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Abstract

In this memoir we introduce the necessary notions of category theory to develop sheaf theory.
Representability of functors, limits and adjunctions are covered in detail. After this, sheaf
theory is presented together with its basic constructions. The study of sheaves with algebraic
structures appears in section 4 and is applied in the theory of vector bundles. Section 5 is
centered in the study of applications of sheaf theory, namely ringed spaces and local systems.
We finish with two appendices showing some category theoretical properties of presheaf and
sheaf categories and a functorial approach to algebraic geometry.
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1 Introduction

This project arose as a consequence of my long-standing interest in category theory. Two years
ago, I discovered category theory through the Handbooks of Categorical Algebra of Francis
Borceux [2] and that point of view of mathematics automatically captivated me. Although I was
not mature enough mathematically (I did not know what a sheaf was) I came across the notion
of a topos, a categorified geometrical space. I felt very curious about this so I decided that one
of my mathematical goals would be to understand what a topos is and the first step was sheaf
theory.
In this memoir I first expose the basic results related to categories and functors. A special

emphasis is given to the concept of representability and functor categories. These categories of
functors are part of the natural process of categorification of mathematical theories. One of the
revolutionary ideas of Alexander Grothendieck, is to replace a given topological space with its
category of sheaves. On the other hand, representability lies at the heart of many constructions
in category theory, for example, universal properties. Some attention is paid to cartesian closed
categories and their internal logic since sheaf categories (of sets) are always cartesian closed.
Section 3 is devoted to the study of the basic results of sheaf theory and the change of base

adjunction. After this preliminary work, sheaves with algebraic structures are introduced in the
next section with special emphasis given to sheaves of OX -Modules. In section 4, I introduce
the notion of a vector bundle and show that this concept is essentially equivalent to the idea of
locally free sheaves. Finally the notion of Picard Group of a topological space is introduced as
the group of locally free sheaves of rank 1, [6].
The last section shows some applications of the sheaf theoretic language. Locally ringed

spaces are introduced in full generality together with the notions of models for these spaces.
Since the extension of this work is limited I could not include any results in abelian categories
or categories of complexes, however the study of local systems shown in section 4 has many
interesting homological applications. Nevertheless, in this project the study of local systems is
purely topological. We show that the monodromy of the local systems of a given topological
space encodes the representations of the fundamental group.

Appendix I is devoted to categorical study of sheaf categories and presheaf categories. In this
part of the memoir we prove completeness and cocompleteness of presheaf/sheaf categories. One
central result is the fact that every presheaf is the colimit of representable presheaves which leads
to a proof of cartesian closedness of presheaf categories. The last topic covered in this section are
subobject classifiers which are of key importance in topos theory since they effectively handle
the notion of subobjects in category theoretic terms. Appendix II shows a functorial approach to
the theory of schemes and some conceptual results about locally ringed spaces. The key result of
this section is to show that the functorial foundations of algebraic geometry are equivalent to
geometric foundations via locally ringed spaces.
It is obvious that I could not say that all the proofs are mine, however I cannot refer to

a specific source for finding them. I have been reading some of the titles of the bibliography
(for example [2],[4]) for two years now and the proofs in this memoir shows my view of the
ones presented there. The book of Tennison [6] can be thought as a complementary lecture to
Sheaves in Geometry and Logic [4]. Due to my lack of knowledge of local systems I followed the
development proposed by Achar in his notes [1] about perverse sheaves. However, I decided to
give those notes a more topological flavour using the tools of covering spaces found in [5]. The
last appendix is mostly inspired in [3].
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2 An introduction to Category Theory

2.1 Generalities

We avoid all set theoretical issues assuming the existence of universes as in [2]. We will try to
avoid this kind of discussion unless it is strictly necessary.

Definition 2.1.1. A category C is the following data:

• a class |C|, whose elements will be called “objects of the category”;
• for every pair A,B of objects a set Hom C(A,B) = C(A,B), whose elements will be called

“morphisms” or “arrows” from A to B;
• for every triple A,B,C of objects, a composition law

Hom C(A,B)×Hom C(B,C) Hom C(A,C)

the composite of the pair (f, g) will be written g ◦ f ;
• for every object A, a morphism 1A ∈ Hom C(A,A), called the identity on A.

These data are subject to the following axioms:

• Associativity axiom: given morphisms f ∈ Hom C(A,B), g ∈ Hom C(B,C), and
h ∈ Hom C(C,D) the following equality holds:

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

• Identity axiom: given morphisms f ∈ Hom C(A,B), g ∈ Hom C(B,C) the following
equalities hold:

1B ◦ f = f, g ◦ 1B = g.

A B

C D

f

h g

k

Diagram 2.1

Most of our information will be summarized in commutativity conditions. An important
example is Diagram 2.1, we say that this diagram commutes if and only if f ◦ g = h ◦ k.

Definition 2.1.2. A (covariant) functor F from a category A to a category B consists of the
following:

• a mapping
|A| |B|

between the classes of objects of A and B; the image of A ∈ |A| is written F (A) or FA;
• for every pair of objects A,A′ of A a mapping

HomA(A,A′) HomB(FA,FA′)

the image of f ∈ HomA(A,A′) is written F (f) or Ff .

2



These data are subject to the following axioms:

• for every pair of morphisms f ∈ HomA(A,A′), g ∈ HomA(A′, A′′)

F (g ◦ f) = F (g) ◦ F (f);

• for every object A ∈ |A|
F (1A) = 1FA.

Remark 2.1.3. Pointwise composition of functors produces a new functor, however it is important
to have in mind that if we feel tempted to define the category of categories and functors size
problems appear. It is not true in general that HomCat(−,−) is a set.

Definition 2.1.4. A category C is called a small category if its class of objects constitutes a set.

Remark 2.1.5. Small categories and functors between them constitute a category.

Example 2.1.6. Some inmediate examples are:

• Set: The category of sets and mappings.
• Top: The category of topological spaces and continuous mappings.
• Gr: The category of groups and group homomorphisms.
• Rng: The category of rings with unit and ring homomorphisms.
• R-Mod: The category of R-Modules and module homomorphisms.
• Ab: The category of abelian groups and group homomorphisms.

Example 2.1.7 (Poset categories). A poset (X,6) can be viewed as a category X whose
objects are the elements of X; HomX(x, y) is given by a singleton if x 6 y and is empty otherwise.
The composition law is given by the transitivity axiom and the existence of the identities is the
reflexivity axiom.

