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ABSTRACT

We provide an elementary proof of the Hartshorne-Serre correspondence for
constructing vector bundles from local complete intersection subschemes of codi-
mension two. This will be done, as in the correspondence of hypersurfaces and
line bundles, by patching together local determinantal equations in order to
produce sections of a vector bundle.
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Introduction

It is well-known that a hypersurface of a smooth algebraic variety can be obtained (in
a unique way) as the zero locus of a section of a line bundle. In fact the construction
of the line bundle and its section can be done in a very elementary way, by patching
local equations and it can be taught in any first course of algebraic geometry.

If instead one considers subvarieties of codimension bigger than one, the situation
is very different and only well understood in codimension two. (For some results in
codimension three, see [5,6,15].) More precisely, in [8], Hartshorne, inspired by previ-
ous works of Serre and Horrocks ([10,13]), proved that a codimension two subvariety
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of Pn is the zero locus of a rank-two vector bundle over Pn if and only if the sub-
variety is subcanonical (which can be interpreted as saying that the determinant of
its normal bundle extends to a line bundle L on Pn). This result was independently
proved by Barth and Van de Ven ([3]), and generalized by Grauert and Mülich ([7])
to any ambient space (in which case the vanishing of the second order cohomology of
L∗ is needed). Finally, following the original technique of Hartshorne, Vogelaar ([14])
gave the most general result, proving that any local complete intersection subscheme
of codimension two of a smooth variety X can be obtained as the dependency locus
of r− 1 sections of a rank r vector bundle over X of determinant L if and only if the
determinant of its normal bundle twisted with L∗ is generated by r−1 global sections
(provided again the vanishing of the second order cohomology of L∗). In both [7]
and [14], the uniqueness of the vector bundle is obtained provided the vanishing of
the first order cohomology of L∗.

However, although this construction (already known as Hartshorne-Serre corre-
spondence) is very well-known and thoroughly used, it is very difficult to provide a
good reference of it. Indeed the general result is only in Vogelaar’s PhD thesis, which
is not published elsewhere, and hence it is usually embarrassing to use as a reference.
Even in the subcanonical case, although the technique of [7] works in general, it is
written only for the particular case of projective spaces (as it happens for all the other
proofs I know of this case).

On the other hand, it is also very annoying that, while the case of codimension
one is so easy to explain to even an undergraduate student, the techniques for the
case of codimension two are too sophisticated, using in an essential way the spectral
sequence of local and global Ext. Only in [7] (which is written in German) there is a
more elementary proof of the subcanonical case.

The goal of this paper is hence double. On one hand, we want to provide a
reference for the general Hartshorne-Serre correspondence. On the other hand, in
order to present some new material, we will give a quite elementary proof of the main
result, namely patching together local representations of the sections of the vector
bundle we are looking for (hence imitating the standard proof for codimension one).
This is in fact the method used in [7], without much details, in the subcanonical case.
(I thank the lovely kindness of Sof́ıa Cobo, who translated for me that paper, so that
I learned that my first draft [2] contained essentially the proof of [7].) Anyway, the
general case still requires some new tricky ideas that we develop in this paper. We also
hope that our approach could be extended to other contexts different from algebraic
geometry, and maybe give also some idea about how to extend this kind of results to
higher codimension.

In a first section, we will recall the main result (Theorem 1.1), and for the sake
of completeness we will also recall its standard algebraic proof. This will be the only
part in which a good background of algebraic geometry (at the level of [9]) will be
required. For the rest of the paper, we hope that it will be readable for a wide range of
mathematicians. (It will not be important at all to know what a scheme is!!!) In the
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second section, we will present the minimal background needed to follow the paper.
The proof of Theorem 1.1 will be divided in the next three sections. In section 3,

we will study the main properties that we will require to an open covering of our
general ambient variety. In section 4, we will discuss how to construct the r − 1
sections of the vector bundle we are looking for. We will eventually finish the proof
of Theorem 1.1 in section 5, in which we will see how the cohomological conditions
on L∗ imply the existence and uniqueness of the vector bundle. Finally, we include a
last section for some remarks on possible generalizations of the result.

Although I usually do not like to do it, I had to sacrifice the “pedagogical” pre-
sentation of the material by the sake of the rigor. In other words, I decided to avoid
sentences like “we could have refined our covering so that. . .” or “changing our def-
inition of. . . we can assume. . .” As a result, several definitions and notations that
a priori seem artificial can only be understood a posteriori. For example, the strange
sign in Lemma 3.1 is explained after Lemma 4.1 (see Remark 4.2), and the apparently
complicated way of writing the matrices in section 4 makes sense only in section 5.

