Maybe, the most evident one is that it solves

the Poisson problem in compact manifolds.

Corollary 3.1.13. Let (M,g) be a compact oriented riemannian manifold and let us consider my :
Q*(M) — H*(M) the orthogonal projection of the space of forms onto the space of harmonic forms,
given by the Hodge Decomposition Theorem.

Given n € Q*(M) the Poisson problem Aw = n has solution if and only if wy(n) = 0. Furthermore, if
L

it has solution, one and only one solution lives in H*(M)
Proof. The first part is evident from the Hodge decompostion of Q*(M), because, by the directness
of the sum, n € Im A if and only if 7y(n) = 0.

For the uniqueness, let us suppose, that wy,ws € H*(M): are two solutions of Aw = 7, then
Awy —wy) =n—n=0s0w —ws € H*(M). Moreover, bt hypothesis, w; — wy € H*(M)* so,
by orthogonality, it must be w; = ws. |

Remark 3.1.14. Note that, without boundary conditions, the uniqueness of the Poisson problem is an
utopy. Indeed, if w is a solution of Aw =7 and a € H*(M), then w + « is also a solution. However,

as we will se below, depending of the topology of M, we can reach uniqueness up to constant.

Thanks to this proposition, we can define the operator that asigns, to every differential forms, its

non-harmonic part.
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Definition 3.1.15. Let n € Q*(M), we define the Green operator of 1, G(n) as the unique w €
H*(M)* such that Aw =n — m3(n).

The Green operator satisfies a crucial property.

Proposition 3.1.16. G commutes with every linear operator T that commutes with A and such that
its formal adjoint T : @*(M) — Q*(M) is defined.

Proof. Let T : Q*(M) — Q*(M) be a linear operator such that AoT =T o A, then
ATG (n) =TAG () =T (n—mu(n)) = Tn —mu(Tn) = AG (Tn)

where T commutes with my because, if n = wy 1 ® wy, then Tn = Twy . © Twy. Therefore, both
G (Tn) and TG (n) are solutions of Aw =1 — 7w (n).

By uniqueness of the Poisson equation, it is enought to show that T'G (n) € H*(M). To this end, let
a € H(M) be any harmonic form, then

(TG (n),a)2 =(G (), T"a)2 =0

because, by the commutativity of T" with A, T*« is harmonic.

Corollary 3.1.17. G commutes with d.

After this technical lemma, we can proof our desired result.
Theorem 3.1.18. Let M be a compact oriented riemannian manifold. Then, every cohomology class

of the de Rham cohomology contains one and only one harmonic representator.

Proof. Let w € H%5,(M). Then, by the Hodge theorem, there exists n € H¥(M) such that w =
AG(w) +n. But, then

w=(dd* +d*d)G(w) +n = dd*G(w) + d*G(dw) + 1 = dd*G(w) + 7

Therefore, n is an harmonic form in the cohomology class w.

For uniqueness, let us suppose that 1y, ns are two harmonic forms in the same chomology class, that
is, 71 = 12 + da for some differential form . Observe that, da € H¥(M)*, cause, for every harmonic

58 we have
(B,do)pz = (d"B, )2 =0

Therefore, do is an harmonic form orthogonal to H* (M), so it must be daw = 0 and, hence, n; =1n9. B
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From this result, we can deduce some very important conclusions.

Corollary 3.1.19. HE.(M) is isomorphic (as a R-vector space) to H*(M). In particular, we have
dimp HE,(M) < occ.

Corollary 3.1.20 (Poincaré duality). If M is a compact orientable differentiable manifold, then
Hjp(M) = (Hjz*(0))
Proof. Let us define the pairing ¢ : H5,(M) x Hg};k(M) — R by

so([w],[n]):/wm
M

Note that, by the Stokes’ theorem, ¢ is well defined. Moreover, if ¢ were non-degenerated, then
w — (w, ) will define the desired isomorphisim between H, (M) and (Hg}; F(M )) .

To check it, observe that if [w] € H%, (M), with w harmonic, then xw € H'jz" (M) is also closed. Indeed,
cause Ax = xA, we have that xw is also harmonic, which, in particular, means that d (xw) = 0. Taking

this into acount, we have

pllal ) = [0 A = 2 #0

M

except for w = 0. |
Example 3.1.21 (Cohomology of S1). Observe the general fact that, for every differentiable manifold,
cause Im (d : Q=1 (M) — Q°(M)) = 0, then

HY(M) = Kerd: Q°(M) — QY(M)

But, for f € Q%(M) = C®(M), df = 0 if and only if f is locally constant, and all the constant are
linearly dependent over R. Therefore, H°(M) = R¥, where N is the number of conected components
of M.

In particular, we have that S! is conected, so HY(S') = R. Therefore, using the Poincaré duality, we
have that H'(S') = (H1=Y(M))" = (H°(M))” = R* = R. Hence, only using analytical methods, we

just have computed the cohomology of S*.

3.1.4 Hodge Decomposition on Kahler Manifolds
3.1.4.1 The adjoint operatos of 9 y 0 and their laplacians

In the same way than for the exterior derivative, d, the existence of an hermitian metric on a complex

manifold allows us to define formal adjoints for 9 y 0.
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First, observe that the Hodge star operator can be extended to Q7 (M) by C-linearity and preserves
the bigrading, i.e. x : QP4(M) — Q" P 4(M), with n = dimc M. Hence, using this star, we can
define an hermitian product on (M), also called the L? product by

<W777>L2 ::/ w/\ﬁ
M

for any w,n € QF(M). Then, we obtain the following characterization of the adjoints operators of the

Dolbeault operators.

Proposition 3.1.22. Let (M, g) be a compact hermitian complex manifold and let 0 y O be its anti-
Dolbeault and Dolbeault operators, respectively. Then, on QP2(M), the formal adjoints 0* : QPI(M) —
QPa=Y(M) and 8" : QPU(M) — QP~19(M), respect to the L? product, are

= =%

= —x O

Proof. We will prove it for 8", and the other case is analoguous. Let w € QP4(M) and n € QP~54(M),

then, using the Leibniz rule for 9, the fact 0 x w = 9(*w) and remark B.1.12 we have

ANAFD) = I AFw+ (—1)*n ADGE) = In AFw — 1 A (8 w)

Now, if a € Q"~1"(M), then da = da + da = O, cause o € Q"1 +1(M) = 0. Thus, integrating

on M and using Stokes’ theorem in the boundaryless version

0= [amrma) = [a0nm) = [Gynss = [4r@) = @nwp: - 0T w0
M M M M

as we wanted to prove. |

Using this operators, and their adjoints, we can generalize even more the notion of laplace operator
and consider the operators Ay, Ag : QP4(M) — QP4 (M), given by

Ay = 00" + 0%0 As=08" +080

In analogy with the Laplace-Beltrami operator, we denote H5?(M) and ’H%’q(M ) the set of harmonic
(p, q)-form, with respect to Ay and Ay, respectively. In that case, using similar techniques to the

proof of the Hodge decomposition theorem, we have

Theorem 3.1.23. Let M be a compact hermitian compler manifold with Dolbeault-typle Laplace-
Beltrami operator Ay : Q°*(M) — Q**(M). Then, for any 0 < p,q < n, H%Q(M) is finite dimen-

sional, and the following decomposition holds

ORI(M) = AQRN (M) & HE (M)
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Corollary 3.1.24. Let M be a compact hermitian complex manifold. In every Dolbeault-cohomology
class there exists one and only one Ag-harmonic form. Furthermore, we have the C-vector space
isomorphism

HPI(M) = ’H%Q(M)

Corollary 3.1.25 (Serre duality). If M is a compact orientable complex manifold, then

HPY(M) = (H"P"9(M))"
Proof. Let us pick any hermitian metric for M and let us define the pairing ¢ : HP4(M)x H" P~ 9(M) —
C by

w(M,[n])—/wAn

M

By a similar argument to the one of 3.1.22 by Stokes’ theorem, ¢ is well-defined. Moreover, if we
prove that ¢ is non-degenerated, then w — ¢(w,-) will be the desired isomorphism between HP4(M)
and (H"P"=49(M))*".

In order to check it, observe that, if [w] € HP9(M), with w O-harmonic, then xw € H" P"~4(M) is
O-closed too. Indeed, since Agx = Ay, we have that xw is also d-harmonic, which, in particular,

means 0 (w) = 0. Hence,

pllal ) = [ 05w =z #0

M

except for w = 0. |

3.1.4.2 Kahler identities

One of the most important properties of a Kéhler manifold is that, only using the osculation of its
Kahler metric, we can relate the Dolbeault operators with the adjoint operators of the anti-Dolbeault

(and viceversa), what is known as the Kéhler identities?.

Definition 3.1.26. Let M be a Kihler manifold with w € Q?(M). We define the Lefschetz operator
L:QL(M) — QE(X) given by L(n) = w An.

Proposition 3.1.27. The operator A := 'L : Q%(M) — QEEJ(M) 1s the formal adjoint of L with

respect to the L? metric.

2Indeed, if we extend our analysis, it can be shown that the Kéhler property implies that we can perfectly identify
the super Lie algebra generated by Ay, 0, 9,0 and 0 as C-vector space, observing that it is finite dimensional and we
can identify its generators.



Chapter 3. Hodge Structures 81

Proof. 1t is a simple computation, observing that, for all «, 5 € Q*(M)

(LB, )2 —/ Lﬁ/\*a—/w/\ﬁ/\*a—/ BAw A *a
/ﬁ/\L*a—/ BA*(xTLxa)=6,(x1Lxa).

Proposition 3.1.28 (Kéhler Identities). If M is a Kdhler manifold, we have
[A, ] = —id* (A, 0] =i

Proof. For a detailed proof, see [37] or [73]. It is enough to prove the first identity, since the second
one follows from the first by conjugation and recalling that A is real. Moreover, taking adjoints, it is

enough to prove that[L,g*] = —i0.
By proposition A.3.5, given p € M, there exists local coordinates that maps p to 0 € C™ and the

hermitina metric is, locally

g= Zdzk ®Rdzp + dzp @ dzy, + O(]z\Q)

Now, observe that the operators A, y 0* only requiere the Taylor series expansion of the metric up
to order one. Thus, after applying the operators and evaluate in 0 € C", the result only depends on

the metric up to order one.

Therefore, it is enough to prove the result for the eucliden metric g = >, dz; ® dzj, + dz). For this

= %Zdzl/\dzl

Let us consider v = }’; ;ay ydzr Adzy € QP with p = |I| and ¢ = |J|. Then, considering that
8" = —  O*, a computation shows

metric, the Kahler form is

[L,0"la=L8"a—8 La=—L*dx(a)+xd* L(a)

In order to compute the Hodge star operator without going crazy, let us introduce the following
notation. Let us suppose that the complex dimension of M is n. Given a multiindex without repetitions
I={i1 <iy<...<ip}, we will denote I¢:={1,...,n} — I. Moreover, if 1 < r < n, we will denote
by I +k:=TU{k}if k¢TI and(if k € I. Analogously, we will denote I — k := I — {k}.
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With this notation, we have that xdz; A dz; = tdzje A dZ je, where the signs only depend on |I]y |J|.

Thus, computing

L*@*(a) =L*0x* ZCLLJdZ[/\dEJ :ZiL*8(a1,sz1c/\dEJc)

I1,J 1,J
Oar, g
_ZiL dzk/\dzlc/\cfjc ZiL dz;_ 1 Ndzg
0z,
I1,J1 1,J1
_ 3y iaal"] dzy Adz Adzy_, A dz Z Lo, Adz
—2 azk l l I1—k 2] = = a I+1—k J+1

1,7kl 1 Tkl

Analogously, for the other term we have

] _
*8*[/(0[) =x0* L ;(ILJdZ]/\dEJ = 2;ﬂ*@*(al,]dzlAdzlAdzlAdEJ)

= 721*8 CL[]dZ(]+l) Af(J+l Z + % dzk/\dz([+l) /\CF(J+l)c
1,J,1 IJk‘l
) dar.j
== +T—=dzry—r Ndz
5 1%1 92 24—k N AZJ4

Therefore, putting all together and taking care of signs and index, we have

[L,0 o= —Lx8*(a) + 9+ L(a Zagzl"]dzk/\dzl/\d?J:iﬁ(a)
k

as we wanted to prove. |

3.1.4.3 Hodge decomposition in cohomology

Finally, all the previous work allow us to prove the desired Hodge decomposition in cohomology. The
main point of this decomposition is that the de Rham cohomology of a complex manifold can be
computed using the Dolbeault cohomology, and do not depend on the complex structure choosen. For

a more extensive introduction to the topic, see [37], [73] and [74].

Proposition 3.1.29. Let M be a compact Kihler manifold and let Ay, Ay and Az be its Laplace-
Beltrami operators, defined in terms of d,0 y 0. Then, we have

Ag =205 =27 ANy =Dy

Proof. Tt is enough to show Ay = Az and Ay = Ay + Agz. For the first one, recall that, since the

almost complex structure is integrable, we have 90 + 89 = 0 so, using this and the Kéhler identities,
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we obtain
Ay =00+ 00" = i[A,5]8 + i@[A,g] = i(A58 — OAND + OND — 65A)

= i(AO — (I[N, 8] + DOA) + (—[A, DD + ADD) — HIA)
= i(ADD — i00" — DIN — D" D + AJD — DIN) = Ay + [A, 00 + 0] = Ay

For the second equality, recall that, again by the Kahler identities, we have
09" + 90 = —i(9[A, 9] + [A,8]0) = —i(OAD — O*A + AD* — OAD) = 0
and, therefore

Ag=(0+0)(0"+8)+ (0 +0)0+0)
=Ap+ A5+ (00 +9°0)+99" +9°0 =0+ Ay

as we wanted to prove. |

Corollary 3.1.30. Let M be a compact Kdhler manifold. Then, for all 0 < k < dimg M, the following

decomposition of harmonic forms holds

HE(M) = D HE(M)
p+q=k

Proof. Let a € Hf:(M) and let us decompose it in its (p, ¢)-components, let us say o = > kapvq €
ptq=
@D QP9(M). It is enough to show that the «,, , are harmonic. For this purpose, observe that
ptq=k

0=Aga= Z Agoyg
ptq=k

Since Ag = 2Ap is bihomogeneous with bidegree (0,0) we have that Ay, , € QP9(M), so it should
vanish component by component. In that way, Aja,, = 0 for all p+ g = k, or, equivalently a4 €
’H%’q(M ). |

Corollary 3.1.31 (Hodge decomposition in cohomology). Let M be a compact Kdhler manifold.

Then, we have the following decomposition in cohomology

H*(M,C)= @ HP(M)
pt+q=k

Moreover, this decomposition does not depend on the choosen Kdhler structure.

Proof. The existence part of the decomposition is clear remembering that HP4(M) = ’H%q(M ) and
H*(M,C) = HE(M) (see theorems 3.1.19 and 3.1.24).
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For uniqueness, let K77 C H¥(M,C) be the set of de Rham cohomology classes that contains any
closed (p, q)-form. We will show that HP?(M) = KP. For the inclusion HP4(M) C KP4, recall that,
if [o] € HP4(M) then there exists a (p, ¢)-form Az-harmonic, let us say o’ € [a]. However, since

Aga' = 2A50" = 0, in particular do’ = 0, so o’ € [a] is the desired (p, ¢)-form.

For the contrary inclusion, let [o] € KP? with a € QP9(M) closed. By the Hodge decomposition, we
have a = AygB + o/, for o/ € QP9(M) Ag-harmnic (recall that A, is bihomogeneous with bidegree
(0,0)). Now, in that case, Ay = dd*f + d*dp is closed, so dd*df = 0. However, Im d* | Kerd, so
we must have d*d = 0. In that case, we have a = d(d*3) + o, so [a] = [o/] € HPY(M).

Therefore, we have just prove that K¢ = HP and, thus, we have the metric-independent decompo-
sition
H*(M,C)= € K*
pta=k

Corollary 3.1.32. Let M?" be a compact Kihler manifold. We define the Poincaré and Hodge

polynomials, respectively
2n
Pa(t) =) be(M)tF har(u,0) = Y WPI(M)uPy?
k=1 0<p,g<n
Then, we have Py(t) = hps(t,t).
Corollary 3.1.33. If M is a compact Kdhler manifold, conjugation on forms induces an isomorphism
HP9(M) = HTP(M).

Proof. 1t is obvious for K7 = HP(M). [

In particular, if k is odd, then H&(M) decomposes in a sum of k+1 (which is an even number) pairwise
isomorphic terms. Therefore, its dimension should be an even number. Of course, this introduces a

strong restriction on the topology of compact Kéhler manifolds.
Corollary 3.1.34. In a compact Kdahler manifold, oll the odd Betti numbers, bopy1, are even.

Corollary 3.1.35. If M?" es a compact Kihler manifold with Kahler form w, then, for all0 < p < n,
0 # [wP] € HPP(M) for every 0 < p < n. In particular, hPP # 0 for all 0 < p < n.

3.2 Pure Hodge Structures

Let Mg be a R-module for some ring R with Z C R (in our cases, it will be R = Z,Q,R,C) and
let £k O R be a field (usually & = Q,R,C). We define the k-fication, M} as the k-vector space
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My, := Mg ®z k. Moreover, given a homomorphism of R-modules f : Mr — Ngr we can also define its
k-fication fy : My — Ny, given by fi, O_m; @ ki) := > f(m;) @ k;.

If £ = C then Mg = Mpr ® C has a natural complex conjugation - : Mg — Mc given forms by
Yomi®zi=Y,m; %.

Definition 3.2.1. Let R be a ring containing 7Z, usually R = Z,Q,R,C and Hp finitely generated
R-module. An pure R-Hodge structure of weight k on Hp (usually simply called a Hodge structure
of weight k) is a direct sum decomposition of Hc = Hr ®z C

He= @ HP

ptq=k

with HP¢ = H?P. A morphism of Hodge structures of weight k£ is a R-module homomorphism
[+ Hp — Hp, such that, for all p,q € Z with p+ ¢ = k we have that fc : H?? — H'™9, that is, fc
respects the bigrading induced by the Hodge structures.

Remark 3.2.2. If a finitely generated R-module Hg has a grading

HRZQBH{Eé

such that each H 1’3 has a pure Hodge structure of weight k£, Hg is said to have a pure Hodge structure,
without any reference to the weight. With this definitions, the pure R-Hodge structures form a
category denoted by HSg. It is a subcategory of R — Mod, the category of R-modules (or Ab the

category of abelian groups in the case R = 7).

Remark 3.2.3. A Z-Hodge structure is usually called a integral Hodge structure and HSy is denoted
HS, while a R-Hodge structure is called a real Hodge structure, a Q-Hodge structure is called a

rational Hodge structure and a C-Hodge structure is called a complex Hodge structure.

Definition 3.2.4. Given a pure R-Hodge structure on Hp, we define the Hodge numbers associated

to this Hodge structure as
hP9(Hp) = dim¢c HP?

With this numbers, we can form the Hodge polynomial of Hp, hy € Zu,v,u"",v~!] by

hg(u,v) = Z hP4(Hp)uPv?
p+a=Fk

Remark 3.2.5. The sum in the definition of the Hodge polynomial is finite because Hp is finitely
generated. If the pure Hodge structure of Hp lives in the first quadrant (i.e. if h?9(Hg) = 0 for p < 0
or ¢ <0) then hy € Z[u,v].

Example 3.2.6. Every R-module Mg has a pure Hodge estructure of weight 0 by decreeing M0 :=
Mc = Mpr ® C and zero otherwise.
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Example 3.2.7. One of the simplest integral pure Hodge structures that can be defined is the
Tate Hodge structure 7Z(1) := 27miZ C C with a pure Hodge structure of weight —2 by defin-
ing Z(1)"b~! := Z(1)c and Z(1)P4 = 0 for p,q # —1.

The main reason for living of the pure Hodge structures is to restate the Hodge decomposition theorem

in a more general framework.

Corollary 3.2.8. On every compact Kdhler manifold M, its k-th de Rham cohomology ring HgR(M)

has a real pure Hodge structure of weight k living on the first quadrant, given by

Hjp(M)c = Hjp(M,C) = @ HP(M)
p+a=k

Moreover, since H*(M,7) @ C = ]'{(’IER(M7 C) by the de Rham theorem, its integral cohomology ring
H¥(M,Z) also has an integral pure Hodge structure of weight k. Furthermore, the Hodge polynomial
of M is the sum of the Hodge polynomials of the Hodge structures on H*¥(M) for k =0,...,dimg M.

Furthermore, since the induced maps in cohomology factorices through the Dolbeaut cohomology, we

have a stronger result.

Corollary 3.2.9. Let Kdah. be the category of compact Kdahler manifolds and C*° maps and let us
define the contravariant functor Hyz : Kdh. — Ab given by Hyz(M) = H*(M,Z) and, for f : M — N
a C®-map, Hy(f) = f*: H*(N,Z) — H*(M,Z). Then Hy factorices through the inclusion HS <
Ab, that is, there exists a contravariant functor Hy : Kédh, — HS such that the following diagram

commutes
Hyz,

HS

Kadh,

Ab

With a pure Hodge structure we can use the general contructions of linear algebra to build some

associated Hodge structures.

o If Hr and HY, have pure R-Hodge structures of weights k and k', respectively, then we can define
a pure R-Hodge structure of weight k + k" on Hr ® HY, by defining

(H® H/)%q — @ HPLO ) [P2:42

p1+p2=p
Q+q2=q

e If Hp has a pure R-Hodge structure of weight k and Hj, := Hom(Hg, R) is its dual, then H7
has a pure R-Hodge structure of weight —k by decreeting the decomposition

H(Ep,q — @ P4
ptg=—Fk
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e More generally, if Hr and H}, have pure R-Hodge structures of weights k and k', respectively,
then we can define a pure R-Hodge structure of weight ¥’ — k on Homg(H,H') = H* ® H by
defining

Hom(H, H')29 = @ Home (HPH® | [P242)

p2—p1=p
q2—q1=4q

Example 3.2.10. Given the Tate Hodge structure Z(1), the m-th Tate Hodge structure is the Hodge
structure on Z(m) := Z(1) ® ... ® Z(1). It is a Hodge structure of weight —2m on Z(m) = (2mi)™ Z

m times
with decomposition Z(m)~"~™ = Z(m)c and zero otherwise. If m < 0, we define Z(m) := Z(—m)*.

Tensoring by a ring R C Z we can define the R-Tate m-th Hodge structure R(m) := Z(m) ® R for
m € Z.

Definition 3.2.11. Given a pure Hodge structure Hp, we define its m-th Tate twist as the induced
pure Hodge structure on Hp(m) := Hr ® R(m). A morphism of R-modules f : Hr — HJ, is said to
be a morphism of pure Hodge structures of type m if f(—m): Hgp — Hp(—m) is a morphism

of Hodge structures.

Remark 3.2.12. Observe that, using the definitions of the Hodge structure induced in the tensor
product, we have that, if Hr has a pure Hodge estructure of weight k, then the Hodge structure on
Hpr(m) has weight k£ — 2m and satisfies

H(m)P4 = HPtm.gtm

Note that this is coherent with the usual definition of the shift of grading in a graded ring.

Example 3.2.13. Let M be a compact Kéhler manifold of real dimension 2n. Observe that the

integration map in top cohomology

Tr: H*™M,C) — C
1
o g

do not respect the Hodge structures on H?"(M,C) = H™""(M) and C = C°Y, since Tr(H™"(M)) €
C™" = 0. However, if we twist the grading in C we have for Tr(—n) : H**(M,C) — C(—n) that
Tr(—n)(H"™(M)) = C(—n)»" = C*Y. Therefore, H?"(M,C) and C(—n) are isomorphic as Hodge

structures and 7'r is an isomorphism of Hodge structures of type n. Moreover, using this shifted

integration map, we have that the bilinear form used in the Poincaré duality
H*(M,C) o B> *(0r,C) & 52 (,0) "5 ¢(—n)
respects de Hodge structures so the Poicaré isomorphism induced by it

H*(M,C) S Hom(H?**(M,C),C(-n))
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is an isomorphism of Hodge structures.

Finally, we can also generalize the concept of polarization to this general framework.

Definition 3.2.14. Let Hr be a pure R-Hodge structure of weight k. A polarization on Hp is a
R-valued bilinear form

Q:HrrHgr - R

such that

e () is symmetric for k even and antisymmetric for k odd.

e With respect to its complexification Q¢ : Hc ®c Hc — C the spaces HP? and HP4 are
orthogonal for p # p’ or q # ¢'.

o QP : HP1 @ HPY — C given by QP(z,y) = P71Qc(x,y) is positive-defined.

A pure Hodge structure that admits a polarization is said to be polarizable. A pure Hodge structure

with a polarization is called a polarized pure Hodge structure.

3.2.1 Pure Hodge Structures via Filtrations

We can use an alternative way for defining pure Hodge structures which, in some contexts, is useful
and will allow us to generalize it to the mixed Hodge structures framework. Let us fix a R-module

Hp, with a pure Hodge structure of weight k, Hc = €& HPY. Let us define the submodules
ptq=k

F,He =P H" "

r>p

Observe that the F, form a decreasing filtration
HeD...D Fp_lH(c D) FpH(c D) Fp_;,_lH(C 2...2 {0}

called the associated Hodge filtration. Observe that, since H¢ is a finite dimensional C-vector space,

the Hodge filtration must have finite length. Moreover, we have

FHe=@HF " =@H" = P HH

r>p r>p s<n—p

so we can recover the Hodge structure by

HP1 = FpH(C N FqH(C
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o0
Furthermore, the condition that |J Fp,Hc = Hc can be checked to be equivalent to F,Hc &

p=—00

Fy_py1He = Hc for all p € Z. Therefore, we can reformulate the property of having a Hodge

structure of weigh k.

Definition 3.2.15 (Equivalent to 3.2.1). Given a finitely generated R-module Hp, for some ring
R C C, a pure Hodge structure on Hp of weight k is a decreasing filtration of Hc = Hr ®z C,

{FPH(C}pGZ
HcD...D Fp_lﬂ(c D) FpH(c D) Fp_;,_lH(c 2...2 {0}

such that, for all p € Z
FpHe ® Fy_pi1He = He

3.2.2 Pure Hodge Structures via Representations

Another equivalent way of specifying a pure Hodge structure is via a real representation. Let us define

the real algebraic group S(R) by

S(R) = {M(u,v) - (“ _”> c GL(2,R)}

Observe that, the homomorphism f : S(R) — C* by f(M(u,v)) = u+iv is an isomorphism, so S(R) is
nothing more that C* seen as real algebraic group. In particular, we can see R < S(R) as the points
of the form M (t,0) for t € R.

Analogously, we define the complex algebraic group S(C) by

In this case, we have that S(C) = C* x C* by M(z,w) — (z + iw, z — iw).

Proposition 3.2.16. Let Hg be finite dimensional Q-vector space. There is a natural biyective cor-
respondence between rational Hodge structures of weight k on Hg and real algebraic representations
p:S(R) — GL(Hg) such that, p|r- : R* — GL(Hg) is of the form p(t)(v) = t*v.

Proof. =) If Hg has a pure Hodge structure of weight k

He= P H"

pt+a=Fk
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we can decompose every v € Hec inv = ) vy, with v,, € HP? in an unique way. Therefore, we
pta=k
can define the complex representation p : C* — GL(Hc) by

p(2)(v) = Z ZPZpq

pt+q=Fk

This is, in fact, a real representation because

pDW) =pDW) = Y. FTg= Y FETG= Y 27, = p(2)(0)

p+q=k pt+q=k p+q=k

so p(z) = p(z). Hence, it can be seen as a real algebraic representation p : S(R) =2 C* — GL(Hg)
that, for t € R* — S(R) is given by

p(t)(v) = Z tPtvpq = Z Py, = tho

p+a=Fk p+q=k

<) Let p : S(R) — GL(HRg) be a real algebraic representation such that, on R* is of the form
p(t)(v) = tFv and let take its complexification pc : C* — GL(Hc).

Since C* is an abelian Lie group, by the Schur lemma, every irreducible representation is 1-dimensional.

Hence, taking its irreducible representations, we have a splitting

dime He dime He

Hc = Z H? p= Z Ps
s=1 s=1

where the H® are 1-dimensional and ps : C* — GL(H?) is of the form ps(z)(v) = fs(z)v for some
fs : C* — C*. However, since p is real algebraic, f, : C* C R? — C* C R? must be a real algebraic

function, ergo of the form f(z) = zPsZz% for some py, s € Z. Hence, defining

HP = P H

Ps=Pp
4s=q

we have that pc : C* — GL(Hc) splits p = > ppq With p, 4 : C* — GL(HP?) of the form p,,(v) =
P
zPZ%v. Moreover, since p on R* is

thy = p(t)(v) = (Z Pp,q(t)> (v) = Z Pp.a(t)(Vpqg) = Z Pty = thﬂ”p,q

pq p.q

we must have p+q =k, so Hc = @p+q:k HP4 that is, the Hodge structure has weight k. Furthermore,

since p is real, pc(z) = pc(z) so HPY = H?P, completing the check that this is a rational pure Hodge
structure of weight k. |
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3.3 Mixed Hodge Structures

In order to study the Weil conjectures, in a serie of articles published between 1971 and 1974 ([15],
[17] and [16]), Deligne extended the notion of pure Hodge structures into a larger category, rather
abstract and artificial, known as mixed Hodge structures. With this general definition, he could proof
that the cohomology ring of a large range of geometric spaces is naturally endowed with this mixed

Hodge structure.

As we will see, this mixed Hodge structures, and especially an integral polynomial that traces them,
will be the main tool of study of SL(2,C) character varieties allowing us to compute some numerical

invariants.

3.3.1 Review of category theory

A category is an abstraction of the fundamental structures that lies in the fundamentals of mathemat-
ics. In some sense, they try to capture the properties that can be defined only refering to mathematical
objects an morphisms between them. For a more general introduction to this topic, see, for example

[75], [48] or [65].

Definition 3.3.1. A category, C, is made of the following elements:

e A class 3, Obj(C), whose elements are called the objets of the category.

e For each A, B € Obj(C), a class, Hom(A, B), whose elments are called the morphisms between
A and B. An element f € Hom(A,B) is denoted by f : A — B. Moreover, the classes
{Hom(A, B)} 4 p must be pairwise disjoints.

e A binary associated operation with unit, o, called the composition of morphisms, such that,
for all A, B,C € Obj(C), we have a map o : Hom(A, B) x Hom(B,C) — Hom(A,C) denoted

(f.9)—gof.
Example 3.3.2. Some examples of categories are
e Set, the category whose objects is the class of all sets and its morphisms are all the maps between
sets.

e Gr, the category of all groups with group homomorphisms and, inside it, the category Ab of all

the abelian groups.

3A class is a generalization of the notion of set, in the sense of the Zermelo-Fraenkel axioms. As we will see, we will
need to form the class of all the sets and, by Russell’s paradox, it cannot be a set. Essentially, a class behaves as a set,
except for the fact that they cannot be elements of another class, eliminating the Russell’s paradox. For a complete
formalization, see Von Neumann-Bernays-Gddel’s axioms.
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e Top, the category of topological spaces and continous maps between them. More generally, we

have Diff the category of diferentiable manifolds and differentiable maps between them.

e Var,, the category of algebraic varieties over the field k. We & = C, we usually elipse the

subscript.

Definition 3.3.3. A category C is called small if Obj(C) is a set. Analogously, C is called locally
small if, for each A, B € Obj(C), Hom(A, B) is a set.

Example 3.3.4. With this definition, we can consider Cat, the category whose objects are small
categories and functors between them. In that case, Cat is not a small nor a locally small category.

ni localmente pequena.

Definition 3.3.5. In a category C, a morphism f : A — B is called a monomorphism if cancels by
left, i.e., if for all g1, g2 : C' — A it holds that f o gy = f o go implies g1 = go. Analogously, f: A - B
is called an epimorphism if cancels by right, i.e., if forl all g1, g2 : B — C, it holds that gjo f = goo f

implies g1 = go.

3.3.1.1 Abelian categories

In the theory of mixed Hodge structures, one of the most important facts is that the mixed Hodge
structures behaves well under kernels and cokernels. This well-behaviour can be captured under
the notion of an abelian category. Roughtly speaking, an abelian category tries to mimic the most

important properties of the category of abelian groups of modules.

In order to extend this notions to general categoris, first of all, let us study how to define Ker y Coker

in a categorical setting.

Definition 3.3.6. In a category C, an object 0 € Obj(C) is called the zero object if, for all object
A € 0bj(C), we have two unique morphisms 0 — A and A — 0. In this sense, a morphism A — B
between A, B € Obj(C) is called the zero morphism if it factorices through A — 0 — B.

Definition 3.3.7. Let C be a category and let f: A — B € Hom(A, B) for A, B € Obj(C). We say
that k : K — A is the kernel of f if f o k = 0 and, for any other morphism &k : K — A with fok =0
there exists a morphism A : K — K such that k = ko h.
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Analogously, the cokernel of f : A — B € Hom(A, B) is a dual element to kernel, that is, is a
morphism k* : B — K* such that k* o f = 0 and, for any other morphism k* : B — K* with k*o f = 0
there exists a morphism A : K* — K* such that k*' = h o k*.

K*___ﬁ__>[~{*
Ay E* A
B
0 0
d
A

Let us suppose that, in our category C, every morphism has kernel and cokernel. Then, given a
morphism f : A — B, we define the image of f, Im f as Im f = Kerk*, where B LN Coker f is the

cokernel of f.
Definition 3.3.8. A pair of morphisms A 1, B % C is called exact in B if Im f=Kerg.

Definition 3.3.9. A category C is called abelian if it satifies

e For each A, B € Obj(C), Hom(A, B) is an abelian group and the composition of morphisms is

bilateral linear respecto to the group operation, that is
folg+h)=fog+foh (9+h)of=gof+hof

e C has zero object.

e For every objects A; y As there exists an object B and morphisms

such that

p1 ot = ida, P2 0 ig = ida,

ipopyt+igopy =idp proip =p1oiz =0
e Every morphism f: A — B has kernel and cokernel.
e For every morphism f : A — B, we have the following decomposition in f = joi

0—>Kerfﬁ>Ai>Imfl>Bk—*>Cok‘erf—>0

where 7 is and epimorphism, j is a monomorphism and Im f = Coker k =2 Ker k*. This decom-

position is, usually, called the canonical decomposition of f.
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In an abelian category, monomorphisms and epimorphisms can be characterized as in the case of

groups.

Proposition 3.3.10. In an abelian category, a morphism f: A — B is a monomorfism if and only
if Ker f = 0. Analogously, it is an epimorphism if and only if Coker f = 0. Moreover, [ is an
isomorfism if and only if Ker f =0 y Coker f = 0.

Proof. Let us suppose that f is a monomorphism and K K Adsits kernel, so fok =0 = fo0. Hence,
since f cancels by the left, we have k = 0, and, thus, 0 — A satisfies the universal property of been

the kernel of f. The checking for the cokernel is analogous.