Given a topological space X, we can construct a poset category, O(X). The objects are given
by the open sets and the partial order is given by inclusion.

Example 2.1.8 (Monoid categories). A monoid (M, · ) can be viewed as a category M with
a single object ∗ and M = HomM(∗, ∗) as a set of morphisms; the composition law is just the
multiplication of the monoid. A special case of this construction is the structure of a group.

Example 2.1.9 (Functor categories). Given two categories A,B if the functor category
(from A to B) of functors and natural transformations between them is well defined we will
denote it as Fun(A,B) = [A,B] = BA.

Example 2.1.10 (Slice categories). Given a category C and an object C ∈ |C| we can
form the slice category C/C whose objects are arrows with codomain C. Given two objects
f : A C, g : B C an arrow between them is a morphism h : A B of C with the
property g ◦ h = f .

Definition 2.1.11 (Product category). Let C,D be two categories. We can form the product
category C× D with pairs (C,D) as objects such that C ∈ |C|, D ∈ |D| and pairs of arrows as
morphisms in each category. The composition is made componentwise and the identity of (C,D)
equals (1C ,1D).

We provide some examples of functors.
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Example 2.1.12. Given a category C and a fixed object C ∈ |C|, we define the Hom functor
as:

Hom C(C,−) : C Set

from C to the category of sets by first putting

Hom C(C,−)(A) = Hom C(C,A)

Now if f : A B is a morphism of C, the corresponding mapping

Hom C(C, f) : Hom C(C,A) Hom C(C,B)

is defined by the formula
Hom C(C, f)(g) = f ◦ g.

Example 2.1.13. Following the monoid construction we can see that given a functor:

F : M Top

We get a topological space F (∗) together with a set of continuous maps parametrized by a group,
that is, a group action.

Definition 2.1.14 (Dual category). Given a category we set Cop as the dual category of C.
Its objects are the same of C but all arrows are reversed.

Definition 2.1.15. A contravariant functor is a functor:

F : Cop D

That is a functor that reverses the direction of arrows.

Definition 2.1.16. The functors F : Cop Set are called presheaves. Whenever the category
of presheaves is well defined we shall denote it Psh( C). In the case C = O(X) we will denote the
presheaf category as Psh(X).

Example 2.1.17 (Spectrum of a ring). There is a functor sending commutative rings with
unit to topological spaces:

Spec: Rngop Top
A SpecA

Spec(A) = {p ⊂ A | p is a prime ideal of A}.

We endow this set with Zariski’s topology declaring closed the sets:

V (I) = {p ∈ Spec(A) | I ⊆ p, I ideal of A}.

Clearly V (0) = SpecA, V (1) = ∅ and
⋂
V (Ii) = V (

∑
i
Ii). The action of Spec on a morphism

f : A B is given by:
Spec f : SpecB SpecA

p f−1(p)
.

The map is well defined, to finish we need to show that it is continuous. Let V (I) ⊂ SpecA we
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have:
Spec(f)−1(V (I)) = {p ∈ SpecB | f−1(p) ∈ V (I)} = V (f(I)e)

f(I)e is the ideal generated by f(I).

Example 2.1.18. For every C ∈ |C| we can define:

Hom C(−, C) : Cop Set
A Hom C(A,C)

.

F (A) G(A)

F (B) G(B)

ηA

F (f) G(f)

ηB

Diagram 2.2

Definition 2.1.19. Given two functors, F,G : C D a natural transformation denoted
F

η
G is the following data:

• For every object A ∈ |C| a map ηA : F (A) G(A).
• For every map f ∈ Hom C(A,B) a commutative square as in Diagram 2.2.

Definition 2.1.20. Two functors are naturally isomorphic if there exists a natural transformation
F

η
G with all its components isomorphisms. We say that F is naturally isomorphic to G.

2.1.1 Arrows and functors: Properties.

Definition 2.1.21. An arrow f : A B is called an isomorphism if ∃g : B A such that
g ◦ f = 1A, f ◦ g = 1B.

Definition 2.1.22. A monomorphism in a category C is an arrow f : A B satisfying:

f ◦ u = f ◦ v =⇒ u = v.

Definition 2.1.23. An epimorphism in a category C is an arrow f : A B satisfying:

u ◦ f = v ◦ f =⇒ u = v.

Example 2.1.24. In Set, monomorphisms and epimorphisms are injections and surjections
respectively. We have an analogous situation in Gr.

Example 2.1.25. Let’s consider the category whose objects are the pairs (X,x) where X is
a connected topological space and x ∈ X is a base point; in this category, a morphism is a
continuous mapping preserving the base points. It is a basic result from algebraic topology that
the circular helix (H, p) is a covering space of (S1, q), given f, g : (X,x) (H, p) such that
π ◦ f = π ◦ g we can regard π ◦ f as continuous map from (X,x) to (S1, q) admitting a lifting
f . The uniqueness property of the lifting [5] implies that π is a monomorphism but is far from
being an injective map!
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Example 2.1.26. In Rng, epimorphisms are not necessarily surjective ring homomorphisms.
Consider for example:

i : Z Q

and two arrows f, g : Q A that agree on the integers. It is clear that i is not surjective. Since
f, g agree on the integers and inverses are unique it follows that f = g.

Proposition 2.1.27. If f : A B is an isomorphism then f is a monomorphism and an
epimorphism.

Proof. Let g denote the inverse of f . Then given f ◦ u = f ◦ v composing with g we get u = v.
The rest of the proof is obvious.

Definition 2.1.28. Consider a functor F : A B and for every pair of objects A,A′ ∈ |A|
the mapping

HomA(A,A′) HomB(FA,FA′)
f Ff.

• The functor F is faithful when the abovementioned mappings are injective for every pair of
objects.

• The functor F is full when the abovementioned mappings are surjective for every pair of
objects.

Definition 2.1.29. A subcategory B of a category A consists of:

• a subclass |B| ⊂ |A| of the class of objects,
• for every pair of objects A,A′ ∈ |A| a subset HomB(A,A′) ⊂ HomA(A,A′) which is closed

under compositions and contains the identity in the case A = A′.

Remark 2.1.30. The definition of a subcategory gives rise to an inclusion functor i : B A

which is faithful. A subcategory is called a full subcategory when the inclusion functor is also full.