1. Statement and the standard approach

Let X be a smooth algebraic variety over an algebraically closed field k. Let Y be a
codimension two subscheme ofX. We will denote by J the ideal sheaf of Y inX. If we
assume that Y is a local complete intersection, then the conormal sheaf N∗ := J ⊗OY
is locally free, so that we will regard its dual N as a vector bundle. Assume that Y
is the dependency locus of r − 1 sections α1, . . . , αr−1 of a rank r vector bundle E
over X with

∧r
E = L. This produces an exact sequence

0 → (r − 1)OX
(α1,...,αr−1)−−−−−−−−→ E → J ⊗ L→ 0. (1)

Its restriction to Y produces a long exact sequence

0 →
2∧
N∗ ⊗ L|Y → (r − 1)OY

(α1|Y ,...,αr−1|Y )
−−−−−−−−−−−→ E|Y → N∗ ⊗ L|Y → 0 (2)

in which we find out that the kernel of the middle map is
∧2

N∗⊗L|Y by just looking
at the first Chern classes in the sequence. Dualizing the first map in (2) we obtain
in particular that the line bundle

∧2
N ⊗ L∗|Y is generated by r − 1 global sections

s1, . . . , sr−1 that also satisfy

s1α1|Y + · · ·+ sr−1αr−1|Y = 0.

Hartshorne-Serre correspondence consists of reversing this process. More precisely:

Theorem 1.1. Let X be a smooth algebraic variety and let Y be a local complete
intersection subscheme of codimension two in X. Let N be the normal bundle of Y
in X and let L be a line bundle on X such that H2(X,L∗) = 0. Assume that

425
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∧2
N⊗L∗|Y has r−1 generating global sections s1, . . . , sr−1. Then there exists a rank

r vector bundle E over X such that:

(i)
∧r

E = L;

(ii) E has r− 1 global sections α1, . . . , αr−1 whose dependency locus is Y and such
that s1α1|Y + · · ·+ sr−1αr−1|Y = 0.

Moreover, if H1(X,L∗) = 0, conditions (i) and (ii) determine E up to isomorphism.

The main idea for the standard algebraic proof is to obtain E as an extension
like (1), i.e., as a suitable element in Ext1(J ⊗ L, (r − 1)OX). For this, one first
considers the spectral sequence

Ep,q2 := Hp(Extq(J ⊗ L, (r − 1)OX)) ⇒ En := Extn(L⊗ J , (r − 1)OX))

(see [1, Proposition IV(2.4)]). Then the exact sequence

0 → E1,0
2 → E1 → E0,1

2 → E2,0
2

(see for instance [12, Theorem 11.43]), becomes, under natural identifications:

0 → H1(X, (r − 1)L∗) → Ext1(J ⊗ L, (r − 1)OX))
ϕ−→

ϕ−→ Hom
(
(r − 1)OX ,

2∧
N ⊗ L∗|Y

)
ψ−→ H2(X, (r − 1)L∗). (3)

Under the hypothesis H2(X,L∗) = 0, the map ϕ is surjective, and hence the element
η ∈ Hom((r − 1)OX ,

∧2
N ⊗ L∗|Y ) corresponding to the choice of s1, . . . , sr−1 will

produce an extension as in (1) (which will be unique if H1(X,L∗) = 0). Hence it is
enough to check that E is a locally free sheaf. The proof given in [14] is not clear to us,
so that we outline here another (standard) one. We need to show that Ext i(E,OX) =
0 for all i > 0, and this can be done by applying the functor Hom( ,OX) to the
exact sequence (1) we just constructed. The only difficulty is to show the vanishing
of Ext1(E,OX), but this follows from the fact that in the exact sequence

Hom((r − 1)OX ,OX) → Ext1(J ⊗ L,OX) → Ext1(E,OX) → 0

the first morphism is canonically identified with the surjection η : (r − 1)OX →∧2
N ⊗ L∗|Y induced by s1, . . . , sr−1.

2. General background and notations

We fix X and Y as in Theorem 1.1. If U is an affine subset of X, the set OX(U)
of regular functions on U is the coordinate ring of U (considered as an affine subset
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in some affine space). Observe that then the Hilbert Nullstellensatz implies that, for
any set of regular functions f, g ∈ OX(U), it holds:

{p ∈ U | f(p) = g(p) = 0} = ∅
⇒ there exist u, v ∈ OX(U) such that uf + vg = 1. (4)

(The same is true for an arbitrary number of functions, but we will not use it.)
The fact that Y is a local complete intersection subscheme of X of codimension

two implies (the reader who is not familiar with the theory of schemes can take this
as a definition) that any point of Y has an affine open neighborhood U ⊂ X such that
J (U), the ideal of Y ∩U inside U , is generated by two regular functions f, g ∈ OX(U)
“without common components,” i.e., for any regular functions u, v ∈ OX(U) it holds:

uf = vg ⇒ there exists w ∈ OX(U) such that u = wg, v = wf. (5)

Instead of regarding vector bundles as locally free sheaves (as we did in the previous
section), we will consider their geometric interpretation. Hence, for a vector bundle
E of rank r over an algebraic variety X we will take an (affine) open covering X =⋃
i∈I Ui such that E|Ui

∼= Ui× kr (i.e., E trivializes on Ui). For any i, j ∈ I, elements
in E|Ui∩Uj

can be regarded as elements in both Uj×kr and Ui×kr, and the pass from
one to another is given by the multiplication by an r×r transition matrix Zij of regular
functions on Ui ∩ Uj (when r = 1, we just speak of the transition functions of the
line bundle). Hence a vector bundle can be characterized by a collection of matrices
{Zij}i,j∈I subject to the compatibility condition Zik = ZijZjk (and Zii = Ir, the
identity matrix).