Reciprocally, let us suppose that Ker f = 0. In that case, we have that id4 : A — A is the cokernel of
k and, thus, there exists an isomorphism h : A — Im f. Therefore, using the canonical decomposition

of f, we have

0*0>A*i>1m ngL)O
idf‘i/
A

so i is an isomorfism. Therefore, since j is a monomorfism, we have that f = j o4 is a monomorphis.
Analogously, if Coker f = 0, then idg : B — B is the kernel £* and, thus, there exists an isomorfismo
I : B — Im f that resticts j to be and isomorfism. Together with ¢ been an epimorfismo implies that

f is an epimorfism. |

Every axiom of abelian category is natural, except the thirth one. This axiom is related with the
existence of direct sums and direct products, that can be formalized by means of the notion of pullback

and pushout of a diagram.

Definition 3.3.11. Given morphisms f: A — Z and g : B — Z, a pullback is a pair of morphisms
p1: P — Aand py: P— B suchthat fop; =gops

p—= A
D2 f
B A
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and they are universals for this diagram, i.e., given morphisms ¢; : P’ — Ay q2 : P’ — B, there exists

a morphisms h : P/ — P such that p; oh = ¢; and py o h = ¢o.

Pl q1
[
\
P——A
q2 i
B—7

Analogously, given morphisms f: Z — Ay g: Z — B a pushout is a pair of morphisms i; : A — P
and 49 : B — P such that i0 f =i20g¢

P - A
i f
B A

and they are universals for this diagram, i.e., given morphisms j; : A — P’y jo : B — P’, there exists

a morphism h : P — P’ such that p; o h = ¢; and ps o h = ¢o.

i \\ il\
\ P4
J2
h f

AN

12
B<TZ

In this way, in an abelian category, given two objects, we can form its direct sum and its direct product,

and both agree. For the proof, see [24].

Proposition 3.3.12. In an abelian category C, for every A, B € Obj(C) the pullbak of the morphisms
A1 — 0 y As — 0 and the pushout of the morphisms 0 — A1 and 0 — Ay agree.

3.3.1.2 Filtrations

Definition 3.3.13. Let C be an abelian category® and let A € Obj(C) be and object of C. A
decreasing filtration of A, F, A, is a sequence of subobjects of A, {FpA}pEZ such that

AD...DF, JADF,ADF,1AD...20

4Usually, we will take C to be the category of R-modules, the category of abelian groups or the category of k-vector
spaces.
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In this case, (A, F}) is called a filtered object. The associated graded complex of F,A, Grf' A, is
the graded object Grf'A = EBp Gr{f A where the pieces are given by

F,A

Fp._
Gr, A= Fyod

Analogously, an increasing filtration of A, W*A is a sequence of subobjects of A, {WkA} ez, Such
that
0oC..cwhrlacwracwhktlac...cA

and de associated graded complex of W*A, Grj;, A is the graded object Gy, A = @p GTIIfVA where

the pieces are given by

Given two objects A, B € Obj(C) with decreasing (resp. increasing) filtrations FyA and F,B (resp.
W*A and W*B), a morphism f : A — B is called a filtered morphism or morphism of filtrations
if

f(F,A) C F,B (resp. FWkA4) C W’“B)
for all p € Z. In that case, we will write f : (A, Fy) — (B, Fy) (resp. f: (A, W*) — (B,W*)). A
filtration FyA (resp. W*A) is called finite if there exist a,w € Z such that

FAA=A F,A=0 (resp. WYA=0 W¥YA=A)

Remark 3.3.14. Given an increasing filtration W* A of an object A, we can define a decreasing filtration
F.A by
FyA:=W™PA

S0, in practice, without lost of generality, we can suppose that our filtration is a decreasing filtration.

Example 3.3.15 (R"). Taking C to be the category of R-vector spaces, and A = R", we have the

decreasing filtration
R*DOR"!x{0}D...OR"  x {0} 2>... DR x {0}"! > {0}"

In general, in a vector space V, a decreasing filtration is a sequence of decreasing vector spaces {V},}

such that, taking Fj, =V,

PEZL

V2.2V 2V 2Vp12...20

Definition 3.3.16. Let A € Obj(C) with a decreasing filtration Fy A and let B C A be a subobject
of A. Then, we can define a filtration on B, called the induced filtration in subobjects, F.B by
taking

F,B:=F,ANB
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Analogously, in a quotient A/B for B C A, we have the induced quotient filtration (or simply the
quotient filtration), F,A/B, given by

Fp<A> —n(p )= TPATB L RA R

B B ~ F,AnNB F,B

where m: A — A/B is the passing to the quotient map.

3.3.2 The Category of Mixed Hodge Structures

Definition 3.3.17. Let R = Z or Q and let Hy be a finitely generated R-module®. A mixed Hodge

structure on Hp is pair of

e A finite increasing filtration of the Q-vector space Hg, W*Hg, called the weight filtration

0C...CWrF1lHy CWFHy C WHH HG C ... C Hg

e A finite decreasing filtration of the C-vector space Hc, FiHc, called the Hodge filtration

HeD...DFy 1He D F,He D FyyHe D ... 20

Such that, for each k& € Z, the induced filtration of F, on GTI’fVHQ ® C gives a pure rational Hodge
structure of weight k& on Gr{ﬁvH@. If R = Z the mixed Hodge structure is called integral and, if
R = Q, the Hodge structure is called rational.

Remark 3.3.18. Recall that the induced quotient filtration by Fy on the graded complex GrlkijQ ®C

is given by

(F,He N (WFHo ® C)) + Wr1Hg ® C
kalHQ ® C

Fy(GlyHg @ C) = (FyHe N (WrHg & C) ) =

Remark 3.3.19. Analogously to the previous definition, we can define, when R = R (resp. R = C),
a real mixed Hodge structure (resp. complex Hodge structure) over a finite dimensional R-
vector space, Hg (resp. C-vector space Hc). In that case, we should take the weight filtration to be a
filtration of the R-vector space Hr (resp. C-vector space H¢) and the Hodge filtration should induce

a pure real Hodge structure on GT‘I]}/HR (resp. a pure complex Hodge structure on Gr{fVH(c).

Definition 3.3.20. Given two R-modules Hr and HJ, with respective R-mixed Hodge structures, and
homomorphism f : Hgr — HJ, is called a morphism of mixed Hodge structures if fg : Hy — H@
(resp. fr : Hr — Hp in the real case) is a filtered morphism with respect to W*Hg (resp. W*Hpg)
and fc : Hc — H( is a filtered morphism with respect to Fy.Hc.

SA finitely generated abelian group if R = Z and a finite dimensional Q-vector space if R = Q
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With this definitions, we can form the category of R-mixed Hodge structures, denoted by MHSR,
whose objects are finitely generated R-modules with a R-mixed Hodge structues and its morphism are

the morphisms of mixed Hodge structures. It is a subcategory of R — Mod.

One of the most importants results about the category of mixed Hodge structures is that it is well
behaved with respect to kernels and cokernels. The proof of the following theorem can be found in
[12] or [15].

Theorem 3.3.21 (Deligne). The category of R-mized Hodge structures, MHSFE, is an abelian category.

Example 3.3.22. Let Hgr be a pure Hodge structure of weight k, induced by a decreasing filtration
F.Hc of He. Then Hpy also has a mixed Hodge structure by taking the Hodge filtration as Fy Hc and
the weight filtration as W*Hq := Hg for s > k and W"Hg := 0 for r < k. In this case, the associated
graded complex of W is Gr{fVH@ = Hg and vanish otherwise, so Gr{fVH@ ® C = H¢ and, indeed, the
decreasing filtration F Hc induces a pure Hodge structure on Gr’&VHQ ® C. Thus, this filtrations form

a mixed Hodge structure on Hpg, as expected.

Example 3.3.23. More general, suppose that, a R-module Hr has a pure Hodge structure, that is,
we have a grading Hg = ®&pH ]’3 and every H }k% has a pure Hodge structure of weight k. Then, Hp also
has a mixed Hodge structure. For building it, first define the weight filtration of Hg as

k
whita - @ 1
s<k

where Hg = Hp, ® Q. Observe that, with this definition, GTI’fVHQ = Hg.
For the Hodge filtration, let FfHé be the decreasing filtration of H Ik% that induces, in H Ik% its pure
Hodge structure of weight k. Let us define the double grading of subspaces
FrqHe =@ Hé @ FFHE
s>k

Let A C Z x Z be the pairs of possibles pairs (k, ) such that FfH('é is not trivial (that is, the filtration
of H(]é has not stabilized yet in the ¢-th step). Since every filtration FfH(é is finite, we can find a
biyection o : Z — A that preserves the order with respect to the direct lexicographic order induced in

A C Z x 75. Then, using this o, we define the Hodge filtration as the decreasing filtration

FyHe := Fy) He

That, is, we want that the subspaces F}, , Hc comes in order and before Fyr o He for k< K, ie.
oo D Fg g1 He 2 FrgHe 2 Frgr1 He 2 ... 2 Fr\go—1 He D Fyr oo He 2 Fir qry1 He D ...

for k < k" and every q,q’.
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In this case, observe that the induced quotient filtration of Fy,H¢ on GT‘I}/H@ ®C= H(k: is

H(.’é for p small enough
F,(G¥ Ho®C) = 0 for p big enough
F;H& for p intermediate

Therefore, the induced filtration of FyHc on G{}/H@ RC = H(é is exactly the filtration FfH(Ié (maybe
shifted) so it induces a pure Hodge structure of weight & on G@VHQ ® C, as expected. As a result, via

this construction, we can see mixed Hodge structures as a generalization of pure Hodge structures.

Example 3.3.24. Let M be a compact Kédhler manifold and H*(M, C) its cohomology ring, H*(M,C) =
Di>o H¥(M,C). By corolary 3.2.8, every H*(M,C) has a pure Hodge structure of weight k so, by
the previous example, H*(M,C) has a mixed Hodge structure. Therefore, the cohomology ring of a

compact Kéhler manifold has a mixed Hodge structure.

Example 3.3.25. Moreover, using the same ideas than example 3.3.22, we can build a mixed Hodge
structures on direct sums of mixed Hodge structures. Suppose that we have two finitely generated
R-modules H}% and H 12%, with respective mixed Hodge structures. Then, we can put a canonical mixed
Hodge structure on Hp := H}? & H}% in the following way. Let W*Hé and W*Hé be the weight
filtrations and F*Hé, F*H(% be the Hodge filtrations for H}% and H]%, respectively. Then, we define
the filtrations W*Hg and F,Hc by

WrHp .= W*HL, © WFH?, F,Mp := F,H) ® F,H%,

Using the same technique that in example 3.3.22 we see that this filtration can be used as weight
and Hodge filtrations for a mixed Hodge structure on Hgr. Furthermore, in the case of a pure Hodge
structure Hgr = @, H fz’ this mixed Hodge structure on Hpg coincides with the one described on

example 3.3.22.
Analogous considerations can be done to equip tensor products, dual spaces and homomorphisms of

mixed Hodge structures with a mixed Hodge structure.

The main important theorem in this area, and the reason of living of mixed Hodge structures is the

following result, whose proof can be found in [12] or [17]-[16].

Theorem 3.3.26 (Deligne). The cohomology ring of any complex algebraic variety admits a mized

Hodge structure.

In fact, what Deligne proved is even stronger.

Theorem 3.3.27 (Deligne). Let Varc be the category of complex algebraic varieties with regular
morphisms and let us define the contravariant functor Hg : Varc — Ab given by Ho(X) = H*(X, Q).
Moreover, for regular maps f : X — Y we define Ho(f) = f* : H*(Y,Q) — H(X,Q). Then H
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factorices through the inclusion MHSg — Q — Vect, that is, there exists a contravariant functor

FI@ : Varc — MHSq such that the following diagram commutes

Hy
Varc Q — Vect

MHSy

Analogous considerations can be done for the compactly-supported cohomology X — H¥(X,Q).

Remark 3.3.28. Noting that H(X,C) = H(X,Q) ® C (resp. H.(X,C) = H.(X,Q) ® C), we have that

the previous theorem is also valid for complex coefficients and complex Hodge structures.

H,
Vargc = C — Vect

Ac /

MHS¢

As we will see, this complex version of the Deligne’s theorem will be the most important for our
purposes. Therefore, except explicit denotation, hereon H*(X) will means complex cohomology of X,
H*(X):= H*(X,C).

Remark 3.3.29. Using the mapping cone of a map, the previous theorem can be extended for the
category of pairs of complex algebraic varieties PVarc whose objects are elements of the form (X, U)
with X a complex algebraic variety and U C X a subvariety; and whose maps are regular maps of
pairs f : (X,U) — (Y, V). Then, the pair cohomology functor (X,U) — H*(X,U;Q) also factorices

through mixed Hodge structures

PVarg¢ Q — Vect

MHSq

and analogously for complex cohomology.

Remark 3.3.30. By GAGA theory, every compact Kédhler manifold whose Kéhler form is integral (which
are called Hodge manifolds) is a projective algebraic variety so, by theorem 3.3.27, its cohomology
ring has a mixed Hodge structure. This observation agrees with the fact that, as a compact Kéahler
manifold, its cohomology ring is has a pure Hodge structure (see corolary 3.2.9) which induces a mixed

Hodge structure.

A very useful tool that we will use in order to compute the mixed Hodge structures of the cohomology
of some complex varieties is a long sequence satisfied by the mixed Hodge structures. The proof can

be found in [60] and the cohomological background can be readed in [18].
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Theorem 3.3.31. Let X be a complex algebraic variety and U C X be a subvariety. Then, the induced

map in cohomology by the inclusion map i : U C X gives us a long exact sequence

00— H'(X,U)—— H(X) —— HO(U))

N = HY(X,U) — HY(X) —> H(U) — -

that is also a long exact sequence of mixed Hodge structures.

Moreover, given a tiple (X,U, V) with V. C U C X, the inclusion maps of pairs
U.0) = (U.V) < (X.V) 5 (X,0)

induced a long exact sequence in cohomology

0 —= HO(X,U) ——= HO(X, V) —= HO(U, V) )

[wa, U) - HNXV) = B, "

that is also a long exact sequence of mized Hodge structures.

Now, recall that, by the compactly-supported excision property, we have that, if X is an algebraic
variety (or manifold, or even more general spaces) and Y C X is closed, then the inclusion map of

pairs (X —Y,0) — (X,Y) induces in cohomology an isomorphism
HYX,Y)S H{(X -Y)

Moreover, since the mixed Hodge structure on the compactly supported cohomology is induced from
the one on pairs (see [60]) this isomorphism is also an isomorphism of mixed Hodge structures. There-

fore, we have the following corolary.
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Corollary 3.3.32. Let X be a complex algebraic variety and Y C X a closed subvariety. Then, we

have a long exact sequence of mized Hodge structures in compactly-supported cohomology

0 ——> H(X — Y) —= HI(X) —> HO(Y) 3

Proof. Let X D X be a compactification of X (for example, by projectivization) and let Y CY the
closure of Y in X. Then, via the previously described isomorphism, the desired long exact sequence
is the long exact sequence for the triple ()2', YU ()Z' - X)), X - X). |

3.3.3 Deligne-Hodge Polynomials

Let X be a complex variety and let H*(X,C) be its complex cohomology ring. A very important
invariant that can be computed using the mixed Hodge structure of H*(X,C) is the well known as
Deligne-Hodge polynomial, or E-polynomial. In order to define it, we have to define some numerical

invariants associated to the mixed Hodge structure.

Definition 3.3.33. Let Hg be a finitely generated R-module with a R-mixed Hodge structure on it,
given by weight filtration W*H and Hodge filtration F,H. We define the Hodge pieces associated

to this mixed Hodge structures as the C-vector spaces
HP9(Hp) := GrE (GTZ;;QH ® c)
and we define the mixed Hodge numbers, or simply Hodge numbers, as
hP4(Hp) := dim¢c HPY(HR)

Remark 3.3.34. Recall that, in general, given a finite filtration (increasing or decreasing) FV for some

finite dimensional vector space V', we have that

ariv=parlv= Yy
p p

12

FpiV
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s0, in particular, dim Gr*V = dim V. Now, if we take a finitely generated R-module Hpr with a mixed

Hodge structure on it, we have

@ (1) ~ Dt (67 0¢) > Dot (@ eriyn o) =@ (10 =
p

so, in particular, taking dimensions

Z hp’q(HR) = dim(c H(C

X
Definition 3.3.35. Let X be a complex variety and let H*(X,C) be its k-th complex cohomology
group and H*(X, C) its compactly-supported k-th complex cohomology group, both endowed with the
mixed Hodge structures given by theorem 3.3.26. We define the Hodge pieces of X as the C-vector

spaces
HRPI(X) i= HPU(HNX,C) HEPI(X) o= HP9(HE(X,C)

and we define the mixed Hodge numbers, or simply Hodge numbers, of X as
PEPAX) = PN (X)) REPI(X) = PI(HE(X, ©)
Moreover, we define the Euler-Hodge characteristic as

XX = 37 (1) RE(X)
k
Definition 3.3.36. Let X be a complex variety and let H*(X,C) be its k-th complex cohomology
group and Hf (X, C) its compactly-supported k-th complex cohomology group, both endowed with
their respective mixed Hodge structures. We define the mixed Hodge polynomial of X (resp. with
compact support) as H(X) € Z[t,u,v] (resp. H.(X)) given by

H(X)(t,u,v) Z hk’pq tkupvq resp. H.(X)(u,v,t) Z hk’pq tkupvq
k.p,q k.p,q

From this polynomial, we define the Deligne-Hodge polynomial or the F-polynomial of X as the
polynomial e(X) € Z[u,v] given by

e(X)(u,v) = Ho(X)(—1,u,v) prq X) uPov?

Remark 3.3.37. Sometimes, in the literature the Deligne-Hodge polynomial is refered as e(X)(—u, —v).

We will not use this criterion anytime.
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Remark 3.3.38. By remark 3.3.34, we have that, for all £ >0
D REP(X) = b (X) D hEPUX) = bE(X) D xUX) = xe(X)
P D P

where b*(X) is the k-th Betti number, b¥(X) is the k-th Betti number with compact support and
Xc(X) is the compactly supported Euler characteristic of X. In particular, if P(X) € Z[t] is the

Poincaré polynomial of X and P.(X) the compactly supported one, we have

PO = HE L) PUX)(®) = Holt,1,1)

3.3.3.1 Properties of Deligne-Hodge polynomials

One of the main properties of the Euler characteristic of a topological space X is that it is additive,
that is, if X = X3 U X9 then x(X) = x(X1) + x(X2). This property can be extended to the case of

mixed Hodge structures obtaining the following theorem, whose proof can be found in [16].

Theorem 3.3.39 (Deligne). The Deligne-Hodge polynomial is additive. That is, if X is a complex
variety that can be writen as X = X1 U Xo, where X1 and Xo are locally closed in X, then

e(X) = e(X1) + e(X2)

Remark 3.3.40. Recall that a subspace Y C X is locally closed in X if Y is a closed set of an open
set of X. In the case of algebraic varieties, Y C X is locally closed means that Y is an open set of a
subvariety of X (a quasi-subvariety). In the practice, this means that Y is the space determined by a

set of polynomials equaties and negation of equalities that contains the ones of X.

Corollary 3.3.41. The following polynomials hold:

o ¢(C")(u,v) = (uv)™.

o If A CC" is a finite set of points, then e(C" — A)(u,v) = (uv)™ — |A].

1—(uv)™
1—uv

o e(PV)(u,v) =14+ uv+ (uww)? + ... + (uv)" =

Proof. First of all, let us compute the Hodge polynomial of P!. Recall that, using basic techniques of

algebraic topology (for example, an argument using a Mayer-Vietoris sequence) we have that
o (P =C HL(PYH) =0 HZ(PHy=C

Now, let us endow P! with the Fubini-Study metric, becoming a Kihler manifold. By the Hodge
decomposition theorem for pure Hodge structures on compact Kahler manifolds 3.2.8 we have that
H2(PY) = HOO(P!) and HEZ(P') = H*O(P') @ HVY(P!) @ HO?(P'). However, since P! has complex
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dimension 1, Q*%(P!) = Q3(P!) = 0, so H*O(P!) = H®?(P!) = 0. Hence, the only non-trivial

Dolbeaut-cohomology groups of P! are
HOO(PYy =~ C HY (Pl =~ C
or, in terms of the induced mixed Hodge structure, we have the Hodge numbers
OO0 (1) = ROOO(PL) = 1 RELL(PL) = pELL(PL) = 1

so the only non-trivial Euler characteristics are X(C)’O =1 and Xi’l = 1. Thus, we have obtain the
Deligne-Hodge polynomial
e(P)(u,v) = 1+ uw

Furthermore, since P! = C LU {co} we have that, by additivity of the Deligne-Hodge polynomial
e(C)(u,v) =e(P) —e(x) =1+uww—1=uwv

as expected.

For the general case of the n-dimensional projective space P”, we can use a similar argument. By the
same reason that the previous case, it can be shown that the cohomology of P is H2¥(P") = R if
k =0,...,n and vanish otherwise. Now, if we endow P" with the Fubini-Study metric, it becomes a
Kihler manifold with Kihler form w € Q2(P"). Observe that, for k = 0,...,n, [W¥] € H?*(P") is the
generator of the corresponding cohomology group. Indeed, since w is a symplectic form, it is closed,

k

so dw® = 0. Moreover, w* is not exact. To see this, observe that, if w* would be exact for some k, let

us say wk = dn for n € Q2*~1(P), then we will have
Wr=wF AR =dp AR =d (77 A w”7k>

But this is impossible, because, since w is not degenerated, w™ is a volume form so, in particular

fPl w™ # 0, contradicting the Stokes’ theorem. Hence, w”

H?F(P") = R, we have that H?*(P") = [w"].

is a closed non-exact 2k-form and, since

For the induced pure Hodge structure, observe that every Kahler form lives in the (1, 1)-part of the
forms, (see remark A.3.4), so w € QVY(P") and wk € H¥*(P") for k = 0,...,n. Hence, in terms of the
Dolbeaut cohomology we have the non-trivial Dolbeaut class 0 # [w*] € H**(P"). Therefore, using

the pure decomposition given by 3.2.8, we have HZ(P") = ¢ HP4(P"), so we obtain that the only
p+q=2k
non-trivial Dolbeaut cohomology groups are, for k =0,...,n

Hkkpeny = c
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or, in terms of Hodge numbers h2Fik:F(Pr) = hgk;k’k(IF’”) — 1 and vanishing otherwise. Thus, Y~ (P") =

1 for £ =0,...,n and vanish otherwise, giving the Deligne-Hodge polynomial
e(P")(u,v) =1 +uv + (wv)? + ... + (uwv)"

as expected.

For the case of C", observe that, removing an affine hypersurface of P, we have the decomposition
P =P tuC"
s0, in particular, by theorem 3.3.39, e(P") = e(P"~!) + ¢(C") obtaining

e(C™")(u,v) = e(P")(u,v) — e(P"fl)(u, v) = (uv)"

Finally, if A C C" is a finite set with cardinal |A| then, since the Deligne-Hodge polynomial is additive
and e(A)(u,v) = |A| we have

(uv)" = e(C")(u,v) = e(C" — A)(u,v) + e(A)(u,v) = e(C" — A)(u,v) + |A]
|

Another important property of the Euler characteristic is that it is multiplicative. That is, if X = Y xZ
then x(X) = x(Y)x(Z). This property translates into mixed Hodge structures via some kind of
Kinneth formula. The proof of this result can be found in [60].

Theorem 3.3.42 (Kiinneth formula). Let X,Y be complex algebraic varieties endowed with their
respective mized Hodge structures. Then, for any k € N and p,q € Z we have

HKJ)Q X % Y @ Hk?hpla‘h ) Q Hé@;pz,(h (Y)

k=k1+ko
p=p1-+p2
q=q1+q2

In particular, we have
RSP X Y) = 37 RETI(X) - B ()
k.p.q
Corollary 3.3.43. Let X, Y be complex algebraic varieties endowed with Deligne-Hodge polynomials
e(X),e(Y) € Z[u,v]. Then, we have

e(X xY)=e(X)e(Y)

Furthermore, this multiplicative property of the Euler characteristic (and, thus, of the Deligne-Hodge

polynomial) can be extended using spectral sequences, it can be proved (see [72]) that, if we have
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an orientable fibration X — B with fiber F' and B path connected, then again x(X) = x(B)x(F).
This property of the Euler characteristic again can be extended to the case of mixed Hodge structures

under rather general hypothesis. The proof can be found in [47].

Definition 3.3.44. Let X, B and F be smooth algebraic varieties and let 7w : X — B. 7 is called a
semi-algebraic fibration if 7 is an algebraic map and 7w : X — B is an holomorphic bundle with
fiber F'. This means that, seen X, B and F' as complex manifolds with the analytical topology, for
every b € B, there exists an neighbourhood (in the analytical topology) U C B of b such that 7—1(U)
is biholomorphic to U x F'.

Theorem 3.3.45 (Logares-Munoz-Newstead). Let X, B and F be smooth algebraic varieties and let
X — B be a semi-algebraic fibration with fiber F. If the action of m1(B) on H}(F) is trivial, then

e(X) = e(B)e(F)

Remark 3.3.46. Since the previously theorem will be heavily used, we are going to call E-fibration
to any fibration 7w : X — B with fiber I’ that satisfies the hypotesis of theorem 3.3.45. Supposing that

7 is an algebraic morphism, some cases where the hypothesis are satisfied are:

e B is simply-connected.
e B is irreducible and 7 is an algebraic bundle, that is, locally trivial in the Zariski topology.
e F'=P" for some n > 0. This was proven in [54] by Munoz, Ortega and Vazquez-Gallo.

e 7 is a principal G-bundle with G a connected algebraic group. Indeed, let us fix b € B and
observe that any loop on B around b is associated, up to homotopy, to an automorphism of Fj,
which is the action of some element g € G. Since G is connected, if v : [0,1] — G is a path
between ¢ and the identity element e € G, then H : Fy, x [0,1] — F}, given by H(y,t) = ~(t) - y
is an homotopy between g- : F}, = F}, and idp, : F, = F,. Therefore, the action of 71(B) on
H*(F) is trivial.

Remark 3.3.47. The case of principal bundles, apart from the obvious use, will be also used in the
following way. Let us suppose that we have algebraic varieties Y C X, an algebraic group G and a
connected subgroup H C G. Suppose that G acts algebraically and freely on X such that G-Y = X
and, forally € Y

H-y=G-ynY

Observe that, in particular, H-Y =Y and X/G=Y/H.

In this situation, we define the right action of H on G' x Y by (g,y) - h = (gh,h™! - y). This is a free
action and the action of G on Y map p : G x Y — X is an H-invariant map. Moreover, if we take

xo € X, let us say zg = go - yo for some yg € Y and g9 € GG. Then, we have

p Hzo) ={(9,y) €EGxY|g-y=m} ={(g.9) €GXY|g-y=y}=p"(y0) = H 5o
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so H acts transitively on the fibers and, locally, p is a H-equivariant fiber bundle.

Therefore, we have an H-principal bundle
H-GxYy X
with p algebraic. Hence, by remark 3.3.46 this is an E-fibration, so
e(G)e(Y)=e(GxY)=e(X)e(H)
or, equivalently
e(X)=e(Y)e(G/H)

Remark 3.3.48. The hypothesis of theorem 3.3.45 of m(B) acting trivially on H}(F') is absolutely

necessary. For example, let us take the affine hyperbola
X={ay=1}={(z+y)? - (z—y)?=1} CC?

Of course, the map ¢ — (t,4t71) for t € C— {0} is a biregular isomorphism X = X so e(X) = ¢(C*) =

uv — 1.
However, let us consider the fibration 7 : X — C given by 7(z,y) = z—y. If t € C—{%i} we have that
71(t) ={(z,y) € C* | (x+y)* =1+ 1t%, & —y =t} = Cx Zy, Therefore, taking X; = 7~ 1(C—{=£i})

we have the semi-algebraic fibration

CXZQ*)Xli)C*{:El}

Moreover, for +i, we have 7~ ! (+i) = {(z,y) € C? | (z 4+ y)? = 0,2 — y = +i} = C. Hence, if we define
Xo =X — Xj, then Xy = 771(i) Un—!(—i) = C UC so, by additivity, e(X3) = e(C) + ¢(C) = 2uv.

Now, if 7 was an E-fibration on C — {£1}, then we will have e(X;) = e(C — {£1})e(C x Zg) =
2uv(uv — 2) = 2u?v? — 4. This, together with the true computation e(Xs) = 2uv will give us e(X) =
e(X1) + e(X2) = 2u?v? — 4 4 2uv # uv — 1. Of course the application of theorem 3.3.45 fails because
71 (C — {+£i}) does not act trivially on H}(C x Zy) = H}(C) @ H(C) since the non-trivial elemental

loops interchange the two copies.

Remark 3.3.49. Using this multiplicative property of the Deligne-Hodge polynomials, the computation
of this polynomials for C" and P™ can be substantially simplified. Indeed, in the first part of the proof

of corolary 3.3.41, we obtained

e(C)(u,v) = uv e(PH(u,v) =1+ uv
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Now, by the multiplicative property

n times

e(C")(u,v) =e(C x ... x C)(u,v) = (e(C)(u,v))" = (uv)"

and, using the decomposition
P" = {x}uCUC*uU...uC"

the Deligne-Hodge polynomial of P™ easily follows.

This two properties of the Deligne-Hodge polynomial, additivity and multiplicativity, are the main
ingredients of a powerful technique that allow us to study the cohomological property of algebraic
varieties by stratifying the space in simpler pieces to which we can easily compute their Hodge-
Deligne polynomial. This is known as the stratification technique, first developed by P. Newstead,
M. Logares and V. Munoz in [47] and extended in [46] or [51], [49], [50] and [52], and the main tool

used for studing the character varieties of this Master’s thesis.

Finally, a very important simplification that we will encounter in our computations is that all the
Deligne-Hodge polynomials will only depends on wwv. In general, if the Deligne-Hodge polynomial of
X only depends on uw, then X is said to be of balanced type or of Hodge-Tate type. In that
case, the Deligne-Hodge polynomial of X is writen using the change of variables ¢ := uwv, considering
e(X)(q). For example, by the previous example 3.3.41, we have that C" and P™ are of balanced type
and

e(C")(q) = ¢" ePVq)=14q+¢@+...+¢" =

Moreover, if we only use spaces of balanced type, then all the spaces that can be constructed form
them are going to be of balanced type. In practice, this allow us to assure that all the spaces that will
appear in the computations of chapter 4 will be of balanced type. More preciselly, the assertion is the

following, and its proof can be found in [47].

Proposition 3.3.50. Let X,Y, U be algebraic varieties with Y, U C X, Y closed in X and X =Y UU.
Then, if two of the spaces are of balanced type, then is the third. Moreover, if F — X — B is a E-
fibration and B, F are of balanced type, then X is of balanced type.

3.3.3.2 Deligne-Hodge polynomials via equivariant methods

Another important tool that we will need for the computations of chapter 4 is a method for computing
the Deligne-Hodge polinomial of a variety X quotiented by an action of Zy. This method is an

application of a more general setting known as equivariant cohomology.

Let us suppose that we have a variety X and an action of Zo on X. Let us introduce the auxiliar

polynomials
e(X)t = e(X/Zs) e(X) i=e(X) —e(X)T
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Then, the key point is that we can extend our theorem of E-fibrations to this equivariant context. For

the proof of this result, see [47].

Theorem 3.3.51. Let X be an algebraic variety with an action of Zo on it. Let B a smooth irreducible
variety and let F be a variety. Suppose that there exists an E-fibration F — X 5 B, an algebraic
fibration F' — X /7y KN B/Zy and 2 : 1-maps X % X/Zy and B 2 B/7Zy such that the following
diagram holds

F
/N
X X/Zg
Ik
B B/ Zy

Then, we have that
e(X)t =e(X/Zy) = e(F)Te(B)T +e(F) e(B)~

where the action of Zs on F is the induced action.

Remark 3.3.52. In the hypotesis of theorem 3.3.51. Since 7 : X — B is an FE-fibration, we have

3.3.3.3 Mayer-Vietories type arguments for mixed Hodge structures

Finally, let us observe that, in the notation of this section, the long exact sequence of corollary 3.3.32

can be restated in the following useful terms.

Proposition 3.3.53. Let X be a complex algebraic variety and Y C X a closed subvariety. Then, for

every p,q € Z, we have a long exact sequence of Hodge pieces

0 > Hg;ILQ(X _ Y) N Hg;P»Q(X) > Hg%P,fI(Y)
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Example 3.3.54. We will finish this section with some computations of Hodge numbers for very
simple and important spaces. First of all, recall that, since P" is a compact Kéhler manifold, it has
a pure Hodge structure that is also a mixed Hodge structure. From the computations of corollary
3.3.41, we know that

HZERFPY) = C

for k = 0,...,n and vanish otherwise. In particular, for P! we have that the only non-trivial vector
spaces are HOU(PY) = HZV (P = C.

Using this information and the long exact sequence of proposition 3.3.53, we can compute the mixed
Hodge structure of C. To this end, observe that C = P! — {oco}. Thus, taking the long exact sequence
of proposition 3.3.53 with (p,q) = (0,0) have that the only non-trivial part of this sequence is

0 — H(C) — HI'(P') — HO({o0}) —0

C C

so H%%9(C) = 0. Analogously, for (p,q) = (1,1), the only non-trivial part of the long exact sequence
is
0 — HEH(C) —= HIM (PY) —= HEM ({oo}) —0
C 0
so H? ;1’1(((3) >~ [ ;1’1(IP’1) =~ C. Thus, the unique non-trivial mixed Hodge group in the induced mixed
Hodge structure of C is
HXM(C)=C

Finally, using the same ideas, we can compute the mixed Hodge structure of C* = C — {0}. Again,

for (p,q) = (1,1), the only non-trivial part of the induced long exact sequence is

0— g7 (C*) — HZMHC) — HZVH({0}) —= 0

C 0
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so HZ(C*) = HZMY(C) = C. However, for (p,q) = (0,0), the situation is slightly more dificult,

because we have the long exact sequence

so H¥"(C*) = 0 and HZ*?(C*) = HF"({0}) = C. In this way, we have that the unique non-trivial

mixed Hodge structure groups of C* are
HMY(CH =C H*V(CcH=cC

Example 3.3.55. In fact, inspecting the previous computations, the situation is completelly general.
Let X be any algebraic variety and let us take x € X. Then, using proposition 3.3.53, we have that,
for (p,q) # (0,0) and k£ =0,... it holds

HEPA(X — {}) = HEPI(X)
Moreover, for (p,q) = (0,0), in the case of k > 2 we again have
HE® (X — {+}) = HY(X)
However, for the other two groups, we can only say that the following exact sequence holds

C

0= IO = (o)) = HEO00) —— HE()

ﬁ%x — [x) = HEO(X) — B () = 0
In particular, we have that

he (X = {x}) + b0 (X) + 1 = he®0(X = {x}) + hd%0(X)
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SL(2,C)-Character Varieties

4.1 Stratification of SL(2,C)

Recall that SL(2,C), the special linear group of order 2, is the group of complex-valued square

matrices of order 2 with determinant 1. That is,

a b
d) € My(C) | ad—bc:l}

SL(2,C) = {M € GL(2,C) | det(M) =1} = { <

where M (C) is the space of complex-valued square matrices of order 2.