Definition 2.1.31. A functor F : A B is an equivalence of categories when there exists a
functor G : B A such that G ◦ F ∼= 1A and F ◦G ∼= 1B

Theorem 2.1.32 (Characterization of equivalences). A functor F : A B is an equiv-
alence of categories when:

• F is full and faithful.
• For every object B ∈ |B| there is some object A ∈ |A| such that FA ∼= B. This condition

recieves the name of being essentially surjective on objects.

Proof. We need to construct the “inverse” of this functor. For every object B ∈ |B| we choose an
object GB in A and an isomorphism ηB between F (GB) ∼= B. Let B f

C, Gf is defined to
be the only map in HomA(GB,GC) such that F (Gf) = η−1

C ◦ f ◦ ηB. This can be done since F
is full and faithful. It follows from the definition that G is a functor and η is the desired natural
isomorphism.

2.1.2 Representable Functors and Yoneda Lemma.

Definition 2.1.33. A functor F : Cop Set, is called representable if F is naturally isomor-
phic to Hom C(−, A) for some object A of C.
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Proposition 2.1.34. Given an arbitrary category C there exists a embedding functor into the
presheaf category, called the Yoneda embedding.

Y : C Set Cop

A Hom C(−, A).

This embedding induces an equivalence of categories between C and the subcategory of repre-
sentable functors.

Proof. If we are given some map f : A B in C, we can associate to it the natural transfor-
mation Hom C(−, f) defined objectwise as:

Hom C(C, f) : Hom C(C,A) Hom C(C,B)
g f ◦ g.

We find that Y is clearly a functor. The rest of the proof follows from Proposition 2.1.35.

Hom(C,A) F (C)

Hom(B,A) F (B)

θC

−◦f F (f)

θB

Diagram 2.3.1

Hom(A,A) F (A)

Hom(B,A) F (B)

ηA

−◦g F (g)

ηB

Diagram 2.3.2

Proposition 2.1.35 (Yoneda Lemma). Given an arbitrary category C and a presheaf F : Cop

Set there is a cannonical isomorphism,

Hom[ Cop,Set]
(
Hom C(−, A), F

)
∼= F (A),

natural in A.

Proof. Given a natural transformation Hom C(−, A) η
F and its component ηA we can define:

τ : Hom[ Cop,Set]
(
Hom C(−, A), F

)
F (A)

η ηA(1A)

The construction of the inverse θ is slighty more delicate. We need to be able to produce a
natural transformation from an element of a set. Choosing some α ∈ F (A) we proceed to define
the family of maps:

θB,α : HomSet(B,A) F (B)
g F (g)(α)

Given f : B C we need to show commutativity of Diagram 2.3.1. For every h ∈ Hom C(C,A),
F (f) ◦ θC,α(h) = F (f) ◦ F (h)(α) = F (h ◦ f)(α) = θB,α ◦ (− ◦ f)(h).

We claim that θ, τ are mutual inverses. Indeed starting with α ∈ F (A)

τ ◦ θ = θA,α(1A) = F (1A)(α) = α.

Let α = ηA(1A), and θα the corresponding natural transformation. We want to see that θα = η
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to prove this we pick some g ∈ Hom C(B,A) and form Diagram 2.3.2. Then:

θα(g) = F (g)(α) = F (g)(ηA(1A)) = F (g) ◦ ηA(1A) = ηB ◦ (− ◦ g)(1A) = ηB(g).

We saw previously that Y is a functor, so it makes sense to consider a new functor:

N : Cop Set

A Hom[ Cop,Set]
(

Hom C(−, A), F
)

For f : A B we set:

N(f) : Hom[ Cop,Set]
(

Hom C(−, B), F
)

Hom[ Cop,Set]
(

Hom C(−, A), F
)

η η ◦Hom C(−, f)

Finally we are claiming that there exists a natural transformation (in fact a natural isomorphism):

γ : N F

Let η ∈ Hom[ Cop,Set]
(

Hom C(−, B), F
)
and τ(η). We can see that:

F (f) ◦ τ(η) = F (f)(ηB(1B)) = ηA ◦ (− ◦ f)(1B) = ηA(f)

And composing in the other side of the commutative square yields:

τ ◦N(f)(η) = τ(η ◦Hom C(−, f)) = (η ◦Hom C(−, f))A(1A) = ηA ◦ (f ◦ −)(1A) = ηA(f)

Remark 2.1.36. If the domain category C is small then the presheaf category is locally small
and we can prove that there exists a bijection natural in F . The reader is referred to [2].

Corollary 2.1.37. As we pointed out before, Y induces an equivalence of categories. It fol-
lows from the observation that Hom C(A,B) ∼= Hom[ Cop,Set](Y (A), Y (B)). Clearly given f, g ∈
Hom C(A,B) it’s easy to check that θf = HomC(f,A) and the same for g so they cannot be mapped
to the same natural transformation. Moreover, every natural transformation η : Y (A) Y (B)
can be mapped to ηA(1A) ∈ Hom C(A,B) so our functor is faithful and full. Finally since every
representable functor is isomorphic to some Y (A) for some A ∈ |C| it follows that Y is essentially
surjective on representable functors.

2.2 Limits and Colimits

Definition 2.2.1. Consider a small category I and an object C ∈ C. The constant functor ∆C

sends every object I ∈ |I| to C and every morphism to 1C .

Remark 2.2.2. ∆ defines a functor C CI by setting ∆C = ∆C .

Definition 2.2.3. Let I be a small category and F : I C, a cone on F is a natural
transformation ∆C F . I is called the index category.

Remark 2.2.4. For every cone we can consider its dual called a cocone. A cocone is a natural
transformation F ∆C where F : I C.

Definition 2.2.5. A pair (limFI, θ) with limF ∈ |C|,∆limFI
θ

F is called a limit if
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for every natural transformation ∆C
η

F there exists a unique natural transformation
∆C

ξ ∆limF satisfying θ ◦ ξ = η. This last property is called the universal property of the
limit. The components of θ will be denoted pI .

Remark 2.2.6. Is clear from the universal property that the limit of F is unique up to isomor-
phism.

Remark 2.2.7. Dualizing this argument we get the notion of colimit

Remark 2.2.8. Since I is a small category, [I, C] is a category. So it makes sense to consider
the functor,

Hom[I,C](∆, F ) : Cop Set

In this light, the existence of a limit is equivalent to the existence of a representing object for the
functor.

Proposition 2.2.9. The functor F : I C has a limit if and only if Hom[I,C](∆, F ) ∼=
Hom C(−, C).

Proof. (⇒ ) This is clear since Hom[I,C](∆, F ) ∼= Hom[I,C](∆,∆C) ∼= Hom C(−, C).

