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1. Symplectic Manifolds

Definition 1.1 (Symplectic Manifold). Given a differentiable manifold M and ω ∈

Ω2(M), we say that (M,ω) is a symplectic manifold if ω is closed and non-degenerated,

in the sense that, for all p ∈M , ϕω : TpM → T ∗pM given by ϕω(X)(Y ) = ω(X, Y ) is an

isomorphism. In this case, ω is known as the symplectic form.

Remark 1.2. Equivalently ω ∈ Ω2(M) is non-degenerated if and only if, for all p ∈ M

and any base of TpM , its matrix, as a bilinear form, is invertible. Using it, and that ω
1
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is anti-symmetric, it follows that TpM should be even dimensional. Thus, M is an even

dimensional manifold.

Theorem 1.3 (Darboux). Let (M2n, ω) be a symplectic manifold and let p ∈M . There

exists a chart arround p (U,ϕ), ϕ = (q1, . . . , qn, p1, . . . , pn), such that the local expresion

of ω in that chart, ω|U 1, is given by

ω|U =
n∑
i=1

dqi ∧ dpi =: dq ∧ dp

This coordinates are called canonical coordinates arround p.

Definition 1.4. Given to symplectic manifolds (M,ω) and (M ′, ω′), a differentiable

map f : M →M ′ is said to be a symplectomorphism if f ∗(ω′) = ω.

Example 1.5 (Euclidean space). Let R2n be the usual even-dimensional euclidean space.

Then R2n is a symplectic manifold with the 2-form, in the global chart (q1, . . . , qn, p1, . . . , pn)

ω0 =
n∑
i=1

dqi ∧ dpi

ω0 is known as the standard symplectic form on R2n.

Remark 1.6. In that sense, the Darboux theorem can be reparaphased to say that every

symplectic manifold is, locally, symplecto-isomorphic to (R2n, ω0). That is why, usually,

this area is called symplectic topology, more that symplectic geometry, because geo-

metricaly (i.e., locally) all the symplectic manifold are equals and all the problems are

global.

Example 1.7 (Cotangent Bundle). This classical example of symplectic manifold, and

the reason for living of this notion, due to its relationship with classical mechanics. Let

Q (known in classical mechanics as the states space) be any differentiable manifold, not

necessarily even-dimensional, and let us consider its cotangent bundle T ∗Q (known as

the phase space). M = T ∗N can be equipped with a 2-form to become a symplectic

manifold.

1Rigorously, ω|U := (ϕ−1)∗ω.
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To this end, let us define, first, the 1-form η ∈ Ω1(M), known as the Liouville form

or the canonical form. Given (q, νq) ∈ M = T ∗Q, let us consider a vector X ∈ Tq,νqM .

Then, we define η(q,νq)(X) as the result of applying νq toX, once taken to TqQ. Explicitly,

if π : M = T ∗Q→ Q is the bundle projection, then we define

η(q,νq)(X) = νq((π∗)(q,νq)X)

Recall (π∗)(q,ηq) : T(q,ηq)M → TqQ. From this construction, we can consider the 2-form

ω = −dη ∈ Ω2(M), which is trivially closed.

To check that ω is non-degenerate, let us write it in coordinates. If we take coordinates

(q1, . . . , qn, p1, . . . , pn) in M = T ∗Q, where the qk are the coordinates in Q (the positions)

and the pk are the coordinates in T ∗qQ (the moments). Then, we have

η(q,p)

(
∂

∂qk

)
= p

(
∂

∂qk

)
= pi η(q,p)

(
∂

∂pk

)
= p (0) = 0

and, therefore

η(q,p) =
n∑
k=1

pk dqk ω = −dη =
∑

dqk ∧ dpk

Hence, ω is non-degenerate, turning M = (T ∗Q,ω) in a symplectic manifold

Example 1.8 (Kähler Manifolds). Remember that a Kähler manifold is a riemannian

almost-complex and symplectic manifold (M, g, J, ω) such that J integrable and it is a

linear symplectomorphism (i.e. J∗ω = ω) and

g(·, ·) = ω(·, J ·)

Therefore, a Kähler manifold is, by definition, a symplectic manifold (with very much

rigidity, in fact). In this context, usually the symplectic form is known as the Kähler

form.