In a differentiable setting, SL(2,C) is a complex Lie group of complex dimension 3 (i.e. real dimension
6), seen as a closed subgroup of the Lie group GL(2,C). In this case, its analytic topology is the
subspace topology when we look SL(2,C) C C*, C* with its analytic topology. Its Lie algebra, known

as s[(2,C), is the vector space
5[(2,C) = {A e My(C) | tr(A) =0}

with Lie bracket the ring-commutator [A, B] := AB — BA.

Furthermore, in algebraic terms, SL(2,C) is also a complex algebraic affine variety. To this end, let

us look SL(2,C) C C* and, with this identification and coordinates (a, b, ¢, d) in C*, we have that
SL(2,C)=V(ad —bc—1)

so SL(2,C) is an affine variety of C*. In this sense, seen SL(2,C) C GL(2,C), SL(2,C) is also a
subvariety of the quasi-affine variety GL(2,C) C C*.

113
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Strongly related with GL(2,C) and SL(2,C) is the general projective group of order 2, PGL(2,C).
It is defined as the quotient of GL(2,C) by the diagonal automorphisms

GL(2,C) _ GL(2,0)

G Pee

seen C* < GL(2,C) as the subgroup of diagonal automorphisms.

PGL(2,C) :=

Furthermore, we can endow PGL(2,C) with the structure of a quasi-projective variety. Observe that
the equivalence relation on GL(2,C) defining PGL(2,C) means that M = M’ if and only if there exists
A € C* such that M’ = AM. Therefore, the embedding GL(2,C) < C* descends to an embedding
PGL(2,C) — P* as quasi-projective variety. Therefore, PGL(2,C), with this structure, is an algebraic

group.

Analogously, we can restrict our attention to SL(2,C) C GL(2,C) and quotient by the diagonal
automorphisms, obtaining the special projective group of order 2, PSL(2,C). However, since the

only diagonal automorphisms of deteminant 1 are Id, —Id € SL(2,C) we have

_ SL(2,C) _ SL(2,C)

PSL2,C) = {Id,—1d} 72

However, in the complex case, this two groups are isomorphic. Indeed, using the inclusion map
SL(2,C) — GL(2,C), consider the morphism

¢: SL(2,C) — PGL(2,C)
A +— A.C

Observe that ¢ is surjective, since, if M - C* € PGL(2,C) for some M € GL(2,C), then, taking

_ 1 0
M — M det(M) X
0 det(M)

we have M - C* = M - C* and M € SL(2,C), so M - C* = o(M). Therefore, since the kernel of ¢ are

the diagonal morphisms of SL(2,C) it induces an isomorphisms

Remark 4.1.1. Of course, the dimension and the ground field do not matter anything at all, so,
analogously, we can define groups GL(n, k), SL(n,k), PGL(n,k) and PSL(n,k) for any field k¥ and

n > 0. Observe that, in the previous argument, the only algebraic fact that we need was that every
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element of C* has a square-root. Therefore, if every element of k* has a n-th root, we have that
PGL(n,k) = PSL(n,k)

In particular, PGL(n,C) = PSL(n,C) for every n > 0. In the other cases, we just has an inclu-
sion PSL(n,k) — PGL(n,k). This is, for example, the case of PSL(2,R) C PGL(2,R) where the

1 0
automorphism ( ) € GL(2,R) has no element of SL(2,R) in its R*-orbit.
0

4.1.1 First Deligne-Hodge Polynomials

Using the properties of the Deligne-Hodge polynomial, we can easily compute these polynomials for
the groups GL(2,C), SL(2,C) and PGL(2,C).

For the first case, let us fix a basis {e1,es} of C2. Then, we can define the surjective map m :
GL(2,C) — C? — {0} given by 7(M) = M(e1) (i.e. the image of the first vector of the basis). The
fiber of this map in a point v € C? are the possible elements w € C? such that {v,w} is a basis of C?
and this is C2 — (v) = C2 — C. Therefore, we have the fibration

C? - C — GL(2,C) 5 C? — {0}

This fibration is locally trivial in the Zariski topology and C? — {0} is irreducible. Hence, it is an
E-fibration and, thus, by theorem 3.3.45,

e(GL(2,C)) = e(C* = {0})e(C* = C) = (¢ = 1)(¢* — @) = qlqg — 1)*(¢+ 1)

For SL(2,C) we can repeat the argument given for GL(2,C) counting properly. Again, let us fix a
basis {e1, e2} of C? and define the surjection 7 : SL(2,C) — C?—{0} given by 7(A) = A(e1). However,

in this case, fixed v € C2, its fiber under 7 is not the entire space C?> — C.

In fact, given a vector w € C? — (v), there exists an automorphism A € SL(2,C) such that A(e;) = v
and A(ez) = w if and only if the volume of the basis {v,w} is equal to the volume of the basis {ej, ea2}.
This can be achived re-scalling w so there exists one and only one posible vector in possible direction,
so the expected fiber is P(C? — C) = P! — {x} = C.

More precisely, let us take the Zariski open set Uy := {(zl, 2) € C?| 2 # O} C C?. Then, we have the

fiber
7T71(U1) _ 21 w1
z9 14+ w;il'@

Z1750}%U1><C
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Analogous considerations can be done taking the Zariski open set U := {23 # 0} C C?. Therefore,

we have the locally trivial fibration in the Zariski topology
C— SL(2,C) 5 C% - {0}

In addition, C? — {0} is an irreducible variety, so 7 is an E-fibration . Hence, by theorem 3.3.45,

e(SL(2,C)) = e(C* — {0})e(C) = q(¢* ~ 1)

Remark 4.1.2. Another attempt to compute this Deligne-Hodge polynomial could be using the map

Y : GL(2,C) — SL(2,C) given by (M) = WM. Then, in this case, we would have a well
behaved fibration

C* = GL(2,C) — SL(2,C)

so the Deligne-Hodge polynomial would be

e(GL(2,C)

e(SL(2,C)) = (T

=q(¢® - 1)

as expected. However, we cannot use this argument, since 1 does not satisfy the hypotesis of theorem
3.3.45, at least in its present form. The reason is that, due to the square-root, 1 is not an algebraic

map.
Finally, for PGL(2,C) observe that the quotient map
C* — GL(2,C) — PGL(2,C)

is a principal C*-bundle map, so it is an E-fibration and, again by theorem 3.3.45,

e(GL(2,C)  qlg—1)2(¢+1) >

e(PGL(2,C)) = SO p— =ql¢-1)=¢"—¢

4.1.2 The Conjugation Action and the Commutator

Maybe most important action on SL(2,C) that we will study is the action on itself by conjugation,
that is P- M = PMP~! for P,M € SL(2,C). Using the Jordan canonical forms, we obtain that

possible Jordan forms are
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for A € C*—{£1}. Hence, SL(2,C) has five types of conjugacy classes, let us call them [Id], [—1d], [J+], [J-]
and [D,] for A € C — {£1}. We also define the set of orbits

[D]:= || [DAl={A€SLE2,C)|tr(A)++2}
AeC*—{+1}

Remark 4.1.3. In SL(2,C), each conjugacy class is a quasi-affine subvariety of SL(2,C). Indeed, since
[Id] = {Id} and [-1d] = {—Id}, we have that [/d] and [—Id] are points, and, in particular, algebraic

subvarieties.

For [J.], observe that, given A € SL(2,C), A € [J4] if and only if A has a single eigenvalue 1 and
is not diagonalizable. However, since the unique diagonalizable matrix with single eigenvalue 1 is Id,
we have that A € [J;] if and only if A has a single eigenvalue 1 and A # Id. Furthermore, a matrix
A € SL(2,C) has a single eigenvalue 1 if and only if ¢r(A) = 2. To check this, observe that, the
characteristic polynomial of A € SL(2,C) is of the form char(A)(\) = A2 — tr(A)\ + 1 which is equal
to (A—1)% if and only if tr(A) = 2. Hence, summarizing, A € [J] if and only if tr(A4) = 2 and A # Id,
SO

[J.] = {A € SL(2,C) |tr(A) = 2, A # Id}

which is a quasi-affine subvariety of SL(2,C). Analogously, A € [J_] if and only if A has a single
eigenvalue —1 and A # —Id if and only if tr(A) = —2 and A # —Id so

[J_] = {A € SL(2,C)|tr(A) = —2, A £ —Id}

which, again, is a quasi-affine subvariety of SL(2,C). Finally, for [D,] observe that A € [D,] if and
only if tr(A) = A+ A~! £ £2, so [D,] is the affine subvariety

[D)] ={A € SL(2,C)|tr(A) = A+ "', A# —Id}
and, for [D] we can write
[D] = {A € SL(2,C) |tr(A) # 2, A # —Id}

which is a quasi-affine subvariety of SL(2,C).

Remark 4.1.4. For subsequent computations, we will need to observe that, under the action of SL(2,C)

on itself by conjugation it can be shown that the stabilizer of the canonical matrices are the subgroups

1 A
U := Stab(Jy) = Stab(J-) = AeCpr=CucC
0 =1
w0 .
D := Stab(D)) = peC > =C
0 pt
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Remark 4.1.5. Using this stabilizers, we can even compute the Deligne-Hodge polynomial of each

conjugation class:

Now,

For [Id], observe that [Id] = {Id}, that is, just a point, so e([Id]) = 1.
For [—Id], analogously to [Id], we have that e([—1d]) = 1.

For [J4], observe that [Jy] = SL(2,C)/Stab(J;), with Stab(Jy) acting by conjugation. Since
+1d acts trivially, we have that [J;] = SL(2,C)/(Stab(J1)/{£Id}). But, in this case, we have
that Stab(Jy)/{£Id} = C acts freely on SL(2,C) so we have that

_ e(SL(2,C)) _ e(SL(2,C)
) = ST ) 2D (@) ¢ ~1

For [J_], analogously to [J;], we have that e([J_]) = ¢* — 1.

For [D,], the reasoning is analogous to the one of [J4] but taking Stab(D),). Hence, we have
that [Dy] = SL(2,C)/(Stab(Dy)/ {£Id}) with Stab(D,)/{£Id} = C*, so we have

e(SL(2,0C)) _e(SL(2,C))

) = Stab(Dy) (2Id) ~  e©) ¢t

For [D], since SL(2,C) = [Id| U [—1d] U [J4] U [J-] U [D], we obtain

e([D]) = e(SL(2,C)) — e([1d]) — e([~1d]) — e([J+]) = e([J-]) = ¢* — 2¢° — ¢

using the group structure, let us define the group-commutator map in SL(2,C)

[,]: SL(2,C) x SL(2,C) — SL(2,C)
(A, B) — |[A,B] ;== ABA™'B™!

This algebraic map will be our main concern of this section. Specifically, using the Jordan canonical

forms, we will be interested in the algebraic varieties

Xi1q:=[,]7'(Id) = {(A, B) € SL(2,C) | AB = BA}.
X _jq:=1[,]7%~1Id) = {(A,B) € SL(2,C) | AB = —BA}.
Xy, =[,]7'(J3) ={(A,B) € SL(2,C) | ABA™'B~1 = J, }.
Xy =[,]"Y(J-) = {(A,B) € SL(2,C) | ABA'B~1 = J_}.
Xp, = [, ]71Dy) = {(A,B) € SL(2,C) | ABA™'B~! = D,} for A € C — {£1} and, more
generally
Xp= || Xb,

AeC—{%1}



Chapter 4. Character Varieties 119

Remark 4.1.6. Since an algebraic map is a continous map in the Zariski topology and a single-element
subset of an algebraic variety is a closed set, we have that X4, X_14, X, ,X;_ and Xp, for A # £1
are closed subvarieties of SL(2,C) x SL(2,C). Moreover, Xp, as the complement of an algebraic
subvariety, is a quasi-affine subvariety of SL(2,C) x SL(2,C).

Furthermore, we will also need the preimage of each conjugacy class, given by

o Xy :=[ ]Il ={(A,B) e SL(2,C) | ABA™'B' € [J,]}.
o X1y 1:=[.]"'J-]={(A,B) € SL(2,C) | ABA™'B~! € [J_]}.
o Xip, =[] Ds] = {(A,B) € SL(2,C) | ABA™'B~! € [D,]} for A € C — {1} and, more
generally
Xp= || Xpy={(4B)eSLE2C)|ABAT'B" €D}
AeC—{£1}

={(A,B) € SL(2,C) | tr(ABA™'B™") # +2}

Remark 4.1.7. Since [Id] = {Id} and [—Id] = {—Id}, it is unnecessary to define X{7q and X[_pq.

Remark 4.1.8. Again, since an algebraic map sends quasi-affine subvarieties onto quasi-affine sub-
varieties, we have that all the subsets Y[ J +],Y[ J_},Y[DA] and Y[D} are quasi-affine subvarieties of
SL(2,C) x SL(2,C). Thus, in particular, they are algebraic varieties.

Therefore, using this varieties, we have the stratification of SL(2,C) x SL(2,C) in algebraic varieties

SL(Q,(C) X SL(Q,C) =XrgUX_14 UY[JJF] UY[JJ UYD

Finally, observe that, fixed a conjugacy class C C SL(2,C), the space X¢ is very related to X¢ for
¢ € C. Suppose that there exists a subgroup K C Stab(§{) C SL(2,C) such that the action of K
on X¢ by simultaneous conjugation is trivial and SL(2,C)/K acts freely on X¢. Usually, it will be
K ={Id,—Id}, so SL(2,C)/K = PGL(2,C).

In that case, observe that, considering X, C X, it holds:

e SL(2,C)/K-X¢ = X¢. Indeed, given (4, B) € X¢, ¢,, let P € SL(2,C) such that P[4, B|P~! =
¢ Then, y := (PAP™',PBP™!) € X¢ and P"'K -y = (A, B).

e For all y € X we have that
Stab(§)/K -y = SL(2,C)/K -yn X¢
This is because, if (A, B) € X¢ and P € SL(2,C) satisfies P - (A, B) € X¢ then it should satify

P¢P ' =P[A,BIP ' =¢
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so P € Stab(§).

Therefore, the algebraic groups Stab(§)/K C SL(2,C)/K satisfies the hypotesis of proposition 3.3.47
for the varieties X¢ C X¢ so we have a Stab(£)/K-principal bundle

Stab(€)/K — SL(2,C)/K x X¢ — X¢

Hence, since it is an E-fibration, it holds

. SL2,C)/K\ SL(2,C)
¢ (Xe) _e(Xf)e(Stab@)/K) (X5)6<Stab<£>>

4.1.3 Deligne-Hodge Polynomial of X,

Let us compute the Deligne-Hodge polynomial of

X1a={(A,B) € SL(2,C)* | AB = BA}

First of all, observe that we have the degenerated cases

X7, = {£Id} x SL(2,C) C X4 XPB .= SL(2,C) x {£Id} C X4
so we have that, defining

X1a={(A,B) € (SL(2,C) — {£Id})? | AB=BA} = X14— Xi3 — X}y

we have that X7g = X7q U (X ﬁl U X}’d). Hence, by the additivity of the Deligne-Hodge polynomial,
we have
e(X1a) = e(X1a) + ¢ (Xﬁl U X?d)

For Xf}i U X}’d, observe that

XA UXE, = {£Id} x ((SL(2,C) — {£Id}) U{*Id} x ((SL(2,C) — {*Id}) U {(£Id,+Id)}
=74 % (SL(2,C) — {2 points}) LI {4 points}

so its Deligne-Hodge polynomial is

e (X?d U Xj;d) = 4(e(SL(2,C)) —2) + 4 = 4¢% — 4g — 4

In order to study X}d, let us consider the trace of A map ¢ : X4 — C given by t(A, B) = tr A.

Depending of the value of ¢ we have different strata.
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e 75 = t~1(2): In this case, since A # Id, we should have A ~ J, let us say PAP~! = .J, for
some P € SL(2,C). Hence, since BAB™! = A we have

Ji = PAP™' = PBAB~'P~' = (PBP™') (PAP™) (PBP™") ' = (PBP ") J, (PBP™)™"

)\E(C*}

)\EC*}gC*XZQ

and, thus, since B # +1d, we have

+1 A
PBP™! € Stab(Jy) — {£Id} =
(Jy) — {£Id} { ( 0 il)
Let us define the subvariety of Zo
. 11 +1 A
Z2 = ’
0 1 0 =1

and observe that, for PSL(2,C) acting on Z2 by conjugation, we have just prove that PSL(2,C)-
7y = Z5 and that, for all y € Z

Stab(J+) ~
—— . y=PSL(2,C)-yN Z

1 Y (2,C)-yNZy
Therefore, by remark 3.3.47, we obtain an E-fibration

Stab(J. A
{ﬂ(d;) — PSL(2,C) x Zy — Zy
so, using that Stab(J;)/{£Id} = C,

e(PSL(2,C))
(Stab(J;)] {=1d})

e(Z2) = e(Zs) = 2¢° — 2¢> — 2q + 2
e
e Z_5 = t1(—2): Observe that the map ¢ : Zy — Z_5 given by ¢(A,B) = (—A,—B) is an
isomorphism, so
e(Z_9) = e(Zy) = 2¢° — 2¢° — 2q + 2

e 7 =t"1(C — {£2}): In this case, we have that tr A # +2, so A diagonalizes in some basis. Let
us suppose that PAP~! = D, for some A € C* — {£1} and P € SL(2,C). In this case, we have
that BAB™! = A so

Dy=PAP™' = PBAB™'P~' = (PBP™ ') (PAP™Y) (PBP™')"' = (PBP™') D, (PBP™) ™"
Hence, PBP~! € Stab(D,) = U, that is, B also diagonalizes via P. Moreover, since B # +Id,
it should be PBP~! = D,, for some p € C* — {%1}.

Now, let us define the morphism # : Z — [D] given by m(A,B) = A. The problem is that

we have not control on the action of 71([D]) on H*(Z), so we cannot claim that 7 is not an
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E-fibration'. Therefore, in order to understand 7, we define the auxiliar varieties

2 SL(2,C)

[D] := C* — {#1} x 5

0
with D = Stab(Dy) = { ("
0 pt
Zy on [D] by —1- (A, P) = (A", PPy ') with
01
Py =
then we have that [D]/Zs 2 [D]. Analogously, if we define the action of Zs on Z by —1-(A, i, P) =
(AL Y Ry PPy, then Z/Zy = Z.

SL(2,C) .
o Z = (C* — {£1})

wE (C*} =~ C*. Observe that, if we define the action of

Let us define the morphism 7 : Z — [D] by 7(A, 1, P) = (A, P). In this case, 7 do is an E-
fibration with fiber C* — {£1}. Therefore, if we define the morphisms p : Z — Z by p(\, u, P) =
(PD\P~Y,PD,P~) and j : [D] — [D] by (A, P) = PDyP~!, then we have the diagram of
fibrations

C* — {1}

N

™

2
;
D)

Hence, by theorem 3.3.51, we have that

E M NI

e(2) = e(2)" = e(ID)* e(C — {£1)* +e([D]) e(C* — {£1})”
= e([DDe(C" — {£11)* + (e(D]) - e([D])) e(C* — {1})

For compute this polynomials, observe that, since the action of D/ {xId} = C* is free, we have

(D) =@ - e (D) e - B a2 -5y

Moreover, the induced action of Zy on C*—{=£1} is —1-A = A~! so we have that (C* — {£1}) /Zg =
C* — {1}. Thus,

e(C*—{£1}) " = e(C*—{1}) = ¢—2 e(C*—{£1})” = e(C*—{£1})—e(C*—{£1}H)T = —1

Indeed, as we will compute, it is not.
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So, finally, using the computation of e([D]) = ¢3 — 2¢> — ¢ from remark 4.1.5, we have that
e(Z) = e([D)e(C" = {£1})* + (e(1D]) — e(ID]) e(C” = {+1})™ = ¢ — 4¢° + 3¢ + 4g
Therefore, putting all together, we obtain the Deligne-Hodge polynomial of X4
e(Xia) =e(Zo) +e(Z o) +e(Z)=q¢" — >+ 4

and, with this computation, we finally obtain

e(Xpq) = e(f(Id) +e (Xﬁl UX})d) ¢t +4¢ - P -4

4.1.4 Deligne-Hodge Polynomial of X ;,

Let us compute the Deligne-Hodge polynomial of

X_ra={(A,B) € SL(2,C)* | AB = —BA}

To this end, let us fix (4, B) € X_4. Since —A = B~'AB and the trace is invariant under change of

basis, we have that
tr(A) = tr(BAB™Y) = tr(—A) = —tr(A)

so tr(A) = 0 (by symmetry in the argument, tr(B) = 0 too). Hence, if A has eigenvalues A\ and A~
then they should satisfy A + A~! = 0, ergo A = 44. Therefore, there exists P € SL(2,C) such that

i 0
A=papt=|("'
0 —i

v y) should satisfy AB = —BA so

z t

0 0 . . . .
) Ty _ Ty 7 N 1T 1y _ 1y eret—0
0 —1 z t z t 0 —2 —1z  —it —1z 1t

so, in this basis, B must be of the form

But, in this basis, B = PBP~! = (
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Moreover, since the conjugation by a diagonal matrix in SL(2,C) left invariant A but rescale B, we
can find P’ € SL(2,C) such that

pap-t— ("0 ppp-t— (" !
0 —i -1 0

Thus, summarizing, we have just prove that the action of SL(2,C) on X_4 by conjugation is transitive,
since all the elements can be moved to a fixed one. However, this action is not free. Since the isotropy

group of the action can be computed as the stabilizer of any element of the acted set, choosing

((l O) (O 1))
) € X_14, we have
0 —2 -1 0
¢ 0 0 1
I30:Stab<<0 —i>’<—1 0>>:{Id,—ld}

Therefore, the action of SL(2,C)/Iso = SL(2,C)/Zs = PSL(2,C) = PGL(2,C) on X_j4 is transitive
and free, so, algebraically
X_742 PGL(2,C)

and, in particular

e(X_i4) = e(PGL(2,C) = ¢* — g

4.1.5 Deligne-Hodge Polynomial of X,

Recall that the variety X, is

X;, ={(A,B) € SL(2,C) | AB = J, BA}

g 11
T o
First of all let us restric the form of the elements of X, . Let us take (A, B) € X, , which means that
ABA~! = J, B. Then, taking traces we have

where

tr(B) = tr(ABA™') = tr(J, B)

vz oyt
Explicity, if B = (:1: y) , then J4 B = (m =Y ) so B must satisfy « +t = tr(B) = tr(J+B) =
z t z t

x + z +t, that is, z = 0. Same considerations can be done for A, so, if (A, B) € X, A and B should
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have the form

for some a,z € C* and b,y € C.

In this restrictive form, we can write down explicit equations for the commutation relation. That is,
(A, B) € X, if and only if

Ap - [ ay + br~t _ (o= zb+a Yzl +y) _J.BA
0 a tz~t 0 a"lz~!

and this happens if and only if ay + bz~! = 2b+ a~*(z~! + ). Therefore, simplifying the equation,

we have the explicit description of X, as the quasi-affine variety in c*

Xy, = {(z,a,y,b) € (C)? x C*|y(z(a® — 1)) + bla(l — 2%)) =1}
=V (y(z(a®* = 1)) + b(a(l — 2%)) — 1) N {z # 0,a # 0}

From this description, it is very easy to compute the Deligne-Hodge polynomial of X; . In fact,
observe that, taking the projection 7 : X;, — (C*)? — {(£1,£1)}, n(x,a,y,b) = (z,a), the fiber
under 7 of some (x,a) € (C*)* — {(£1,+1)} is a complex line. Therefore, we have the algebraic line
bundle

C— Xy, 5 (C*)* — {(£1,+1)}

Thus, since an algebraic line bundle over an irreducible variety is a E-fibration, by theorem 3.3.45 we

have

e(Xy,) = e(C)e (€7 —{(F1,£1)}) = alla — 1> —4) = ¢* — 2% ~ 3¢

Finally, by the argument in section 4.1.2, taking K = {£Id}, we have SL(2,C)/K = PGL(2,C) and,
since PGL(2,C) acts freely on X|;,| we obtain an E-fibration

Stab(J+)/K — PGL(Q,(C) X X]+ — Y[JH

Now, since Stab(J;)/K = C, we have e (Sfa(if}f)%{) = dPC;éc()Z’C)) = ¢%> — 1. Therefore, we obtain

:q5—2q4—4q3+2q2+3q

— PGL(2,C)
e (X)) =e(Xu)e (Stab(J+)/K>

4.1.6 Deligne-Hodge Polynomial of X ;_

Now, let us study the variety X;_, that is

X; ={(A,B) € SL(2,C) | AB = J_BA}
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()

As before, we can obtain some restrictions using the constrains on the trace. Let us fix (A4, B) € X;_.
Since ABA™! = J_B we must have tr(B) = tr(ABA™') = tr(J_B) and tr(A) = tr(BAB™1) =
tr(J-1A). Explicity, let us write

(o) ()

with ad — bc = 1 and zt — yz = 1. Then, we have

1 —a—c —-b—d z—x t—y
J A= J B =
—c —d —z —t

so (A, B) € X;_ should satisfy

where

c=—2(a+d)=—-2tr(A) z=2(x+t) =2tr(B)

Using these relations, a straighforward computation shows that, given A, B € SL(2,C), AB = J_BA

if and only if the previous relations hold and
2dt + bz +cy =0

Thus, we have the explicit description

(2dt + bz +cy =0
c=—2(a+d)
X;_=4 z=2x+1) cc®
ad —bc=1
xt—yz=1

Vs

or, eliminating the components ¢ and z

dt +b(z +t) = y(a+d)
Xy = 20(a+d) =1—ad cct
y(z+t)=at—1

As we can see, the conjugate invariants tr(A) = a + d and tr(B) = x + t appear everywhere in this

formulas, so it is a good idea to stratify this space based on this invariants. So, taking a := tr(A) = a+d
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and [ :=tr(B) = x 4+t we have the very useful description

yo=b+ (o —a)(B - x)
Xy = 2ba =1—a(a—a) cc® (4.1)
28 = (8 —x) 1

Now, we can stratify X; = X§ U Xf?_ U Xy, with X¢ = X; n{a=0}, X?_ N{ps =0} and
X; =X; N {o, B # 0}, Observe that X§ N X?f = () since it cannot occur o = 3 = 0.

Thus, for X; we have b = l_aQ(Z_a) and y = 1(6572)_1 so, replacing in (4.1) we have

X2 {a®(1 - (8~ ) + (1 - a(a — a)) + 2(a — a)(8 —a) = 0}

= {a2x2 + %2020 za — 302 Bz — 3af%a + (a2 + 6%+ 2a252) = 0} (4.2)
a? af —%oﬂﬁ T
<z a1)| a8 P ~3ap? ol =0b cc?x )

_%QQB _%a62 Oé2+ﬁ2—|—2042ﬁ2 1
4.1.6.1 Traceless cases

First, let us study X¢ . Replacing a = 0 we have

X5 =2y =ax(8—z)—1
a?=1

b3 —a(f—z) =0 2{ b3 — (B —1z) =0 }|_|{ b3+ (B—x)=0 }cc4
2y =x(f—x) -1 2y =x(f—z)—-1)

Yy Y_

Observe that the projection map 7 : Y — C*, 7((b,z,y,3)) = (B is surjective and, for 5y € C* we

have the fiber
j:ﬁo—ﬂ?
Bo

T

T (60) =3 | wipymy | | 2€Cp =C
280
Bo

so m: Yy — C* is a algebraic fibration, locally trivial in the Zariski topology, such that

C—Yy 5C*
Hence, 7 is an E-fibration and, therefore
e(Yz) = e(Ce(C) = q(¢—1)

so, finally

e(X5 ) = e(Ya) +e(Y_) = 24— 1)
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Analogously, for X ?f we have

X{’i: 2ba=1—-a(a—a) o &

ya+z(a—a) =0 {
2?2 =1

ya—i—(a—a):O)}U{ yao—(a—a) =0 }Q(C4

2ba=1—-a(a—a 2ba =1—a(a —a)

n'g

Z4 Z_
and the projection over a, 7 : Z+ — C* is a surjective E-fibration

C—Zy—>Cr

so, again, e(Zy) = q(q — 1) and therefore

e(XT ) =e(Zs) +e(Z-) =2q(q — 1)

4.1.6.2 Orbit space analysis

Now, let us study X; = X; N{a, 3 # 0}. Recall from remark 4.1.4 that, for the action of SL(2,C)
on itself by conjugation we have
AEC}

+1 A
sy { (2 2)

Let us consider the action of Stab(J_) on X by simultaneous conjugation. We will prove that the

orbit space S := X;_/Stab(J_) has a natural structure of algebraic variety. Then, by uniqueness of
good quotients, we will have that X; / Stab(J_) = S. Furthermore, using this description of the
orbit space, we will find that Stab(J_) have isomorphic isotropy groups for any element of X, let us
call this group Iso(Stab(J_)). Thus, the action of Stab(J_)/Iso(Stab(J_)) on X;_ is free, obtaining

a principal bundle
Stab(J-)

St St Y ¢
Tso(Stab( )y~ X- 7

In particular, this is an E-fibration, so
~ Stab(J_)
X5 )= —_—
e(Xs) = elS)e (Iso(Stab(J_)))

In order to describe S = X; /Stab(.J_) let us take (A, B) € X; . Observe that, for all A € C we have

-1
1 A\ [z y\[1 A (A oy A=A — N
o 1)\z t)\o 1) \ =z t— Az
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— we

1
Therefore, for any (A,B) € SL(2,C) taking Pp = (0

[ A—
PpBPL' = 2!
B 22/ 0

/ b/
for some x' € C*. So, if PRAP;' = (“/ d/), since Pg - (A,B) = (P,AP3', PsBP;") € X, ,
C

) € Stab(J_) (recall that z # 0 since

z=283%#0)), we have

equations (4.2) become equivalent to

Therefore, taking A = %, if we define the quasi-affine variety
S={ad=1+X,a+d#0} CC*>xC*

then, the map ¢ : X; — S given by ¢(A,B) = Pp - (A, B) is a good quotient for the action of
Stab(J_) on X;_ by simultaneous conjugation, so X; / Stab(J_) = S.

For analysing S, let us consider its Zariski closure
S={ad=1+N}CC’xC
so S =S USy with Sy := {ad =1+, a+d= O}. Since Sy is the hyperbola with removed points
So={-a*=1+A} — {(&i,0)}
and any hyperbola is isomorphic to C* we have e(Sp) = e(C*) — e({(+7,0)}) = ¢ — 3 and, therefore
e(S) =e(S) —e(Sy) =e(S) —q+3

Thus, the problem reduces to compute the Deligne-Hodge polynomial of S. For this, let us consider

its projective completion

N

S = {((xo D X1 x9),A) € P? x C* | 2120 = (1 —I—)\Q)x%}

in such a way that S = S — S, where S. are the points at infinity of S’, ie. Sy =8N {zo = 0}.

The Deligne-Hodge polynomial of this points at infinity is easy to compute, since we have

S’Oozgﬂ{xg:()}:{((O:xlzxg),)\)elP’Qx(C*|a:1x2:0}
={((0:0:1),\) eP*xC*}U{((0:1:0),\) e P*xC*} *C*LC*

50 €(Sa) = 2(q — 1).
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Finally, for S, let us see it as a conic fibration over the projection map 7 : S — C*, m(a,d,\) = A

This fibration has two different types of fibers:

e The degenerated fibers: They correspond to the fibers over A = +i. In these cases, we have

{ To: Ty x9),+i) € P? x C* \mle—O}
%{3:0 0:xz9) GIP’}U{xO T O)EIPQ}%PlI_I(IPl—{(l:O:O)})

soif Sp = 7w~ (i)Ur 1 (—i) are the degenerated fibers, we have e(Sp) = 2((¢+1)+((g+1)—1)) =
4q + 2.

e The non-degenerated fibers: In this case, for \g € C*—{4i} we have that 7=1(\g) = {122 = (1 + Xo)z0}
is a projective non-degenerated conic, so 7~1(\g) = P!. Therefore, 7 is and algebraic bundle on

the non-degenerated set S'ND =S5 - S'D
Pl — SND 1> C* — {:l:l}

so, in particular, it is an E-fibration, ergo, by theorem 3.3.45

e(Snp) = e(C" — {£i})e(P) = (¢~ 3)(¢ + 1)

Thus, summarizing, we have

e(S) =e(Sp) +e(Snp) =4q+2+ (¢ —3)(g+1) = ¢* +2¢ — 1

From this, we have
e(S)=e(S)—e(Se) = +2¢—1-2(q—1)=¢*+1

And, therefore, the Deligne-Hodge polynomial of the orbit space is

e(X,_ [/ Stab(J-))e(S) = e(S) —e(So) = ¢* +1— (¢ —3) =¢* — ¢ +4

Remark 4.1.9. In fact, we have just prove that S stratifies as
SZS’—S’OO—SQZS’NDUSD—SOO—SO
Description that will be very valuable in the following.

With this computation in hand, in order to complete our computation of the Deligne-Hodge polynomial
of X; we need to compute the isotropy groups of the action of Stab(J_) by simultaneous conjugations.

Since the isotropy groups of elements in the same orbit are isomorphic it is enough to compute the



Chapter 4. Character Varieties 131

isotopy group of a complete set of elements of each orbit. For this, recall that, above, we proved that

every orbit contains an element (A, B) € X with B of the form

1

B=(" "=
2¢ 0

+1 A

€ Stab(J_) with A\ € C we have
0 =+£1

for some x € C*. However, given P = (

2 _ 1
PEP-1— T+ 2x\ FrA— 2N — 5
2x F2x )\

so PBP~! = B if and only if A = 0. Moreover, since these elements belong to the center of SL(2,C)
we have that Stab(A, B) = {Id,—Id}. Thus, all the isotropy groups are isomorphic and, therefore,
the isotropy group of Stab(J_) is

Iso(Stab(J-)) = {Id,—1d}

and, therefore

Stab(J_) 1 A
VT o rAeC,r=cC
{1d,~1d} { (o )| °C
Hence, summarizing, we have the C-principal bundle
C—X 7 =S8

which, automatically, is an E-fibration, so

e(Xy)=e(Ce(S)=q(¢® —q+4) =¢ —¢* +4q

Furthermore, we have just compute the Deligne-Hodge polynomials of every stratum of X; so we

have

e(X; ) =e(X$ ) +e(X5 ) +e(Xy ) =2¢(g— 1) +2¢(¢ — 1) + ¢ — ¢ + 4¢ = ¢* + 3¢>

Moreover, by the argument in section 4.1.2, taking K = {£Id}, we have SL(2,C)/K = PGL(2,C)
and, since PGL(2,C) acts freely on X[; | we obtain an E-fibration

Stab(J-)/K — PGL(2,C) x X;_ — Y[Jﬁ]
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Now, since Stab(J_)/K = C, we have e (;ﬁf}fﬁ%) = dpi(LC()ZC)) = ¢ — 1. Therefore, we obtain

(X)) =e (X ) e (grar ) =+ 34 = o = 3¢

4.1.6.3 A geometric viewpoint

We can understand geometrically X; by means of a fibration with some singular fibers. Recall that,

from the description (4.2) we have that

a? af —%0425 T
X; ={ (z,a,0,B) € C? x (C*)? (af a 1) af B2 —3ap? al=0
*%QQ,B 7%(}52 a2+52+2a252 1
For simplicity, we will consider its projective completion
a? af —%azﬁ 1
X, = (g;l - xo) af 32 —3ap? 2o | =05 CP?x (C*)?