(⇐ ) Let α denote the natural isomorphism. Given 1C ∈ Hom C(C,C) we can map it to a natural
transformation α(1C) = θ ∈ Hom[I,C](∆C , F ). Now given η ∈ Hom[I,C](∆D, F ) it corresponds
to an element f ∈ Hom C(D,C). We claim that η = θ ◦∆(f) but using naturality we can see
that α(θ ◦∆(f)) = f finishing the proof.

Definition 2.2.10. A category C is called complete (respect cocomplete) when every functor

F : I C

with I a small category, has a limit.
A category C is called finitely complete (respect cocomplete) when every functor

F : I C

with I a finite category, has a limit.

Example 2.2.11 (Limits in Set). Given F : I Set the description of the limit is given by

lim I ∈ |I|FI = {(xI)I∈I | xI ∈ FI; ∀f : I I ′ FfxI = xI′}

2.2.1 Important limits and colimits.

• •

Diagram 2.4.1

• •

Diagram 2.4.2

•

• •
Diagram 2.4.3

Consider an index category I, diagrams like Diagram 2.4.1 show some of the most common
limits in category theory. Limits over these diagrams are called product, equalizer and pullback
with their respective duals coproduct, coequalizer and pushout. Since this abstract definition
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may not sound very familiar to the reader we will show some examples of those limits in
several categories. Limits have the advantage of defining in a element free way many common
constructions in mathematics up to isomorphism.

Example 2.2.12 (Products). Products in category theory are adequate generalizations of the
cartesian product. We list some incarnations of this concept

• The product in Set is the cartesian product together with projection maps
• The product in Gr is the product of groups together with projection homomorphisms
• The product in Top is the product of topological spaces endowed with product topology

and projection maps

Example 2.2.13 (Coproducts). Coproducts in category theory are adequate generalizations
of the disjoint union of sets, we list some incarnations of this concept

• The coproduct in Set is the disjoint union of sets together with inclusion maps
• The coproduct in Gr is the free product of groups together with inclusion homomorphisms
• The coproduct in Top is the disjoint union of topological spaces endowed with the disjoint

union topology and injection maps
• The coproduct in Psh(X) is the pointwise coproduct together with the induced natural

transformations

Example 2.2.14 (Equalizers). We will illustrate the behaviour of equalizers through their
description in Set. Given two maps f, g : A B the equalizer of this diagram is given by the
set C = {a ∈ A | f(a) = g(a)} together with the inclusion of map, i. The pair (C, i) is clearly a
limit. Another useful application of this concept arises in the category Ab. Consider an equalizer
diagram given by f, 0: A B, where 0 is the map sending every element to 0. Imitating the
construction in Set we can form the group Ker f = {a ∈ A | f(a) = 0} together with the inclusion
homomorphism.

Example 2.2.15 (Coequalizers). First we will give the description of coequalizers in Set. Let
f, g : A B, let “∼” be the smallest equivalence relation such that f(a) ∼ g(a), ∀a ∈ A.
Then the pair (B/ ∼, π), with π the projection is the desired coequalizer. Indeed, given another
pair (D,h) satisfying commutativity conditions we can see that h only depends on the class
of equivalence of each b ∈ B so factors uniquely through B/ ∼. Algebraic analogues are quite
simple. For example given the diagram f, g : A B in Ab the coequalizer is just Coker(f − g).

Example 2.2.16 (Pullbacks in Set). In the category Set of sets and mappings, given a pair
of maps (f, g) in a pullback diagram their pullback is given by

{(a, b) | a ∈ A, b ∈ B, f(a) = g(b)}

The maps of this cone are the usual projections.

Example 2.2.17 (Pushouts in Gr). Since coproducts exists in Gr, given a pushout diagram
ϕ1 : H G1, ϕ2 : H G2 we can construct the colimit in the following way. Take the
coproduct of G1, G2, with cannonical injections i1, i2. In this group we consider the equivalence
relation given by g1 ∼ g2 if ∃h ∈ H such that i1 ◦ ϕ1(h) = g1 and i2 ◦ ϕ2(h) = g2 and take the
quotient by the subgroup generated by this equivalence relation. The result is the pushout of the
diagram Diagram 2.4.3.
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Proposition 2.2.18. An arrow f : A B is a monomorphism if and only if the pullback
with itself is given by (A,1A).

Proof. Obvious.

Example 2.2.19 (Initial and terminal objects). The limit over the empty diagram in a
category C is called the initial object, the dual notion is the terminal object. Terminal and initial
objects in Set are given by the singleton {∗} and the empty set ∅.

2.2.2 Interchange of limits

lim
D∈|D|

F (C,D) lim
D∈|D|

F (C ′, D) lim
D∈|D|

F (C ′′, D)

F (C,D) F (C ′, D) F (C ′′, D)

L(c1) L(c2)

Diagram 2.5.1

Consider a functor F : C× D A with C,D small. For every C ∈ |C| there is a functor

F (C,−) : D A, D F (C,D)

whose action on a morphism D
d

D′ is given by F (1C , f). Similarly given an arrow C
c

C ′

we can define a natural transformation F (C,−) η
F (C ′,−) with components F (c,1D). Now

suppose that lim
D∈|D|

F (C,D), lim
D∈|D|

F (C ′, D) exist. We are going to show that these limits form a

C-indexed diagram in A. To see this consider the following family of maps

q′D : lim
D∈|D|

F (C,D) pD F (C,D) ηD F (C ′, D).

We will check that we have just defined a cone on lim
D∈|D|

F (C ′, D)

F (1C′ , d) ◦ q′D = F (1C , d) ◦ F (c,1D) ◦ pD = F (c, d) ◦ pD = F (c,1D′) ◦ F (1C , d) ◦ pD = q′D′ .

By basic property of limits we get a unique factorization map lim
D∈|D|

F (C,D) lim
D∈|D|

F (C ′, D).

We will show that the following correspondence defines a functor

L : C A

C lim
D∈|D|

F (C,D).

Remark 2.2.20. If for every C ∈ |C| the limit lim
D∈|D|

F (C,D) exists then L is a functor. This

can be easily shown by commutativity of Diagram 2.5.1.

Definition 2.2.21 (Interchange property). The limit of L is denoted by lim
C∈|C|

( lim
D∈|D|

F (C,D)).