If U is an affine set of X, then Y ∩ U is also affine, and hence OY (Y ∩ U) =
OX(U)/(f, g). We will always use a bar to indicate the classes of elements (vector
bundles, functions, matrices. . .) modulo Y (or any Y ∩ U).

3. Affine coverings of X

We start taking a covering of Y by affine sets Y ∩ Ui (with i varying in a set I) such
that:

(i) Ui is an affine set of X.

(ii) The vector bundle L trivializes on Ui and has transition functions hij .

(iii) J (Ui) is generated by the vanishing of two regular functions fi, gi on Ui.

In the intersection of two of those open sets, Ui, Uj we have now two different sets
of generators for the ideal J (Ui ∩ Uj), and hence it is possible to find a matrix Aij
(not necessarily unique) satisfying:(

fi
gi

)
= Aij

(
fj
gj

)
=
(
aij bij
cij dij

)(
fj
gj

)
(6)
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where aij , bij , cij , dij are regular functions on Ui ∩Uj and detAij does not have zeros
on Ui ∩ Uj . Observe that it could happen that Y ∩ Ui ∩ Uj = ∅. In this case, by (4),
we can find ui, vi, uj , vj such that uifi+ vigi = 1 = ujfj + vjgj , and thus we can take
Aij =

(
fi −vi
gi ui

)( uj vj

−gj fj

)
.

Observe also that the vector bundle N trivializes on Y ∩Ui and has as transition
matrices the restriction Āij of Aij to Y ∩ Ui ∩ Uj .

Let s1, . . . , sr−1 be the global sections generating
∧2

N ⊗L∗. For t = 1, . . . , r− 1,
the section st can be represented locally at each Y ∩Ui by a regular function s̄it such
that there are relations

s̄it =
det Āij
h̄ij

s̄jt (7)

Since s̄i1, . . . , s̄i,r−1 do not vanish simultaneously on Y ∩ Ui, we can refine the
covering and assume that there is ti ∈ {1, . . . , r−1} such that s̄iti does not have zeros
in Y ∩Ui. Replacing Ui with its intersection with {siti 6= 0}, we can assume that siti
does not have zeros in Ui, i.e., it is a unit in OX(Ui).

Lemma 3.1. With the above notations, it is possible to choose regular functions fi,
gi such that siti = (−1)ti . In particular, det Āij = (−1)ti h̄ij

s̄jti
.

Proof. We choose as a new set of generators of each J (Ui) the functions f ′i = fi

siti

and g′i = (−1)tigi. We obtain a new relation like (6) with a new matrix A′
ij :(

f ′i
g′i

)
= A′

ij

(
f ′j
g′j

)
=

(
sjtj

siti
aij

(−1)−tj

siti
bij

(−1)ticijsjtj (−1)ti−tjdij

)(
f ′j
g′j

)
from which we get, by (7),

(−1)ti
s̄it
s̄iti

= (−1)tj
det Ā′

ij

h̄ij

s̄jt
s̄jtj

.

This shows that, with this new choice of f ′i , g
′
i, the sections s1, . . . , sr−1 can be rep-

resented in Y ∩ Ui by the classes of (−1)ti si1
siti

, . . . , (−1)ti si,r−1
siti

. This implies that we
can assume siti = (−1)ti . With this choice, the last statement is just (7) applied
to t = ti.

We extend now the affine covering to a covering of the whole X. For this, we
have to cover X \ Y by new affine open sets Ui. For such a new open set we take
fi = 1, gi = 0. Observe that, even if Y ∩ Ui = ∅, property (5) still holds in a trivial
way.

We also have matrices Aij as in (6) for any choice of open sets Ui, Uj . Specifically:

• If Y ∩ Ui 6= ∅ 6= Y ∩ Uj , we do as in (6).
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• If Y ∩ Ui = ∅ = Y ∩ Uj , we take Aij to be the identity matrix.

• If Y ∩ Ui 6= ∅ = Y ∩ Uj , we take Aij =
( uj vj

−gj fj

)
, with uj , vj such that ujfj +

vjfj = 1.

• If Y ∩ Ui = ∅ 6= Y ∩ Uj , we take Aij =
(
fi −vi
gi ui

)
, with ui, vi such that uifi +

vifi = 1.

Lemma 3.2. With the above choices and notations, it is possible to choose the ma-
trices Aij such that detAij = (−1)ti hij

sjti
.

Proof. By Lemma 3.1, on each Ui ∩ Uj the regular functions detAij and (−1)ti hij

sjti

coincide modulo the ideal (fi, gi) (this is trivial if Y ∩ Ui = ∅). We can thus write

(−1)ti
hij
sjti

= detAij+ϕijfi+ψijgi = detAij+(ϕijaij+ψijcij)fj+(ϕijbij+ψijdij)gj

for some regular functions ϕij , ψij on Ui ∩ Uj . Therefore we can replace (6) with(
fi
gi

)
=
(
aij + ψijgj bij − ψijfj
cij − ϕijgj dij + ϕijfj

)(
fj
gj

)
and the new transition matrix A′

ij =
( aij+ψijgj bij−ψijfj

cij−ϕijgj dij+ϕijfj

)
satisfies the wanted prop-

erty detA′
ij = (−1)ti hij

sjti
.