*%O&Qﬁ 7%0[52 a2+62+2a2ﬁ2 o

Then, using the projection m : X;  — C* x C* given by n((xo : 1 : 22), (o, 8)) = (o, 3) we have
that for all (o, 8) € C* x C*, the fibers Cy 5 := 7 (a, 8), seen as affine varieties of P? are projective
conics. Thus,

XJ7 1) C*xC*
is a projective conic fibration.

For the structure of the fibers, let us call

a? af f%oﬁﬂ
Aap =] of B ~5ap?
30’8 —3aB? o+ %+ 2273

and observe that det(A, ) = 0 for all a, 5 € C*. Thus, Rg(Asp) < 2 for all o, € C*, so all the
projective conics Cy, g are degenerated. Thus, since it cannot happend Rg(A, 3) = 0, we have the

following casuistic:

e Rg(A, ) =1: In this case, the degenerated conic C, g is a double projective line, so C, 53 = PL.

Let us call
Bp = {(a,B) € C* x C"| Rg(Anp) = 1}
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and X P :=771(Bp), in the way that we have an analytical fiber bundle
P' - XP = Bp

Since the fiber is the projective space P! and 7 is algebraic, this fiber bundle is an E-fibration,
SO
e(X7 ) = e(Ph)e(Bp)

For computing Bp, observe that, for all (a, ) € C* x C*, the first and the second columns of
A, p are linearly dependent. Therefore, Rg(A, g) = 1 if and only if

af —§a25 1
det 5 0 o ; 0| = af <a2 + 6% - 04262) =0
—saB° o + B +2a°43 4
,82 —Qaﬁz 1
det{ , 2 b | =807+ 87— a8 ) =0
—5af* o+ B +2a°3 4
S0, since «, 8 # 0 we have that
1
Bp = {(a,ﬁ) €C xC'[a”+ 4% - a?f = 0}

For identifiying Bp observe that, defining the map ¢ (o, 8) = (é, > is an isomorphisms between

o) ({023 (1)

which is an affine hyperbola with four removed points. Therefore, Bp = C* — {p, q,r, s} and,

@l

consequently
e(Bp) =e(C* —{p,q,r,s}) =q—5

Therefore, since e(P') = ¢ + 1 we have

e(XP)=(a+1)(g—-5) = —4qg—5

o Rg(Anp3) = 2: In this case, the degenerated conic C, g is a pair of projective lines (which
necessarily intecepts in a point). Thus, if Byp := C* x C* — Bp and Xf,\iD := 7BND we have
the analytical fiber bundle

P'UP =P U (P' - {x}) = XY = Bnp
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Finally, to recover X 7 from X J_ we have to remove the points at infinity of X T, Xf;f = X 7. N
{z¢g =0} so X, =X, — Xf}f Computing
Xff = {((0 cx1:x9), (o, B)) € P? x (C)? | &®a? + %23 + 20110 = 0}

= {((0: 21 : 2), (@, ) € P x (C*)? | (a1 + Baz)” = 0}
={((0:8: —a),(a,8)) € P* x (C*)*} =C* x C*

In fact, from the previous computation, we observe that for all o, 3 € C*, C,, g contains one and only
one point at infinity. In particular, for (o, 8) € By p, since each of the two lines in C, g intercepts the
line of infinity in at least one point, the point of interception between these two lines should be the

unique point at infinity of C,, g, so, in the affine plane, they are a pair of parallel lines.

Thus, restricting our fibration to the affine case 7 : X; — C* x C* if X? := 7~1(Bp) and X" :=

7 1(Byp) we have stratification X; = Xﬁ U Xj\iD and the fibrations
C—X?P 5 Bp CuC — X¥P % Byp
Remark 4.1.10. The analytical fiber bundle in the case of double lines
P'UP' =P U (P! - {x}) = XIP = Bwp
cannot be an E-fibration. Indeed, if it would be, we will have

e(XYP) = e(P' UPYe(Byp) = e(P' U (P! — {+}))e(C* x C* — Bp)
(g+1)+q) ((¢—1)>—(¢—5)) =2¢° — 5¢° + 9g + 6

So, together with the previous computation e(X f)_ ) = q® — 4q — 5 we will have
e(Xy ) = e(X7) +e(X)P) = 2¢° — 4¢° + 5 + 1

and

e(Xs) = e(Xy) —e(X5°) = 2¢° — 5¢° + Tq

which is impossible, since, by the previous section, we know that e(X; ) = ¢® — ¢® 4+ 4¢. In fact,

inverting the reasoning, we can compute the correct Deligne-Hodge polynomial of X f,\i D being

(X)) = e(Xy ) +e(X7) —e(X) =¢* — ¢* + 6 +6

Observe that this polynomial is irreducible over Z[q], so X ﬁ D cannot be written as any non-trivial
E-fibration.
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4.1.7 Deligne-Hodge Polynomial of Xp,

Finally, let us fix A € C* — {£1} and let us consider the variety

| Xp, ={(A,B) € SL(2,C) | AB = D\BA}|

A1
Dy = B
0 A

As usual, we can restrict our attention to some spacial type of matrices using the constrains imposed
by the trace. Let us fix (4,B) € Xp,. Since ABA™! = D\B we must have tr(B) = tr(ABA™!) =
tr(Dy\B) and tr(A) = tr(BAB™') = tr(D; ' A). In orther to make it explicit, let us consider

o I

with ad — bc = 1 and zt — yz = 1. Then, we have

1 A la A7 Az Ay
Dy A= D,B =
Ac Ad Az Al

Thus, we have that (A, B) € D) should satisfy

where

a+d=tr(A) =tr(Dy'A)=X"ta+ A z+t=1tr(B) =tr(D\B) = Az + A"t

which, for A # 1 satisfy if and only if d = A™'a and t = Az, so every (A, B) € D) must be of the form

with A™1a? —bc =1 and A\z? —yz = 1.

With this special form, the equations of D) can be drastically simplified. Indeed, observe that,
(A, B) € D, if and only if

ax+bz  ay—+ A\bx _ AB = DyBA= Aazx + Acy ay + Abx
cx+ A taz  cy+ax cx+A"laz A lax 4+ A7 lbz

which holds if and only if ax +bz = Aaxz+cy). Thus, together with the restriction on the determinant,

we have that
ax + bz = Nazx + cy)

Xp, = A 1a2 —be=1 cC’
A2 —yz =1



Chapter 4. Character Varieties 136

Now, we are going to stratify Xp, in four strata XgA,XgA, ng and XDA in the way that
— B R %
Xp, = Xp, UXp, UXp, UXp,

and, therefore
e(Xp,) = e(Xp,) + (X)) + e(XF,) + e(Xp,)

4.1.7.1 The variety XD,

Let us define X7 = Xp, N {b=0,c=0}. In this case, we have that XD, has the simplified form

ar = Aax z=0
Xp, =4 Ala?=1 p =4 a*=X ; C ct
2 —yz=1 yz=-—1

and this space can be decomposed as the disjoint union of the algebraic varieties

z=0
Xp, =4 a>=2) ~{(\,y,2) €C? |yz=—-1}U{(N2,y,2) €C® | yz = -1} 2 C*LC*
yz = —1

where \j, Ay are the two (different) square roots of A # 0. Thus, we have

e(Xp,) =e(C*) +e(C*) =2q -2

4.1.7.2 The variety XgA

Now, we take XgA = Xp, N{y =0,z = 0} so the equations are

ar = \ax a=20
X%A: Ala2—be=1p={ be=1 pCC*
A =1 2 =\"1

In this case, by symmetry in the equations, the map (a,b,c, x,y, 2) — (x, -y, z,a,b,c) is an isomor-

phism between X %/\ and X gA SO

e(ng) =e(C*) +e(C*)=2¢—2
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4.1.7.3 The variety X};A
For the case of X gA (R stands for residual) we define

ng = Xp, N({bcyz =0} = {b=0,c=0} —{y =0,2=0}) = Xp, N{bcyz =0} — Xp, —ng
For understanding it, we define the auxiliar varieties

Y1 =Xp, N{b=0,c#0} Yo =Xp, N{c=0,b+#0}
Y3 =Xp, N{y =0,z # 0} Y= Xp, N{z =0,y # 0}

so we have the decomposition
Xi =Y1UYhUY,UY,

However, this varieties are not disjoint so, for the Deligne-Hodge polynomial we have

e(XF,) = e(V1) + e(Y2) + e(Ys) + e(Ya) = >_e(YinY))

i#]
For Y7, observe that the equations of Xp, restricts to
(1 = Xaz = Aey a’? =\ A
= a® =\ =Je=0m b= | | (| o |eCPa,yeC p=(C xCHUC xC)
A? —yz =1 z = 22—l 1=1,2

Y

where A1, Ay are the two different square roots of A # 0 and we have used that it is impossible y = 0
and, since ¢ # 0, it should be x # 0.

Analogously, we can obtain that Yo 2 Y3 2 Y, = (C* x C*) U (C* x C*), so, for k = 1,2, 3,4 we have

e(Y) = e(C* x C*) + e (C* x C*) = 2(¢q — 1)*

For computing the intersections Y; NYj, recall that Xp, N{b=0,y =0} = Xp, N{c=0,2=0} =0

so we have
YlﬂYQZQ) erWY;),Zw

YonYy=10 YsNYy =10

and, therefore, the only non-trivial intersections are

YiNnY,=Xp N{b=0,z=0} Y, NYs = Xp, N{c=0,y =0}
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For Y1 NY, we have the equations

%ax =cy 9 %Ai/\j =cy )
nnYi=q a=x o= || a=A §|_|{¥)‘i)‘jzcy}
3 =1 B o
.1‘2 =\ 1 v T = )‘J 2y

where, again, A, Ay are the two different square roots of A £ 0. This variety is the disjoint union of

four hyperbolas, and thus isomorphic to C*, so we have

4
iny,=| |c
=1

Analogously, Yo NY3 = |_|;1:1 C*, so
eY1nYy) =e(YanYs)=4(qg—1)
Therefore, summarizing, we have

e(XB,) = e(V1) + e(Ya) + e(Ys) + e(Ya) — e(Y1 N Y1) — e(Ya N Y3)
= 4de(Y1) — 2e(Y1NYy) =8(g — 1)* —8(¢g — 1)

that is

e(XH ) =8(q—1)(qg—2) = 8¢> — 24q + 16

4.1.7.4 The variety Xp,

In this case, we have to consider the variety

XDA = XD)\ N {b> GY,z 7& 0}

In order to study it, let us multiply the first equation of Xp, by bz # 0 obtaining the equivalent

equations
(1 — Nabzy + b*yz = \bcy?
¥ be=X"1a? -1 22?4+ (A —a?)y? + (1 — Nabzy — b* = 0
Dy — =
g yz = Ar? —1 a2 # N\, \x? #1
bec#0,yz #0

where we have used that be # 0 if and only if a® # A and yz # 0 if and only if 22 # 0. Equivalently,

considering Xp, as a bundle of affine conics in the (z,y)-plane parametriced by (a,b), we have the
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matricial form

a2 e 0 [z
<x Y 1) @ab A —a? 0 y| =0
0 0 —b? 1

a’ # )\, A2 #£1

)N(DA =~ { (x,y,a,b) € C3 x C*

As usual, in order to study this variety, we consider the projection map 7 : X Dy, — (CxC*)— {a2 = )\}
given by 7(z,y,a,b) = (a,b). Given (a,b) € (C x C*) — {a? = A}, we denoted Cyj = 7 '(a,b) the

parametrized conic in (a, b).

First of all, let us remove the degenerated fibers. Observe that fixed (a,b), the discriminant of the

resulting conic is

Doy = —b <)\62()\ —a?) — (A;l)QaW) = —14 (A4 Da+2X) (A +1)a — 2))]

SO

2\
D(a,b) = 0 < a= im

pyEY
rank of the matrix defining C', 2 for b € C*, is always positive, we have that C 2 is always a

pair of parallel lines, except the two points in each line corresponding to the excluded values x = :i:%.

Thus, the fiber is C — {p, ¢} U C — {p, ¢} with p # q.

2
and this are two diferent points because a? = ( 22 ) # X for A € C* — {£1}. In that case, since the

Hence, if we define XBA = XDA N {D(a,b) = 0} we have an E-fibration

(€= {p,q}) U(C - {p,g}) > XB, —>{<i)\2+>\1,b> \bec*}gcm@*

SO
e (XBA) =4e(C*) e (C - {p,q}) = 4¢* — 12¢ + 8

Now, once we have removed the degenerated fibers, let us denote X g F =X D, -X BX the conic bundle

with non-degenerated fibers. For it study, we complete it to its projective completion

2 BNy 0 (o

Xg/\D = ([.CU(] txp x2]>aab)) € PQ xS <§U1 i) 1’0) (1;)\) ab A — CL2 0 xo | = 0

0 0 —b? xo

with S the space of parameters for (a,b), that is

S = ((C— {ifjriﬁ}) x C*
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In that case, since Cy is a non-degenerated conic for any (a,b) € S, we have an E-fibration
P! XpP =S
and, since e(S) = (¢ —4)(q — 1), we have
e (Xg’f) =e(S)e(P)=¢* —4¢* —q+4

D

However, X g f) contains more points than X JgA , from two different sources:

e The points at infinity, X,%OA: They correspond to impose xg = 0 in X g AD , S0 it is

XBOA =~ {([x1 : x2],a,b) € P! x S | A2z] + (A —a?)z3 + (1 — Nabzizs = 0}

Observe that, since a? # A, if 1 = 0, then x5 = 0, so in fact, XIO)OA lives in the affine open set

{z2 = 0}. Therefore, seen X7 as an affine variety via de change of variables x = 2, we have

that

X35 =2 {(z,a,0) €Cx S | (A—a?)2? + (1 — Nabz + \b? =0}
1 B 2
T+ 7(1()(1 A) _ Da,b
2 A—a? (A —a?)?
Let us consider the fibration 7 : Xlo)c; — C* given by m(x,a,b) = b, then, we have
_ 2X Lab(1—A)\? D
Lb) = R e ) - = =
T ()= (@a)eCxC i et (h— a2)?

Now, using the change of variables (z,a) — (o, 5) with

= {(at,a,b) eCxS

o= 2b2)\7a2 )\()\ — a2) B _ ( 2)\)0/ )\()\ _ a2)

we have that 771(b) can be written as
7 H(b) = {(a, ) € C x C — {6 points} |a® = g + 1}
Hence, defining F' = {(«, 8) € C x C — {6 points} |a? = 32 + 1} we have an E-fibration
F— Xpy 5 C*
Since F' is a conic with 6 removed points, we have e(F') = (¢ — 1) — 6 = ¢ — 7 and, therefore

e (Xfi) =e(F)e(C*)=¢* 8¢ +7
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e The points with Az? =1 in XDA, X]%A: In this case, we have that x = j:\%\, SO

XY, = {(y,a,b) €Cx S ‘ y ((A—a%yi(l—A)ab\%) :0}

Observe that X]%A N{y =0} = S x Zy and, for its complement, we have

X%A—X%Xﬂ{y—O}g{(y,a,b)ECxS ’y—i%,y#O}
>~ (S —{y=0}) x Zy = (C*—{iﬁ,iﬁ}) x C* x Zsy

so, adding
50 . 2\ . 9
Therefore, considering all the contributions, we have
e <ng’) =e (ng) —e (X%J —e (X,%OA) = ¢> —9¢2 +29q — 21

and, thus
e (XD)\> —c (XBA) te (ng’) — =52+ 17— 13

Therefore, putting all together, we obtain the Deligne-Hodge polynomial

e(X,) = e (X8,) +e (X5 ) +e(XB) +e(Xn,) =" +38 ~3g 1

Finally, by the argument in section 4.1.2, taking K = {+Id}, we have SL(2,C)/K = PGL(2,C) and,
since PGL(2,C) acts freely on X |p,] we obtain an E-fibration

Stab(D)\)/K — PGL(Q,(C) X XD)\ — Y[D)\]

= q2 + q. Therefore, we obtain

Now, since Stab(D,)/K = C*, we have e <SZL§(%§’)S)K) _ e(Pg;(é(*z),(C))

e _ PGL(2,C) \ 4 4 2
G(X[D)\}) _e(XDA)6<Stab(D)\)/K> _q +4q 4q q

4.1.8 The Varieties Xp and Xp/Z,
Now, let us focus on the variety

Xp = |_| Xp, = {(A4,B,\) € SL(2,C)* x (C* — 1) | [A, B] = Dy}
AeC*—{£1}
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Repeating the statification analysis of section 4.1.7 but considering A variable living in C* — {£1}, in

[47] is proven that

e(Xp) :q4—3q3—6q2+5q+3

The variety Xp can be shown in a rather more general way. Indeed, let us take any regular morphism
P:C*—{+£1} — SL(2,C), so, via the map (A, B,\) — (P~Y(A\)AP()\), P~Y(\)BP(\), \) we have the

isomorphism
Xp 2 {(A,B,\) € SL(2,C)% x (C* — £1) | P(\)[A, BIP"}(\) = D)}

Remark 4.1.11. In order to give some interpretation to this morphism, observe that P(\) can be
interpreted as a choose of an ordered basis for each first eigenvalue A\. Thus, Xp is exactly the set of
triples of matrices A, B € SL(2,C) and eigenvalues A € C* — {£1} such that [A, B] diagonalizes, in
the ordered basis selected by P(\) with first eigenvalue .

However, in this interpretation, the ordering of the selected basis is crucial. This arbitrary selection

can be removed by considering the action of Zo on Xp. Concretely, let us take

01
Py =

and let us define the action of Zy on Xp by —1- (A, B,\) = (PyAP; ', BhBPy ', \™"). Hence we can

consider the quotient

Xp/Zy = {(A,B,\) € SL(2,C)* x (C* — £1) | [A, B] = D)} /Zy

Observe that this can be described as

Xp/ZLy = {Po-(A B) € SL(2,C)* | A+ A"t =tr[A, B] }

(Po) | [A,B] = {Dy, Dy-1}

via the isomorphism ¢ : [A, B,\] — Py - (A, B). Indeed, this is well defined since ¢([A, B,\]) =
Py (A, B) = ¢[PyAP; ', By BPy ', \7!] and the inverse map is given by ¢ ~'(Py - (4, B)) = [A, B, )]
where ) is the (1, 1)-entry of [A, B].

One of the most important properties of this quotient is that its elements Py - (A, B) € Xp/Zy do not
really depend on the arbitrary choose of the first eigenvalue A of [A, B], but on the trace of [A, B],
that is A + A~!, which is an invariant of [A, B]. Hence, defining D; := {Dy, Dy-1} with A + A\~ = ¢

we have the isomorphism

SL(2,C)>

XD/Zgg{P()'(A,B)G <P0>

[Av B] = Dtr [A,B] }
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Remark 4.1.12. In this form, we can give a more geometric interpretation to Xp/Zs. To this purpose,
let us choose a regular mapping P : C — {£2} — SL(2,C)/(Fy). Then, the map Py - (4, B)
P(tr [A, B]))[A, B|[P~1(tr [A, B]) give us an isomorphism

SL(2,C)?

XD/Zgg{(A,B)E <P0>

P(tr (A, B)|A, BIP\(tr |4, B)) = D,, [A,B]}

Analogously to the case of Xp, this mapping P(t) should be interpreted as picking a basis for each
possible trace ¢ € C — {£2} but, now, unordered. Hence, (A, B) € Xp/Zy if and only if [A, B]
diagonalizes in the corresponding basis P(tr [A, B]) with diferent eigenvalues. Equivalently, in terms
of endomorphisms, given two volume preserving endomorphisms f,g : C> — C2, (f,g) € Xp/Z if

and only if [f, g] diagonalizes in the basis P(tr [f, g])

4.1.8.1 Deligne-Hodge polynomial of Xp/Zs
In order to compute de Deligne-Hodge polynomial of Xp/Zso, let us define the auxiliar variety
Xp = {(A,B,l) € SL(2,C)* x P! | tr [A, B] # %2, [ eigenspace of [A, B]}
Observe that, if we define the action of Zs on Xp by —1- (4, B,l) = (POAPO_I,POBPO_I, I") where
0 1
Py =

and [’ is the eigenspace of [A, B] that is not [, then, we have that X p = XD/ZQ. Now, let us define
7: PGL(2,C) x Xp — Xp by n(P,A, B,\) = (PAP~', PBP~! (P(0,1))). Since the fiber is

1 ~ uo 0
{2

we have that = : PGL(2,C) x Xp — Xp is a C*-principal bundle, so we have an E-fibration

MG(C*}Z(C*

C* — PGL(2,C) x Xp = Xp

and, in particular

e<XD)_ =¢%—2¢° —9¢* — ¢ +8¢% + 3¢

Now, we can define an action of Zs on PGL(2,C) x Xp by imposing

—1-(P,A,B,)) = (PF; ', RVAPy ', R BFy 1, A7)



Chapter 4. Character Varieties 144

With respect to this action, the map 7 : PGL(2,C) x Xp — Xp descends to the quotient, giving us
a morphism 7 : (PGL(2,C) x Xp)/Zy — Xp/Zs = X p. Hence, we have the diagram of fibrations

C*

PGL(2,C) ;{ %%C) X Xp)/Zs
1 )

where the horizontal maps are the passing-to-quotient morphisms. Therefore, by theorem 3.3.51,

remembering that Xp /75 = X 4, we have

e((PGL(2,C) x Xp)/Zs) = e(Xp)Te(C*)" + e(Xp) e(C*)”
= e(Xp)e(C)" + (e(Xp) — e(Xp))e(C*)~

For computing the Deligne-Hodge polynomial of X p, recall that we have an stratification of SL(2, C) x
SL(2,C) by
SL(Q, C) X SL(Q, (C) =XgUX_qU Y[JJF] [ Y[Jﬁ} (| YD

so, using the computations of the previous sections, we have
e(Xp) = e(SL(2,C))* — e(X1q) — e(X_1q) — e(X|1,)) — e(X () = ¢® —2¢° — 4¢" + 3¢° + 2¢

Therefore, returning to (PGL(2,C) x Xp)/Za, and remembering that e(C*)* = ¢ and ¢(C*)™ = —1,

we obtain

e((PGL(2,C) x X1)/Za) = e(Xp)e(C*)F + (e(Xn) — e(Xp))e(C?)~
=q" —2¢° —4¢° +5¢" + 4¢° — 3¢° — ¢

And, now, the final trick. Observe that the action of Zy on PGL(2,C) by left multiplication extends to
an action of Zg on GL(2,C) by left multiplication. However, since GL(2, C) is connected, the induced
map is homotopy to the identity and, thus, the action of Zs on cohomology is trivial. Hence, we have
that e(PGL(2,C))" = e(PGL(2,C)/Zs) = e(PGL(2,C)) and, thus e(PGL(2,C))~ = 0. Therefore,
we can recompute e((PGL(2,C) x Xp)/Zs) as

e((PGL(2,C) x Xp)/Zs) = e(PGL(2,C) x Xp)* = e(PGL(2,C)) e(Xp)* + e(PGL(2,C))"e(Xp)~
— ¢(PGL(2,C))e(Xp)T = e(PGL(2,C))e(Xp/Zs)
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Therefore, we have obtained

€((PGL(2, (C) X XD)/ZQ)

4 3 2
=q —2¢°—3 3 1
«(PGL(2,0)) L

e(Xp/Zs) =

4.2 Moduli of SL(2,C)-Representations of Elliptic Curves with 1

marked point

With these computations in hand, we can study the main concern of this work, the parabolic SL(2, C)-
character varieties. Recall from section 2.2 that this varieties appear as representation varieties into
SL(2,C), modulo conjugation, of a elliptic curve (i.e. a compact Riemann surface of genus 1) with
some removed points (called the punctures, the parabolic points or the marked points) with prescribed
monodromy. The constrains in these spaces is due to their relation with other important moduli spaces

that appear in mathematical-physics, like the moduli space of parabolic Higgs-bundles.

In particular, in the case of a single marked point, we must consider, for each conjugacy class C C

SL(2,C) the parabolic character variety

Me = {(A,B) € SL(2,C)? |[A,B] e C} J SL(2,C)

or, equivalently (see section 2.2.5.1), for any £ € C we have M¢ = M, where

Me = {(A,B) € SL(2,C)? | [A, B] = £} /) Stab(¢)

being Stab(&) the stabilizer of £ € SL(2,C) under the action of SL(2,C) on itself by conjugation.
Again, recall that the conjugacy classes of SL(2,C) are uniquely determined by one and only one of

the following elements

1 0 -1 0 11 -1 1 A0
Id = —Id= I, = J_ = Dy =
0 1 0 -1 0 1 0 -1 0 At
for A € Cx — {£1}.
4.2.1 The parabolic character variety M,

Let us study the SL(2,C)-character variety

Miq={(A,B) € SL(2,C)? | AB = BA} J Stab(Id) = X4 /| SL(2,C)
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where SL(2,C) acts by simultaneous conjugation and we have used that, since Id lives in the center
of SL(2,C), Stab(Id) = SL(2,C). Moreover, since £1d acts trivially on X4, we have

Miq = X1 ) PGL(2,C)

However, observe that every element of X;4 is reducible. Indeed, from the analysis of X4 in section

4.1.3, we obtained that all the orbits for the action of PGL(2,C) on X4 are of the form
PGL(2,C) - (xlId, P) PGL(2,C) - (P,£Id) PGL(2,C) - (J+,Q) PGL(2,C) - (Dy,D,)

for some P € SL(2,C), Q € Stab(J+) and A\, € C* — {£1}. In any of the orbits, choosing an
appropiate sequence of elements in SL(2,C), we have that its Zariski closure contains a diagonal
element. Therefore, identifying each orbit with its Zariski closure (as the S-equivalence procedure

says), we have that
Mg = X4 | PGL(2,C) = {(Dx, Dy) [\, € C*} [Zy = (C* x C*) [ Zo

where Zj acts by —1-(Dy, D,,) = (Dy-1, D,-1), or, equivalently, in C* x C* by —1-(\, u) = AL .

In order to compute its Deligne-Hodge polynomial, observe that, taking 7 : C* x C* — C* to be the
first projection 7(A, u) = p, and 7 : (C* x C*)/Zy — C*/Za by 7([A, u]) = [A], we have the diagram of

fibrations

*

N

C* x C* (C* x C*)/Zs

C* C*)Zs

so, by theorem 3.3.51, using that e(C*)* = ¢(C*/Z3y) = ¢(C) = g and ¢(C*)~ = ¢(C*) —e(C*)™ = —1,

we have that

e(Mra) = e (C* x C*) /Zs) = e(C*)Te(C*) + e(C*)~e(C)™ = ¢* + 1

Finally, let us recover the mixed Hodge numbers of My; = (C* x C*)/Zs. Recall that, by the
computations of remark 3.3.54 and the Kiinneth formula 3.3.42, we have that the only non trivial

mixed Hodge numbers of C* x C* are

hE22(C* x C*) =1 hELH(C* x C*) =2 hE00(C* x C*) =1



Chapter 4. Character Varieties 147

Moreover, the action of Zy in the cohomology of C* x C* give us a decomposition that preserves the

mixed Hodge structures
H!((C* x C*)/Zs) = H?(C* x C*) @ HY(C* x C*)
and, therefore, the unique non vanishing mixed Hodge numbers of M, = (C* x C*)/Zy are
he®?(Myg) = 1 he0(Mia) =1

Thus, the mixed Hodge polinomial of M, is

H (Mpg)(u,v,t) = vt + 12 = ¢t* + 12

4.2.2 The parabolic character variety M _;,;

Recall that the parabolic SL(2,C)-character variety with one puncture and monodromy in the class
of —Id € SL(2,C) is

M_rq={(A,B) € SL(2,C)? | AB= —BA} | Stab(—1d) = X_14 /| SL(2,C)

since Stab(—Id) = SL(2,C), because —Id lives in the center of SL(2,C). Recall that SL(2,C) acts

on X_j4 by simultaneous conjugation.

However, in subsection 4.1.4 we proved that the action of SL(2,C) on X_ 4 by conjugation is transitive,
so the orbit space is a single point variety X_;4/SL(2,C) = {x}. This space is obviously a good
quotient for the action, so X_r4 / SL(2,C) = {x} and, therefore

In particular, we can easily obtain all the algebraic and topological information of M_75. As a
compact Kahler manifold, its mixed Hodge structure is, in fact, a pure Hodge structure with unique

non-vanishing Hodge number h%%9(M_;,) = 1. Therefore, the mixed Hodge polynomial is

HC(M—Id)(u7 v, t) =1

4.2.3 The parabolic character variety M,
Recall that the parabolic SL(2,C)-character variety with monodromy around the puncture living in

11
the conjugacy class of J; = (0 1) is

My, = {(A,B) € SL(2,C)? | AB = J, BA} | Stab(Jy) = X, /| Stab(J)
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where Stab(J; ), the stabilizer of J4 in SL(2,C), acts by simultaneous conjugation. Recall, from the

+1 A
sta-{ (2 1)

In order to understand the conjugacy action of Stab(Ji) on X, , recall that in section 4.1.5 we

previous computations that

Ae(C}:(C

obtained an explicit description via the variety
Y i= {(2,0,,b) € (C)? x C? | y(w(a? — 1)) + bla(1 — 2%)) = 1}
and the isomorphism ¢ : Y — X,

Y PN X,
a b Ty
xz,a,y,b) +—— )

a b x +1 A
Now, observe that, for A = ,B =

€ SL(2,C) and P =
0 +1

) S Stab(J+)

for A € C, we have

pAp-l— (a bt Aa ! — a)) PEP-! — (az TE=D ¢ x))
0

0 a~! x 1

Thus, if P- Aut(X,) is the morphism on X, induced by P € Stab(Jy), and ¢*(P-) € Aut(Y) is the
induced automorphism (that is, p*(P-)(7) := ¢ (P - (¢(¥))) for ¥ € Y) we have that

" (P) Y — Y
(z,a,y,b) (:U, a,y+ Mz —2),a£Na"! - a))

In particular, recall that using the projection map 7 : ¥ — C* x C* — {(£1,+1)} projected over

coordinates (z,a), we have the algebraic line bundle
CoY >C"xC"—{(£1,£1)}

so, for every P € Stab(J), ¢*(P-) : Y — Y is a vector bundle map (in fact, it is an element of the gauge
group of Y). In that case, if L, , := 7~ !(x,a) C Y is the fiber of 7 for any (z,a) € C* xC*—{(£1, £1)}
it transforms

©*(P): Lgoe —> L.,

)

(y,b) +— (y + Azl —x),a £ Na"! - a))

Therefore, via ¢, the action of Stab(J) becomes, on Y, translation between the fibers. In particular,

Stab(Jy) is transitive in the fibers so X, /Stab(J;) can be identified with the base variety C* x
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C* — {(£1,+£1)}. Again, it can be proved that, in fact, this is a good quotient for the action, so, by

uniqueness

X, [ Stab(J.) = C* x T — {(£1,+1)}

and, therefore,

My, =C* x C" — {(£1,+1)}

From this explicit description, we can compute all the desired algebraic and topological invariants. In

fact, the Deligne-Hodge polynomial of M ;_ is
e(My ) =e(C xC) —e({(+1,£1)}) = (¢ - 1) —4=¢"-2¢ -3
Furthermore, using a tipical Mayer-Vietoris type argument, it can be proved that its Poicaré polyno-

mial is

P(X; )(t) =43 + 2 + 2t +1
and, since it is a smooth space, by Poincaré duality

P(X; )(t) =43 +t2 +2t +1

However, this data is not enough for computing the Hodge numbers of this variety. To this end, we
should use a more powerful tool as the long exact sequence of proposition 3.3.53. First of all, recall

that the mixed Hodge structure of C* (see example 3.3.54) has non-vanishing groups
H*(C) =C HFM(C) =cC

Therefore, by the Kiinneth formula for mixed Hodge structures (see theorem 3.3.42) we have that the

mixed Hodge structure of C* x C* has non-vanishing groups
HX(C*xC)=C  HIY(C*xCY)=C? Hy*2(C* x C*) =C

Now, we can remove the point (1,1) € C* x C* using the considerations in example 3.3.55. Hence, for
(p,q) # (0,0) or for (p,q) = (0,0) and k > 2 we have

HFP9(C* % C* — {(1,1)}) = H*P1(C* x C¥)
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and the other two groups must satisfy the long exact sequence
0

[
0—= HI" (C* x C* — {(1,1)}) —= HZ*? (C* x C*) — HIO({(1, 1)}))

ﬂé;oﬂéx C* —{(1,1)}) —= H"*(C* x C*) —= HZO({(1,1)})
0 0

so HYOY (C* x C* — {(1,1)}) = 0 and H*? (C* x C* — {(1,1)}) = C. Therefore, the mixed Hodge

structure of C* x C* — {(1,1)} has non-vanishing groups

HIO (€)= {(1,1)}) = C H200 (€2~ {(1,1)}) = C
HEL((C) - {(1, 1)) = €2 HE2 (€)= {(1,1)}) = C

Thus, repeating the procedure in order to remove (1, —1), (—1,1),(=1,—1) € (C*)2—{(1,1)} we obtain
that, for M, = (C*)2 — {(£1,%1)}, the non-vanishing groups of its mixed Hodge structure are

12

IO (My,) = ¢ H2 (M),)

) =C
Hg;l,l (MJ+) ~ (2 Hél;2,2 (M]+) C

1

Therefore, summarizing, the mixed Hodge polynomial of M, is

He (M) (u,v,t) = w0t + 2uvt? + 12 + 4t = ¢*t* + 2qt° + % + 4t

4.2.4 The parabolic character variety M ;_
Let us study the SL(2, C)-character variety
My ={(A,B) € SL(2,C)? | AB = J_BA} J Stab(J-) = X;_ /| Stab(J_)
where Stab(J_) acts by simultaneous conjugation. Moreover, since +1d acts trivially on X7 , we have

My =Xy [ (Stab(J_)/K)
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Now, the key point is that Stab(J_)/K acts freely on X;_ . Indeed, suppose that there exists a non
trivial P € Stab(J_)/{£Id} and (A, B) € X;_ with P(A, B)P~! = Id. Let us write

() )

a+ie b—XNc+\d—a)
c d— Ac

with A # 0. Since we have
PAP™! = <

we obtain that PAP~! = A if and only if a = d = +1 and ¢ = 0, that is, if and only if A € U =
Stab(J+). Analogously, we should have B € U = Stab(J;). Hence, since [U, U] = Id, we have that
[A, B] = Id, which contradices (A, B) € X_.