We can define similarly L′ using the functor F (−, D). Then the interchange property is phrased:

lim
C∈|C|

( lim
D∈|D|

F (C,D)) ∼= lim
D∈|D|

( lim
C∈|C|

F (C,D))

meaning that the cannonical morphisms λ, µ, connecting these limits are in fact isomorphisms.
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We will only construct λ, since the construction of µ is analogous. Consider the following map

lim
C∈|C|

LC
pC lim

D∈|D|
F (C,D) pD F (C,D)

and let C C ′. Then clearly F (c,1D) ◦ pD ◦ pC = p′D ◦ limD∈|D| F (c,1D) ◦ pC = p′D ◦ p′C
where p′D denotes the projection of the functor F (C ′,−). This means that we have a cone on the
functor F (−, C) with the consequent factorization

lim
C∈|C|

LC
λD lim

C∈|C|
F (C,D)

satisfying pC ◦ λD = pD ◦ pC with pC the corresponding projection of lim
C∈|C|

F (C,D). We are

going to show that {λD}D∈|D| constitutes a cone for lim
D∈|D|

( lim
C∈|C|

F (C,D)). Denote p′C for the

projection of lim
C∈|C|

F (C,D′). Given D d
D′

p′C ◦ lim
C∈|C|

(1C , d) ◦ λD = F (1C , d) ◦ pC ◦ λD = F (1C , d) ◦ pD ◦ pC = p′C ◦ λD′ .

This implies that F (1C , d) ◦ λD = λD′ by the uniqueness of the factorization. This implies the
existence of λ and by a similar argument the existence of µ. The interchange property says these
two arrows are inverses to each other. If A is complete then the fact that pD ◦pC ◦µ◦λ = pD ◦pC
implies µ ◦ λ = 1 so the interchange property holds.

2.2.3 Filtered colimits

Let F : C × D A as in the previous section. Assuming when necessary the existence of
limits and colimits in A let

lim
D∈|D|

F (C,D) pD F (C,D) sC colim
C∈|C|

F (C,D).

Following the arguments of the previous section is easy to see that these maps define a cocone
inducing

λD : colim
C∈|C|

( lim
D∈|D|

F (C,D)) colim
C∈|C|

F (C,D).

Finally the family {λD}D∈|D| is a family of morphisms that constitutes a cone obtaining the
analogous λ to the one presented in subsubsection 2.2.2.

Definition 2.2.22. A category C is filtered when

• C is not empty.
• ∀C1, C2 ∈ C ∃C3 ∈ C ∃f : C1 C3 ∃g : C2 C3.
• ∀C1, C2 ∈ C ∀f, g : C1 C2 ∃C3 ∈ C ∃h : C2 C3, h ◦ f = h ◦ g.

Example 2.2.23. Let O(X), the neighbourhoods of a given point x ∈ X form a filtered category.

The aim of this section is to show that filtered colimits commute with finite limits, to do this
we are going to assume the existence of a cocone for every functor from a filtered category to Set.
This is proved in Lemma 2.13.2 of [2].

Theorem 2.2.24. Given a small filtered category C, and a functor F : C Set, then the
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limit of F exists and is given by

L =
⊔
FC/ ∼ sC : FC L, x [x].

where ∼ denotes the equivalence relation defined as follows:

(x ∈ FC) ∼ (x′ ∈ FC ′) ⇐⇒ ∃C ′′ ∈ |C|, ∃f : C C ′′ ∃g : C ′ C ′′ Ff(x) = Fg(x′).

Proof. First let us observe that ∼ is clearly reflexive and symmetric. To prove transitivity let
(x ∈ FC) ∼ (x′ ∈ FC ′), (x′ ∈ FC ′) ∼ (x′′ ∈ FC ′′). Let f1, g1, f2, g2 such that

FC
Ff1

FC1, FC
′ Fg1

FC1, FC
′ Ff2

FC1, FC
′′ Fg2

FC2.

Ff1(x) = Fg1(x′) Ff2(x′) = Fg2(x′′).

The axioms of filtered categories implies that we can find some C3 and morphisms f3, g3

FC1
Ff3

FC3, FC2
Fg3

FC3.

Using again the axiom of filtered categories we can find some C3
h

C4 such that h ◦ f3 ◦ g1 =
h ◦ g3 ◦ f2. As a final comprobation we can see that:

Fh ◦ Ff3 ◦ Ff1(x) = F (h ◦ f3 ◦ g1)(x′) = F (h ◦ Fg3 ◦ f2)(x′) = Fh ◦ Fg3 ◦ Fg2(x′′).

It is obvious that L is a cocone. The only thing left to prove is that L is a universal cocone.
Given L′ and compatible morphisms s′C set

α : L L′

[xC ] s′C(x).

We left the comprobation to the reader that α is the desired factorization.

Theorem 2.2.25. Consider a small filtered category C and a finite category D. Given a functor
F : C× D Set the following mixed interchange property holds:

colim
C∈|C|

( lim
D∈|D|

F (C,D)) ∼= lim
D∈|D|

(colim
C∈|C|

F (C,D)).

Proof. In this section we showed how filtered colimits look in Set. Also, remembering our
description of limits in Set in Example 2.2.11 we have the following description of λ:

λ : [(xD)D∈|D|] ([xD])D∈|D|.

We are going to show that λ is bijective. Let (xD)D∈|D| ∈ F (C,D), (yD)D∈|D| ∈ F (C ′, D) and
assume that ([xD])D∈|D| = ([yD])D∈|D| this implies [xD] = [yD] for every index D. This means
that we can find arrows

C
fD CD, C

′ gD CD, such that, F (fD,1D)(xD) = F (gD,1D)(yD).

We have arrived to a diagram in C formed by (C, fD), (C ′, gD) indexed by the finite set |D|,
using the axioms of filtered categories we may form a cocone of this diagram C ′′. In particular

13



we get

C
f

C ′′, C ′
g

C ′′, such that, F (f,1D)(xD) = F (g,1D)(yD) ∀D ∈ |D.|

This precisely means limD ∈ |D|F (f,1)((xD)D∈|D|) = lim
D∈|D|

F (g,1)((xD)D∈|D|), so both elements

represent the same class thus λ is injective.
Let ([xD])D∈|D| and pick representatives (xD) ∈ F (CD, D). Now form a cocone given by

CD
fD C, then each F (fD,1D)(xD) is another family of representatives. Let D d

D′,
then by the properties of limits in Set we know that F (1D, d)(xD) ∼ x′D thus we can identify
F (fD, d)(xD) with F (f ′D,1D)(xD′). It is a consequence of this identification that there exists
maps

gd, hd : C Cd such that F (gd ◦ fD, d)(xD) = F (hd ◦ fD′ ,1D′)(xD′).