4. Constructing the sections

We start by fixing a notation that we will use in the rest of the paper.

Notation. Given the identity matrix (whose order will be clear any time from the
context), we will denote by ∆t the submatrix obtained by removing its t-th row.
Hence, for any matrix M , the matrix ∆tM will be the submatrix of M obtained by
removing its t-th row. Similarly, if ∆′

t is the transpose of ∆t, then M∆′
t will be the

submatrix of M obtained by removing its t-th column.

Before constructing the vector bundle E and its r − 1 sections α1, . . . , αr−1, let
us assume that they exist and see the form they can take. Assume, without loss of
generality, that E trivializes on each Ui. Since s1α1|Y + · · ·+ sr−1αr−1|Y = 0 and sti
is represented by (−1)ti on Y ∩ Ui, this means that, on the points of Y , αti depends
on α1, . . . , α̂ti , . . . , αr−1. (We use the standard notation of a hat to indicate that a
term is removed.) Since the rank of α1, . . . , αr−1 is r − 2 on Y and r − 1 outside Y ,
it follows that α1, . . . , α̂ti , . . . , αr−1 are linearly independent on Ui. Extending them
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to a basis of E|Ui
, it is then possible to represent α1, . . . , αr−1 on Ui, in terms of this

basis, as the columns of an r × (r − 2) matrix Mi = ∆tiTi, where

Ti =



1 0 . . . αi1 . . . 0
0 1 . . . αi2 . . . 0
...

. . .
...

...
0 0 . . . αiti . . . 0
...

...
. . .

...
0 0 . . . αi,r−1 . . . 1
0 0 . . . αir . . . 0
0 0 . . . αi,r+1 . . . 0


Since Y ∩Ui must the determinantal variety defined by the maximal minors of Mi, it
follows that αir, αi,r+1 generate J (Ui). Hence, changing the last two rows of Ti by a
suitable linear combination of them, we can assume αir = fi, αi,r+1 = gi.

On the other hand, the equation s1α1|Y + · · · + sr−1αr−1|Y = 0 implies that the
entries of

Mi

 si1
...

si,r−1


are a linear combination of fi, gi. Hence, after adding to each of the first r − 2 rows
of Mi a linear combination of the last two, we can take

Ti =
(
T ′
i

T ′′
i

)
with

T ′
i =



1 0 . . . −(−1)tisi1 . . . 0
0 1 . . . −(−1)tisi2 . . . 0
...

. . .
...

...
0 0 . . . 1 . . . 0
...

...
. . .

...
0 0 . . . −(−1)tisi,r−1 . . . 1


(8)

and

T ′′
i =

(
0 0 . . . fi . . . 0
0 0 . . . gi . . . 0

)
. (9)

We will thus define

Mi =
(

∆tiT
′
i

T ′′
i

)
(10)
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with T ′
i and T ′′

i as in (8) and (9). We have the following easy equalities, which we
will use frequently:

∆tiT
′
i∆

′
ti = Ir−2, (11)

T ′′
i ∆′

ti =
(

0 . . . 0
0 . . . 0

)
, (12)

∆tiT
′
i

 si1
...

si,r−1

 =

0
...
0

 , (13)

T ′′
i

 si1
...

si,r−1

 = (−1)ti
(
fi
gi

)
. (14)

Since we want the columns of Mi to represent the sections α1, . . . , αr−1 of a vector
bundle E, we need to find the transition matrices relating Mi to Mj . The next result
provides a first condition to find them.

Lemma 4.1. For a covering and choices as in Lemma 3.2, if for each i ∈ I we take
Mi as in (10), then an r×r matrix Zij =

( Pij Qij

Rij Sij

)
satisfies the equality Mi = ZijMj

if and only if the following equalities hold:

(i) Pij = ∆tiT
′
i∆

′
tj

(ii) Rij = T ′′
i ∆′

tj

(iii) Qij

(
fj
gj

)
= (−1)tj ∆tiT

′
i

 sj1
...

sj,r−1


(iv) Sij

(
fj
gj

)
= (−1)tjsjti

(
fi
gi

)
, i.e., Sij = (−1)tjsjtiAij, with Aij as in (6).

Moreover, such a matrix always exists and, when taking Aij as in Lemma 3.2, it
follows detSij = (−1)tisjtihij and detZij = hij.

Proof. We have to find the solutions of{
∆tiT

′
i = Pij∆tjT

′
j +QijT

′′
j

T ′′
i = Rij∆tjT

′
j + SijT

′′
j .