Therefore, since Stab(J_)/K acts freely on X; , its GIT quotient is just the usual quotient, so

X
M(]7 = X{]i // (Stab(J_)/K) = m
In particular, we have a principal bundle

Stab(J_)/K — X;_ — My

which, automatically, is an E-fibration. Therefore, since Stab(J_)/K = C/Zy = C, we obtain

=q¢*> +3q

In order to compute its Hodge numbers, we need to identify explicitly this space. Using the notation

of section 4.1.6, recall that, by the computed stratification, we have that
X; =X§ ux? uXx,
and, since M;_ = X; /SL(2,C) and X;_/SL(2,C) = S we obtain
My =SUX§ /SL(2,C)u X’ /SL(2,C)
For the study of S, recall that we have an stratification

S=8—8.—Sy=SypUSp— S+ —So

where § = {ad =1+ )\2} is the projective completion of 5, Syp and Sp are the non-degenerated

and degenerated, respectively, fibers of the fibration 7 : § — C* given by m((a,d,\)) =\ = %, S, are



Chapter 4. Character Varieties 152

the points at infinity of the conic bundle and Sy are the removed points due to the constrain on S of
a+d#0.

The situation for S is as follows. Under the fibration 7 : S — C* we have that the generic fiber
is isomorphic to a projective conic, i.e. P!, with two degenerated fibers, corresponding to A = i
isomorphic to two copies of P! intersecting in a point. Now, the points at infinity S are, for each fiber,
two different points, so, removing those points, we obtain a fibration with generic fiber P! —{2 points} &
C*. For the degenerated fibers, the description of section 4.1.6.2 shows that each of the points at infinity
belongs to one copy of P! and any of them is the intersection point. Therefore, we obtain that the
degenerated fiber is isomorphic to C U C intersecting in a point. Finally, for the removed points Sy
we observe that, the correspond to two different points on each generic fiber, but, for the degenerated
fibers, it is just a point, the intersection point between the two copies of C. Therefore, we have
obtained a description of S as a fiber bundle over C* with generic fiber isomorphic to P! — {4 points}

and two degenerated fiber isomorphic to C LI C.

However, for X 53_ /SL(2,C) = C* U C*, the situation is different. Taking the trace of this subspace in
the conic bundle S, we have that X (’?ﬁ /SL(2,C) is exactly the points at infinity (since it correspond to
taking A — oo or, equivalently, g — 0). Thus, filling these points, we have that SI_|X§_ /SL(2,C)is a
fibration with generic fiber isomorphic to P! — {2 points} = C* and two degenerated fibers isomorphic
to P! UP! — {intersection point}, i.e. two parallel lines. Finally, the space X% /SL(2,C) = C* U C*

can be considered as the missed fiber for a/8 = A = 0, since it correspond to a = 0.

Summarizing, we have obtained a description of M ;_ as follows. It is a fibration over C with generic
fiber isomorphic to P* — {2 points} = C*. For the singular fibers, we have two degenerated fibers for
A = +i isomorphic to P! UP! — {intersection point}, that is, two paralles lines. Finally, we also have

a singular fiber over 0 isomorphic to C* LI C* = P! UP! — {3 points}.

Therefore, the space M j_ can be build using the following algorithm:

(1) Start with the variety M; = P! x C.

(2) For each on the fibers under {&,0}, remove one point and add a copy of P! replacing that point,
obtaining the variety My. Equivalently, blow up three fibers.

(3) Remove a bisection of the fibration that intersects twice to each generic fibers and the singular

fiber over 0 and once to the other two singular fibers. Obtain the variety Ms.

(4) Remove the intersection point in the fiber over 0.

Using these descriptions of M ;_ and a Mayer-Vietoris type argument for compactly supported coho-

mology, we obtain the Poincaré polynomial of M ;_ with compact support

P My )(t)=t' + 3 4562+t
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In order to computed the mixed Hodge numbers of M ;_, first observe that, by construction, M ;_
has balanced type, so hf;p’q(ML) = 0 for p # ¢q. Moreover, M; — X§ /SL(2,C) = S — Sy, it is
a smooth variety. Analogously, M; — X 5_ /SL(2,C) is also smooth, so M _is a smooth variety.
Thus, it satifies h’g;p’q(./\/lj_) =0 for k < p + ¢q. In particular, since H*(M; ,C) = C, it must be
he®? (M) = 1.

With this restrictions and the information of its Deligne-Hodge and Poincaré polynomial, we obtain

that, the other possible non-vanishing mixed Hodge numbers for M ;_ are
POOM ) =1 R M) =4 REY(My ) =1
or the posibility
hZO0 (M) =2 hZEP (M) =3 RO (M) =1
In order to distinghish between the two possibilities, we are going to compute h?O’O(M J_). First of

all, using Kiineth formula for mixed Hodge structures and the computations of section 3.3.3.3, we

obtain for M; = P! x C that its non-vanishing mixed Hodge numbers are

heH(My) =1 he? (M) = 1

Now, observe that, h2%"(M;) = hZ*°(M,). Indeed, recall that, when removing a point, by example

3.3.55 we have that hZ0(M; — {x}) = hZ%(M;) = 0. Now, if we want to add a copy of P! on

M, — {x}, we obtain a long exact sequence

—— HX (M, — (%)) — HXO (M, — (%} uPt) — 2O (P) ——

0 0

so hZ% (M, — {x} UPY) = h2"°(M; — {x}) = 0. Doing this procedure three times, we have that
he®0(My) = 0. Analogously, he'®%(My) = 0
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For the case of the bisection C C My, observe that, by description, C = C*. Therefore, for My — C,

we obtain a long exact sequence

HCLO,O(MQ) S Hcl;O,O((C*)

JZ;‘W(M2 —C)— HF" (M)

0

SO hz;O’O(Mg) = hE"° (M, — ©) = 1. Finally, since removing a point do not modify the mixed Hodge

nomber h2"°, we have that hZ*°(M ;) = hZ"0 (M5 — {x}) = 1.

Therefore, the true possibility is the first one conjectured and, thus, we obtain that the non-vanishing

mixed Hodge numbers of M j_ are
hi;o’O(MJ_) =1 hg;O’O(MJ_) =1 hg;l’l(/\/l]_) =4 hg;l’l(MJ_) =1 hé;Q’Z(MJ_) =1

Thus, the mixed Hodge polynomial of M ;_ is

H, (M )(u,v,t) = u?0*t* + uvt® + duvt® + 12 +t = ¢?t* + > + 4qt®> + > + 1

Remark 4.2.1. Until the present day, this polynomial was unknown, so this is, in fact, a new result.

4.2.5 The parabolic character variety Mp,

Let us fix A € C* — {£1}. Recall that the parabolic SL(2,C)-character variety with one puncture and
monodromy in the class of Dy € SL(2,C) is

Mbp, = {(4,B) € SL(2,C)* | [A, B] = Dy} /| Stab(D,) = Xp, [/ Stab(Dy)

where Stab(D,) is, by remark 4.1.4

D := Stab(D)) = { (g M(L)

Observe that Id, —Id € D acts trivially on Xp,, so Xp, / D = Xp, / D/K where K = {+Id}. But
D/K is exactly the stabilizer of Dy € PSL(2,C), which acts freely on Xp,. Therefore, the orbit space

MG(C*}%(C*
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is just the GIT quotient, so
Mp, = Xp, J (D/K) = XDA/(D/K)

and, since D/K = C*/7Zy = C* we have that

_e(Xp,) _
e(MDA)—e(T/[)I()—q2+4q+1

Moreover, we can also obtain the Hodge number of Mp,. To this end, recall, that, by the results of
section 2.3, we have that Mp, is homeomorphic to the moduli space of parabolic Higgs bundles over
an elliptic curve with some fixed parabolic structure a, M$,,,(X). In [8], its Poincaré polynomial with

compact support is computed, obtaining
Po(Mifiges(X, ) () = Po(Mp, ) (1) = t* + 5¢°

Since the space Mp, is of balanced type, we have that hlg;p’q(MDA) = 0 for p # q. Moreover, since
Mp, is smooth, hlg;p’p(MDA) = 0 for p > k. In addition, since Mp, is connected, 3 _, hél;p’p(MDA) =1

and, since M p, is not compact, hg;O’O(MDA) = 0.

Therefore, with this information and comparing e (Mp,) with P.(Mp,) we obtain that the only

posibility for the Hodge numbers is that the non-vanishing numbers are
hg;()’[)(MD)\) =1 hg;l’l(MDA) =4 h§;272(MD)\) =1

Thus, its mixed Hodge polynomial is

H.(Mp,)(u,v,t) = w*v?*t* + duvt? + 12 = ¢*t* 4+ 4qt* + 12

4.3 Moduli of SL(2,C)-Representations of Elliptic Curves with 2

marked points

In this section, we will extend our previous computations to the case of SL(2,C)-parabolic character
varieties of an elliptic curve with two marked points. Again, this corresponds to the character variety
of a compact Riemann surface of genus 1 (i.e. an algebraic curve of genus 1) with two removed points
(the marked points), where the holonomy of the representation around the marked points is prescrived

to live in fixed conjugacy classes.
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Explicity, recall from section 2.2.5.1 that, fixed SL(2, C)-conjugacy classes C1,Co C SL(2,C) we define

[A, B]C1C, = Id

Me, e, = 4 (A, B,C1,Cy) € SL(2,C)*
ez {( ! 2> ( ) (i € Cl, Cy € Cy

} J SL(2,C)

with SL(2,C) acting by simultaneous conjugation.

Remark 4.3.1. The importance of these spaces was shown in section 2.3 in relation with other moduli
spaces. In summary, in the case of holonomies of different diagonalizable type, the parabolic char-
acter variety M|p,) p,] with A =% u, is homeomorphic to the moduli space of stable parabolic Higgs
bundles of parabolic degree 0 and traceless Higgs field. This space, through Nahm transformation, is

homeomorphic to the moduli space of doubly periodic instantons.

In order to study this spaces, analogously to what we did in section 4.2, for SL(2, C)-conjugacy classes

C1,Cy € SL(2,C), we define the auxiliar spaces

Xe, e, =13 (A, B,Cy,Co) € SL(2,C)*
1,C2 {( 1 2) ( ) c, ECl, Cy € Cy

mmq&:m}

in the way that
Me, e, = Xeyco /| SL(2,C) = Xe, ¢, J PGL(2,C)

where the last identity follows from the fact that, given P € SL(2, C), the action of P on X¢, ¢, is equal
to the action of —P on X, ¢,, so the action descends to the quotient SL(2,C)/{Id,—Id} = PGL(2,C).

First of all, observe that there exists a strong symmetry between C; and Cy. Indeed, observe that the

map
¢ : XC1 Co <— Xc%cl
(A,B,C1,Cy) +— (B~H A7 cyh ot

is an isomorphism of algebraic varieties that commutes with the action of SL(2,C) by simultaneous

conjugation, so it descends to an algebraic isomorphism

5 : Mcl,cz = Xchcz // SL(Q, (C) — Mc%cl = Xc%cl // SL(Q, (C)

Recall that, in SL(2,C), there are five conjugacy classes, determined by the matrices

1 0 -1 0 11 -1 1 A0
Id: —Id: J+: J_: _D)\:
0 1 0 -1 0 1 0 -1 0 A1

so, a priori, using this symmetry between conjugacy clases, we have 16 different parabolic character

varieties (observe that we have to consider as different the spaces Mp,},ip,) and Mp,j(p,] With

A # ).
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However, the case C; = [Id], [—1d] essentially reduces to the case of a single marked points. Indeed,
observe that, since [/d] = {Id} and [-1d] = {—1d} we have

[A, B]C = +Id

M =< (A,B,+1d,C) € SL(2,C)*
(+1d],C {( ) (2,C) Cec

} J SL(2,C)

[A,B|C = Id

>~ { (A, B,C) € SL(2,C)3
{( ) (2,C) Cec

} / SL(2,C) = M¢

Therefore, essentially, we only have to study seven cases grouped in three families

e Holonomies of Jordan type: My, 17,1, Mr,17-1 M_1,10_1-
e Holonomies of mixed type: M, p,s M[s_],[Dy]

e Holonomies of diagonalizable type: M|p,) p,]; M[p,],[p,] With A # p.

Finally, a very important tool that we will need in order to understand Me, ¢, are the auxiliar varieties

Y = {(A,B,C) € SL(2,C)*

[A7B]C =
CECl

for any fixed & € Cs.

These spaces are very related to X¢, ¢,. Suppose that there exists a subgroup K C Stab(¢) C SL(2,C)
such that the action of K on X¢, ¢, by simultaneous conjugation is trivial and SL(2,C)/K acts freely
on X¢, ¢,- Usually, it will be K = {Id, —Id}, so SL(2,C)/K = PGL(2,C). By an argument similar
to the one in section 4.1.2 we will show that considering YC€1 C X¢, ¢, via the inclusion (A4, B,C) —
(A, B,C, &), the hypothesis of proposition 3.3.47 hold for the varieties chl C X¢, .0,

e SL(2,C)/K - Yg1 = Xc¢, ¢,. Indeed, given (A, B,C1,Cs) € X¢, ¢c,, let P € SL(2,C) such that
PCyP~t =¢. Then, y:= (PAP~!, PBP~! PC1P %) ¢ Ycﬁ and P7'K -y = (A, B,C1,Cs).

e Forall y € YCE1 we have that
Stab(€)/K -y = SL(2,C)/K -y N Y§,

This is simply because, if (4, B,C) € Y, and P € SL(2,C) satisfies P - (4, B,C) € Y{, then it
should satify
P¢P = Pl[A,BICP! =¢

so P € Stab(§).
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Therefore, the algebraic groups Stab(§)/K C SL(2,C)/K satisfies the hypotesis of proposition 3.3.47
for the varieties YC§1 C Xe, ¢, so we have a Stab(¢)/K-principal bundle

Stab(¢)/K — SL(2,C)/K x Y& — Xe, ¢,
Hence, it holds
R SL(2,C)/K\ _ SL(2,C)
e (Xeve,) =€ (Ycl> c <Stab(£)/K> —° <Ycl) ‘ (Stab@))

Remark 4.3.2. In some cases, it will be impossible to find such a K C SL(2,C). However, we will
find subsets Dgl - YC£1 and D¢, ¢, € X¢, c,, called the set of reducibles, such that the action of
SL(2,C)/K on X¢, o, = Xey e, — Dey ¢, and the action of Stab(§)/K on chl* = Yci - Dgl are free

actions. In that cases, the previous observation can be applied to relate the Deligne-Hodge polynomials
of Yci C X¢ ¢, by
. B ¢ SL(2,C)
e(XGﬂJ“€@@1>e(suw@)
In the GIT quotient of X¢, ¢, by the action of SL(2,C), we have that

*
XCl ,C2

Xeveo I SL2.C) = gro"oy R

For the contribution of the irreducibles, we have to identify all the orbits that contains lower di-
mensional non-trivial stabilizers in their closure. In the jergue of GIT, these points are called the

semi-stable points and this procedure is called the S-equivalence.

4.3.1 Representation varieties with holonomies of Jordan type
4.3.1.1 Deligne-Hodge polynomial of ;7"

We will compute the Deligne-Hodge polynomial of

ﬂﬁy:{@LBLUGSMZCP

A, BIC = J,
C € [J4]

To this end, recall from remark 4.1.4 that

£1 A
stz -o-{ (4 2)

AEC}
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Therefore, for each C € Y[ji}, there exists P € SL(2,C), defined up to product with U on the right,

such that C = PJ, P~ Thus, since [A, B]C = J, is equivalent to [A, B][P, J;] = Id we have
Jr o~
Y;h = {(A, B, P) € SL(2,C)’ | [A, B[P, J1] = Id} /U

where U acts on P by right product. Let us write

A

+1
with xt — yz = 1. Observe that, for all Q) =
0 =1

) € U, we have that

+r Arty
PQ =
+z Azttt

And, since

-2z —1+z(z+=2)
[P, J4] = ( iy 1+($+z)z>

we have that [P, J] only depends on the first column (z, z) of P, defined up to sign under the action
of U. Therefore, if we define

R(z,2) := [P, J+]—1 _ (1 + (x;— 2)z 1—z(x+ z))

z 1—xzz

we can give the explicit description

Y[ﬁ] = { <(A, B), (j)) € SL(2,C)? x <c2£2{0}

where Zo acts on C2 — {0} by —1- (x,2) = (—z, —2).

[A, B] = R(x, z)}

Using this description, we consider the stratification in terms of the trace map ¢ : Y[ﬁ] — C given by

t(A, B, [z,2]) = t[z, 2], where # : (02272{0} — Cis
tlz, 2] = tr(R(x,2)) = =2 — 22
o 7 5 == t71(-2) = Y[ﬁ] N {z = +2i}: In this case, the only posibility is that R(z,z) ~

J_. Consider the projection over (z,z) mapping 7 : Z_9 — (C x {£2i})/Zy = C given by
(A, B, [z, £2i]) = [z, +21].



Chapter 4. Character Varieties 160

For understanding the fiber, let us fix [z, 42i] € (C x Z3)/Zy and let us choose @ € SL(2,C)
such that QR(z,2)Q~' = J_. Then we have that, algebraically

7 Na, +i) 2 {(A,B) € SL(2,C)*| QA,B]Q ' = J_} =QX, Q' = X,

Moreover, this identification can be done algebraically in a Zariski neighbourhood of [z, £2i] so

we have that the algebraic fiber bundle
X . — Z_Q 1> C
Thus, since C is irreducible, we have that, by remark 3.3.46, this is an F-fibration, so

e(Z-2) = e(Ce(Xy.) = ¢" + 3¢’

o 7y :=t1(2) = Y n {# = 0}: In this case, we use the same fibration as before via the map
[J+]

7w Zy — C* )7y, w(A, B, [z,0]) = [z]. However, we can find two diferent types of fibers:
— 77 1([£1]). In this situation, R(z,z) = Id. Thus, since it is an unique fiber, the contribution
is e(r 1 ([£1]) = e(X1a) = ¢* + 4¢° — ¢* — 4q.

— 7 Y([x]) for [z] # [£1]. In that cases, R(z, z) ~ Jy, so, by an analogous argument that the

one for Z_o we have an E-fibration
Xy, = Zo — 7 H([£1]) = (C* = {£1})/Z,
Therefore, we have
e(Zy —m H([#1])) = e((C" = {£1})/Za) e (X, ) = (¢ —2)e (Xs,) = ¢* —4¢° + ¢° + 6¢
Hence, putting together the Deligne-Hodge polynomials of the two strata we have that
e(Zo) = e(m H([£1])) + € (Z2 — 7 H([£1])) = 2¢* + 2¢

o« 7 := Y[ﬁ] N{z # 0,42i}: In this case, we have t # +2, so fixed (z,z) € CxC—{0, £2i}, we have
(A, B) ~ D, for some A € C*—{#1}. Concretely, \ satifies \+ \™1 =t = 2+ 22 £ 2. In order to
explote this idea, let us consider the twisted projection 7 : Z — C given by n(A, B, [z, z]) = z=.
Observe that this map is well defined, though [z, 2] is defined up to sign. In order to compute
the fiber of this map, the key fact is that R(x, z) can be rewritten, for z # 0 and v := xz as

2

Riz.z) = <1+(:U—{—z)z 1—CE($+2)> _ (1+v+22 1—1}—;’2) (v, 2?)

22 1—xz 22 1—vw
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2

and, since 22 does not deppend on the sign of z we have that w := 22 is well defined and takes

values on C — {0,4}. Thus, fixing v € C our fiber can be described as

() = {((A,B),w) € SL(2,C)* x C —{0,4} | [4,B] = fz(u,w)}

with t((A, B),w) = tr(R(v,w)) = 2 + w. Moreover, fixing wy € C — {0, —4} we have

)| = {(A, B) € SL(2,C)?| A, B] = R(v, wo) ~ D,\} ~ X,

w=wo

for some A\ € C* — {4-2}. Hence, 7! (w) is the union of all the Xy for A € C* — {42}, which is
Xp/Zsy. Thus, making this identification locally, we have a regular morphism 7 : Z — C and a
Zariski locally trivial fibration

Xp/Zy — Zy — C

so, this is an E-fibration and, in particular
e <Z> =e(C)e(Xp/Zy) =q¢° —2¢" =3¢ +3¢> + ¢

Remark 4.3.3. Another possible approach could be using the double-fixing fibration 7’ : Z —
C x C — {0,4} given by '(A, B, [z, 2]) = (22, 2%). In this case, we have that

7 (v,w) = {(4, B) € SL(2,0)| [4, B] = R(v,w) ~ Dy} = Xp,
for any A satisfying A + A~! = 2 + w. Hence, we have a fibration

Xp, =+ Z - CxC-{0,4}

However, we have that e(Z) # e(C)e(C—{0,4})e(Xp, ) so this fibration cannot be an E-fibration.
The reason is that this fibration is not locally trivial in the Zariski topology, since A depends
quadratically on w so the isomorphism 7©'~!(v, w) = X D, uses square roots of w. Hence, locally,

this is only a analytic mapping, and is not a regular map anymore.

The solution to this problem is to modify the fibration in order to deppend not on A, but on
the trace ¢, which has a linear dependece on w. For accomplishing this, we should pay passing

through the quotient space Xp/Zo and leaving w free, as done above.

Therefore, using this stratification of Y[ﬁ] we have

[J+]

e (Y‘”) =e(Zg)+e(Z)+e(Z)=¢ +q" +3¢4+ 3¢
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4.3.1.2 Deligne-Hodge polynomial of Yﬁ;]

Now, we focus in the variety

A, B|C=J_
Y5 =1 (4,B,C) € SL(2,C)’ 14, 5]
i C € [J4]
However, observe that, since J_ ~ —J; we have that, via simultaneous conjugation Y[:t] = Y[;jr S0,

instead of Y[L‘t} we are going to study

Yoop = {(A,B,C) € SL(2,C)

[A, B]C - —J+
C e /4]

The analysis of this variety is very similar to the one of Y[ﬁ] in section 4.3.1.1. Again, recall that

smb<J+>:U:{<ﬂ A) Aec}
0 =1

So, decomposing C = P.J, P~! for P € SL(2,C), unique up to product with U on the right, we have

y[;j]+ ~ [(A,B,P) € SL(2,C)*| [A, B][P, J4] = —Id} /U

where U acts on P by right product. More explicity, the same computations than in section 4.3.1.1

show the explicit description

Y= { <(A, B), (‘Z)) € SL(2,C)? x <c222{o}

where Zs acts on C2 — {0} by —1- (z,2) = (=, —2) and

[A, B] = R(x, z)}

) —1—(z+2)z —1+z(x+2)
R(z,z):=—[P,J4] ' = ( .2 —1+zz )

Analogously, we can stratify this space as before in terms of the trace map ¢t : Y[;j]* — C given by

t(A, B, |z, 2]) = t[z, 2], where  : @272{0} — Cis
tlr,2] = tr(R(z,2)) = —2 — 22

o 7y = t71(2) = Y[;J‘rjf N {z = +2i}: In this case, the only posibility is that R(x,z) ~ Ji.
Again, considering the projection over (x,z) mapping 7 : Zy — (C x {£2i})/Zy = C given by

(A, B, [z, £2i]) = [x,+2i] we have an E-fibration

XJ+—>ZQE>C
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so, in terms of Deligne-Hodge polynomials
e(Z2) = e(Ce(Xy,) = ¢* — 2¢° - 3¢°

o 7 5 :=t71(-2)= Y[;j]* N {z = 0}: In this case, we again use the fibration = : Z_5 — C*/Zs,

(A, B,[z,0]) = [z]. A above, we can find two diferent types of fibers:
— 7~ Y([£1]). In this situation, R(x,2) = —Id. Thus, since it is an unique fiber, the contribu-
tion is e(71([£1])) = e(X_14) = ¢* — q.

— 77 1([z]) for [z] # [£1]. In that cases, R(z,z) ~ J_, so we have an E-fibration
X; = Z o—7m Y[#1]) = (C* = {£1})/Z,
Therefore, we have
e (Zs— U ([F1]) = e (C* ~ {£1})/Za) e (X)) = (4 2e (Xs) =" +¢° — 6¢°
Hence, putting together the Deligne-Hodge polynomials of the two strata we have that
e(Z_2) = e(n M ([£1])) + e (Zoa — n H([£1])) = ¢* +2¢° — 6¢* — ¢

o 7 := Y[;j]* N{z # 0,£2i}: In this case, we have t # £2, so fixed (z,z) € C x C — {0, £2i}, we
have (A, B) ~ D, for some A € C* —{%1}. As in section 4.3.1.1, we take the twisted projection
7 : Z — C given by 7(A, B, [z, 2]) = xz. Again, the key point is that, taking v := 2z we can

write

Rl 2) = (—1—(:1:+z)z —l—i-a?(x—l—z)) _ (—1—1}—22 v+g2—1> . R, )

—22 -1+ 2xz

2

and, since 22 does not deppend on the sign of z we have that w := 22 is well defined and takes

values on C — {0,4}. Thus, fixing v € C our fiber can be described as

7' ) 2 { (4, B),w) € SL(2,0)* x C ~ {0,4}| [4, B] = R(v,w) |

with ¢((A, B),w) = tr(R(v,w)) = 2+ w. Using exactly the same argument than in 4.3.1.1,
we have that 7=1(v) & Xp/Zs for all v € C, and this identification can be done in a Zariski

neighbourhood. Thus, we have and F-fibration
X D / ZQ — ZQ — C

so, in particular
¢(Z:) = (C)e(Xp/Zs) = ¢ — 26"~ 3¢° + 3¢* + ¢
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Hence, putting together all the strata of Y[;jf’ we have

e (Vi) = e (Vplr) = e(z2) +e(Z2) + e(2) = ¢ - 3¢° - 6¢°

4.3.2 Representation with holonomies of mixed type

A

4.3.2.1 Deligne-Hodge polynomial of Y[i]

A0
In the mixed case, let us fix A € C* — {£1} and let us take D) = <0 )\_1> . We consider the auxiliar
variety
A, B|C=D
Y =1(4,B,0) € SL(2,C)? il ’
' C e [J4]

Again, the analysis is very similar to the one of 4.3.1.1. Recall that

Stab(J+):U:{<j;1 fl) ‘ ue(C}

So, decomposing C = P.J, P~! for P € SL(2,C), unique up to product with U on the right, we have

YD) = {(A,B,P) € SL(2.C)* | [A, B[P, J.] = D\J; '} JU

where U acts on P by right product. Asin 4.3.1.1, the commutator action of U on [P, .J] only depends

on (x,z) up to sign, so computing again, we obtain the explicit description

Y[?j] = { ((A, B), (j)) € SL(2,C)? x W

where Zg acts on C? — {0} by —1- (z,2) = (—z,—=2) and

[A, B] = R(x, z)}

_ A1+ z2) —A\x?
s = e 12( A1z Al(l—xz)>

Analogously, we can stratify this space as before in terms of the trace map ¢ : Y[?j] — C given by

t(A, B, |z, 2]) = t[z, 2], where  : ‘52272{0} — Cis

[z, 2] = tr(R(x,2)) = A+ AL +zz(A— A7)

o 7o := t71(2): In this case, since A + A~! # —2 we should have zz = puq for some py € C*.
Therefore, it is impossible to have R(z, z) ~ Id, so it must be R(z, z) ~ J;. Hence, considering

the projection over x mapping 7 : Zo — C*/Zy = C* given by (A, B, [z, £2]) = [z] we have an
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E-fibration
AXJ'Jr — o 1) c*

S0, in terms of Deligne-Hodge polynomials
— * _ 4 3 2
e(Z2) = e(Ce(Xyy) =¢" —3¢° —q” +3¢q

e 7 o :=1t"1(—2): This case is completely analogous to the Z, case with R(z,z) ~ J_, so we have
an E-fibration.
XJ_ — Z_2—>(C*

Hence, the Deligne-Hodge polynomial of this stratum is

e(Z_3) = e(Ce(Xy ) = ¢* 4 2¢° — 3¢

o Z) =t 1A+ 271 =t71(tr Dy): In that case, for fixed (z,2) € C2—{0} /Za, we have R(z,z) ~
D,. For the possible values of (x, z), observe that, since t[z, 2] = A+ A" +22z(A — A71) we must

have zz = 0. Thus, (z, z) runs over

(2 =0 (0,0} _ (=0, 20}, 220020} Lo
Zs 7, Oz,  =C/RuC/R=CUC

Hence, the projection over (x,z), m: Z) — w given by (A, B, [z, z]) = [z,y] gives

us a fibration with fiber
7N, 2) 2 {(A,B) € SL(2,C)*| (A, B) = R(z,2) ~ D)} = Xp,
Moreover, by the same reason than the other cases, this map is an E-fibration
Xp, = Zy—»C UC”
so the Deligne-Hodge polynomial of this stratum is

e(Z_9) = 2e(C*)e(Xp,) = 2¢* +4¢® — 12¢° + 4q + 2

o« 7 =t (C - {£2, A+ A71}): In this case, fixed (z,2) € ¢ 1(C — {£2,A+A7'}) we have
x,2 # 0, and (A, B) ~ D, for some p € C* — {£1}. As in section 4.3.1.1, we take the twisted
projection 7 : Z — C* given by (A, B, [z, z]) = xz. Again, the key point is that, taking v := zz

we can write

R — [ME+E2) A2\ At AL ) B, )
7 A2 A1 —22) A2 ALl 7
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2 is well defined an takes

2

and, since z? does not deppend on the sign of z we have that w := z

values on C*. Thus, taking the projection 7 : Z — C* given by n(A, B, [z, z]) = 2°, we have that

7Y w) = {(A,B,v) € SL(2,C)? x C* — {vy} |[A, B] = R(v,w)}

with tr(R(v,w)) = A+ A"+ oA = A7) and vy = 7):\?‘7/\115[2 Moreover, fixing vg € C* — {v4}

we have

W), = {(A,B) € SL(2,C)?|[A, B] = R(vo, w) ~ D#} ~ Xp,

for some p € C* — {£2,A\}. Hence, 7~ !(w) is the union of all the X, for u € C* — {£2}, which
is Xp/Zs, except Xp,. Hence,

Y w) =2 Xp/Zy — Xp,

so we have an F-fibration
Xp/Zs — Xp, — Z 5 C*

Therefore, we have

e(Z) = e(Ce(Xp/Zs — Xp,) = e(C*)e(Xp/Zs) —e(C*)e(Xp, ) = ¢° —4q* —3¢> +12¢*> —4q—2

Hence, putting together all the strata of Y[i*} we have

¢ (Y[?f]) =e(Za)+e(Z o) +e(Zn)+elZ) =q" —4¢° + 3¢

Remark 4.3.4. In [46] there is an erratum while computing the Deligne-Hodge polynomial of Y[?j]. The

problem is that, in the corresponding stratum Zy, it is claimed that the contribution of the possible
values of (x,z) € C? — {(0,0)} is 2¢ — 1. However, as we shown above, the possible values runs over

C* U C*, whose Deligne-Hodge polynomial is 2¢ — 2.

4.3.3 Representation varieties with holonomies of diagonalizable type

First of all, let us fix A1, Ao € C* — {£1}, and let us take

A0 A O
Dy, = 1 D), = o
We consider the auxiliar variety

D
Y[Dif] = {(A,B,C) c SL(2,C)*

[A, B]C = D,
Ce [D)\l]
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As always, let us remove the conjugation class. For this purpose, recall that

Stab(D)\l) =D= { (z a(z1> o€ (C*}

So, decomposing C' = PD,, P~! for P € SL(2,C), unique up to product with D on the right, we have

that Y[gi?} = 7, Where

Zny = {(A. B, P) € SL(2,C) |[A, B] = D,[P.D;\] "'} /D

_ x oy 3 _ (et =Nyz) pT ey (V- 1)
- {<A’B’ (z t)) € SR O A= (th (A2 —1) wt (at - A‘2y2)> } v

D acts on P by right product, and we have defined A := A\; and p := )\171)\271‘

In order to study Z) ,, let us define the auxiliar variety

P = {(P,M) € SL(2,C)* | D,[P,D,\] "' =M} /D

where D acts on P by right multiplication on P, ie. Q- (P,M) = (PQ,M) for P,M € SL(2,C)
and @ € D. Moreover, let us define the morphism = : Z, , — P given by n(4, B, P) = (P, [A, B]).
Observe that, in this case, the fiber is

ﬂ-il(P7M) :{(A7B)|[A7B] :M}

which is isomorphic to the varieties X¢ studied above, for { = £1d, J1, D, a Jordan canonical form.
The especific class of £ depends on the trace of M. Hence, the geometry of this fibration, and of P
itself, strongly depends on the values of the traces of M.

In order to study this geometry, let us take the fibration ¢ : P — C given by ((P, M) = tr [P, D,] and
p: P — C given by p(P, M) = tr M. Observe that { is well-defined since ¢r [P, D,] is invariant under
the action of D by right multiplication on P. Furthermore, remark that both fibrations are related by

WA —1

B (1— p2)(1+22)
P2 =)

n(A? —1)

¢+

Let us denote the fiber of ¢ in P by P; := (~!(¢). The structure of this fibration is captured in the

following proposition, whose complete proof can be found in [46].

v

with ad — bc = 1, and let us consider the projection ¢ : P — C2, given by ¢(P,M) = (b,c). Then,

Proposition 4.3.5. Let us write

there exists a regular morphism k : C — {2, A2+ )\_2} — C* such that the projection ¢ : P — C? give
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us the isomorphisms in the following cases
Py = {bc = 0} Przyr-2 = {bc =0} Py ={bc=k(t)} =C*

fort € C— {2,)\2 + )\*2}. Observe that, in particular, the fibration in the non-degenerated locus
¢t Plizor24a—2 — C is trivial.

Moreover, from this description, we have the Deligne-Hodge polynomials
e(P2) =e(Pypa-2) =e({bc =0}) =2¢ -1 e(Pr)=q-1
foranyt e C — {2,)\2 + )\_2}.