1.1. Hamiltonians.

Definition 1.9 (Contraction). Let M be a differentiable manifold and let us take X ∈

H0(M,TM) a vector field. We define the contraction operator with respect to X,

ιX : Ω∗(M)→ Ω∗−1(M) such that

(ιXη) (Y1, . . . , Yk−1) = η(X, Y1, . . . , Yk−1)
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for every η ∈ Ωk(M).

Now, let us consider a symplectic manifold (M,ω) and let H : M → R be any

differentiable function. Let us consider the 1-form dH ∈ Ω1(M). Cause ω is non-

degenerated, ϕω : H0(M,TM) → H0(M,T ∗M) is an isomorphism, so there exists an

unique XH ∈ H0(TM) such that ϕω(XH) = dH. Hence, using the contraction operator

we have that it holds

ιXHω = dH

In this context, H is called a hamiltonian and XH is the hamiltonian vector field

asociated to H : M → R.

Let us write down the explicit equations for XH . Let us take canonical coordinates

(q, p) on M and suppose that is given by XH =
∑

kX
k
q

∂
∂qk

+Xk
p

∂
∂pk

. Let Y =
∑

k Y
k
q

∂
∂qk

+

Y k
p

∂
∂pk

be any other vector field, therefore, we have

ιXHω (Y ) = ω(XH , Y ) =
n∑
k=1

Xk
q Y

k
p ω

(
∂

∂qk
,
∂

∂pk

)
+Xk

pY
k
q ω

(
∂

∂pk
,
∂

∂qk

)
= Xk

q Y
k
p −Xk

pY
k
q

so we have that

ιXHω = −Xk
pdqk +Xk

q dpk

Hence, using that dH = ∂H
∂qk
dqk + ∂H

∂pk
dpk we obtain

XH =
n∑
k=1

∂H

∂pk

∂

∂qk
− ∂H

∂qk

∂

∂pk

Moreover, if α : (−ε, ε) → M , α(t) = (q(t), p(t)), is an integral curve of XH , that is,

α′(t) = (XH)α(t) for all −ε < t < ε, then it should satisfy2

q̇k =
∂H

∂pk
ṗk = −∂H

∂qk

for k = 1, . . . , n, which are the well known Hamilton equations of classical mechanics.

2Only for a moment, we use the Newton’s notation for derivatives, with a dot, for recovering the

classical form of this equations.
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1.2. The Poisson Bracket.

Definition 1.10. A Lie algebra, g, is a R-vector space with a bilinear antisymmetric

map [·, ·] : g× g→ g, known as the Lie bracket, such that

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0

for all x, y, z ∈ g, which is called the Jacobi identity.

Definition 1.11. A Poisson algebra, P , is a commutative R-algebra with a bilinear

antisymmetric map {·, ·} : P × P → P , known as the Poisson bracket, which is a Lie

bracket satisfying

{f, gh} = g {f, h}+ h {f, g}

for all f, g, h ∈ P , which is called the Leibniz rule.

Definition 1.12. Let (M,ω) be a symplectic manifold. Over C∞(M) define que Poisson

algebra

{f, g} = ω(Xf , Xg)

for f, g ∈ C∞(M), where Xf , Xg ∈ H0(M,TM) are the hamiltonian vector fields asso-

ciated to the hamiltonians f and g, respectively.

Remark 1.13. Using canonical coordinates (q, p) in M we can compute explicitly the

Poisson braket. Indeed, cause Xf =
n∑
k=1

∂f
∂pk

∂
∂qk
− ∂f

∂qk

∂
∂pk

we have that

{f, g} = −
n∑
k=1

ω

(
∂f

∂pk

∂

∂qk
,
∂g

∂qk

∂

∂pk

)
+ ω

(
∂f

∂qk

∂

∂pk
,
∂g

∂pk

∂

∂qk

)
=

∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

Proposition 1.14. In a symplectic manifold M , (C∞(M), {·, ·}) is a Poisson algebra,

and ψ : C∞(M) → H0(M,TM) given by ψ(f) = Xf is an anti-homomorphism of Lie

algebras3.

Proposition 1.15. Let f,H ∈ C∞(M), then {f,H} = 0 if and only if f is constant

along the integral curves of XH .

3That is ψ({f, g}) = −[ψ(f), ψ(g)] = −[Xf , Xg].
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Corolary 1.16. If H is any hamiltonian on the symplectic manifold (M,ω) then H is

constant along the integral curves of XH .