(15)

Multiplying by ∆′
tj to the right the two equations in (15) (i.e., removing the tj-th

columns of all the terms), we get from (11) and (12) the equalities (i) and (ii). It
remains to characterize when (15) holds for the tj-th column of each term. To see
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this, since sjtj = (−1)tj , it is equivalent to consider the product of the two equalities
of (15) with  sj1

...
sj,r−1

 ,

which together with (13) and (14) yield exactly the equalities (iii) and (iv).
The entries of

∆tiT
′
i

 sj1
...

sj,r−1

 (16)

are sjt − (−1)tisitsjti , with t = 1, . . . , t̂i, . . . , r − 1. Recalling from Lemma 3.2 that
detAij = (−1)ti hij

sjti
, equality (7) reads s̄jt − (−1)ti s̄its̄jti = 0̄. Hence the entries

of (16) are in the ideal (fj , gj) defining Y ∩ Ui ∩ Uj , and the same holds clearly for
the entries of sjti

(
fi
gi

)
. Therefore, equalities (iii) and (iv) have solutions Qij , Sij , and

thus there exists some Zij such that Mi = ZijMj .
For the last equality in the statement, we deduce from the equations (15) multi-

plied to the right by ∆′
ti , and using (11) and (12), the equality(

Pij Qij
Rij Sij

)(
∆tjT

′
j∆

′
ti 0

T ′′
j ∆′

ti I2

)
=
(
Ir−2 Qij

0 Sij

)
.

Hence, observing that det(∆tjT
′
j∆

′
ti) = (−1)tisjti , we obtain (−1)tisjti detZij =

detSij . Since Sij = (−1)tisjtiAij and detAij = (−1)tj hij

sjti
after Lemma 3.2, we thus

have detSij = (−1)tisjtihij and therefore detZij = hij .

Remark 4.2. It is only now that one can understand the reason of introducing the sign
(−1)ti in Lemma 3.1. Observe first that it was not a misprint to write det(∆tjT

′
j∆

′
ti) =

(−1)tisjti at the end of the proof of Lemma 4.1, in the sense that it is indeed (−1)ti
instead of (−1)tj (which is the sign appearing in the entries of the matrix T ′

j). If
we had not included that sign in Lemma 3.1, we would have obtained now detZij =
(−1)ti+tjhij in Lemma 4.1. This would not have been a disaster, since the functions
(−1)ti+tjhij are also transition functions of L. Anyway, we thought it was more
elegant and clearer not to work simultaneously with two different sets of transition
functions of the same line bundle.

Lemma 4.3. For a matrix Zij as in Lemma 4.1, the following equalities hold:

(i) (gi,−fi)Sij = (−1)ti+tjhij(gj ,−fj).

(ii) Rij =
(
fi
gi

)
(δij1 . . . δ̂ijtj . . . δij,r−1), with δijt = 0, for all t 6= ti and δijti = 1; in

particular, (gi,−fi)Rij = (0 . . . 0).
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(iii) (0 . . . 0 gi,−fi)Zij = (−1)ti+tjhij(0 . . . 0 gj ,−fj).

(iv) (0 . . . , 0 gi,−fi)(ZijZjk − Zik) = (0 . . . 0).

Proof. The equality Sij
(
fj
gj

)
= (−1)tjsjti

(
fi
gi

)
of Lemma 4.1 is equivalent, multiplying

to the left by AdjSij and using detSij = (−1)tisjtihij , to
(
fj
gj

)
= (−1)ti+tj

hij
AdjSij

(
fi
gi

)
,

which is in turn equivalent to (i). Part (ii) is obvious, since Rij = T ′′
i ∆′

tj . Part (iii)
follows from (i) and (ii). Finally, part (iv) is a consequence of (iii), having in mind,
by Lemma 4.1, that the hij are the transition functions of the line bundle L and
therefore hijhjk = hik.

Corollary 4.4. If the matrices {Zij}i,j,∈I are chosen as in Lemma 4.1, then for any
i, j, k ∈ I there exist regular functions βijk1, . . . , βijk,r−1 on Ui ∩ Uj ∩ Uk such that
Zik − ZijZjk = (0 Bijk), with

Bijk =
(
Qik − PijQjk −QijSjk
Sik −RijQjk − SijSjk

)
=



βijk1
...

β̂ijkti
...

βijk,r−1

βijktifi
βijktigi


(gk,−fk).

Proof. Write Zik − ZijZjk = (B′
ijk B

′′
ijk). The equality (Zik − ZijZjk)Mk = 0 is

equivalent to B′
ijk∆tkT

′
k +B′′

ijkT
′′
k = 0, so it follows, multiplying this equality to the

right by ∆′
tk

and applying (11) and (12), that B′
ijk = 0. Hence B′′

ijkT
′′
k = 0, i.e., by

the definition (9) of T ′′
k , B′′

ijk

( fk

fgk

)
= 0. It follows from (5) that there exist regular

functions βijk1, . . . , β̂ijkti , . . . , βijk,r+1 such that

Bijk =



βijk1
...

β̂ijkti
...

βijk,r+1

 (gk,−fk).

On the other hand, applying now Lemma 4.3 (iv), we get (gi, −fi)
( βijkr

βijk,r+1

)
= 0,

from which the lemma follows by applying (5) again.