Construct a cocone with the diagram given by {gd, hd}, finally arriving to

C
k

C ′ such that F (k ◦ fD, d)(xD) = F (k ◦ fD′ ,1D′)(xD′).

As a final step we only need to set [(F (k ◦ fD,1D))D∈|D|]. This shows surjectivity.

2.3 Adjunctions

F FGF

F

η∗F

F∗ε

Diagram 2.6.1

G GFG

G

G∗η

ε∗G

Diagram 2.6.2

Definition 2.3.1. Consider two functors F : A B and G : B A. G is left adjoint to
F (or F is right adjoint to G) if there exist natural transformations η : 1B F ◦ G and
ε : G ◦ F 1A called unit and counit respectively such that

(F ∗ ε) ◦ (η ∗ F ) = 1F , (ε ∗G) ◦ (G ∗ η) = 1G.

(see Diagram 2.6.1 and Diagram 2.6.2). These are called triangular identities.

Remark 2.3.2. An adjunction can be thought as a weaker version of an equivalence of categories.
The categories involved will have different features but their similarities will play a crucial role
in many constructions.

HomA(GB,A) HomB(B,FA)

HomA(GB,C) HomB(B,FC)

θA,B

a◦− Fa◦−
θC,B

Diagram 2.7.1

B FGB

C FGC

ηB

b FG(b)
ηC

Diagram 2.7.2

Theorem 2.3.3. The following statements are equivalent

1. G is left adjoint to F
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2. For every A ∈ |A|, B ∈ |B| there exists a natural bijection in A and in B

θA,B : HomA(GB,A) ∼= HomB(B,FA).

Proof. (1)⇒ (2) Given f ∈ HomA(GB,A) and g ∈ HomB(B,FA) set

θA,B(f) = Ff ◦ ηB, τA,B(g) = εA ◦Gg.

It is a consequence of ε, η being natural transformations that,

εA ◦GF (f) = f ◦ εGB, ηFA ◦ g = FG(g) ◦ ηB,

also is a consequence of triangular identities that,

εGB ◦G(ηB) = 1GB, F (εA) ◦ ηFA = 1FA.

Then we can verify the following,

τA,B(θA,Bf) = εA ◦GF (f) ◦G(ηB) = f ◦ εGB ◦G(ηB) = f, θA,B ◦ τA,B(g) = g.

To check naturality in A (in B is completely analogous) let A a
C we will check commuta-

tivity of Diagram 2.7.1

Fa ◦ θA,B(f) = Fa ◦ Ff ◦ ηB = F (a ◦ f)ηB.

(2)⇒ (1) Given B ∈ |B| we set ηB = θGB,B(1GB). Let B b
C, and form the square of

Diagram 2.7.2 it is a consequence of the naturality of the bijection that

FG(b) ◦ ηB = θGC,B(Gb) = b ◦ θGC,C(1GC).

We leave the analogous comprobations to the reader.

Corollary 2.3.4. Adjoints are unique up to unique isomorphism

Proof. Let G,H be left adjoints to F , together with their natural Hom-set bijections θ, θ for
every B ∈ |B| set

ηB : GB HB, ηB = θ−1
HB,B ◦ θHB,B(1HB).

Naturality of both bijections implies naturality of η, moreover each ηB has an inverse given by

η−1
B = θ

−1
GB,B ◦ θGB,B(1GB).

It is clear from the construction that the isomorphism is unique.

Theorem 2.3.5. Given a diagram H : I A with a limit L ∈ |A| if F : A B is right
adjoint to G then F (L) is a limit in B.

Proof. Let ∆FL ⇒ F ◦ H be a cone. Suppose another cone ∆B ⇒ F ◦ H, then every map
B F ◦ H(I) corresponds to some map GB H(I) that gives rise to a cone due to
the naturality of the bijection θA,B. Then the universal property of L induces a factorization
map GB L. The image of the factorization map via θ can be shown to be a factorization
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B F (L) using the naturality of the bijection. Finally it is clear that this map is the only
map with this property showing that F (L) is a limit.

Example 2.3.6 (Free and forgetful functors). Let G ∈ |Gr| the forgetful functor U : Gr
Set that maps every group to its underlying set and every homomorphism to the underlying
mapping. This functor has a left adjoint F , the free functor. F maps every set A to the free
group generated by the elements of A. Clearly given A f

B we have

Ff : FA FB

a1 ∗ a2 ∗ · · · ∗ an f(a1) ∗ f(a2) ∗ · · · ∗ f(an).

Construction of the unit is given by the fact that we can map each element a ∈ A to the one
letter word “a”. Similarly it easy to set

εG : FUG G

g1 ∗ g2 ∗ · · · ∗ gn g1 · g2 · · · gn.

2.3.1 Cartesian closed categories

Definition 2.3.7. Let C be a category with finite products and a terminal object denoted by 1.
C is called cartesian closed if for every C ∈ |C| the functor

−×X : C C, Y Y ×X

has a right adjoint denoted Hom C(X,−) = −X called the exponential functor or the internal
Hom.

Remark 2.3.8. Cartesian closed categories have many important applications in logic. The
reason of this is that the internal Hom can efficiently imitate the Hom-set in the internal language
of the category. The most basic example of cartesian closed category is Set.

Proposition 2.3.9. Hom C(1, Y X) can be identified with the set of maps from X to Y .

Proof. First let’s observe that in Set maps from the terminal object to a set can be identified with
the elements of this set. Our problem can be reduced to show that Hom C(X,Y ) ∼= Hom C(1×X,Y ).
Given f ∈ Hom C(1 × X,Y ) take X and let α = t × 1X be the map induced by 1X and the
terminal map then f ◦α ∈ Hom C(X,Y ). Finally given g ∈ Hom C(X,Y ), take g ◦ pX with pX the
projection of 1×X. Then f ◦ (t× 1X) ◦ pX = f ◦ (t× pX) = f ◦ 1 = f the other comprobation
being obvious.

Hom C(Z, Y X) Hom C(Z ×X,Y )

Hom C(Y X , Y X) Hom C(Y X ×X,Y )

θ

−◦f

θ−1

−◦(f×1X)

Diagram 2.8.1

Remark 2.3.10 (Monoidal Categories). The notion of the internal Hom goes beyond carte-
sian closed categories. For example, in the category of R-Modules is clear that we can endow the
Hom-set with the structure of a module through pointwise addition, however this Hom is not
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adjoint to the categorical product but to the tensor product of modules. It is enough to observe
that the terminal object coincides with the initial object in R-Mod so HomR(1, BC) = {∗}. The
general theory can be understood through closed monoidal categories.