Proof. It follows from the previous proposition because {H,H} = 0. �

2. Moment Maps

2.1. Review of Lie Groups Theory. Remember that a Lie group is a group G with

a differentiable structure on it such that the map G×G → G, (g, h) 7→ gh−1, is differ-

entiable. If G,G′ are Lie groups, a homomorphism of Lie groups is a differentiable

map f : G→ G′ that is also a homomorphism of groups.

The Lie algebra of G, g, is g = TeG, where e is the neutral element of G. In a

Lie group we have, for every g ∈ G, two distiguished automorphisms, Lg, Rg : G → G

given by Lg(h) = gh and Rg(h) = hg. A vector field X ∈ H0(G, TG) is said to be left

invariant if

(Lg)∗Xh = Xgh

for all g, h ∈ G. Observe that there is a linear isomorphism between g and the R-vector

space of left invariant vector fields, L(G). Indeed, lets define ψ : g → L(G) given by

ψ(ξ)(g) = (XL
ξ )g := (Lg)∗(ξ)

4. It is a R-linear mapping, whose inverse is ψ−1(X) = Xe.

However, the point is that L(G) has a Lie bracket, the commutator of vector fields, that

g inherits by [ξ1, ξ2] := [Xξ1 , Xξ2 ]e. Hence, with this bracket, g is a Lie algebra.

Moreover, we can improve this map to obtain another characterization or g. Recall

that a 1-parameter subgroup of G is a group homomorphism R→ G, not necessarily

injective. The 1-parameter subgroups of G can be identificated, 1 to 1, with the Lie

algebra g. For this end, given X ∈ H0(G, TG), let φX be its flow, i.e. d
dt
φX(t, x0) =

Xφ(t,x0). If X is left invariant, the flow is maximaly defined, that is φX : R × G → G.

4Do not confuse the subscript notation used for identify the left invariant vector field associated to

ξ ∈ TeG, that is, XL
ξ , with the evaluation in g ∈ G of a vector field, Xg ∈ TgG.
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Therefore, we can define

g ←→

 1-parameter

subgroups of G


ξ 7→ φXL

ξ
(·, e)

In particular, we obtain the map exp : g→ G given by exp(ξ) = φXξ(1, e).

2.2. Lie Group Actions and Representation. Let G be a Lie group and let M be a

differentiable manifold. Let Φ : G×M → M be a differentiable map and let us denote

Φg = Φ(g, ·). We will say that Φ is a (left) differentiable action of G over M if, for

all g, h ∈ G

Φh ◦ Φg = Φhg

Observe that, in particular, every Φg is a diffeomorphism of M and Φe = idM .5 There-

fore, another alternative characterization of an action is as a differentiable map Φ̃ : G→

Diff(M).

Another important fact about Lie group actions is that, to every ξ ∈ g, we can

naturally associate it with a vector field on M , Xξ ∈ H0(M,TM)6. Remember that,

associated to ξ ∈ g is a vector field on G, XL
ξ . Then, the map ψ(t) = exp(tXL

ξ ) : R→ G

is its flow from e ∈ G. Therefore, we define

(Xξ)p =
d

dt

∣∣∣∣
t=0

exp(tXL
ξ ) · p

Sometimes, it will be necessary to restrict our attention to some subgroup ofDiff(M).

In this sense, if our manifold is a symplectic manifold (M,ω), a group action Φ is said to

act by symplectomorphisms if Φg : M →M is a symplectomorphism for all g ∈ G.7

Analogously, if (M, g) is a riemannian manifold, we say that Φ acts by isometries if

Φg : M →M is an isometry for all g ∈ G.

5In this context, usually it is denoted g ·p := Φg(p). Hence, the composition rule is h · (g ·p) = (hg) ·p

for all p ∈M and g, h ∈ G.
6Again, do not confuse with the fancy subscript notation. While XL

ξ is a vector field on the Lie

group G, Xξ is a vector field on the acted manifold M .

7Equivalently, if Φ̃ : G→ Sympl(M,ω).
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In this setting, let us suppose that our manifold is a finite dimensional vector space,

V , and that Φ : G × V → V acts by linear mappings, that is Φg : V → V is linear for

all g ∈ G. Then, Φ is called a representation of G on the vector space V . Of course,

this is equivalent to give a homomorphism of Lie groups Φ̃ : G→ GL(V ).