Remark 4.5. Zij to be the transition matrices of a vector bundle E, we need to find a
good choice of Qij , Sij such that βijk1, . . . , βijk,r−1 are all zero. Observe that another

433
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choice of Q′
ij and S′ij satisfies conditions (iii) and (iv) of Lemma 4.1 if and only if we

have respectively

(Q′
ij −Qij)

(
fj
gj

)
=

0
...
0


and

(S′ij − Sij)
(
fj
gj

)
=
(

0
0

)
.

Moreover, using Lemma 4.3 (i), we would also have (gi, −fi)(S′ij−Sij) = (0 0). Hence
the same reasoning as in the proof of Corollary 4.4 shows that the above conditions
are equivalent to the existence of regular functions xij1, . . . , xij,r−1 such that

Q′
ij = Qij +



xij1
...

x̂ijti
...

xij,r−1

 (gj , −fj)

and S′ij = Sij + xijti
(
fi
gi

)
(gj , −fj). The goal of the next section will be to see that

there is essentially one way of choosing the functions xij1, . . . , xij,r−1 on each Ui∩Uj .
We will then see how the a priori strange choice of subindices makes perfectly sense.

5. Constructing the vector bundle

We finally find under which conditions the matrices Zij are transition matrices of a
vector bundle. We start with a technical lemma that will be very useful in the sequel:

Lemma 5.1. With the definitions of the previous section, for any vector

u =

 u1

...
ur−1

 ,

we have

T ′
j
−1
u = ∆′

tj



u1

...
ûtj
...

ur−1

+ (−1)tjutj

 sj1
...

sj,r−1

 .

Hence, if we define u′ = T ′
iT

′
j
−1
u, then:
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(i) ∆tiu
′ = Pij



u1

...
ûtj
...

ur−1

+ (−1)tjutj ∆tiT
′
i

 sj1
...

sj,r−1

.

(ii) The ti-th row of u′ is

(δij1 . . . δ̂ijtj . . . δij,r−1)



u1

...
ûtj
...

ur−1

+ (−1)tjsjtiutj .

Proof. For the first equality, observe first that we can write

u = ∆′
tj



u1

...
ûtj
...

ur−1

+ utj



0
...
1
...
0

 .

(The first summand is nothing but u with the tj-th row replaced with 0.) Then the
wanted equality follows because

T ′
j
−1 =



1 0 . . . (−1)tjsj1 . . . 0
0 1 . . . (−1)tjsj2 . . . 0
...

. . .
...

...
0 0 . . . 1 . . . 0
...

...
. . .

...
0 0 . . . (−1)tjsj,r−1 . . . 1


and then T ′

j
−1∆′

tj = ∆′
tj (observe also that (−1)tjsjtj = 1) .

Now (i) and (ii) are easy consequences of the first equality: for (i) it is enough to
recall from Lemma 4.1 that Pij = ∆tiT

′
i∆

′
tj , while for (ii) it suffices to observe that

the ti-th row of ∆′
tj is (δij1 . . . δ̂ijtj . . . δij,r−1).
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Proposition 5.2. For a choice of matrices Zij as in Lemma 4.1, let Z ′
ij =

(
Pij Q′

ij

Rij S′ij

)
with

Q′
ij = Qij +



xij1
...

x̂ijti
...

xij,r−1

 (gj , −fj)

and S′ij = Sij + xijti
(
fi
gi

)
(gj , −fj). Then Z ′

ik − Z ′
ijZ

′
jk = 0 if and only if

(−1)tkT ′
i
−1

 βijk1
...

βijk,r−1

 = (−1)tkT ′
j
−1

 xjk1
...

xjk,r−1

−

− (−1)tkT ′
i
−1

 xik1
...

xik,r−1

+ (−1)tjhjkT ′
i
−1

 xij1
...

xij,r−1

 . (17)

Proof. Multiplying to the left by (−1)tkT ′
i , equation (17) in the statement is equivalent

to βijk1
...

βijk,r−1

− T ′
iT

′
j
−1

 xjk1
...

xjk,r−1

+

 xik1
...

xik,r−1

− (−1)tj+tkhjk

 xij1
...

xij,r−1

 =

0
...
0

 .

Looking separately to the ti-th row and the others, the above equality is equivalent,
by Lemma 5.1, to the vanishing of

Λijk :=



βijk1
...

β̂ijkti
...

βijk,r−1

− Pij



xjk1
...

x̂jktj
...

xjk,r−1

−

− (−1)tjxjktj ∆tiT
′
i

 sj1
...

sj,r−1

+



xik1
...

x̂ikti
...

xik,r−1

− (−1)tj+tkhjk



xij1
...

x̂ijti
...

xij,r−1


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and

λijk := βijkti − (δij1 . . . δ̂ijtj . . . δij,r−1)



xjk1
...

x̂jktj
...

xjk,r−1

−

− (−1)tjsjtixjktj + xikti − (−1)tj+tkhjkxijti .