Definition 2.3.11 (Evaluation map). Under the cannonical bijections of the adjunction the
image of 1BC ∈ Hom C(BC , BC) is called the evaluation map:

evB,C : BC × C B.

Proposition 2.3.12. The cannonical bijection satisfies:

θ : Hom C(Z, Y X) Hom C(Z ×X,Y )
f evX,Y ◦([f ]× 1X).

Proof. The proof is just a consequence of the naturality of the Diagram 2.8.1. It is useful to
observe that given [f ] ∈ Hom C(1, Y X) coming from f ∈ Hom C(X,Y ) then

(1×X pX X
f

Y ) = (1×X [f ]×1X Y X ×X evX,Y Y ).

Proposition 2.3.13. Consider a map 1 [f ]
Y X and a generalized point 1 x

X then the
composite map

(1 [f ]×x
Y X ×X evX,Y Y ) = (1 fx

Y ).

Proof.

(1 [f ]×x
Y X ×X evX,Y Y ) = (1 1× 1 t×x 1×X [f ]×1X Y X ×X evX,Y Y ) ∼=

∼= (1 1× 1 t×x 1×X pX X
f

Y ) = (1 fx
Y )

Definition 2.3.14 (Internal composition). The map cX,Y,Z ∈ Hom C(ZY × Y X , ZX), called
the internal composition is the image through the cannonical bijection of:

ZY × Y X ×X 1×evX,Y ZY × Y evY,Z Z.

Proposition 2.3.15. Given [f ] ∈ Hom C(1, Y X), [g] ∈ Hom C(1, ZY ) then

(1 [g]×[f ]
ZY × Y X cX,Y,Z ZX) ∼= 1 [g◦f ]

ZX .

Proof. Using the naturality of the cannonical bijection it can be shown that the following maps
coincide:

1×X ([g]×[f ])×1X ZY × Y X ×X cX,Y,Z×1X ZX ×X evX,Z Z

1×X ([g]×[f ])×1X ZY × Y X ×X 1
ZY ×evX,Y ZY × Y evY,Z Z

1×X [g]×f
ZY × Y evY,Z Z = 1×X t×f 1× Y [g]×1Y ZY × Y evY,Z Z

1×X t×f 1× Y g◦pY Z.
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3 Sheaves: The language of geometry

3.1 First Definitions

In this section all maps between topological spaces are continuous otherwise stated.

Definition 3.1.1. Let X be a topological space and SetOop(X) the presheaf category over X.
An object in this category is called a sheaf if for every open U ⊂ X and every open cover {Ui}i∈I
of U the following diagram is an equalizer in Set.

F(U)
∏
i

F(Ui)
∏
i,j

F(Ui ∩ Uj)
t

s

The first map is the map induced by the restriction maps from U to Ui. The other maps are
defined as follow:

For every every pair Ui ∩ Uj 6= ∅ we consider F(Ui) and its restriction map. Clearly it induces
one of the maps in the LHS, the other map is defined doing the same but with F(Uj) and its
restriction.

This definition seems rather abstract and not quite connected with the geometry of X but we
are going to see that from this simple diagram we can obtain a more down to earth defintion of
sheaves.

Remark 3.1.2. If we have a map from the one point set to
∏
i

F(Ui) satisfying commutativity
the unique factorization can be interpreted as:

F(U)
∏
i

F(Ui)
∏
i,j

F(Ui ∩ Uj)

{∗}

Diagram 3.1

Given a family of sections in the open cover {si}I (that’s what we get when we map
one point set ) with the property that for every Ui ∩ Uj 6= ∅, si|Uj

= sj |Ui
(the map

commutes) there exists a unique section s ∈ F(U) (that’s the universal property)
such that s|Ui

= si.

Remark 3.1.3. If we choose U = ∅ we can cover it with {Ui}I and Ui = ∅, I = ∅. After some
thought we can see that this being an equalizer means that F(∅) = {∗}.

Definition 3.1.4. As an alternative and more classical definition we can define a sheaf as a
presheaf satisfying:

Axiom I: Given U ⊂ X open and a open cover {Ui}I of U if we have two sections s, t ∈ F such
that they coincide when restricted to Ui then s = t.

Axiom II: In the conditions of Axiom I if for every Ui we have sections si such that they agree
on intersections then exists a unique section s ∈ F(U) with s|Ui

= si.

18



Definition 3.1.5. A morphism of sheaves is just a natural transformation of presheaves that
gives Sh(X) the structure of a full subcategory of Oop(X).

Example 3.1.6. Fix a field K. For every U ⊂ X we can define a sheaf as follows:

F(U) = {f : U K | f is continuous.}

Example 3.1.7. Let M be a smooth manifold. The so called structure sheaf of M is given by:

OM (U) = {f : U R | f is differentiable.}

Example 3.1.8. A very important example is the so called skyscrapper sheaf. Given x ∈ X and
a set S define:

SkySx (V ) =
{
S x ∈ V
∗ otherwise

The restriction maps are given by the identity if x ∈ U ⊂ V or the terminal map in the other
cases.

Proposition 3.1.9. The skyscrapper sheaf construction gives rise to a functor:

Skyx : Set Sh(X)
S SkySx .

Proof. If we have S1
f

S2 in Set we can define a natural transformation between the
skyscrapper sheaves. If x ∈ U the map is SkyS1

x (U) = S1
f

S2 = SkyS2
x (U) if x /∈ U the map

is the identity between the singletons. Commutativity is due to the presence of lots of terminal
morphisms and identities.

Proposition 3.1.10. For each x ∈ X we can define a functor called stalk at x:

Stalkx : Oop(X) Set
F Fx = colim

x∈U
F.

Proof. Given a natural transformation F G the universal property of colimits gives us an
induced map Fx Gx. Uniqueness of this factorization shows that if the natural transformation
is the identity the induced map is the identity.

3.1.1 Sheaves on a basis

Often we encounter sheaves that are only defined on a basis of our topological space. We would
like to extend these sheaves to the whole space. Fortunately there’s a canonical way to do so.

Definition 3.1.11. Consider a basis B of X and OB(X) O(X) denote the full subcategory
consisting of open sets U ∈ B. A sheaf on a basis B is just a sheaf in this subcategory.