Example 2.1. Let G be a subgroup of GL(V ) for some vector space V . Then we have

a representation of G on V by A · v = A(v) for A ∈ GL(V ) and v ∈ V . Of course, the

morphism G = GL(V )→ GL(V ) is simply the identity.

Example 2.2 (Spin representation). Some of the most important representations are the

representations of SU(2), known as spin representations. Given k ∈ N, let us consider

the space of homogenious complex polynomials in two variables of degree 2k, that is

V = (C[x, y])2k. Then, we have that SU(2) acts on V by preevaluation, that is

(A · P )(v) = P (A−1(v))

for A ∈ SU(2), P ∈ V = (C[x, y])2k and v ∈ C2. This is a representantion, known as the

spin-k
2

representation of SU(2). It can be also shown that, for the spin-1 representation,

we have that V = (C[x, y])2 is three dimensional and the representation is, in fact, a

double cover SU(2)→ SO(3), which is known as the fundamental representation.

Example 2.3 (Dual representation). Suppose that we have a representation Φ̃ : G →

GL(V ), then we can naturally induce a representation Φ̃∗ : G→ GL(V ∗), known as the

dual representation. This is defined, for g ∈ G, ω ∈ V ∗ and v ∈ V by

(g · ω)(v) = ω(g−1 · v)

Note that the inverse is necessary if we want that h · (g · ω) = (hg) · ω holds.

Example 2.4 (Adjoint representation). Given a Lie group G, we always have a represen-

tation of G on g, known as the adjoint representation of G. To this end, observe that,

for all g ∈ G, we have the conjugation automorphism cg : G→ G given by cg(h) = ghg−1.

Then, cause e is in the normalizer of G, its differential (cg)∗e : TeG = g → TeG = g is

an automorphism of g. Thus, we define the adjoint representation Ad : G→ GL(g) by

Adg = (cg)∗e
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As expected, the dual representation of Ad : G → GL(g) is called the co-adjoint

representation, Ad∗ : G→ GL(g∗).

Moreover, we can go a step forward and derivate the Ad map to obtain the map Ad∗e :

TeG = g → TidGL(g) = gl(g). Hence, we have obtain a map ad = Ad∗e : g → gl(g),

known as the adjoint representation of the Lie algebra g. In fact, it can be shown

that

ξ · η = adξ(η) = [ξ, η]

where ξ, η ∈ g. As a final remark, observe that this is not a representation of g as a Lie

group, as we have introduced, because the maps adξ : g→ g are not isomorphisms.

2.3. Moment Maps. Let (M,ω) be a symplectic manifold and let G be a group acting

on M by symplectomorphisms, Φ : G×M →M . let us take a map

µ : M → g∗

and, for any ξ ∈ g, let us define µξ(p) := µ(p)(ξ), that is

µξ : M
µ→ g∗

eξ→ R

where eξ : g∗ → R is the evaluation on ξ map. We will say that µ is a moment map,

and Φ a hamiltonian action if it satisfies:

• (Hamiltonian) For all ξ ∈ g, µξ is hamiltonian with hamilton vector field Xξ,

that is

dµξ = ιXξω

• (Equivariant) µ is equivariant for the action Φ : G ×M → M on M and the

coadjoint action Ad∗ : G× g∗ → g∗ on g∗, that is

µ ◦ Φg = Ad∗g ◦ µ

for all g ∈ G.
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2.3.1. Comoment Maps. If G is a connected Lie group, a moment map can be defined

using another map, known as a comoment map.

Definition 2.5. Let (M,ω) be a symplectic manifold and let G be a group acting on

M by symplectomorphisms, Φ : G×M →M . let us take a map

µ∗ : g→ C∞(M)

µ∗ is called a comoment map for the action Φ if it satisfies:

• (Hamiltonian) For every ξ ∈ g, µ∗(ξ) : M → R is hamiltonian with hamilton

vector field Xξ, that is

d(µ∗(ξ)) = ιXξω

• (Equivariant) µ∗ is a Lie algebra homomorphism between g and C∞(M) with

the Poisson bracket, that is

µ∗([ξ1, ξ2]) = {µ∗(ξ1), µ∗(ξ2)}

for every ξ1, ξ2 ∈ g.

Proposition 2.6. Let G be a connected Lie group and M a symplectic manifold acted

by G by symplectomorphisms. If µ : M → g∗ is a moment map, then µ∗ : g → C∞(M)

given by

µ∗(ξ)(p) := µ(p)(ξ) = µξ(p)

is a comoment map. Reciprocally, if µ∗ : g → C∞(M) is a comoment map, then µ :

M → g∗ given by

µ(p)(ξ) := µ∗(ξ)(p)

is a moment map.