With this understanding of the fibration ¢ : P — C, we can analyze the variety Z, ,. For this purpose,
let us define the lifts ¢ : Zyu — C given by C(A,B,P) = tr[P,Dy] and j : Zy, — C given by

C(A, B, P) =tr[A, B]. Observe that this fibrations are defined in order to obtain commutation of the
following diagram.
Z/\,u

Hence, in particular, it also holds the relation between fibrations

W2 —1 -

. (1= p2)(1+22)
P = 1)C+

n(A? —1)

For simplicity, let us define f: C — C by f(t) = 5(2;‘22:11)t + (IL‘zi)Q(iJlr)/\Q), so p = f(Q).

4.3.3.1 Deligne-Hodge polynomial of Y[giQ] with A\ # £, )\2_1

1

For the subsequent computations of this section, let us assume that A; # X2, Ay ! which is equivalent
to A2y = ALAy L' 2 +1. This condition will be dropped out in the following sections. Let us stratify

Zu according to the values of QN .

° Z/%,u = 5_1(2): In this case, the morphism 7 : Z ,, — P restricts to a morphism 7 : Ziu — Pa.

Moreover, since ( = 2 on Ps, then p is identically

p=12)=p+p "t #+2
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Therefore, the fiber of this fibration is, for all (P, M) € P,
n (P, M) = {(A, B)|[A, B] = M}
with tr M = p(M) = p+ =t # £2. Thus, M ~ D,, which implies
7~ !(P,M) = {(A, B)|[A,B] = M ~ D,} = Xp,
Since this identification can be done locally, we have an E-fibration
Xp, = 23, 5 Pa
so, in particular, using proposition 4.3.5, we have
e(Z3,) =e(P2)e(Xp,) = 24" +5¢* - 9¢* + g + 1

Z/’\\QM‘Hﬁ2 = CN*I(/\2 + A72): In this case, the morphism 7 : Zxu — P restricts to a morphism

T Zi‘ijr)‘i2 — Pr2x-2. Moreover, since ¢ = A2 + A72 on P2 -2, then p is identically
p=fOZ N =pu\+ A2 4 12
since A\2;t £ 1. Then, by the same argument than in the previous case, we have an E-fibration
)\2 )\—2
XDu —)Z/\’/jr 1)73)\2+>\—2
so, in particular, we obtain
e (Zﬁjﬂ) = e (Pyrya2)e(Xn,) = 20" +5¢° — 9> + ¢+ 1

°« Z3, = CU(fY(2)): Let us define a = f~1(2) so ¢ = . Recall that, restricting, we have a
morphism 7 : Zﬁ‘“ — Pq. The fiber of this fibration is, for all (P, M) € P

7[‘_1(P,M) = {(AaB)HA?B] :M}

with tr M = p(M) = 2. Observe that the fiber depends on if M could be Id or not. However,
observe that, forall (P, M) € P, we have that M # Id. Indeed, if there exists P € SL(2,C) such
that (P, 1d) € P then we must have [P, D)] = D,,, which is impossible.

Therefore, if (P, M) € Py, then M ~ J,. Hence, the fiber of this fibration is

ﬂ-il(PvM) = {(AvB) ’ [A,B] =M~ J—f—} %XJ+
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for all P, M € SL(2,C). Since this identifications can be done in a Zariski open set, we have an
E-fibration

s
XJ+ — Z?}M%Pa

which, in particular, means
e {Zf\i“) =e(Pa)e (X]+) =¢" -3¢ — ¢ +3¢

. Zf# = (TYf7Y(=2)): Let us define 8 = f~1(—2) so ¢ = B. This case is analogous to the
previous one except that, here ( = § if and only if p = —2. Since, by an analogous argument
than above, it cannot be M = Id for any (P,M) € Pg. Therefore, the unique posibility is
M ~ J_ and, thus, the fiber is

7 Y P,M)={(A,B)|[A,B] =M ~J_} =X,

for all P, M € SL(2,C). Since this identifications can be done in a Zariski open set, we have an
E-fibration
X, 2], 5Py

which, in particular, means
e (2],) =e(Po)e (X, ) ="+ 24 - 3¢’

. ZA,# = Eil(C—{Z A 4+ X2, a, B}): For the residual case let us denote P := CH{2, M2+ X2, B)).
Since ( € C — {2,)\2 + )\_Q,a,ﬁ}, then p € S, where

S=C—{£2,pu+p ', pu\+p 'A\?} = (C— {£2}) — {2 points}
Let us define the auxiliar variety
W = {(A,B,t) € SL(2,C)* x S|tr[A, B] =t}
and let us define the morphism 1 : Z Au — W by
(A, B, P) = (A,B,tr D,[P,D)]™") = (A, B, j(A, B, P))
Then, ¢ has, for (A, B,t) € W, the fiber

v YA, B,t)={P e SL(2,C) |tr D,[P,D,] ' =t} /D
={P € SL(2,C)|tr [P,D)] = f(t)} /D = Py
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where f: S — (C—{2, N+ 2 a ,6} is given by f(t) = (X 71)4;()\‘;2 11)(1+/\ ). Since the fibration

¢: P — S is trivial, then, in fact, we can do this isomorphism locally to obtain an E-fibration
5 Y
Piy = Zyy — W

Now, observe that W is equal to the variety Xp/Zs, where we have removed the fibers corre-

sponding to Xp, and Xp , , so e(W) = e(Xp/Zs) — 2¢(Xp,) =. Hence, since Py, = C*, we

>\2p,7

have
e <Z>\,u) =e(Py,) e (W) =q" —5¢* — 5¢° + 18¢> — 6¢ — 3

Therefore, adding all the strata, we obtain

D 2,2 ~
¢ (Y[Dij]> ¢ (Ziu) te (Z;;;:ﬂ\ > Te (Zg,u) Te (Zf#) te (Z)"“> B q5 + q4 * 4q3 B 4q2 -l

4.3.3.2 Deligne-Hodge polynomial of Y[g;f

Analogous to the previous case, let us consider the auxiliar variety

A,B|C=D_
Y[g*]* =3 (A,B,C) € SL(2,C)? 14, B] A
A Ce [D)\]
By the considerations in section 4.3.3, [g f = Z) _\-2, which, in this case, reduces to

Zy -2 ={(A,B,P) € SL(2,C)*|[A,B] = D_,—2[P,D,]"'} /D

i : , A ttyz ay (A2 - M)
= {(A,B, <Z t>> € SL(27<C) |[A3B] - (tZ ()\—2 _ )\—4) _)\2;pt+yz) } /D

where D acts on P by right product.

The main difference between this case and the previous one is that, now
FOZ+AH =2

so the strata Z +’\ *, and Z8 N—A-2> with 3 = f~1(—2), coincides. Moreover, in this case, there exists
P e SL(2,C) such that [P, D)] = —Id so this strata Zf _ -2 must be recomputed. Therefore, let us

consider
ZYHY) ={(A,B,P) € SL(2,C)* | [A, B] = D_\-2[P, D\] ", tr[A,B] = -2} /D
As before, let us take the morphism = : Z)‘ + N o Pyr2ir-2 = {bc = 0}, whose fiber is

“H(P.M) ={(A,B)|[A,B] = M}
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for M € SL(2,C) with tr M = —2. Recall that the isomorphism ¢ : Py2 -2 ¢+ {bc = 0} is just the
a b

projection over (b, c), when M = (
c

) . Therefore, we obtain the degenerated fibers

e The degenerated fiber Zp := 71 1(0,0). In that case, we have that b= c = 0, so [A, B] = —Id
and, thus, the fiber is X_;4. Hence, its Deligne-Hodge polynomial is e(Zp) = e(X_14).

e The non-degenerated locus Zyp := 7! (¢~ ({bc = 0} — {(0,0)})). In that case, since b # 0
or ¢ # 0, we have that [A, B] # —Id, so, using that tr [A, B] = —2, it should be [4, B] ~ J_.
Hence, the fiber is

7 Y P,M)={(A,B)|[A,B] =M ~J_} =X,

Therefore, we have an E-fibration
Xy = Znp = {bc =0} = {(0,0)}
so we obtain the Deligne-Hodge polynomial
e(Znp) = e({be =0} = {(0,0)})e(X,)
Therefore, putting together the fibers, we have

2., y—2
e(Z)/},j)\)Lz )=-e(Zp)+e(Znp) = 2q4 + 5q3 — 6q2 —q

Hence, since the others strata of Z _,-2 are the same than for the general case and remembering that

2 -2 . . .
the strata Z f\‘jf)\/\_Q and Zi_ y—2 coincides, we obtain

e (Y[g;f) —e (Zisz) +e (Z))\\,Qj)?\:;) +e (Zf,fxﬂ) +e <ZA77A_2> Pt AP — AP —q—1

Remark 4.3.6. This Deligne-Hodge polynomial agrees with the one of the general case A\; # —As.

—1

4.3.3.3 Deligne-Hodge polynomial of Y[![D)i}
Now, let us consider the case A := A1 = A\ ! This corresponds to the auxiliar variety

Yoy = {(A,B,m € SL(2,C)?

[A, B]C' = Dy
Ce [D/\A]
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Now, we have that pu = )\1_1)\2_ L' — XA=1\ = 1. Therefore, by the considerations in section 4.3.3,
Dy_1

D) = Z\,1, which, in this case, reduces to

Zyx1={(A,B,P) € SL(2,C)*|[A,B] = [P,D\] '} /D

_ vy 3 _wt= Ny ay (V1)
_{(&a<zt))eSMZC)M&BL—QdAZ_D m—A2w)}ﬂ)

where D acts on P by right product.

In this case, the main difference between this case and general case of section 4.3.3.1, is that, now
p = (, or, equivalently f = Idc. Therefore, the strata Zil = 5*1(2) and Z§; with a = f12) =2
coincide. Moreover, in this case, there exists P € SL(2,C) such that [P, D)] = Id, so we have to

recompute this strata.

As above, let us take the morphism  : Zil — Py = {be = 0}, whose fiber is
© (P, M) = {(A,B)|[A, B = M}

for M € SL(2,C) with tr M = 2. Recall that the isomorphism ¢ : Py <> {bc = 0} is just the projection
a

over (b,c), when M = <
c d

b
). Therefore, we obtain the fibers:

e The degenerated fiber Zp := 7 1p~1(0,0). In that case, we have that b = ¢ = 0, so, since
tr[A,B] = 2, we have [A, B] = Id and, thus, the fiber is X;4;. Hence, its Deligne-Hodge
polynomial is e(Zp) = e(X1q).

e The non-degenerated locus Zyp := ! (¢~ ({bc = 0} — {(0,0)})). In that case, since b # 0 or
¢ # 0, we have that [A, B] # Id, so, using that tr[A, B] = 2, it should be [A, B] ~ J;. Hence,
the fiber is

7 UPM) = (A, B) | [4,B] = M ~ J,} = X,

Therefore, we have an E-fibration
Xy, = Znp — {bc =0} — {(0,0)}
so we obtain the Deligne-Hodge polynomial
e(Znp) = e({oc = 0} —{(0,0)})e(X )
Therefore, putting together the fibers, we have

e(Z3,) = e(Zp) + e(Znp) = 3¢" — 2¢° — 3¢* + 2¢
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Hence, since the others strata of Z ; are the same than for the general case and remembering that

the strata Z/{v_/\ﬂ and Z;‘\"_/\,Q coincides, we obtain

e (Vi) =e(Z0) +e (2 ) +e(28) +e(2n) =+ 26" +2¢° — 3¢ — g -1

Remark 4.3.7. This Deligne-Hodge polynomial does not agree with the one of the general case.

4.3.4 Deligne-Hodge polynomial of parabolic character varieties with two marked

points

In the previous sections, we computed the Deligne-Hodge polynomials of some varieties ch for some
cases of conjugacy classes C C SL(2,C) and £ € SL(2,C). In this section, we will show how to reduce
the other cases to the known ones. Moreover, analyzing the simultaneous conjugacy action of SL(2,C)

on the varieties X¢, ¢, we will compute the GIT quotient
MC17C2 = Xcl,c2 // SL(27(C)

obtaining their Deligne-Hodge polynomials.

The main tool to deal with this problem will be the final considerations of section 4.3. Let us fix
conjugacy classes C1,Co C SL(2,C) and £ € Cy. Suppose that we can find a subgroup K C Stab(§)
such that the action of K on X¢, ¢, by simultaneous conjugation is trivial and SL(2,C)/K acts freely
on Xe, ¢, Usually, we will take K = Center(SL(2,C)) = {Id,—Id}, so SL(2,C)/K = PGL(2,C).

In that cases, as shown in 4.3, we can apply proposition 3.3.47 for the varieties Yci C Xe, ¢, and the
algebraic groups Stab(§)/K C SL(2,C)/K so we will have

s = (4) (g ) = 04) (suiig)

For this purpose, observe that SL(2,C)/K acts freely on X¢, ¢, if and only if the group Stab(¢)/K
acts freely on Yé for any £ € Cy. Indeed, note that, since Cy ~ &, there exists Q € SL(2,C) such
that Cy = Q¢Q ™1, and, thus, Q(A4, B,C1)Q! € YC£1‘ Therefore, some non trivial P € SL(2,C)/K fixes
(A, B,C1,Cs) € Xe, ¢, if and only if the non trivial element Q1 PQ € Stab(§)/K fixes Q(A, B,C1)Q ™! €
Yci and this happens if and only if the action of Stab(§)/K on chl is not free.

Moreover, let Dgl be the set of reducibles of Ycél, that is, given (A, B,C) € Ygl, (A,B,C) € Dgl
if and only if there exists a non trivial P € Stab(¢)/K such that P(A,B,C)P~' = (A, B,0).
Analogously, let D¢, ¢, be the set of reducibles of X¢, ¢,. Then, by the previous computation, we
have that, given (A4, B,C1,C2) € X¢, ¢, with Cy = QEQ™1, (A, B,C1,C2) € De, ¢, if and only if
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(Q'AQ,Q7'BQ,Q 'C1Q) € Di,. Therefore, we have

De, e, 2 { (A, B,C,Q) € Y§, x SL(2,C)/Stab(¢)| Q7 (4, B,C)Q € D, |

4.3.4.1 Deligne-Hodge polynomial of M, ;)

Let us take K = {Id,—Id}, so SL(2,C)/K = PGL(2,C). We will show that PSL(2,C) acts freely on

X772 = X474 As we explained before, this is equivalent to Stab(Jy)/ {+Id} acting freely
on Y[;jfr Suppose that there exists a non trivial P € Stab(J;)/{xId} and (A4, B,C) € Y[;jf with

P(A,B,C)P~! = Id. Let us write
1 A b
P: A = a
0 1 c d

a+ e b—)\2c+/\(d—a)>

with A # 0. Since we have

PAP™! =
c d— )¢

we obtain that PAP~! = A if and only if @ = d = £1 and ¢ = 0, that is, if and only if A € U =
Stab(J+). Analogously, we should have B € U = Stab(J;). Hence, since [U, U] = Id, we have that
[A, B] = Id, which is impossible by the stratification analysis of section 4.3.1.2.

Therefore, the action of PSL(2,C) on X[, ) is free and, thus, we have

) e (PGL(2,C))

7 5 4 3 2
CUTIAS ) T 4P — 6%+ 3¢5 + 6
e(Stab(yy) 4 T 00 A5 0

e (X ) = e (X)) = (57

Moreover, since we know that the action of PGL(2,C) on X[, s_] is free, its GIT quotient is just an

usual quotient, so
X2 1 SL(2,C) = X(y,,10) / PSL(2,C) = X(y,1,5_)/PSL(2,C)

and, thus, we have

M2 = X/ PSL2,C)

which, in particular, means

~e(Xpaw)

_ 4 2
= w(PSL(2,C)) ~ ¢ T 0

e (M)
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4.3.4.2 Deligne-Hodge polynomial of M, 7,

Again, we will take K = {+Id}, so SL(2,C)/K = PGL(2,C). However, in contrast to section 4.3.4.1,
in this case PGL(2,C) does not act freely on X[, (s,], so we will found reducibles.

By the same argument than above, if (A, B,C) € D[J E then A, B € U = Stab(J;), so, in particular,
[A, B] = Id and, thus, C' = J,;.. Therefore, we have the reducibles

D[J]_Uxe{!u} U?
and, by the relation between D[]Jt} and Dy, (7,] We have

Dy = { (4, B,C,Q) € V7, x SL(2,C)/Stab(J4) | Q71 (A, B,C)Q € D |}

~ {(A B,C,Q) € Y}, x SL(2,C)/Stab(.J;) | A, B € QUQ™',C = QJ;lel}

Let us denote X7 1 ;= X[y,11s,] — Dlyy )0, and Y[:;*] = Y[:;*] - Diﬁ], the sets of non-reducible
elements. Since U = C U C and D[{;“] = U2 we have that e (D[J* ]> =e(U)? = 4e(C)? = 44> s0

0y ) = O) (o) =+

and, by remark 4.3.2 with K = {£Id}, we have

« . Ty ¥ PGL(2,C)\ 7 ¢ 5 4 3, 2
e (X)) =< (V) e (smbm) SO E 203 g =5

Finally, let us compute the Deligne-Hodge polynomial of M;;,;7,]. For the non-reducible elements,
we have that the action of PSL(2,C) on X710, Is free, so

Xy 1 SL(2,C) = X[, 17,/SL(2,C)

For the contribution of the reducibles, first of all, observe that, setwise

Diy,1.10,/SL(2,C) = D} /Stab(J.)

so, passing to the GIT quotient, we have Dz, 5.1/ SL(2,C) = D{f:] J/ Stab(J). Hence, it is enough
to study
D/} [ Stab(J;) = U? | Stab(J,)

with Stab(J) acting by simultaneous conjugation. Let us take (A, B) € U?, let us say

O R
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o0

with €, € {1}. Now, let us consider two sequences {zy} - ,{yn}tro; C C* with z,, - € and y,, — 9.

We consider the approximation matrices

o) eb Y
0 ;! 0 '
The condition for having [A,, B,] = [A, B] = Id translates into
(Yo = Yp ') = blan —2")
We are going to prove that there exists a sequence of {P,} 2, C Stab(J;) such that
P, - (An, Bn) — (eld,d1d)

Once proven, we have obtained that, in the Zariski closure of each orbit by conjugation, we always
find an element of the form (eld,d1d) for some €,5 € {£1}. Hence, applying the S-identification, we
have that

D/} | Stab(J}) = U? | Stab(Jy) = {(+1d, +1d)}
that is, four points, so e (Dif:] / Stab(J+)> =4.

The selection of the appropiate P, is just a computation. Let us take a generic matriz

ro= (i)

T, a+alr, -z, n oa(yn —yp !
P(O‘)‘(AnaBn):<<0 i (x_1 )>’<@i) " Q;—l ’ )>>

Hence, since —%—+ = :b,l, taking P, = P < _“,1) we obtain

Tn—Tn Yn—Y Tn—Tp

0 0
Py (A, B = [” Y s (eld, 81d)
0 ;') \0 y,'

as we wanted to show.

We have that

Therefore, have obtained that the contribution to the GIT quotient of the reducibles is just four points,

so we have the Deligne-Hodge polynomial

e (M) =e (XE]+},[J+}/SL(27 C)) +e (D g/ SLR2,C)) =¢"+¢® —q+7
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4.3.4.3 Deligne-Hodge polynomial of M[J_],[J_}

Observe that, since —J is in the conjugacy class of J_ , we have that —[J;] = [J_]. Using this fact,

we have the regular isomorphism

X744 © X2
(AaBachCQ) — (Ava _017_02)

Moreover, this isomorphism respects the action of SL(2, C) by simultaneous conjugation, so it descends

to the GIT quotient. Thus,
My a2y = Mgy

so, in particular

e(My ) =eMygpg)=d+a—q+7

4.3.4.4 Deligne-Hodge polynomial of M[J+],[DA]

This case is very similar to the reasoning for M|z, ] in 4.3.4.1. Indeed, taking K = {Id, —Id}, we
have that SL(2,C)/K = PSL(2,C) acts freely on X|;,p,]- To check this, observe that, by the same
reason than in 4.3.4.1, if a non trivial P € PSL(2,C) fixes (4, B,C1,C2) € X[z, p,], then it would
be [A, B] = Id, which is impossible by the analysis of section 4.3.2.1.

Hence, we have the Deligne-Hodge polynomial

e (PGL(2,C
) ( ( )):q7+q6_4q4_q3+3q2

e (Stab(D)))

e (X py) =€ (Y[?ﬁ

Furthermore, again, since PSL(2,C) acts freely on X|;,p,], the GIT quotient is just a quotient, so
Mz 0x = Xz i) [ SL(2,C) = Xy, 03/ PSL(2,C)

which, in particular, means

e (X[s,1,(p4))

4 3 2
- 3
e(PSL(2,C)) ¢ T4 T o

e (M, p]) =

Remark 4.3.8. As we mention in remark 4.3.4, in [46], there is an erratum while computing the Deligne-

Hodge polynomial of Y[?*

N Therefore, the corresponding Deligne-Hodge polynomials for M, p,] do

not agree.
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4.3.4.5 Deligne-Hodge polynomial of M;_)p,;
Since —[J4+] = [J_] we have the algebraic isomorphism

Xypy ¢ X1y
(A7B701702) — <A7B7 _Cla_CQ)

Thus, we have that

My Dy E Misp_y

so, in particular

e (M) = e M p_y) =4' +¢° +¢* =3¢

4.3.4.6 Deligne-Hodge polynomial of Mp, |p, | With Ai # Ao, Ayt
Recall that, by the results of sections 4.3.3.1 and 4.3.3.2 in both cases we have that

D
6<Y[DA2):q5+q4+4q3_4q2_q_1

Al]

Now, let us take K = {£ID} so SL(2,C)/K = PGL(2,C). We will show that PSL(2,C) acts freely
on X(p, |[p,,]- As we explained before, this is equivalent to Stab(D5,)/ {+Id} acting freely on Y[lD)iZ]'
1
Suppose that there exists a non trivial P € Stab(Dy,,)/{£Id} and (A, B,C) € Y[giQ] with P(A, B,C)P~! =
1

0
Id. Let us suppose that P = (g
o

a
1> for some o € C —{*1} and A = (

C
pap-t—| ©
ale d

so it should be b = ¢ = 0, that is A € D. Analogously, B € D, so, since [D, D] = Id, it must be
[A, B] = Id. However, the stratifications of sections 4.3.3.1 and 4.3.3.2 show that this is impossible.

b
d) , then we have that

Therefore, we have that Stab(Dy,)/{£Id} = C*/Zy = C* acts freely on X|p, (p, |- Thus, we have

— oy ) PGL2C)) o6 55 58 g
(X)) =€ (Viok) Cisranpy gy =9 2+ 50 50 -2 =

Moreover, since we know that the action of PGL(2,C) on X[DMHDAQ} is free, its GIT quotient is just

an usual quotient, so

M, 1,[Ds,] = XDy, 1IDx,) / SL(2,C) = X(p, 1p,,) / PGL(2,C)
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and, thus, we have

M[Dle[D)\Q] = X[D/\lL[D/\Q]/PGL(Q, C)

which, in particular, means

X
e (M[DM],[DAQO = eegpgzl(];i;?

=428 +6¢2+2¢+1

4.3.4.7 Deligne-Hodge polynomial of M p,jp

A—1]
In this case, in contrast to the general case 4.3.4.6, we will find reducibles. Let us take K = {£Id},
so SL(2,C)/K = PGL(2,C). Let Dip,)[p, ] and D3 be the set of reducibles of X(p,]p, 1) and

[D3]
D

Y[Di}fl, under the action of PGL(2,C) and Stab(Dy-1)/K respectively. Recall that, since K acts

trivially

D, _
Mip10, 1) = X(Da)pyoa] 1 ST(2C) = Xy p, 11 /| PGL(2,C) = Y\ [ Stab(Dy—1)/ K

So it is enough to compute Y[gif J/ Stab(Dy-1)/K. To this end, recall that the variety Y[gif is

Yt = {(A.B.C) € SL(2,C)? | [4,BC = D1}

By the same argument than above, if (4, B,C) € D[%Ajl, then A, B € D = Stab(D)), so, in particular,

[A, B] = Id and, thus, C' = Dy-1. Therefore, we have the reducibles

D, 1

D[D)\]

=D x D x{Dy1}=D?

In order to implement S-equivalence for computing the GIT quotient, let us study the set of elements

of Y[gi]_ ' whose orbit, under the action of Stab(D)/K, contains a reducible element in its closure. Let

us take (A4, B,C) € Y[gi}_l and P, € Stab(D)/K a sequence. Let us write
= a b B Ty P, a, O

c d z t 0 a;t
so we have

_ a anb _ T ony

An::PnAPn1:<_1 ”) 13::13n1}3113nl:(_1 ")
a,c d o,z ot

Therefore, (A, By, Cy) converges to some element of D[%*;}l =D x D x{Dy-1} if an only if A and

B are simultaneous upper triangular and «,, — 0 or if A and B are simultaneus lower triangular and

Qy, — 00.
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In this way, if 5%;]1 is the set of elements of Y[gi]_ ' whose Zariski closure of its Stab(D)/K orbit
contains some element of D[[];*A_]l =D x D x {Dy-1}, we have just prove that

_ a b
o {((g 2 ) e
10 e 0
U{<<a MI1>’<b uz‘l))

Hence, we have that

(p1, pi2, @, b) € (C*)? x «:} > (C*)! x Za U (C*)* x Zy L (C*)°

e (@5;;]1) = 26 (C*)* +4e (C*) + ¢ (C")2 = (¢ — 1)2(2¢> - 1)

Let us denote YD”1 f o YDrl — fDrl Since the orbits of elements of YDA ’ do not contain an
D\ T DAl (D] - [DA) y

reducible element in its closure, we have that the GIT quotient is just the usual quotient
YT ) Stab(Dy1) /K = YA /(Stab(Dy-1)/K)
(DAl ATt — Dy At

so, since Stab(Dy-1)/K = C*/Zs = C*, we obtain

x e YDi’l* e yDifl e ﬁDA;
(o) OB )

=q¢'+¢*+6¢° +5q—1

. .. . =D, — .
Moreover, by the previous argument, we have that, realizing S-equivalence on D[ D*A}l under the action

of (Stab(Dy-1)/K), we have that the GIT quotient is

=D, _ D, _
D[Dxf J (Stab(Dy-1)/K) = D[D*A]l
so we obtain the other piece

e (fﬁ;jl / (Stab(D;1) /K)) —e (Dﬁ;jl) = e(C) =g —2¢+1

Therefore, finally, adding the two contributions, we obtain

D, 1% —=D, _
e (M[D)\L[D)\fl}) = e (Y[Di} 1 // (D/K)) +e <D[D)\>\]l // (D/K)) = q4+q3 _|_7q2 +3q
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4.3.4.8 Deligne-Hodge polynomial of M[p,|p,;

This case is analogous to the previous case of section 4.3.4.7. Indeed, observe that, since D) =

PyDy-1 Pyt with
01
Py =
10

D D1
Yoy Yioy)

(A,B,C) +— (RyAPy', PyBP; !, P,CP; ")

Hence, we have the algebraic isomorphism

Thus, we have that

Mp,1ip,] = MDD, 1]

so, in particular

€ (M[DAHDA]) =¢ (M[Dx]v[Dx—ﬂ) =q¢'+¢*+7¢ +3¢




Appendix A

Review of Complex (Geometry

Kahler manifolds are a special class of complex manifolds that have particularly good analytical and
algebraic properties. The key point is that they are manifolds that compatibilize three structures,

giving a strong rigidity to the geometry.

A.1 Complex and Almost Complex Manifolds

Recall that a complex manifold M of complex dimension n is a differentiable manifold of real dimension
2n whose changes of charts are biholomorphic maps. Given any R-vector space (possibly infinite
dimensional) V, we will denote V¢ := V ®g C to its complexification. In particular, Q% (M) is the

space of complexified k-forms.

Definition A.1.1. Let M?" be a differentiable manifold. A section J of End(TM) with J? = —1
is called an almost complex structure on M. We will say that J is integrable if there exists a

complex structure on M such that, for every holomorphic chart ¢ : U C M — C", p, 0 J = ip,.

Remark A.1.2. In a complex manifold M, we can always define an almost complex structure in the
following way. Let (21 = x1 +iy1,. .., 2n = Tn +iy,) be holomorphic coordinates around some p € M.

We define J locally satisfying

0 0 0 0
*’(m)‘ayk "(ayk)—‘axk

By Cauchy-Riemann ecuations, J is well-defined and, thus, it defines almost complex structure.

Given two almost complex manifold (M, J) and (M’,J’) and a map f : M — M’, we say that f is
(J, J')-holomorphic if f, o J = J o f,. In this contex the integrability condition is equivalent to the

183
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existence of a complex atlas whose charts are (J,7)-holomorphic, where 7, seen as an automorphism of

C", is the standar almost complex structure of C"'.

In this case, Cauchy-Riemann ecuations simply say that, if M and M’ are complex and J, J’ are their

almost complex structures associated, then a map is holomorphic if and only if is (.J, J')-holomorphic.

Therefore, given an almost complex manifold (M?2",.J), using the minimal polinomial of .J, we see that
J is diagonalizable with eigenvalues i and —i. Let us denote T*OM and T*!'M the eigenspaces of .J

of eigenvalues i and —i on Tt M, respectively, and we define (p, ¢)-forms, QP4(M) as

QPA(M) := /p\Tl’O(M)* ® /q\TO’l(M)* C Q2FI(M)

However, if M is a complex manifold and J is its associated almost complex structure, we can give an

effective criterion to identify (p,q)-forms. Indeed, if in a chart (U, ¢) we have the coordinate vector

basis 6%1’ 6%1’ ceey %, %, then, defining
0 0 .0 0 0 .0
we have that %, e %, 847 e % is also a basis. Moreover, we have that
1 Zn Z1 Zn
0 0 0 0
TYOM) = (—,...,— TOY M) = (—, ..., —
(M) <621 8zn> (M) <821 82n>
Now, if dz1,...,dz,,dZz1,...,dZ, is the dual basis® of %,...,%,%,...,%, then we have the
explicit description
dz; = dx; + idy; dz; = dx; — idy;

Hence, given a form w € Q{E(M ), we have that w € QP2(M) if and only if, locally, w can be written

w|U = Z Qi .. ipj15eda dZil VANPIAN dZip A dzjl VANPIRAN dqu

i1 <ig...<ip
J1<g2...<Jjq

A.1.1 Dolbeault Cohomology

Given a differentiable manifold M and an almost complex structure J € I'(Aut(T'M)), the precise
conditions to for J been integrable are given by the Newlander-Niremberg theorem, which states

that J is integrable if and only if the Nijenhuis tensor

Nj(X,Y)=[X,Y]+ JJX, Y]+ J[X,JY] - [JX, JY]

Moreover, in an almost complex manifold (M, J), a map f : M — C (J,i)-holomorphic is called a J-holomorphic
map. Analogously, a map f : C — M (¢, J)-holomorphic is called a pseudo-holomorphic curve. In general, an almost
complex manifold does not have any no constant J-holomorphic maps, but it has a lot of pseudo-holomorphic curves.

2Observe that dz; has two possible interpretations. On one hand, in the way we have just defined; and, on the other
hand, as the exterior derivative of the coordinate function z;. However, both definitions agree.
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vanish identically.

However, the vanishing of the Nijenhuis tensor is equivalent to the decomposition of the exterior
derivative, restricted to (p, g)-forms, d : QP4(M) — QP (M) into two operators d = 9 + 8, with 9 :
OPI(M) — QPFLI(M) and 9 : QP4(M) — QP41 (M), known as the anti-Dolbeault and Dolbeault

operators, respectively.

Let us consider a complex manifold M, such that its exterior derivative decomposes as d = 0 + 0.
Since d? = (0 + 0) = 0, we have

=0 =0 90+ 090 =0
which, in particular, means that, for all p > 0, the complex
aroon S artan S . araar) & oratian 4

is a co-chain complex, since 9" = 0. In this way, the Dolbeault cohomology, H?9(M), is precisely

the cohomology of this complex, that is

HPI(M) = ker @ : QP4(M) — QP4(M)
C Im 8 : QraL(M) — Qra(M)

Remark A.1.3. It is very useful to understand the Dolbeault cohomology as a sheaf cohomology. Let
us consider the sheaf QF, of holomorphic p-forms on M, that is, if Qx is the canonical sheaf 3 of M,
then Q8 = AP Q. Equivalently, this sheaf is isomorphic to ker @ : QP0(M) — QP1(M), that is, for
all open set U C M, we have

Q2 (U) = {w e QP2(U) | w =0}

However, by the d-lemma (see, for example, [37]) given an open set U C M and w € QP4(U) with
dw = 0, there exists a neighbourhood V C U and n € QP9~1(V) such that 97 = w|y. Therefore, the

co-chain complex

a a E) a E) 0
Q?M%vaoégpvl_>..._>QP7‘1_>QP7‘1+1_>...

is a resolution of Qﬁ/j. But, now, since QP4 is a fine sheaf for all ¢ > 0, in particular this resolution is

acyclic and, thus, it can be used to compute the derived functors. Therefore, we have
HY(M,Q,) = RT (QF,) = HY(T(QP)) = HY(QP*(M)) = HP(M)

and, thus, HP9(M) = HY(M,Q4,).

3That is, the locally free sheaf associated to the canonical line bundle.
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A.2 Symplectic Manifolds

Another important structure that gives rigidity to our manifolds is the symplectic structure. The
motivation for this notion arise from the formalization and geometrization of classical mechanichs,
looking for an invariant formulation of its principles. For an introduction to the relation between

classical mechanics and symplectic geometry, see, for example, [1] or [5].

Definition A.2.1. Let M be a differentiable manifold and w € Q?(M) a non-degenerated 2-form, i.e.,
such that w™ never vanish®. If w is closed, then we say that (M,w) is a symplectic manifold. A

map [ : (M,w) — (M’',w') between symplectic manifolds is called a simplectomorfism if f*w' = w.

Remark A.2.2. Since w™ is closed (because it is a top-dimensional form), it defines a cohomology class

[w"] € H*"(M). Moreover, since w is non-degenerated, w™ never vanish and, thus, [;,w™ # 0, so
W) £0.

In fact, this trick can be repeated for all the even forms. Observe that, if w* = dn for some 0 < k < n
y n € Q*~1(M), then it will hold

/w”:/ d(n/\w"k):/ nAW" =0
M M oM

Thus, 0 # [w¥] € Q%¢(M), which in particular means that the even Betti numbers of a symplectic

manifold never vanish.

A very important property of symplectic manifolds is that, locally, they are all equal, justifying the

name symplectic topology instead of symplectic geometry. The proof can be found in [5].

Proposition A.2.3 (Darboux). Given a symplectic manifold (M?",w) and p € M, there exists a
neighbourhood of p, U C M, such that

n
wly = dpg A da
k=1

In particular, every symplectic manifolds of the same dimension are, locally, simplectoisomorphic.

Example A.2.4. The most important example of symplectic manifold, at least for classical me-
chanichs, is the cotangent bundle. Indeed, let @ be a differentiable manifold (which, in this context, is
usually called the configuration space) and let M = T*Q its cotangent bundle (which, in this context,

is usually called the phase space).