On the other hand, the condition Z ′
ik−Z ′

ijZ
′
jk = 0 is equivalent, by Corollary 4.4,

to the vanishing of Q′
ik−PijQ′

jk−Q′
ijS

′
jk and S′ik−RijQ′

jk−S′ijS′jk. A straightforward
calculation (using Lemmas 4.1 and 4.3 and Corollary 4.4) shows that

Q′
ik − PijQ

′
jk −Q′

ijS
′
jk = Λijk(gk,−fk)

and

S′ik −RijQ
′
jk − S′ijS

′
jk = λijk

(
fi
gi

)
(gk, −fk)

so that the lemma follows at once.

Remark 5.3. Equality (17) means that the (r − 1)-uples

(−1)tkT ′
i
−1

 βijk1
...

βijk,r−1


represent a 2-coboundary in the Čech cohomology of (r − 1)L∗ with respect to the
covering {Ui}i∈I (multiplication by hjk in the last summand is needed in order to
have all the (r− 1)-uples defined in the trivialization of (r− 1)L∗ in Uk). Recall (see
[9, III-Theorem 4.5]) that the cohomology of coherent sheaves (and in particular of
vector bundles) is isomorphic to the Čech cohomology of any affine cover. Hence the
matrices Z ′

ij will be the transition matrices of a vector bundle as soon as we see that
the (r − 1)-uples

(−1)tkT ′
i
−1

 βijk1
...

βijk,r−1


represent a 2-cocycle, since we are assuming H2(X, (r − 1)L∗) = 0. This is what we
are going to do next.
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Proposition 5.4. The set of (r − 1)-uples

(−1)tkT ′
i
−1

 βijk1
...

βijk,r−1


defines a 2-cocycle of the vector bundle (r − 1)L∗.

Proof. We need to show that for each i, j, k, l ∈ I, it follows

(−1)tlT ′
j
−1

 βjkl1
...

βjkl,r−1

− (−1)tlT ′
i
−1

 βikl1
...

βikl,r−1

+

+ (−1)tlT ′
i
−1

 βijl1
...

βijl,r−1

− (−1)tkhklT ′
i
−1

 βijk1
...

βijk,r−1

 =

0
...
0

 .

As in the proof of Proposition 5.2, multiplying to the left by (−1)tlT ′
i and applying

Lemma 5.1, the above equality is equivalent to the vanishing of

∆ijkl := Pij



βjkl1
...

β̂jkltj
...

βjkl,r−1

+ (−1)tjβjkltj ∆tiT
′
i

 sj1
...

sj,r−1

−

−



βikl1
...

β̂iklti
...

βikl,r−1

+



βijl1
...

β̂ijkti
...

βijl,r−1

− (−1)tk+tlhkl



βijk1
...

β̂ijkti
...

βijk,r−1


and

λijkl := (δij1 . . . δ̂ijtj . . . δij,r−1)



βjkl1
...

β̂jkltj
...

βjkl,r−1

+

+ (−1)tjβjkltjsjti − βiklti + βijlti − (−1)tk+tlhklβijkti .
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To prove those equalities, we use the equality

Zij(Zjl − ZjkZkl)− (Zil − ZikZkl) + (Zil − ZijZjl)− (Zik − ZijZjk)Zkl = 0.

Using Corollary 4.4 to split the above equality in two blocks –the one of the first
r − 2 rows and the one of the last 2 rows– and applying then Lemma 4.1, we get
that the equality is equivalent to the vanishing of the matrices Λijkl(gl,−fl) and
λijkl

(
fi
gi

)
(gl,−fl) which proves the proposition.

Remark 5.5. Although I did not check it, it is natural to expect that the map ψ in (3)
assigns to the morphism defined by s1, . . . , sr−1 the cocycle of Proposition 5.4.

We finally prove the uniqueness statement.

Proposition 5.6. Assume E is a vector bundle on X satisfying conditions (i) and (ii)
in Theorem 1.1. If H1(X,L∗) = 0, then any other vector bundle E′ satisfying the
same conditions is isomorphic to E.

Proof. Assume that the transition matrices of E and E′ are (see Lemma 4.1) respec-
tively

Zij =
(
Pij Qij
Rij Sij

)
and

Z ′
ij =

(
Pij Q′

ij

Rij S′ij

)
with (see Remark 4.5)

Q′
ij = Qij +



xij1
...

x̂ijti
...

xij,r−1

 (gj , −fj) (18)

and

S′ij = Sij + xijti

(
fi
gi

)
(gj , −fj). (19)

By Proposition 5.2, we have

(−1)tkT ′
j
−1

 xjk1
...

xjk,r−1

− (−1)tkT ′
i
−1

 xik1
...

xik,r−1

+(−1)tjhjkT ′
i
−1

 xij1
...

xij,r−1

 =

0
...
0

 ,
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i.e., the (r − 1)-uples

(−1)tjT ′
i
−1

 xij1
...

xij,r−1


define a 1-cocycle in (r − 1)L∗. Since H1(X,L∗) = 0, this cocycle is the coboundary
of a 0-chain defined by (r − 1)-uples that we write in the form

(−1)tiT ′
i
−1

 yi1
...

xi,r−1

 .

This means

(−1)tjT ′
i
−1

 xij1
...

xij,r−1

 = (−1)tjT ′
j
−1

 yj1
...

yj,r−1

− (−1)tihijT ′
i
−1

 yi1
...

yi,r−1

 .