2.3.2. Real Moment Maps. Suppose that G = R. In that case, we have r ∼= r∗ ∼= R.

In fact, exp : r → R is an isomorphism. Taking ξ = exp−1(1), it is a generator of r,

so eξ : r∗ → R is an isomorphism. Using it, we have an isomorphism of R-modules

ψ : C∞(M, r∗)→ C∞(M) given by ψ(µ) = µξ := eξ ◦ µ.
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Suppose now that µ : M → r∗ is a moment map for the action of R in M , Φ : R×M →

M . Then, since ξ is a generator of r, it is enought to satisfy for all λ ∈ R

µλξ = eλξ ◦ µ = λeξ ◦ µ = λµξ

Hence, is µ is hamiltonian if and only if ψ(µ) = µξ : M → R satisfies

dµξ = ιXξω

However, observe that

(Xξ)p =
d

dt

∣∣∣∣
t=0

(exp(tξ) · p) =
d

dt

∣∣∣∣
t=0

(t · p) = (XΦ)p

the vector field of the action Φ : R×M → M . Therefore, µ is hamiltonian if and only

if the hamilton vector field of µξ is XΦ.

For the equivariant condition, observe that, cause R is an abelian Lie group, we have

that all the conjugations cx = idR for all x ∈ R. Hence, the adjoint representation

Ad : R → GL(r) is Ad(x) = (cx)∗0 = (idR)∗0 = idr. Therefore Ad∗(x) = idr∗ for all

x ∈ R. Hence, the equivariance condition means, for all x ∈ R

µ ◦ Φx = Ad∗x ◦ µ = µ

that is µ(x · p) = µ(p) for all p ∈ M and x ∈ R or, equivalently, µξ is constant in

the orbits of R. But this always holds because, by corolary 1.16, µξ is constant in the

integral curves of Xξ, which are exactly the orbits of R.

Summarizing

Proposition 2.7. Let (M,ω) be a symplectic manifold and Φ : R×M →M an action

by symplectomorphisms. let us define XΦ(p) = d
dt
|t=0Φt(p). Then, for every ξ ∈ r, there

is a biyection

ϕ : {Moment maps for Φ} → {Hamiltonians of XΦ}

given by ϕ(µ) = eξ ◦ µ.
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2.3.3. Cyclic Moment Maps. Using the exponential map exp : u(1) ∼= iR → U(1),

an action Φ : U(1) × M → M by symplectomorphisms is the same than an action

Φ̃ : R ×M → M with Φ̃2π = idM . Therefore, using the previous characterization, we

have

Proposition 2.8. Let (M,ω) be a symplectic manifold and Φ : U(1)×M →M a cyclic

action by symplectomorphisms. Let Φ̃ : R×M →M the underlying periodic real action

and define XΦ̃(p) = d
dt
|t=0Φ̃t(p). Then, for every ξ ∈ r, there is a biyection

ϕ : {Moment maps for Φ} → {Hamiltonians of XΦ̃}

given by ϕ(µ) = eξ ◦ µ.

Remark 2.9. Reciprocally, given a vector field X ∈ H0(M,TM) it defines a moment

map for some R-action on M if and only if X is a hamiltonian vector field, that is, if

X = dµ for some µ ∈ C∞(M). For example, this can be always done if H1(M) = 0,

so this kind of manifolds are plenty of moment maps. Of course, if the flow of X is

periodic (i.e. its orbits are closed) then the moment map found can be understood as a

U(1)-moment map.

3. Morse-Bott Theory

In this section, let M be a differentiable manifold of dimension n.

Definition 3.1. Let f : M → R be a differentiable function. We will say that p ∈ M

is a critical point of f if dfp = 0. Given a critical point p ∈ M of f , we define the

Hessian of f in p as the bilinear symmetric map Hf p : TpM × TpM → R given by

Hf p(vp, wp) = wp(ṽ(f)), where ṽ is any vector field that extend v in a neighborhood of

p.