In order to become M a symplectic manifold, let us define the 1-form v € Q!(M), known as the

Liouville form or canonical form. Given a point (¢,7y) € M = T % Q, let us consider a vector

4Equivalently, the map T, M — T; M given by X — w(X,-) is an isomorphism for all p € M. If w is non-degenerated,
then M must be even-dimensional.
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X € Ty, M. Then, we define v, y(X) as the result of applying 1, t X, once taken to 7;Q). Explicitly,
if m: M =T*Q — @ is the bundle projection, then we define

V(ga) (X) = 1g((74) (g,1)X)

because, recall that () t TigmyM — T,Q. From this construction, let us consider the 2-form

(Q:Wq)
w=dv € Q?(M). Observe that w es trivially closed.

In order to check that w is non-degenerated, let us write it down in coordinates. If we take coordinates
(q1y--yGn,D15---,Pn) on M, where g are coordinates in @) (the positions) and pj are coordinates in

T;Q (the momentum), then, we have
0 0 0
Y(a.p) (C%k) =p <8qk> =pi Y(q,p) <E9pk> =p(0)=0

Vigp) = Y _pkdax  w=dv ="y dp, Adgy
k=1

and, thus

In consecuence, w is non-degenerated and, thus, (T%Q,w) is a symplectic manifold.

A.3 Kahler Manifolds

Once defined almost complex structures and symplectic structures, joining them to a riemannian
metric, we can obtain the Kéhler manifolds, one of the most important categories in complex geometry.
Roughly speaking, a Kéahler manifold is a differentiable manifold, that is also, at the same time,
complex, symplectic and riemannian, in the way that the three structures are compatibles. This

conditions give to Kahler manifolds a strong rigidity that is crucial for complex geometry.

Definition A.3.1. A complex, riemannian and symplecit manifold, (M, g, J,w) is called a Kéahler

manifold if J is a linear symplectomorphism (i.e. J*w = w) and
g('v ) = CU(', J)

In this case, the symplectic form w is usually called the Kahler form.

Remark A.3.2. Since w is J-invariante, in a Kéahler manifold, it is also the riemannian metric g.

Moreover, defining
h(X,Y):=g(X,Y)+iw(X,Y)
we have that h is and hermitian metric in Te M, called the Kéhler metic.

Remark A.3.3. Using the relations between metrics, anti-symmetric mappings and almost complex

structures (which is called the rule two of three), we can derive different versions of this definition.
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One of the most common in the literature is to say that a Kahler manifold is an almost complex

riemannian manifold (M, g, J) such that J is integrable, g is J-invariant and w := g(J-,-) is closed.

Using this characterization, we obtain that every complex submanifold of a Kédhler manifold is Kahler.
Indeed, if i : N < M is a complex submanifold of a Ké&hler manifold (M, gas), then i*gys is a rieman-
nian metric in N such that wy = i*gp(J+, ) is cerrada, since dwy = di*gp(J-, ) = i*dgp(J-,-) =0,
so, N is Kéhler.

Remark A.3.4. Since M is complex and w € Q2(M) = Q*0(M) & QVY(M) @ QO2(M) is a 2-form,
locally it has the form

w= Z ai,jdzi A de + Z bm’dzz' A dfj + Z Cm'd?z' VAN dfj

i<y i<j i<j
Now, since J is an almost complex structure, we have that dzy o J = idz; v dzp o J = —idz for
k =1,...,n. Therefore, since J*w = w we have

w=Jw= Z'L'Qai,jdzi A de -+ Zi(_i)bi,jdzi VAN d?j + Z(—i)QCinfi AN dfj

1<j 1<j 1<j

so a;; = ¢;; = 0. In consecuence, w € QLL(M). In particular, taking hi; = —2ib; ;, locally we have

w = % ; hijdz A dZ;
with H = (h;;);_; an hermitian matrix. Using that w is non-degenerated, we have that H is
invertible; and, since g is positive defined, H is positive defined, so H defines an hermitian form.
Playing with the symmetries of this structures, we see that H is, in fact, the matrix of the hermitian
metric h defined on A.3.2.

One of the most important properties of Kéhler metric is that they are euclidean up to order 2, which
endows the manifold with a great rigidity and, as we will see, allow us to analyze the operator algebra

defined on it.

Theorem A.3.5. Let M be a Kahler manifold and let h be its Kdhler metric. For all p € M there
exists holomorphic coordinates in a neighbourhood of p, (U, ) such that p(p) = 0 and, if H(z) is the

matriz of h,-1(;) in the coordinate basis, we have that
H(z) = Ion + O(||2[*)

It is said that, the metric h oscules to order 2.

Remark A.3.6. Using that the exterior derivative only requires one derivative, we obtain that the
reciprocal also holds, that is, if M is a complex manifold and h is and hermitian metric, then h oscules
to order 2 for each p € M if and only if M is Kéhler.
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Example A.3.7 (Complex space). The standard hermitian metric of C" oscules, trivially, to order
2 in each point and, thus, C" is a K&hler manifold. Moreover, given a lattice I' € C", the complex
n-torus C"/T" is a Kdhler manifold, by passing to the quotient the hermitian metric of C", which is

trivially I'-invariant.

Example A.3.8 (Projective space). Pg is a Kéhler manifold with the known Fubini-Study metric,
whose Kahler form is, locally

W, = %6510g (H2H2 +1)

in particular, every projective complex manifold, or smooth complex variety is Kahler.

Example A.3.9 (Riemann surface). Let us take a compact oriented Riemann surface X. Let us
endow X with any riemannian metric ¢ and, given v € T, X not null, we define Jv as the unique
vector such that {ﬁ, ﬁ} is a positive oriented orthonormal basis. Since J is an integrable almost

complex structure and w(-,-) := g(J-,-) is a closed non-degenerated 2-form, with this structure X

becomes a Kihler manifold.

A.4 A Panoramic View of GAGA

Complex geometry is strongly related with algebra, since the rigidity of holomorphicity is so strong
that forces complex manifolds to behave as algebraic objects. For illustrating this idea, recall that,
since every holomorphic function is analytic, it is, roughly speaking, an infinite complex polynomial.
In this sence, holomorphic functions (or even meromorphic ones) behaves as complex polynomials, as
in the case of Liouville’s theorem, the identity principle of analytic continuation or Picard’s theorem.
Therefore, if we had some sort of finiteness property, as nAﬁTetherianity or compactness, we could even
assert that meromorphic functions are, in fact, simply quotients of complex polynomials. In this case,

complex manifolds would be indistinguishable of algebraic varieties.

A very precise way of make this ideas possible is via a theory that links algebraic geometry and analytic
geometry, named GAGA theory (from the french Géométrie Algébrique et Géométrie Analytique a
fundational article by Serre [66]). Here, we are going to discuss two of the mains theorems of this

theory named Chow’s theorem of algebraicity and Kodaira’s embedding theorem.

A.4.1 Analytic spaces and Chow’s theorem

We are going to work, exclusively, in the complex framework, so, for all the algebraic definitions, we
are going to suppose that the base field is C. The affine n-dimensional space over C will be denoted
by A", while the complex projective n-space will be denoted P". Recall that an affine variety X C A™
is a subset of C™ that is closed in the Zariski topology of A”, that is, is the common zeros of a (finite)
set of polynomial in Clzq,...,z,]. A quasi-affine variety is a open set (in the Zariski topology) of an

affine variety.
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Analogously, a projective variety X C P" is a subset of P™ that is closed in the Zariski topology of
P, that is, is the common zeros of a (finite) set of homogeneous polynomial in Clzg,z1,...,z,]. A
quasi-projective variety is a open set (in the Zariski topology) of an affine variety. A variety, without

any adjetive, will denote any affine, quasi-affine, projective and quasi-projective variety.

Copying this basic definitions of algebraic geometry, we can work with the usual analytic topology
of C™ and define analytic spaces. For the following, Ocr» and Opr will denote the sheaf of rings of

holomorphic functions in C™ and P", respectively

Definition A.4.1. Let U C C” be an open set (in the analytic topology). A subset S C U is called
a analytic subset of U if S is the zero locus of holomorphic functions in U, i.e., if there exists
fis-oos fm € Ocn(U) such that

S={zeU|fi(z)=...= fu(z) =0}

Definition A.4.2. Let U C C” be an open set. A subset Z C U is called a analytic affine variety
if, for all p € U, there exists a neighbourhood V' C U of p such that Z NV is an analytic subset.

In this case, we define the sheaf of ideals Ty given by Zz(V) := {f € Ocn(V)|f =0in Z}. In this

way, any analytic variety Z can be endowed with a sheaf, known as the structure analytic sheaf,

—1 {Ocrlu
_ 1
OZ =1 <IZ )

where i : Z < U is the inclusion. With this sheaf of rings, it can be shown that (Z,0y) is a ringed

Oz, via

space.

Moreover, if Z' C Z, we will say that Z’ is an analytic affine subvariety of Z if, for every z € Z

there exists a neighbourhood V of z such that Z’ NV is an analytic subspace.

Remark A.4.3. In a first sight, this definitions could result a little baffling and look similar. However,
as an example of the differences, observe that the analytic subsets S C U are necessarilly closed in U
with the subspace analytic topology of U but the analytic varieties do not have to, as shown in the

following example.

Example A.4.4. Let us consider the polydisc D, = {z € C"||z;| < ¢;} where € = (e1,...,€,) €
(0,00)™. Note that D, is not an analytic subset of C™ as it cannot be the zero locus of a finite set
of holomorphic functions (since it is open). However, D, is an analytic subset of itself, becoming an

analytic variety.
Example A.4.5. With the same argument, every open set of C" is an analytic affine variety.

Remark A.4.6. A easy way of understanding this definition is by recursion. First of all, we decreet
that the open sets of C" are affine analytic varieties. The subsets Z' C Z of an affine analytic variety
that are, localy, analytic subsets are analytic affine subvarieties of Z. An analytic affine variety is a

analytic affine subvariety of C™.
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Definition A.4.7. A locally ringed space (X, Ox) is called an analytic space or analytic variety
if, for all z € X there exists an open set U C X, an analytic affine variety (Z, Oz) and an isomorphism

of locally ringed spaces®

(00" = (U, Ox|v) — (Z,07)

Moreover, given two analytic spaces (X,Ox), (Y,Oy) with Y C X, we say that Y is an analytic
subvariety of X if, for all x € X, there exists a chart ¢ : U — Z C C", such that o(Y N U, Oy|yrv)

is an analytic affine subvariety of Z.

Example A.4.8. Since the open set of C™ are analytic affine varieties, we have that the complex
manifolds are analytic spaces. Furthermore, if M is a complex manifold such that there exists an

analytic embedding M < PV for some N > 0, then M is an analytic subvariety of PV.

Remark A.4.9. Recall that, if M is a compact complex manifold, we cannot have an analytic embedding
f: M < CN for any N > 0. Indeed, taking the projection over any axis of CV f; = w0 f : M —
CN - Cfori=1,...,N, by the maximum principle, f; must be constant. Hence, f must be constant,

contradicting that f is an embedding.

The definition of smoothness in analytic space is exactly the same that the one for algebraic schemes

(or varieties).

Definition A.4.10. Let (X, Ox) be an analytic space and let x € X. We will say that X is smooth
in z if Ox, is a regular ring, that is, if dimm,/m2 = dim Oy, where m, is the unique maximal ideal

of Ox,. X is smooth if it is smooth in each of its points.

One of the main theorems of analytic spaces, that allows us to catch a glimpse of the interplay between

complex geometry and algebraic geometry is the following theorem, whose proof can be found in [64].
Theorem A.4.11 (Chow). Every closed analytic subvariety of P¢ is an algebraic set.

Remark A.4.12. Due to this theorem, an analytic subvariety of P¢ is called a analytic projective

variety.

Moreover, this theorem can easyly be extended to the case of morphisims remembering the following

characterization of a regular map.

Proposition A.4.13. Given two algebraic varieties X e Y, a map f: X — Y is reqular if and only
if its graph T'(f) C X x Y is a closed algebraic subvariety of X x Y. Analogously, a map f: X =Y
between analytic spaces is analytic if and only if its graph T'(f) C X XY is a closed analytic suvariety
of X XY.

Corollary A.4.14. Given two closed projective analytic varieties, X C P and Y C P{, every
analytic map f: X —'Y is reqular (i.e. algebraic).

Recall that a morphism of locally ringed spaces (¢, ¢*) : (X,0x) — (Y, Oy) is a continous map f : X — Y with a
morphism of sheaves ¢ : Oy — ¢.Ox such that, for any z € X, the induced map in stalks @ : Ovfa) = Ox, is a
homomorphism of local rings, i.e., the inverse image of the maximal ideal of Ox, is the maximal ideal of Oy ().
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A.4.2 Kodaira’s embedding theorem

Let M be a complex compact manifold and let Z the constant sheaf Z and C the constant sheaf
C over it. Using the sheaf morphism ¢ : Z — C we have induced a homomorphism on homology
©* : H*(M,Z) — H*(M,C).° In this way, the homology class of some w € Q&(X) is said to be
integral if [w] € Im ™.

Remark A.4.15. Using the de Rham pairing, it can be shown that w € Qfé (X) is integral if and only if

/ w e Z
(Y]

for all [Y] € H¥(X,Z), the homology class of a k-cycle in X.

Definition A.4.16. Let M be a compact complex manifold. M is called a Hodge manifold if there
exists a Kéhler structure on M such that its Kédhler form is integral. In that case, such Kéhler form

is called Hodge form.

Example A.4.17. In a Riemann surface, every almost-complex structure is integrable and every 2-
form is close, so every Riemann surface X is a Kihler manifold. If w € Q2(X) is a Kéhler form, then,

redefining © = ﬁw we have that @ induces a Kéahler structure on X and
X

[a=1
X

so w integral. Therefore, every Riemann surface is a Hodge manifold.

The main issue of Hodge manifolds is the closeness of this property with the ability of being analytically
embedded on PV for N large enough.

Definition A.4.18. Let M be a compact complex manifold. M is called an analytic projective

manifold if there exists a holomorphic embedding M — P¥ for some N large enough.

Example A.4.19. Let w € Q*(M) be the Kihler form of P" for the Fubini-Studi metric. It can be
shown (see [76]) that w is the Chern class of some line bundle over P", called the universal bundle. With
this, we obtain that w is integral, so P" is a Hodge manifold. Moreover, for any analitic submanifold
M C P", restrinctring the Fubini-Studi metric, we can induce a Kéhler structure on M whose Kéhler

form is integral. Therefore, every analytic projective submanifold is a Hodge manifold.

With this example, we have obtain that every analytic projective manifold is a Hodge manifold. The

following theorem, whose proof can be found, for example, in [76], states the converse statement.

6Strictly speaking, we have an induced homomorphism on homology of sheaves ¢* : H*(M,Z) — H*(M,C). However,
in a complex manifold, the sheaf Q¢ is a fine sheaf so C — Q¢ is an acyclic resolution. Hence, by the de Rham-Weil
theorem, this resolution computes the sheaf cohomology of C, so H*(M,C) = H*(Qg)(M) = Hjr(M,C). Analogous
considerations are valid with the sheaf of cochains C*, which is a soft sheaf, in order to relate H* (M, Z) with H* (M, Z).
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Theorem A.4.20 (Kodaira Embedding Theorem). Let M be a compact complex manifold. Then, M

18 an analytic projective manifold if and only if M is a Hodge manifold.

By example A.4.8, we have that every analytic projective manifold is an analytic projective variety.

Hence, using Chow’s theorem, we have

Corollary A.4.21. Every Hodge manifold is a projective algebraic variety.

Moreover, since, by example A.4.17 every Riemann surface is a Hodge manifold, we have

Corollary A.4.22. FEvery Riemann surface is a projective algebraic variety.
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Hodge Decomposition Theorem

B.1 Metrics on Differential Forms

First of all, let’s discuss simply the case of a vector space, in a purely linear algebra setting. Let’s
consider a euclidean vector space V, finite dimensional, with inner product (-,-)y : V x V — R. From

this product, we can induce, naturally, another one in /\k V', the spaces of k-alterned vectors, by
(V1 A+ A vk, wy /\"'/\’U)k)AkV = det (Ui7wj>v

Thus, using this construction, the space /\k V' becomes, naturally, an euclidean space.

Furthermore, using again the inner product, we clearly have an isomorphism' between V and V* given
by
LV — %

v o— (v,)y

and its inverse is usually denoted -f := (-b)_1 Therefore, using this isomorphism, we can define,
naturally, a inner product in V* by

(w,mve = (W', nh)y

Hence, putting all together, a inner product in a finite dimensional vector space V induces, in a natural

way, a inner product in its space of k-forms, that is

(Wi A Awg,m A "'/\77k>/\kv* = det <W?,77§>V
Remark B.1.1. It is a simple computation to note that this inner product is characterized by the
property that, if ey, ..., e, forms an ortonormal base of V', then {e;-k1 ARREWA e;‘k} forms an ortonormal
base of A" V*, where e; = ¢(ex).

! However, this easy result becomes harder in the Hilbert spaces setting (it is known as the Riesz lemma) and, in fact,
is no longer true for Banach spaces in general.

194
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Now, we can make this definitions global and extend them for riemannian manifolds. Let M be a
riemannian manifold with metric g, then, doing this operations fiberwise on T* M, we create an inner

product on QF(M) given by

glg (wlp JARERA Wkps Myp ARERRNA 77kp) = det 9p (gb;lwipa ¢;1773p>

Remark B.1.2. An extremely dark (but exact) way of defining what we have just described is to
say that ¢* is a section of the subbundle of the bilinear, symmetric and positive definite forms on
N T*M @ NFT*M.

Remark B.1.3. For the same reason that remark B.1.1, if wyy, ... ,wn, is a ortonormal basis of T7 M,

P
with respect to the product on 1-forms, then wj,, A -+ Awj, , is an orthogonal basis of Q];(M) for all

peE M.

B.1.1 The L? Product

Let (M, g) be a compact riemannian manifold of dimension n, from whose riemannian metric we have
an induced inner product g* on QF (M) for all £ > 0. Suppose that M is orientable, with volume

form?, Q.

As a real vector space, Q¥ is an infinite dimensional vector space, on which we can define an inner

product.

Definition B.1.4. Let QF(M) be the space of k-differential forms on M. Then, we can define an

inner product on Q¥(M) writen (-,-);2, known as the L? metric on Q¥(M), given by

<w777>L2 :/Qk(waﬁ)g

M

Proposition B.1.5. The L? metric is an inner product on Q*(M).

Proof. The bilineality, symmetry and positivity are obvious from the fact that ¢* is a inner product.

For showing that this metric is positive defined, suppose that w € Q*(M) satisfies (w,w)r2 = 0, so
J g w,w)=0.
M

However, cause () is always not null, this integral is null if and only if g’lj’ (wp,wp) = 0 for almost every
p € M. Nevertheless, cause g;f(wp, wp) is continous in p, it is almost everywhere null if and only if it is
everywhere null. But, again using that g]’; is an inner product for all p, g;f (wp,wp) = 0 for all p if and

only if w = 0, as we wanted to show. |

2For those who don’t remember what is that, or who have never seen it before, the volume form € is the unique
never-null n-form such that Q,(e1,...,e,) = 1 for every e1, ..., e, ortonormal base of T, M positive oriented. It can be
constructed form a rescaling from the never-null n-form that defines the orientation of M.
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Remark B.1.6. The space QF(M) is not complete with the topology induced by the L? metric3, so it

has the structure of a pre-Hilbert space.
n

Remark B.1.7. The L? product can be extended to the graded ring Q*(M) = @ QF(M), by stating
k=0

that two forms of different degree are always orthogonal.

Example B.1.8. Let’s compute the L? product of two differentiable functions f,h € C®(M) =

Q°(M). By definition, we have

e = [ Pume= [ ma= [ g

where dg is the measure asociated to the volume form 2 determined by the riemannian metric g.
Hence, using this measure, the L? product on functions coincides with the classical L? product used

in analysis.

The L? metric admites a cleaner expresion in terms of an operator between forms known as the Hodge

star operator.

B.1.2 The Hodge Star Operator

The Hodge Star operator is a linear operator over the space of differential forms that highlights the
duality between the high and low degree forms. First of all, observe that for all p € M

dimg QF(M) = (Z) - k,(ﬂw - (n " k) — dimg Q7 *(M)

And, hence, Q’;(M )y Qg_k(M ) are isomorphic. However, as always in that cases, those isomorphism
are not canonical, they are defined ad hoc using basis arbitrary chosen, so the cannot be fitted together

to form a global operator on the manifold.

Nevertheless, the choosing of the riemannian metric allows us to make this isomorphism canonical. Let
(M, g) be a riemannian manifold of dimension n, with volume form Q € Q"(M). Given vector bundles
E,F, let Hom(E,F) be the bundle of linear transformations between them, that is Hom(E, F) =

E* ® F. Then, we can define the linear applications
¢1: QF(M) — Hom(QF(M),Q"(M)) ¢o: QU F(M) — Hom(QF(M),Q"(M))

w — " (w) 0 w — A w

It easy to see that both are isomorphisms, so we have an isomorphism ¢; Yoo Q’I’j (M) — Qg_k(M ),

known as the Hodge Star operator.

3For example, has we shall see, this metric is, over Q° (M), the usual L? product, which is not complete.
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Definition B.1.9. Let (M,g) be a compact oriented riemannian manifold of dimension n, with
volume form . Then, given w € Q];(M), we define the Hodge Star of w, denoted by %w, as the
unique (n — k)-form such that

g°(n,w) Q=1 A xw
for all n € QF(M).

Remark B.1.10. As we promised, using the Hodge Star operator, the L? metric has the simpler
apparience of

(n,w)2 = /W\*w

M

However, the previous definition of the Hodge Star is unuseful for effective computing, so we need the

next proposition, whose proof can be found in 3.1.2.

Proposition B.1.11 (Computation of the Hodge Star Operator). Let (M, g) be a compact oriented
riemannian manifold of dimensionn and letp € M. Letwy, ... ,w, be a positively oriented orthonormal
base of Ty M with respect to the induced inner product on 1-forms. Then, over k-forms, the Hodge

Star operator can be computed as

*(Wh AREN Awik) = sign(a) cwWi A AWy

1 2 - k kE+1 kE+2 --- n
where o = o . . . ‘
1 2 n J2 o In—k

) is a permutation of {1,...,n}.

Remark B.1.12. From this characterization for the Hodge Star, is very simply to observe that x~1 =

(=1)FM =Ry 50 sk = (—1)kM=k),

B.2 The Laplace-Beltrami Operator

The laplacian operator is one of the most important linear operators in functional analysis. Indeed,
its kernel, known as the harmonic functions, has very rigid properties, related with the properties of

the complex functions.

In this sense, it is logical that there exists a generalization of this operator to the context of differential
manifolds. This is, in fact, the Laplace-Beltrami operator, one of the most important operators in
differantial and complex geometry and the begining of a vaste and rich theory known as Hodge Theory.

Unfortunately, the generalization is not obvious, and requieres the concept of adjoint operator.

B.2.1 Adjointness and self-adjointness

First of all, we will begin with the simplest case of an adjoint operator, which, as we will see, its

insufficient for out purposes.
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Definition B.2.1. Let X,Y be (real or complex) Banach spaces, S C X a linear subspace and let
T:S5 — Y be a linear operator. We will say that T" is bounded over S if

T
|T|| := sup 7” (@)lly < 0

wes  |lwllx

Moreover, if S = X, then we will simply say that 7" is bounded.

Remark B.2.2. Tt is an standard fact that 7" is bounded if and only if 7" is continous (See, for example
[63]).

A very important property of the bounded operators is that they can be extended, with continuity

and in an unique way, to the clausure of its domain.
Theorem B.2.3 (Extension theorem). Let X,Y be Banach spaces and S C X a linear dense subspace.
If T : S =Y is bounded over S, then there exists an unique bounded extension T:X Y.
Proof. Let x € X, since S is dense in X, there exists a sequence {xy,} -, C S such that z, — .
Then, we define T'(z) = lim T(z,).

n—oo

For showing that T is well defined, suppose that {yn},2y C S is another sequence converging to z.

Then, cause T is bounded over S, we have

n—00

1T (xn) = T(yn) | = 1T (@n = yn) | < |TM|lzn —ynll "= 0

o 1i_>m T(zy) = li_)m T(y,) and T is well defined. The uniqueness follows from the fact that any

continous map is uniquely defined by its image on a dense subset. |

In this setting of bounded operators, the notion of adjointness can be easily defined.

Definition B.2.4. Let H be a (separable, real or complex) Hilbert space, and let T': H — H be a
bounded operator. If there exists a bounded operator T : H — H such that, for all w,n € H

(n, T(w)) = (T"(n),w)

we will say that T is the adjoint operator of T. Moreover, if T = T%, we will say that T is

self-adjoint.

Example B.2.5 (Fourier Transform). Let S(R") C L?(R") be the Schwartz class, i.e., the class of

rapidly decreasing functions, in the sense that
SR") ={f € C°R") [ | fllap <00 Va,f e N"}

af = 2908 f||oo for each multiindices o, 3 € N™.

where || f||,3 are the semi-norms || f|
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Its easy to check that the Fourier Transform is well defined over the Schwartz class and map it to
itself, 7 : S(R") — S(R"). Furthermore, the Fourier Transform is an isometry in the L? norm (i.e.
|F|| = 1) by the Plancherel theorem.

Moreover, cause S(R") is dense in L?(R"), by the extension theorem B.2.3, there exists an unique

extension F : L?(R") — L%(R"). However, by the Parseval formula, we have

A~

Frgyo= [ Fodu= / fadp = (f. 3
Rn Rn

for all f,g € L?(R"), so the Fourier Transform F : L?(R") — L?(R") is a self-adjoint operator over

L?(R™). For proofs for these claims, see, for example, [23].
However, the life is not so easy and many of the important operators are not bounded. One of the
most important examples, taken from physics, is the position operator.

Example B.2.6 (Position operator). Let = be the operator multiply by x, i.e., (xf)(x) := zf(z) (this
operator is known, in quantum mechanics, as the position operator). First of all, note that = is well

defined, in the L? norm, over the subset
S:{fELQ(RH/ x2f2<oo}

so we can define z : § — L?(R).

However, z is not a bounded operator. For this end, let’s define f.(x) = # X[1,00) and observe that

fee S for e > % Then, by simple computation, we have that

* 1 1 * 1 1
b= | e = yae Meble= [ -
1 xetee 142 1 x=¢  2e-—1
1/2
Hence HHme: 5””22 = ;:_Qf 6_>—/> oo, and x is not bounded.

Very related with this position operator is the derivation operator, that is central for our purposes.

Example B.2.7 (Derivation). Let’s take the derivation operator 0 that can be defined, for example,
in the Schwartz class, S(R), so that 9 : S(R) — S(R) is given by df(z) = f'(x).

Let’s define de momentum operator p = ﬁ@ (once again, this name comes from quantum mechanics).
Note that 0 is bounded in L?(R) if and only if p in bounded in L?(R) and, since the Fourier Transform
is an bounded automorphism, this is bounded if and only if F o p is bounded. However, for f € S(R),

by the properties of the Fourier Transform, we have

_ b
o

(Fop)(f)(€) af(€) = € f(€)

so F op =z over S(R), that is not a bounded operator. Therefore, 9 is not a bounded operator.
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For this reason it is necessary to improve our previous definition in order to consider the case of

unbounded operators.

Let H be a Hilbert space and let T be a linear operator over H. As we have just see, if T is not
bounded, it can be defined over a proper subset of H and it may not admit any extension to H. So,

let D(T') be it domain of definition, that we will suppose that is a linear subspace of H, dense in H

(in other case, restrict H to D(T)), so that T : D(T) — H.

Definition B.2.8. Given a densily defined linear operator 7" : D(T') — H, we define the domain of

the formal adjoint operator of T as
D(T*)={neH|IeHYweDT):(nT(w))= (1w}

and we will define the formal adjoint operator 7™ : D(T™*) — H by T™*(n) = 7.

Remark B.2.9. The adjoint operator is well defined because D(T) is dense in H.

Remark B.2.10. Decoding the language, we have that KerT* = Im 7. In particular, Ker T is

closed.

In general, D(T™) is not dense, (or even not null!) so there is no obvious relation between D(T") and

D(T*). However, a very important class of operators has this two linear subspaces coincident.

Definition B.2.11. A linear operator T : D(T) — H is called symmetric if, for all w,n € D(T)

(n, T(w)) = (T'(n),w)
Moreover, a linear operator T': D(T') — H is called self-adjoint if T" is symmetric and D(T") = D(T™).

Remark B.2.12. For any symmetric operator, we have that D(T') C D(T*). The property of being

self-adjoint requieres that the contention becomes an equality.

A very important property of the self-adjoint operators is that they cannot be extended.

Proposition B.2.13. A self-adjoint operator is maximaly defined, in the sense that it does not admit

any symmetric extension.

Proof. Observe that, in general if T, R are two linear operators such that D(T") C D(R), then D(R*) C

D(T*). Hence, if T is a self-adjoint operator and T is any symmetric extension, then we have
D(T) c D(T) € D(T*) € D(T*) = D(T)

Hence, every contention is an equality and D(T) = D(T). [
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Example B.2.14 (Multiplication operator). Suppose that A : R® — C is a measurable function.
Let’s consider the set D(A) = {f € L*(R™)| A(")f(-) € L*(R™)}, we can define the multiplication by
A operator, given, for f € D(A) by

Af(z) = Alx) f(2)

It is easy to see that D(A) is dense subset of L?(R"), so A is a densely defined linear operator.

Let’s compute the adjoint of A, A*. First of all, observe that D(A) C D(A*), because, for every
f,9 € D(A), we have

(047 )2y = [ o) (AGIF@) do = [ (A@gta)) o de = (g, 1) 3

R R

where Z denote the conjugate of z € C. Hence, we have found that D(A) C D(A*) and, furthermore,
A* = A on D(A).

In fact, D(A*) = D(A) but, for showing this, we need to recompute. Suppose that g € D(A*), then
there exists § € L2(R") such that, for all f € D(A) we have

(9.4 120y = [ @) (AGF@) do = [ 3@ do = (3. 1250

R” R™

so we have, for all f € D(A),

0= [ (A@g(w) - gt)) @ do = (Ag. 1) s
J

Therefore, since D(A) is dense in L?(R™), then it should be A(x)g(z) = g(x). Hence, D(A) = D(A*)
and A* = A. In particular, if A is real (i.e., Im(A) = A), then A is self-adjoint. For example, the

position operator, as defined above, is self-adjoint.

B.2.2 Hodge Decomposition Theorem

Now, we will apply this theory of adjoints operators to the most important operator in differential

geometry.

Definition B.2.15. Let M be a differentiable manifold and let Q*(M) be the space of differential
forms. The exterior differential is the unique linear operator d : Q*(M) — Q**1(M) such that

e df(X)=X(f) forall feC®(M)=0Q%M) and X € T,M for p € M.
e dwAn) =doAn+ (—1)%8%w Ady
Remark B.2.16. Remember, from the basic courses of differential geometry, that, if in a local chart, a

k-form w € QF(M) is given by w = > iy .., dxi, Ndxzi, A-- - ANdx;, then its exterior differential
11 <i2<...<ij
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is given by
n
Oai, i
dw = Z Z#jlkd%/\dmil/\d%z/\“'/\d%k

11<12<...<tg j=1

Its easy to see that d : Q*(M) — Q*(M) is not a bounded operator, because it is very related with the
derivation operator which, as we saw above, it is not bounded. However, using the Hodge star operator,
we can define a formal adjoint operator over its domain of definition in a riemannian manifold. The

proof can be found in 3.1.6.

Proposition B.2.17. Let d : Q% (M) — QFTY(M) be the exterior differential over a compact oriented
riemannian manifold (M, g). Then, the linear operator d* : QFT1(M) — QF(M) given by

d* = (_1)n(k+1)+1 % dx

is the formal adjoint of d over Q¥*(M) with respect to the L? inner product.

Definition B.2.18. Let (M, g) be a compact oriented riemannian manifold with exterior differential
d: Q*(M) — Q*TY(M), whose formal adjoint operator, with respect to the L? norm, is d* : Q*(M) —
Q*~1(M). The Laplace-Beltrami operator, A : QF(M) — QF(M), is given by

A=dd" +d*d
Moreover, a differential form w € 2*(M) is said harmonic if Aw = 0.

As we saw in 3.1.2 the Laplace-Beltrami operator has the following properties.
Proposition B.2.19. Let (M, g) be and differentiable compact oriented riemannian manifold and let

A QY (M) — Q(M) be the Laplace-Beltrami operator.

o A is symmetric with respect to the L? product, that is

(Aw,n) 2 = (w, An) 12

for allw,n € Q*(M).
o A differential form w € Q*(M) is harmonic if and only if dw =0 and d*w = 0.
The most important result in the Hodge Theory is the theorem known as the Hodge Decomposition,

that allows us to have a better understanding of the space of differentiable forms. As we saw in 3.1.3,

this insight becomes very useful for topological and geometric considerations.

Theorem B.2.20 (Hodge Decomposition). Let (M,g) be a compact oriented riemannian manifold
of dimension n, with Laplace-Beltrami operator A : Q*(M) — Q*(M). Then, for each 0 < k < n,
HF (M) is finite dimensional and we have the split

QF (M) = AQF(M) @ HF(M)
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where HF(M) is the space of harmonic differentiable k-forms. Furthermore, this decomposition is

orthogonal with respect to the L? norm.

Corollary B.2.21. For each 0 < k < n we have the orthogonal decomposition

QF(M) = dQ* Y (M) @ d* QY (M) @ HE (M)

B.3 Proof of the Hodge Decomposition Theorem

In order to prove the Hodge decomposition, we have to develop a complete framework of Hilbert spaces

and norms that allows us to use functional analytical methods.

This approach is so powerful that, without any explicit computation, only by linear algebra (but
linear algebra in an infinite dimensional vector space) we will obtain a slightly version of the Hodge
decompostion, known as it weak version. Once we have obtained the weak version, we will study the

regularity of the solutions and, with that, we will derive the classical strong version.

B.3.1 Sobolev Spaces

The most important spaces that we are going to use are the Sobolev spaces. Roughly speaking, we
are going to weaken the notion of derivative and, with that, we will define the (k, p)-Sobolev space as
the space of function in LP with its k-th first weak derivatives in LP. Hence, in this spaces, we are

authorized to derivate in an almost formal way, without any mention of regularity.