Multiplying as usual the above relation to the left by (−1)tjT ′
i and applying Lemma 5.1

we get that this equality is equivalent to the vanishing of

Λij :=



xij1
...

x̂ijti
...

xij,r−1

−Pij


yj1
...

ŷjtj
...

yj,r−1

−(−1)tjyjtj ∆tiT
′
i

 sj1
...

sj,r−1

+(−1)ti+tjhij



yi1
...
ŷiti
...

yi,r−1


and

λij := xijti − (δij1 . . . δ̂ijtj . . . δij,r−1)



yj1
...

ŷjtj
...

yj,r−1

− (−1)tjsjtiyjtj + (−1)ti+tjhijyiti .

We consider the matrix

Ni =
(
Ir−2 N ′

i

0 I2 +N ′′
i

)
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where

N ′
i =



yi1
...
ŷiti
...

yi,r−1

 (gi, −fi) (20)

and

N ′′
i = yiti

(
fi
gi

)
(gi, −fi). (21)

We define, for each i ∈ I, the automorphism of the trivial vector bundle Ui × kr con-
sisting of the multiplication by Ni (observe that detNi = 1). The result will be proved
if we can patch all these automorphism in order to get an isomorphism between E
and E′. For this, we need to check the equality ZijNj = NiZ

′
ij . Splitting this equality

in four blocks, it becomes equivalent to two tautologies (using Lemma 4.3 (ii)) and
the two equalities:

PijN
′
j +Qij +QijN

′′
j = Q′

ij +N ′
iS

′
ij

and
RijN

′
j + Sij + SijN

′′
j = S′ij +N ′′

i S
′
ij

Using (18), (19), (20), (21), and Lemmas 4.1 and 4.3, these two equalities become
respectively equivalent to the vanishing of Λij(gj , −fj) and λij

(
fi
gi

)
(gj , −fj), which

completes the proof.

Remark 5.7. It is not by chance that Ni takes the aspect obtained in the previous
proof. It can be easily proved that this is the aspect that should take any matrix
satisfying NiMi = Mi and detNi = 1. In other words, Ni preserves the local expres-
sion of the sections α1, . . . , αr−1 and the determinant of the transition matrix. This
means that the isomorphism that we found preserves also the sections α1, . . . , αr−1.

6. Final remarks

The natural question when trying to generalize Hartshorne-Serre construction to
higher codimension is:

Question 6.1. Given a local complete intersection subscheme Y of codimension s
of a smooth variety X, when is it possible to describe Y as the dependency locus of
r − s + 1 sections of a rank r vector bundle E over X? When is it possible to take
r = s?
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If one tries to imitate the technique explained in section 1, one can regard Y as
the degeneracy locus of a map V ⊗OX → E, where V is a vector space of dimension
r−s+1. The Eagon-Northcott complex associated to this map produces a long exact
sequence, analog to (1),

0 → Ss−1V ⊗OX → Ss−2V ⊗ E → · · · →
s−1∧

E → J ⊗ L→ 0 (22)

where L =
∧r

E. Dualizing (22), using the isomorphism Exts−1(J ,OX) ∼=
∧s

N we
get an epimorphism

Ss−1V ∗ ⊗OX →
s∧
N ⊗ L∗. (23)

When trying to obtain (23) from (22), as in section 1 we get that the surjection
provides an element of Exts−1(J ⊗ L, Ss−1V ⊗ OX). An element there represents
the class of a long exact sequence of length s − 1 starting and finishing as (22), but
if s > 2 the equivalence classes of these extensions are difficult to deal with, and it
does not look easy to decide when there is some equivalence class corresponding to
an Eagon-Northcott complex like (22).

Unfortunately, our construction does not seem to give a hint to answer Question 6.1
when s > 2 neither. Even when r = s (i.e., when we want Y to be the zero locus
of a section of a vector bundle of rank s), our construction seems to suggest that
everything could works as soon as

∧2
N is extendable to X, but this is a very strong

condition. (For example, if s = 3 this is essentially equivalent to say that N itself is
extendable, which is precisely what we want to prove.)

Observe also that, in the codimension two case, Hartshorne-Serre correspondence
is saying (except for the cohomological condition on L) that a local complete intersec-
tion subscheme is the zero locus of a section of as rank two vector bundle if and only
if the Chern classes of the normal bundle N extend to the ambient variety. (The ex-
tendability of the second Chern class always holds by the self-intersection formula.)
However, in higher codimension, although this condition is clearly necessary (since
N itself has to extend to the ambient variety) is not at all sufficient. (For instance,
most of the elliptic curves in P4 will provide a counterexample.) Hence some extra
condition is needed (see [4] for a discussion of codimension-three subvarieties in P3

and P4).
I finally want to mention that we expect that our construction could be generalized

to other context different from algebraic varieties over an algebraically closed field.
For instance, property (4) still holds in the context of real varieties (algebraic or not):
it is enough to take u = f

f2+g2+1 and v = g
f2+g2+1 (I thank Marco Castrillón for

suggesting me this idea); hence the whole construction seems to work in this new
context.
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