If the Hessian Hf p is non-degenerated (i.e. the linear map TpM → T ∗pM , v 7→

Hf p(v, ·) is an isomorphism), we will say that p is a non-degenerated critical point

of f . The dimension of the maximal vector subspace of TpM in which Hf p is negative

defined is called the index of f in p, and is denoted by λ(p).
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Remark 3.2. Recall that Hf p is symmetric for a critical point p because Hf p(v, w) −

Hf p(w, v) = wp(ṽ(f))− vp(w̃(f)) = [w̃, ṽ]p f = 0.

Proposition 3.3. If p ∈M is a critical point of f , then the matrix of Hf p in the basis

∂
∂x1

∣∣∣
p
, . . . , ∂

∂xn

∣∣∣
p

is

(
∂2f

∂xj∂xi

∣∣∣
p

)n
i,j=1

.

Proof. Is a simple check

Hf p

(
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
=

∂

∂xj

∣∣∣∣
p

(
∂

∂xi
f

)
=

∂2f

∂xj∂xi

∣∣∣∣
p

�

Remark 3.4. From this proposition, we have that Hf p does not depends on the extension

ṽ chosen. Moreover, p is a non-degenerated point of f if and only if

det

(
∂2f

∂xj∂xi

∣∣∣∣
p

)n

i,j=1

6= 0

Maybe the most important analytic property of this functions is that, locally, the are

defined as a quadratic form.

Lemma 3.5 (Morse). Let f : M → R be a differentiable mapping with p ∈ M a non-

degenerated critical point. Then, there exists a chart (U,ϕ) with ϕ(p) = (0, . . . , 0) such

that

f ◦ ϕ−1(x1, . . . , xm) = f(p) +−x2
1 − · · · − x2

λ + x2
λ+1 + · · · x2

m

where λ is the index of f in p.

Definition 3.6. Let M be a differentiable manifold, possibly with boundary. A differ-

entiable function f : M → R is said to be a Morse function if all its critical points are

interior (i.e. belong to M − ∂M) and non-degenerated.

Remark 3.7. Thanks to the Morse lemma, all the critical points of a Morse function are

isolated. In particular, if M is a closed manifold (compact and with boundary) then it

has a finite number of critical points.
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3.0.4. Reeb’s theorem. A very useful theorem that can be proved using the theory of

Morse functions is the Reeb’s theorem. Only for mention one of its most popular appli-

cations, it is intensively used when we want to prove that certain differentiable manifold

is an exotic spheres.

The main idea behind this theorem is the following simple example.

Example 3.8. Let Sn ⊂ Rn+1 be the n-sphere, as seen embbeded on Rn+1. Let f : Sn →

R be the last coordinate function, that is f(x) = xn. Then f has two critical values, −1

and 1, its minimum and maximum, that is easy to check that they are non-degenerate.

Therefore, Sn has a Morse function with only two critical points.

The key is that this property characterizes the sphere topologicaly.

Theorem 3.9 (Reeb). Let Mn be a closed manifold. Suppose that there exists a Morse

function f : M → R with only two critical points, then Mn is homeomorphic to Sn.

Remark 3.10. The existence of exotic spheres implies that we cannot improve the Reeb

theorem in order to assure that M is diffeomorphic to Sn.

3.1. Morse inequalities. One of the most important theorems in the theory of Morse

functions is that it is possible to estimate the topological information of M only using

the information of the critical points of a Morse function f : M → R.

Definition 3.11. let us define an order in the space of integer polynomials in one

variable, Z[t], saying that P � Q if there exists R ∈ Z[t], with all its coefficients non-

negative, such that

Q(t) = P (t) + (1 + t)R

with this definition, (Z[t],�) is a (non-strict) partial order.

Definition 3.12. Let Mn be a differentiable manifold8. We define the Poincare poly-

nomial of M , PM ∈ Z[t] as

PM(t) =
n∑
k=0

bk(M)tk

8Of course, we can aweaken this definition to topological spaces using the singular cohomology instead

of the de Rham Cohomology.
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where bk(M) = dimRH
k(M,R) is the k-th Betti number.

Definition 3.13. Let M be a differentiable manifold and let f : M → R be a Morse

function. We define the Morse polynomial of f , Mf ∈ Z[t] as

Mf (t) =
∑

p∈Crit(f)

tλ(p)

Theorem 3.14 (Morse inequality). Let M be a differentiable compact manifold and

f : M → R a Morse function. We have

Mf � PM

Corolary 3.15 (Weak Morse inequality). Let Mn be a differentiable compact manifold

and let f : M → R be a Morse function. Then, for all 0 ≤ k ≤ n

Ck(f) ≤ bk(M)

where Ck(f) denote the set of critical points of f of index k.