B.3.1.1 Weak derivatives

First of all, suppose that we have a function f € Cg°(R"). Given a multiindex o € N”, we will denote
la|

aaf = wa, where ’Oé‘ = 1 + -+ Ay .
Let’s take any function ¢ € C°(R™) (this functions are called test functions in this setting). Then,
integrating by parts several times and using the compactness of the support of ¢ (that kills the
boundary term) we have

Joorsdu= v [0 sy

R R
Althought the left-hand-side requieres that f is differentiable, the right-hand-side has a completely
perfect sense even for non-differentiable f. Furthermore, this formula characterizes the derivative,

because, if ¢ is another function satisfing this property, then, for all ¢ € C°(R")

/Wf — (~1)le] /a%fdu - /cb@af - /¢ (0°F — g) = (6.0°F — g)am = 0
Rn Rn Rn Rn
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But C°(R") is dense in L2, so it should be g = 9% f almost everywhere. Therefore, we can generalize

the notion of derivative to a function satisfying this property.

Definition B.3.1. Let U C R" be a open set, f € L} (U) and o € N” a multiindex, we will say that

loc

a function g € L}, (U) is the a-weak derivative of [ if, for all ¢ € C2°(U) we have
[ogdu= 1! [0 sau
U U

in that case, we will denote g = 0°f.

Remark B.3.2. By the same argument that in the motivation, the weak derivate of a function is
unique almost everywhere. Furthermore, for the same reason, the classical derivative of a differentiable

function is also its weak derivate (what justifies the abuse of notation).

Example B.3.3. Let’s define f(z) = 2z if 0 < x <1 and f(x) = 1if x > 1. Observe that f is not
derivable at x = 1, but, however, a very simple computation shows that the function g = x(g 1] is
its first weak derivate. Therefore, the notion of weak derivative, indeed, improve the usual notion of

derivate.

Example B.3.4. Not every function in LlloC has a weak derivative. For example, let’s take the
Heviside step function in [~1,1], given by H = x[_; . Suppose that g € Li ([-1,1]) would be its

loc
weak derivative?, then, for all ¢ € C°(R"™), we will have

/llqbgdu: —/llqb’Hdu: —/Olqb’duqu(l)

Let’s take a sequence ¢, € C° such that 0 < ¢, <1, ¢,(0) = 1 for all n € N and ¢,,(z) — 0 for all

x # 0. Then, by the dominated converge theorem, we must have

1 1
1= lim ¢,(0) = lim/ gbngdu:/ lim ¢, gdu =0
n—oo J_4 _ 1 n—00

n—oo

B.3.1.2 Sobolev spaces in the euclidean space

With this notion of weak derivate, we can make precise the sentence, weak derivative in LP. The

spaces that arise of this construction are known as Sobolev spaces.

Definition B.3.5. Let U C R™ be an open set, k € Nand 1 < p < co. We define the (k,p)—Sobolev
space, W*P(U), to be the space functions f € LP(U) such that, for all |a| < k, 0%f exists and
0“f € LP(U). In that space, we define the (k,p)-Sobolev norm given by

||f||W’W(U) = Z ||3af||LP(U)

lal<k

4As we will see after, we can improve the notion weak derivative, in the setting of distributions, and obtain that, in
this general concept, the weak derivate of H is the Dirac-delta operator, § : C°(U) — R given by d(¢) = ¢(0).
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Remark B.3.6. Using the elementary properties of powers, its easy to note that ||-||yyr.ry is actually

a norm, with which W*P?(U) becomes a normed space.

In fact, we have even more (for proofs, see, for example, [22])

Theorem B.3.7. For 1 < p < oo, WFP(U) is a Banach space. Moreover, for p = 2, the space
WHk2(U), usually denoted H*(U), is a Hilbert space with inner product

(f,9) ey = Z (0°f,0%9) L2

|la|<k

Furthermore, C=(U) (without compact support!) is dense in W*P(U).

Remark B.3.8. It can be seen that, in the previous theorem, the hypotesis that the functions do
not need to have compact support is crucial. In fact, the space C°(U) is not dense in W*P(U), so
its clausure, with respect to the (k, p)-Sobolev norm, is a proper closed linear subspace, denoted by
WeP(U).

The most important theorem, from the theory of Sobolev spaces, that we will need is the following.

Again, the proof can be found in [22].

Definition B.3.9. Let U C R" be bounded open set. Given 1 < p < oo, we call the Sobolev

conjugate of p over M to the unique p* such that

1 1 1
- =— + =
p p n
Theorem B.3.10 (Rellich-Kondrachov). Let U C R™ be an open bounded set of R™ with C* boundary.
Let 1 < p < oo and let p* its Sobolev conjugate. Suppose that 1 < qg < p* if p<norl <q < oo if

p>n. Then Wol’p(U) is compactly embedded in L4(U) that is

. Wol’p(U) — LY(U) and the inclusion is continous.

o If {wn}>2, is a bounded sequence in WIP(U), then there exists a subsequence convergent in
Li(U)>.

Only for completeness, one of the most important inequalities in the theory of Sobolev spaces is the
known as Poincaré inequality. We will not need it here, but we include its statement for completeness.

The proof can be found, for example, in [22].

Theorem B.3.11 (Poincaré inequality). Let U C R™ be a bounded connected open set. Let 1 < p < oo,
then, there exists C > 0, depending only on p, n and U, such that

[fllee@wy < ClIVfllz2 o)

®In the topological jergue, this can be reparaphrased saying that every bounded sequence in W17 (U) is precompact
in L9(U)




Appendix B. Hodge Decomposition Theorem 206

for all f € WLP with fo =0.

B.3.1.3 Sobolev spaces in manifolds

Now, we will extend this notions to the context of differentiable manifolds.

To this end, we can follow two different approach. On one hand, we can use the spaces created in the
previous section and, using the charts of the manifold, pasting them to arrive to a global definitions.
On the other hand, analogously to what we have done in the euclidean case, we can define normed

spaces globally, reflecting the properties of the functions that we want to uses.

Firstly, we will follow the later approach and define the needed Sobolev spaces in a non-constructive

way. For a explicit construction of this spaces, and others, using pasting techniques, see section B.3.1.4.

Definition B.3.12. Let M be a compact oriented riemannian manifold. The space of L2-differential

forms, L3 (M) is the closure of Q*(M) with respect to the L? inner product.

Definition B.3.13. Let M be a compact oriented riemannian manifold. Given w,n € Q*(M), let’s
define the Hglz-inner product

(WM mrary = (W, )2 + {dw,dn) 2 + (d*w,d"n) 2

Then, we define the 1-Sobolev space, H} (M), as the closure of Q*(M) with respect to the H*(M)-

norm.

Using the explicit description of the Sobolev spaces in section B.3.1.4, it can be shown that the classical
results about Sobolev spaces extends to the manifolds framework. In particular, we have the following

extension of the Rellich-Kondrachov theorem B.3.10 to manifolds.

Corollary B.3.14. On a compact oriented riemannian manifold, H' (M) is compactly embedded in
L?(M).

B.3.1.4 Constructive definition of Sobolev spaces on manifolds

First of all, a warning: This section is optional, and a little masochistic. In this section, we will contruct
explicitly the Sobolev spaces of differential forms on a compact manifold. For a perfect understanding
of this constructions, the reader should be confortable with the notion of vector bundles and, preferably,

with the notion of sheaves. For example, see [30].

Through this section, M will be a compact oriented differentiable manifold.

Definition B.3.15. Let 1 < p < oo and k > 0, we define space of W"P-functions over M, W*P (M),
to be the set of functions f : M — R such that, for every x € M, there exists a chart (U, ), with
@0 :U — p(U) C R", arround x, such that fop™!:o(U) = R € WFP(p(U)).
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Moreover, given two differentiable manifolds M, N and a map F' : M — N, we say that ' €
WHFP(M, N) if, for every f € WEP(N), we have that fo F : M — R € W*P(M).

Definition B.3.16. Let V' C R"™ be an open set. We define the space of W¥P-diferentials over V,
Wg’p(V), to be the space
W (V) = (V) @ WHP(V)

where ®r denote the tensor product of R-moédules. Furthermore, given a differentiable map F : V C
R™ — V! C R™, we define the pullback F* : Wé’p(V’) — Wg’p(V) that, in the basic elements
w® fe (V') o WhP(V') is given by

Flwaf)=F(wa(foF)

Let M be a compact differentiable manifold and let (U;,¢;), @ = 1,...,m, be an atlas for M, with
©; - UZ‘ — Vz C R™

Definition B.3.17 (Pasting form). We define the space of W*?-diferentials over M, L} (M), to be

the space

P WP (Vi) Uiy {i} x WEP(V;
ng(M): i=1 Q( ): zfl{z}x Q( )

~ ~

where ~ is the equivalence relation given by (i,w;) ~ (j,w;) if and only if

wilgsuinvy) = (95 005 ) (Wsleswinu;))
If w e LY, (M), we denote by wly, its i-th part.
Remark B.3.18. Using the fact that the change of charts are C'°°, is possible to show that this definition
does not depend on the atlas (U, ¢;) chosen.
Remark B.3.19. As in the case of differentiable forms, the space Wé’p(M) is a WP (M)-module, with
a grading inheritated from the usual grading on Q*(M) = é QF(M). We will denote its k-part as
WP (M)*. .

Remark B.3.20. Playing with the definitions, it is easy to show that w € Lg(M)k if and only if, for

every ¢ = 1,...,m, the i-th component of w is given by a form

w|Ui = Z lezkdlvzl /\d{Elk

11 <12...<ig

with f;, 4. € LP(V;). Usually, this is the definition that appears in the classical textbooks, but,
unfornunatelly, this is not completely satisfactory, cause the universal set Lf,(M) is not defined. That

is the reason why we need to define locally a LP-form and, then, paste them together.

Remark B.3.21. As in the euclidean case, usually the space W3*(M) is denoted by L2 (M) and is
known as the space of LP-differentials. Moreover, the space W£2(M ) is usually denoted HE(M).
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Remark B.3.22. For those who have studied Algebraic Geometry, remember that a sheaf over a topo-
logical space X is a contravariant functor F : Opy — Ab, where Ab is the category of Abelian
groups and Opy is the category whose objects are the open sets in X, and whose morphism are the
inclusion maps. Then, the theory of sheaves shows that there is a natural equivalence between locally

free sheaf of modules and vector bundles.

In fact, we can easily define the sheaf of LP-functions on M, which, for every open set U C M,
asigns the abelian group LP(U), as defined in B.3.15. Then, using the sheaf of differential forms
QU — Q*(U), then we consider the LP-module sheaf

LY, = Q" ®r LP

given by Q* @r LP(U;) := Q*(U;) ®r LP(U;) on the covering U; that forms the atlas on M, and pasted
together. This is a locally free sheaf of LP-modules, so, it is related with a vector bundle (in the L
category), whose sections are, in fact, L?Z (M). Strictely speaking, this is the most formal construction

of the space of LP-forms. For more information and possible constructions, see [30].

Once we have define the set, we can define over it a norm

Definition B.3.23. Let Wg’p(M) be the space of W#P-differentials over M. We endow it with a

metric, given by

n
llwieran = Z;HMHWSW(W)
1=

where H‘”Wk,p(v_) is the norm in Q*(V;) @ WFP(V;), that, if wly, = > fiy. i, dvi, Adzg, then we
e i1 <ia...<ik
have
olvlgrrgy = 5 Moielweoqs
11 <12...<ig

Using the euclidean properties of W*?(V'), it can be shown

Proposition B.3.24. For 1 < p < oo, Wg’p(M) s a Banach space. In fact, for p = 2, Hg(M) it s
a Hilbert space.

Proposition B.3.25. For 1 < p < oo, Q*(M) is a dense subspace of WS”’(M).

Remark B.3.26. Observe that, since M is compact, the set of forms with compact support is the whole

space, so the space I/Vé€ P o(M) is meaningless.

As we promised, in the special case of p = 2, we recover the previous definition

Theorem B.3.27. Let M be a compact oriented riemannian manifold. L3 (M), as defined in this sec-
tion, is isomorphic to the closure of Q* (M) with respect to the L?>-norm defined in B.1.4. Furthermore,

the H'-norm given in this section, is equivalent to the norm defined in B.3.183.
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Sketch of the proof. It is enought to compute this norm locally, in terms of the Christoffel symbols,
and, refining the covering of M, suppose that |g; ; — d; j| < € and |F§k| < ¢ for € small. For details, see
[42]. [

B.3.2 The Weak Version of the Hodge Decomposition
B.3.2.1 Weak solutions

Before the final theorem, we will proof a restricted version of the decomposition in the larger class
of the L? forms on M. Furthermore, as we will see, most of this study can be done only in terms of
Hilbert spaces and dense subsets, so we will follow a slightly more general setting. Nevertheless, I have
not found this (easy) generalization in any analysis or PDE’s textbook, so, sadly, the terminology of

this section is not standard.

Definition B.3.28. Let H be a (separable, real or complex) Hilbert space and S C H be a dense
subset. A linear operator L : S — H is called smooth if D(L*) D S, i.e., the formal adjoint
L*: S — H is well defined.

Example B.3.29. If S(R") C L%(R") is the Schwartz class, then the Fourier Transform F : S(R") —

S(R™) is symmetric, so, in particular, it is smooth.

Example B.3.30. As the standard textbooks in PDE’s shows, any elliptic operator defined on a

bounded open set of R™ is smooth operator.

In this general setting, we can weaken the notion of solution to the Poisson equation Lw = 7 of a

smooth linear operator.

For motivate this concept, let’s consider the case of good solutions. Suppose that we have a smooth
operator L : S — H defined over a dense linear subespace S (we can think, for example, that S is the
space C°(R™)) of a Hilbert space H (for example L?(R™)). Suppose that w,n € S satisfies Lw = 1.
Then, using the formal adjoint L* : S — H we have that, for all ¢ € S

(p,mu = (¢, Lw)g = (L" ,w)n

However, even if this computation is done in the differentiable class, the right hand and the left hand

side of this equality make sense even for non-differentiable one. These are known as weak solutions.

Definition B.3.31. Let H be a Hilbert space, S C H dense and L : S — H a smooth operator.
Given w,n € H we will say that L w = n in weak sense if, for all ¢ € S

(@,mu = (L" ¢,w)m
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In contrast, the previous notion of solution will be called solution in strong sense. We will denote
by L(H) the space of weak solutions of the Poisson equation, i.e. w € L(H) if there exists n € H such

that Lw = n in weak sense.

Remark B.3.32. The discussion above shows that, if w,n € S, then Lw = n in weak sense, if and only
if, Lw = 7 in strong sense.

Remark B.3.33 (Interpretation in terms of distributions). Given S C H dense we will define the space
of distributions with base S to be the dual space S*. Observe that H is canonicaly isomorphic to
H* by ¢ : H— H* given by ¢(w)(¢) = (¢,w)m. Using this isomorphism, H can be viewed as a linear

subspace of the space of distribution S*.

Suppose that we have a smooth operator L : S — H. Then, we can extend it to L: H* — S*. Given
w € H = H* we define

Lp())(9) = p(w)(L*¢) = (L*¢,w)n

for all ¢ € S. In this sense, given w,n € H, saying that Lw = 7 in weak sense is the same that

L(p(w)) = o(n) because

(@, mu = n)(@) = L(p(w))(¢) = (L7¢,w)n

So, a weak solution is no more that a solution in the space of distributions.

Furthermore, we can generalize this even more (however, we will not need this here). Suppose that
our smooth operator maps S to itself, that is L(S) C S. Then, we can extend L to the whole space of
distributions, L : $* — S* by

A

L(1)(¢) := (L")
forl € S* and ¢ € S.

Example B.3.34. The dual space of C2°(R™) (which, in this context, is denoted by D) with respect
to the L2 norm, D' := (C°(R™))* is known as the space of distributions over R”. A easy example of

a distribution that is not an usual L? function is the Dirac delta distribution & : C>°(R") — R given
by 6(f) = £(0).

In this space, we can extend the derivative operator d, : C2°(R™) — C2°(R"™) to the space D’ by

0a(1)(¢) = (=1)1*1(9a(4))

for | € D' and ¢ € C°(R™). In this setting, we can reinterpret the notion of weak derivate as
follows. Given f € L?(R™), we say that 0, (¢(f)) is the derivative of f in a distributional sense. If the
distributional derivative lies in L2(R")* C D', say ¢(g9) = 9a((f)), then we say that g is the weak
derivative of f. In fact, using this definition we have that, for all ¢ € C2°(R".

/ dgdp = (9)(8) = 0a(p(f))(#) = (=1)*o(f)(0a(0)) = (~1)!* / Bad f dp
'



Appendix B. Hodge Decomposition Theorem 211

That is, precisely, the definition of weak derivative. Hence, both definitions coincide.

Example B.3.35. Let S be the Schwartz class on R™. It is easy to check that S is a linear subspace
that contains C2°(R"), so it is dense in L?(R™). Let S* be its dual, this space is known as the
space of temperated distributions. This distributions have a very important property, the Fourier

Transform can be defined there.

Indeed, the most important porperty of the Schwartz class is that the Fourier Transform maps it to

itself ' : S — &, so, by the previous remark, we can extend F 8% - 5% by

for every I € §* and ¢ € S.

B.3.2.2 Generalized elliptic operators

The key part of the theory of elliptic operators is that they can be solved in weak sense in a purely

functional analitic way.

Definition B.3.36. Let H be a (separable, real or complex) Hilbert space and S C H be a dense
subset. A smooth linear operator L : S — H is called generalized elliptic operator if there exists
a closed linear subspace C, C H (the control region) and C' > 0 such that ||¢|| < C||L* ¢|| for all

¢ € Cr. Furthermore, if Ker L is finite dimensional, we will say that L is finite.

Theorem B.3.37 (a la Malgrange-Ehrenpreis). Let H be a Hilbert space over the field K, S C H
be a dense subset and L : S — H a generalized elliptic operator with control region Cp,, such that

(Ker L*)* C Cp. Then, there exists a bounded linear operator
K:C,—H

such that, for alln € H, K(n) is the weak solution of the Poisson problem with data n, that is
LK(n) =n

in weak sense.

Proof. Let’s define, over S N Cp, the inner product

(@, ) = (L ¢, L )u

for all ¢,9p € SNCL, and let S, = (SN CL,(-,-)r) be this prehilbert space. Let W be the clausure
of Sy. Cause, trivially, L* : S — H is a bounded operator on Sy, it has an extension to W, that we

will keep calling it L.
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Let’s fix n € Cr, and define the functional I, : Sy, — K by

Iy(¢) = (¢, m)u

Let’s check that [, is bounded. Let ¢ € Sp, cause the estimate |¢||g < C||L* ¢||g holds is this

subspace, we have

(&) = Ko, mul < ¢llalnlla < CIL* ¢llalnlla = Clinllalloll

Hence [, is bounded, so it can be extended to a bounded linear operator I, : W — K with ||[,|| <

Cln||g. By the Riesz Lemma, there exists w, € W such that
Iy(a) = {a,wy)r = (L, L'wy) g

for all o € W. Moreover, [|wy|z = ||| < C|nlla

Let’s define K (n) = n(L*wy), where m : H — L*(S) is the orthogonal projection to the clausure of the

image of L in the H-norm. In this case, by construction of K (n) we have

(0.mm = ly(¢) = (L, K(n)) (B.1)

forall p € S, = SNCL.

Furthermore, this formula also holds for ¢ € SNCy. By hypothesis, (Ker L*)* C Cr, so C; C Ker L*
(recall that Ker L* is closed, remark B.2.10). Hence, if ¢ € SN CLL, then ¢ € Ker L* and, therefore,
the right hand side is null. But the left hand size is also null due to the fact that ¢ € C{ and n € O,
so the identity (B.1) holds.

Hence, the equality (B.1) holds for elements in S N Cyp and SN C’Ll and, thus, for the union of both
spaces, that is, S. Therefore, (B.1) holds for all ¢ € S or, in the languaje of weak solutions, K (n) is

a weak solution of Lw = 7.

Furthermore, K is linear. Trivially, K (An) = AK(n) for all A € K. For the distibution with the sum,
observe that, for all ¢ € S, we have

(L7¢, K(w+m) i = luwin(9) = (d;w)m + (i = () + 1y()
= (L', K(w))u + (L7¢, K(w))ir = (L"¢, K(w) + K(n)) 1

Therefore, K (w)+ K (n) — K (w-+n) € (L*(S))*. However, by construction, K (w)+ K (n) — K(w+n) €
L*(S), so it must be K(w) + K(n) — K(w+n) =0.
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Finally, for the boundedness of K, observe that, by the application of the Riesz lemma that we did

above, we have

Il = L wnllr = llwnlle < Clinlla

so K is bounded, as we wanted to show. |

Remark B.3.38. The conclusion of this theorem is usually said that L has a bounded right inverse on
Cr.

Remark B.3.39. Remember that any elliptic operator defined on a bounded open set, U C R™ has
control region equal to C°(U). But this class is dense in L?(U), so we obtain the classical version of
this theorem with K : L?(U) — L*(U).

Corollary B.3.40 (Hodge Decompostion, weak sense). Let H be a Hilbert space, S C H be a dense
subset and L : S — H a symmetric finite generalized elliptic operator with Ker L+ C Cp,, where Cp, is

the control region of L. Then, we have the orthogonal decomposition
H=L(H)® KerL

Proof. Since Ker L is finite dimensional, it is a closed linear space so, by the orthogonal projection
theorem, we have

H = (KerL)* @ Ker L

Therefore, it remains to prove that (Ker L)* = L(H). For (Ker L)* > L(H), suppose that n € L(H),

say Lw = 7 in weak sense for some w € H, then for all ¢ € Ker L we obtain

(0mu = (L,w)n =0

so 7 is orthogonal to Ker L, as we want.

The other way is a consequence of the Malgrange-Ehrenpreis theorem. Note that, in general Ker L C
Ker L*, so the hypothesis of the Malgrange-Ehrenpreis theorem hold. Therefore, the right-inverse

operator K : Ker L — H gives, for every n € Ker L a weak solution of Lw = 7, as we want. |

B.3.2.3 Return to the Laplace-Beltrami operator

Using the Rellich-Kondrachov theorem, we can prove that the Laplace-Beltrami operator is a finite

generalized elliptic operator.

Proposition B.3.41. Let (M,g) be a compact oriented riemannian manifold and let H*(M) be its
space of harmonic differential forms. There exists a constant C > 0 such that, for every w € H*(M)*,
we have

w2 < CllAw] 2
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Proof. Otherwise, there would exists a sequence {wy, }o-; with |lwy||z2 = 1 and satisfiying | A wp|/z2 —

0. In particular, we have
[dwnllr2 + [|d*wn|| 22 = (Aw,w) 2 < |Awn| z2 lwnllz2 = [Awn| =0

S0 ||dwy]|, [|[d*wy|| — 0. Hence, their H'-norm ||wy|| g1 = ||wnllz2 + |dwn g2 + [|d* w12 is bounded.

Therefore, by the Rellich-Kondrachov theorem, there exists a subsequence convergent in L?, so, replac-
ing the sequence by its subsequence, we can suppose without loss of generality that {wy} -, converges

in the L2-norm.

Let w be its limit in the L? norm. Observe that, cause Aw — 0, for all ¢ € Q*(M) we have

0= lim <Awn7¢>L2 = lgm <wn,A¢>L2 = lgn <W,A¢>L2

n—o0

so Aw = 0 in weak sense. But, by the Weyl’s lemma B.3.51 below, a weak harmonic function is, in fact,
a strong harmonic function, so w € H*(M). Hence, cause w, € H*(M)L, it must be (w,wy,)2 = 0, so,

taking limits, ||w|z2 = 0. Therefore, limw,, = w = 0, which is impossible since |Jwy| = 1. [

Proposition B.3.42. Let (M, g) be a compact oriented riemannian manifold of dimension n. Then,

the space of harmonic forms, H*(M), is finite dimensional.

Proof. Suppose that H*(M) is infinite dimensional. Hence, it should exist an infinite orthonormal set
{wn}oly C H*(M) such that (w;,w;)r2 = ;5. In particular, cause the w, are harmonic, they have

dw, = d*w, = 0 for all n € N. Therefore, we have

lwnllgn = llwnllr2 + l[dwnll L2 + lld"wnll 2 = llwnll2 <1

Hence, {wy},~, is a bounded sequence in the Sobolev space H 1 so, by the Rellich-Kondrachov the-
orem, there exists a convergent subsequence in the L?-norm. But, this is impossible, cause this sub-
sequence remains being an orthonormal set in the L?-metric (and, therefore, they are not a Cauchy

sequence). [ |

Corollary B.3.43. In a compact oriented riemannian manifold, the Hodge-Laplace operator is a

symmetric finite generalized elliptic operator with control region Ca = H*(M)*.

Therefore, we have just prove

Corollary B.3.44. Let (M, g) be a compact oriented riemannian manifold of dimension n. Then, for

each 0 < k < n, we have the orthogonal decomposition

Ly(M)" = AL{(M)" @ H" (M)
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B.3.3 Regularity of the Weak Solutions

As we have see, we can solve the Laplace-Beltrami equation Aw = 7 in a weak sense in a purely
algebraic way, only using functional analysis. However, if the original data n is smooth, it is expected

that a weak solution w is also smooth.

This is the realm of the regularity theory of elliptic operators, a very difficult task that requires a lot
of work. We will discuss completely the case of weak harmonic forms, and we will sketch the proof for

the general case.

B.3.3.1 Weak harmonic forms

The fundamental tool in this work is the lemma known as the Weyl’s lemma that treats the case of an
harmonic function over R™. To reach this result, we need a very important property of the harmonic

functions, known as the mean value property.

Proposition B.3.45 (Mean value property). Suppose that u € C%(R"™) is harmonic, then it satisfies

the mean value property for spheres, that is, for every x € R™ and every R > 0 we have

1
u(r) = ———— u(y) dS(y
D= 0B B Jo " Y
Proof. Let’s fix zp € R™ and define @ : (0,00) — R by
1
O(r) = —— d = s
"= pEay | e =0 [ uetrise)
OB(xo,r) 0B(0,1)

Cause u € C?, ® is differentiable and, by the dominated convergence theorem we have

r

(r)=C / (Vu(zo +12),2) dS(z) = C <Vu(y), v- $°> ds(y)
aB(

0B(0,1) To,T)

But Y= is the unit outward normal vector to the sphere B(xz,r) in y € B(zo,7), so

ou
vo)=c [ s =c [ Auwiy=0 (B2)
OB (zo,r) B(zo,r)

where the second equality follows from the Stokes’ theorem. Therefore, ® is constant, so

. . 1
(R) = ll_ff[l) O(r) = }}_Y}(l) m 8B(o) u(y) dS(y) = u(wo)

as we wanted to show. [ |
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Remark B.3.46. Observe that, u € C°(R") satisfies the mean value property for spheres if and only if

(using the co-area formula) it satisfies the mean value property for balls, that is

1
u@) = o | ulw)dy
|B(z, R)| JB(2,Rr)
for all x € R™ and R > 0.

For the converse property, we need the following lemma.

Proposition B.3.47. Let u € C°(R") be a continous function that satisfies the mean value propertsy.
Then, for all radial functions ¢ € CO(R™) with Jgn @ =1, we have ux ¢ = u.

Proof. The proof is only a clever computation using the co-area formula. Let B(0, R) be the support

of ¢, then, for all g € R", we have

ux ¢ (wo) = /n u(zo — y)o(y) dy = / u(zo — y)o(y) dy

B(0,R)

- /OR / )u(xo—z)¢>(r)d5(z)d7“: /ORW) / u(z)dS(z) | dr

dB(0,R 9B(z0,R)

Now, because u satisfies the mean value property we have

R R
wx 6 () = /O 6(r) / w(x)dS(2) | dr = u(zo) |0B(z0, B)| /0 (r) dr

OB (zo,R)

R
= u(xo) /0 / ¢(r)dS dr = u(xo) pdp = u(xo)

Rn
0B(zo,R)
|

Corollary B.3.48 (Smoothness of harmonic functions). If u € C°(R"™) satisfies the mean value

property, then u € C*°(R™) and w is harmonic in strong sense.

Proof. Let n € C°(R™) be the standart radial mollifier. Observe that, by the properties of the
convolution, u xn is C*°. But, by the previous lemma, we have u xn = u, so u is also infinitely

differentiable.

Therefore, we can assume that u € C*°(R"™). In that case, suppose that u is not harmonic. Then,
there must exists z9 € R™ and R > 0 such that |Awu(z)| > 0 for all x € B(zg, R). Without loss of

generality, we can assume Awu > 0 in B(xg, R).
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Then, using the function ® defined above, we have that ® = 0, since u satisfies the mean value

property. However, using the formula B.2, we have
' (R) =" / Au(y)dy >0
B(xo,R)
which is a contradiction. |
Corollary B.3.49. If u € C?(R") is harmonic, then u € C*(R").

Lemma B.3.50 (Weyl). Let u € L _(R") be a weak harmonic function, that is, suppose that

loc

(u, A@) 12 :/ ulAodu =0

n

for all ¢ € C°(R™). Then there exists a C*° harmonic function @ such that w = U almost everywhere.

Proof. Given r > 0, let 0, be the radial standard mollifier with suppn, = B(0,r). Observe that u*n,

is weakly harmonic. Indeed, for every ¢ € C°(R™), using Fubini’s theorem, we have

(A ¢, u*mr) —//U(y—rw)n(af) Ag(y) dwdy—/ /U(y—m) Ad(y)dy | n(z)dz

= [| [ w2y o+ rayay | nie) e = [(A(@ 070, uhnta) do =0

R n Rn

where 7(s) = s + t and the last equality follows from the fact that u is weakly harmonic. Therefore,
u 7, is a smooth weak harmonic function, so it is also a strong harmonic function. In particular, it

satisfies the mean value property.

Observe that, in this case, we have that, for every r,s > 0
U Np = UK N

To this end, observe that, cause u x 7, is continous and satisfies the mean value property, then, by
lemma B.3.47 (u % n,) x ns = uxn,. However, convolution is commutative, so we have (uxn,) x5 =

(u*ns) * My = u*ns, by the same reason, and the equality follows.
Let’s fix s > 0 to any value. By the properties of the approximation to the identity,
r—0
UkTg =U*T)p — U

almost everywhere, when r — 0. Therefore, u * s = u almost everywhere, so u can be modified in a
null set for getting u continous. Moreover, u € C°(R") satisfies the mean value property, so by B.3.48,

u € C*°(R™), u is strong harmonic. [ |
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Furthermore, computing locally, we can extend this result to differentiable manifolds.

Theorem B.3.51 (Weyl for manifolds). Let (M,g) be a compact oriented riemannian manifold.
Suppose that w € L3(M) is weak harmonic, i.e. (w,A¢)r2 =0 for all $ € Q*(M). Then w € Q*(M)

and Aw = 0 in strong sense.

Proof. Let x € M and let ¢ : U — R” be a local chart arround x € U. Suppose that, locally in this

chart, w is written as w = Y @jy..i dxiy Ao Adzy,,.
11<...<tj

Let fix a multiindex i1 < --- < i and let j; < --- < j,_ be its complementary index, i.e., the unique
multiindex with such that {i1,..., ik, j1,...,Jn—k} = {1,...,n}. It can be shown that there exists a
dense subset D C L?(R™) such that, for every f € D there exists ¢ € Q*(M) with support in U such
that, locally

*A¢=(Af)dxj N--- Ndzj,

Therefore, cause w is a weak harmonic function, it must satisfy

0—(w,A¢f>L2—/ w/\*(bf—/w/\*¢f
M U
:/ (@iy iy Ao Ndwg) A ((Af) dagy A Ada, )

= :|:/ ail‘--ikAfdxl AR dxn = :t/ ail...ikA fd/,l, = :|:<(17;1A..ik, Af>L2(]Rn)
R

n

Hence, every coefficient a;,...;, is weak harmonic in the usual sense of R" in a neighbourhood of z. But,
by the Weyl’s lemma for R" above, then a;,...;, € C*°(R") and, therefore, cause the differentiability
is only a local question, w is differentiable. But every smooth weak harmonic form is also a harmonic

form in strong sense (by Stokes’ theorem) so w is harmonic in strong sense, as we wanted to prove. W

Remark B.3.52. Observe that, if A would be self-adjoint, then the proof of the Weyl’s lemma will
be markedly easier. Indeed, in that case, using the remark B.2.10 with A = A*, we would have
Ker A = Im A, which, decoding the language, would mean that every weak harmonic form is, in

fact, harmonic.

B.3.3.2 General weak solutions

As we saw in the previous section, we can obtain the regularity of a weak harmonic form using the
mean value property, which characterize the harmonic functions. However, for the general Poisson

equation, A w = n, this tool is no longer available.

Therefore, for obtaining the regularity of solutions of the Poisson equation, we need to invoke deeper
results from functional analysis. Indeed, the fundamental theorem that we need is the following, whose

proof, and all of this sections, can be found in [22].
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Theorem B.3.53 (Sobolev’s lemma). Let U C R™ be a bounded domain and let k,s € N such that
s >n/2+k. Then, H§(U) is embedded into C*(C).

Furthermore, we need to improve some estimations to show that a solution of the Poisson equation,
with a regular data (in some sense), is more regular that the data. This can be realized replacing

derivatives by diference quotiens, as in the classical theory of elliptic operators.

Theorem B.3.54 (Weak regularity of Poisson equation). Let U C R"™ be a bounded domain and
let w € L*(U) be a solution of Au = f in weak sense. Then, for every s > 0, if f € H*(U) then
u € H*Y2(V) for every V compactly contained in U.

Corollary B.3.55 (C regularity of Poisson equation). Let (M, g) be a compact oriented riemannian
manifold. Suppose that n € Q*(M) and let w € L% (M) such that Aw = n in weak sense. Then
w e Q" (M) and Aw =1 in strong sense.

Proof. As in the proof of B.3.51, it is enought to prove this for the euclidean case an functions for the
Poisson equation Au = f. By the weak regularity, u € H*(U) for all s > 0 and U small enought, so,
by the Sobolev’s lemma, u € C*(U) for all & > 0 and, therefore, u € C>®(U). [ |

Corollary B.3.56 (Hodge decompostion, strong sense). Let (M, g) be a compact oriented riemannian
manifold of dimension n, with Laplace-Beltrami operator A : Q*(M) — Q*(M). Then, for each
0 <k <n, H¥(M) is finite dimensional and we have the split

QF (M) = AQF(M) & HF (M)
Furthermore, this decomposition is orthogonal with respect to the L* norm.

Proof. The orthogonality is obvious, once proven the decomposition. By the weak Hodge decomposi-
tion B.3.44, we have
LE(M)F = A L3 (M) @ H* (M)

Let n € Q*(M). By the weak decomposition, we have 7 = 1, + 12, where 79 € H*(M) and 7, €
A LL(M)*, say Aw =1 in weak sense, for some w € L3 (M).

Cause the elements of H*(M) are smooth, we have that 1, = 1 — 1y € Q*(M). Therefore, by corolary
B.3.55, w € Q*(M) and 1 = Aw in strong sense. Hence, we have that n = n; + 12 = Aw + 12 €
AQ (M) @ H* (M), as we wanted to show. |
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