Proof. Check the k-th coefficient of Mf and PM and compare it using the Morse inequi-

lity. �

Corolary 3.16 (Strong Morse inequality). Let M be a differentiable compact manifold

and let f : M → R be a Morse function. Then, it holds

∞∑
k=0

(−1)kCm−k(f) ≤
∞∑
k=0

(−1)kbm−k(M)

for all m ≥ 0.

Definition 3.17. Given a differentiable manifold M and a Morse function f : M → R

on it, we will say that f is a perfect Morse function if Mf = PM , or, equivalently

Ck(f) = bk(M)
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3.2. Morse-Bott Functions. As we have just seen, Morse theory can be used to obtain

topological information of a differentiable manifold. However, there are cases when the

Morse function are too restrictive, and we cannot find a suitable Morse function. To

solve this problem, it is possible to use a generalization of Morse functions, known as

Morse-Bott functions.

The key idea of this functions is that they are not restricted to have isolated critical

points, as the Morse function are. Instead, we can have some submanifolds of critical

points, and, in order to eliminate pathological behaviours, we should impose some kind

of non-degeneration property to the Morse-Bott function.

Let M be any differentiable manifold and let i : S ↪→M be a submanifold of M , with

tangent bundle TS. The normal bundle of S in M , νMS is the rank dimM − dimS

vector bundle νMS = TM |S/TS → S9. Let i0 : S ↪→ νMS be the zero section, which is

a embedding of S in νMS.

To understand this name, let us take any riemannian metric g on M . Using this

metric, for every s ∈ S we obtain an orthogonal splitting

TsM = TsS ⊕ (TsS)⊥

But, by linear algebra, there is an isomorphism νMs S = TsM/TsS ∼= (TsS)⊥. Therefore,

νMS can be seen as the vector bundle of the orthogonal complement of TS with respect

any metric. A very important fact of the normal bundle is the following theorem.

Theorem 3.18 (Tubular neighborhood theorem). Let M be any differentiable manifold

and i : S ↪→ M a submanifold with normal bundle νMS → S. There exist U0 ⊂ νMS

neighborhood of the zero section, U ⊂ M neighborhood of S and a diffeomorphism ϕ :

U0 → U such that the following diagram commutes

νMS ⊃ U0

ϕ
// U ⊂M

S

i0

ddIIIIIIIIII i

;;xxxxxxxxxx

9Recall that TM |S is a shorthand for i∗(TM), the pullback of vector bundles.
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Definition 3.19. Let M be a differentiable manifold and f : M → R a differen-

tiable function. A compact connected submanifold S ⊂ M is said to be a criti-

cal submanifold if S ⊂ Crit(f) and Hf |νMS is non-degenerate, in the sense that

Hfs(X, ·) : TsM → T ∗sM is not an isomorphism if and only if X ∈ TsS.

Definition 3.20. Let M be a differentiable manifold and f : M → R a differentiable

function. We will say that f is a Morse-Bott function if its critical points are a finite

disjoint union of critical submanifolds.

If S ⊂ M is critical submanifold of f : M → R, then for all s ∈ S the bilinear form

Hfs : TsM × TsM → R descends to a non-degenerate bilinear form on νMs S = TsM
TsS

Hf s : νMs S × νMs S → R

For s ∈ S, let λ(s) be the index of Hf s, that is, the dimension of the maximal subspace

in which it is negative definite. Observe that the condition of negative definiteness is

an open condition10 so s 7→ λ(s) is a continous function S → N. Cause N is discrete, a

continous function is locally constant, so, using that S is connected, we have that λ(s)

is constant. let us denote this common value as λ(S), the index of f in S.

Definition 3.21. Let M be a differentiable function and f : M → R a Morse-Bott

function on it. Let Crit(f) =
m⊔
k=1

Sk with Sk critical submanifolds of f . The Morse-

Bott polynomial of f , Mf ∈ Z[t], is

Mf (t) =
m∑
k=1

tλ(Sk)PSk(t)

Remark 3.22. Obviously, every Morse function is a Morse-Bott function and each critical

point is a critical submanifold of dimension 0. Hence, since P?(t) = 1, the Morse and

the Morse-Bott polynomial of f coincide.

Analogous to the Morse inequality for Morse functions, using spectral sequences we

can prove.

10Using Silvester criterion, it is essencially a condition on the sign of some minors of the matrix of

Hf , which is an open condition.
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Theorem 3.23 (Morse-Bott inequality). Let M be a differentiable compact manifold

and f : M → R a Morse-Bott function. We have

Mf � PM

Definition 3.24. A Morse-Bott function f : M → R is called perfect if Mf = PM .

3.3. Moment Maps as Morse-Bott functions. Suppose that we have a Lie group

G with a hamiltonian action on a symplectic manifold (M,ω) and let us consider its

moment map µ : G → g. Given any ξ ∈ g, we can consider µξ : M → R. As we will

see, for toric groups under rather general conditions, this maps are going to be perfect

Morse-Bott functions.

First of all, let us identificate the critical points of µξ in terms of the action.

Proposition 3.25. Let G be a Lie group with a hamiltonian action on a symplectic

manifold M with moment map µ : M → g∗. For every ξ ∈ g the critical points of

µξ : M → R are exactly the fixed points of M under the action of G.

Proof. Let ξ ∈ g and let p ∈M be a fixed point of µξ : M → R. Then, since the action

is hamiltonian, it means that

0 = dµξp = ιXξpωp

but, as ωp is non-degenerated, it is only possible if Xξp = 0. But Xξp = 0 if and only if

p is a fixed point under the action of G. �

let us now focus on hamiltonian actions of Tr =

r times︷ ︸︸ ︷
S1 × · · · × S1 over a symplectic

manifold M .

Theorem 3.26. Let M be a symplectic manifold and suppose that Tr acts as a hamil-

tonian action on M with moment map µ : M → t. Then, for every ξ ∈ t, the function

µξ : M → R is a Morse-Bott function. Furthermore, the critical submanifolds of µξ are

symplectic with all its indices even.
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Corolary 3.27. The moment map of a U(1)-hamiltonian action on a symplectic man-

ifold is a Morse-Bott function with all critical submanifolds symplectic and with even

index.

Moreover, we can go a step forward and use U(1)-moment maps to understand com-

pletely the topology of the symplectic manifold. Indeed, if the manifold is compact, it

can be shown that we can compute its handlebody decomposition11.

However, if the manifold is not compact (like the moduli space of Higgs bundles), we

have some obstructions for understanding its topology, very related with the compacness

property. As the following theorem claims, the only obtruction is the boundedness and

properness of this map.

For having some intuition, we can follow this program if the moment map can see

the manifold as it would be compact. More precisely, understanding the topology of the

manifold is equivalent to compute a handlebody decomposition of the manifold. But, for

this end, we need that the Morse-Bott would be bounded below, for having a beginning

of the handlebody, and proper, for pasting correctly the handles.

Theorem 3.28. Suppose that U(1) has a hamiltonian action on a symplectic manifold

M with a proper and bounded below moment map µ : M → R. Then µ is a perfect

Morse-Bott function, that is

PM(t) =
m∑
k=1

tλ(Sk)PSk(t)

where S1, . . . , Sm are the connected components of the set of fixed points of M under

de action of U(1). Furthermore, all the indices are even and the Sk are symplectic

manifolds.

The proof of this theorem is the result of successive improvements. Maybe, the fun-

dational paper, and in fact the main line of argument, is [6]. However, this paper is

old and the notions introducted are old-fashioned. For example, the notion of moment

map is not introduced, thought central in the argument, so all the computations should

11Essentially, a decomposition like the CW-complex decomposition, but in the differentiable category.
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be done by hand. Even more important, in this paper the inicial hypothesis is that

M is a Kähler manifold. However, as some people has pointed out, this hypothesis is

not crucial, cause it can be used a compatible almost complex structure, which always

exists, and complete the computations.

Therefore, we should look for more modern references. Two classical textbooks about

Morse Theory are [11] and [13]. While the later is focused in Morse homology and the

algebraic and analytic issues, the later is focused in Morse, Morse-Bott and Flöer theory,

and its relations with symplectic topology. However, these books are not enought for our

purposes, cause everywhere, they require the compacness of the symplectic manifold.

For avoiding this hypothesis, we should refer to [12]. There are some lecture notes

in which the theory is developed using the handlebody decomposition created from a

Morse-Bott function. Therefore, the proofs are simpler and clearer, based on geometrical

properties, and not assuming that the manifold is compact. In turn, this notes are based

on [2], where the theory of toric actions is developed with lot of details.
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