Theorem 3.1.12 (Sheaf extension). A sheaf FB on a basis B can be extended uniquely (up
to isomorphism) to a sheaf F,such that for every U ∈ B, F(U) = FB(U).

Proof. Let B = {Vi}i∈I we define the sheaf on each open subset U as follows

F(U) = lim
Vi⊂U

FB.
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Namely, we take the limit over the diagram of basic opens contained in U . If V ⊂ U , every basic
open contained in V is contained in U so the universal property of the limit induces a unique
factorization F(U) F(V ). Also, following this definition we can see that F(Vi) ∼= FB(Vi)
since FB(Vi) satisfies the universal property. The only things that are left to check are the sheaf
axioms. Consider an open cover of U given by {Uj}j∈J and a family of compatible sections {tj}.
Refining this open cover with the basis we get another open cover Uij , with a new family of
compatible sections tij . Considering the singleton {∗} ∈ |Set|, we can find functions:

fij : {∗} FB(Uij)
∗ tij .

satisfying commutativity conditions. The universal property of the limit induces a map {∗} f

F(U) giving the desired section.

3.2 Understanding sheaves via stalks

Proposition 3.2.1. Let U ⊂ X, for every x ∈ U we have a map:

germx : F(U) Fx

s germx s.

This map induces a monomorphism:

F(U)
∏
x∈U

Fx.

Proof. Given two sections s1, s2 such that their germs coincide in each point of U it’s clear from
the definition of germ that for every point in U there exists a neighbourhood Ux such that
s1|Ux

= s2|Ux
. Proceeding in this fashion we find an open cover {Ux} of U where the sections

coincide by uniqueness of the gluing s1 = s2.

F(U) G(U)

∏
x∈U

Fx
∏
x∈U

Gx

ηi
U

i

Diagram 3.2

Proposition 3.2.2. Let η1, η2 be two natural transformations between a presheaf F and a sheaf
G. If the induced maps in the stalks are the same then both natural transformations coincide.

Proof. For every component of a natural transformation we have the square given by Diagram 3.2,
the column maps are induced by the inclusions of the colimit. We see that since the maps on the
stalks are the same i(η1

U (s)) = i(η2
U (s)) but we showed that i is a monomorphism so η1

U (s) = η2
U (s)

and the natural transformations coincide on each open set.
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Proposition 3.2.3. Let F
η

G be a natural transformation of sheaves then η is a monomor-
phism if and only if the induced maps on stalks are monomorphisms.

Proof. (⇒ ) This is a consequence of Theorem 2.2.25.

(⇐ ) Suppose a diagram of the form:

H G F
ε

θ

It is clear that the product of a family of monomorphisms is still a monomorphism implying
that the induced maps in the stalk εx, θx coincide.∏

x∈U
Hx

∏
x∈U

Gx
∏
x∈U

Fx

The result follows from Proposition 3.2.2.

Proposition 3.2.4. Let F
η

G be a natural transformation of sheaves then η is a epimor-
phism if and only if the induced maps on stalks are epimorphisms.

Proof. (⇒ ) We will see in Corollary 3.4.10 that the Stalkx functor is left adjoint to Skyx so it
preserves colimits.

(⇐ ) Suppose that we have natural transformations such that this diagram commutes:

F G H
η ε

θ

Let’s fix U ⊂ X and x ∈ U , then applying Stalkx to this diagram we see that under our
hypothesis θx = εx. That means that there’s an open set Ui such that θUi = εUi . It’s clear that
we can find an open cover {Ui} of U such that the natural transformations coincide on this the
cover. Now we can see that given s ∈ F(U), θU (s) = εU (s) because they agree when restricted
to the open cover concluding that θ = ε.

3.3 Étalé Space: An equivalence between sheaves and bundles

Definition 3.3.1. A bundle over a topological space X is an object in the category Top/X.

We could argue that this definition is indeed not very restrictive, we are only asking for a
continuous map Y π

X.

Remark 3.3.2. This definition allows us to define some tautological bundles. The empty set is an
example of this behaviour. Usually other conditions are imposed, for example, local trivializations.
We’ll discuss this further in this memoir.

Definition 3.3.3. A bundle is said to be etale if the following conditions holds:
∀p ∈ Y exists a neighbourhood of p ∈ U such that π(U) is open in X and π|U is an

homeomorphism.

Definition 3.3.4. Let Y be a bundle and given U ⊂ X open let ΓY (U) = {s : U Y |
π ◦ s = 1X} the sections of U .

Proposition 3.3.5. Γ: Oop(X) Set is a sheaf called the sheaf of cross sections.
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Proof. Functoriality is clear since we can asociate to every U ⊂ V the corresponding restriction
morphism. Suppose now a family of compatible sections on a open cover {Ui}i∈I of U it’s obvious
that we can define a section in U setting s(x) = si(x) ∀x ∈ Ui. The section is indeed continuous,
given V ⊂ Y open s−1(V ) =

⋃
s−1
i (V ). To finish this proof is enough to see that ∀x ∈ U we have

π ◦ s(x) = π ◦ si(x) = 1X .

Remark 3.3.6. Sections of an étalé bundle are open maps. Indeed, let U ⊂ X and s : U Y .
For every y ∈ s(U) we consider a trivializing open V y. And s−1(V y) = Uy which is open in U .
Clearly π|V y

(
s(Uy)

)
= Uy so s(Uy) must be open.

Proposition 3.3.7. Taking the sheaf of cross sections can be considered as a functor from the
category of bundles to the category of sheaves on X:

Γ: Top/X Sh(X).

Proof. For every object in Top/X we have its corresponding sheaf. It’s a trivial observation
to see that given a map in Top/X between two bundles f : Y W we can find a natural
transformation between both sheaves sending each section s : U Y to f ◦ s : U W . It’s
also an inmediate fact that πW ◦ f ◦ s = πY ◦ s = 1X and this construction is compatible with
the restriction maps of X.

In this section we prove the equivalence between sheaves on a topological space and étalé
bundles. Every presheaf has an associate bundle known as étalé space. Moreover, given a bundle
we can associate its sheaf of cross sections. Following in this fashion given a presheaf we can
construct the best possible sheaf associated with this presheaf in a process called sheafification
which satifies a crucial universal property.

Proposition 3.3.8. There is functor sending presheaves on X to bundles over X:

Λ: SetOop(X) Top/X = Bund(X).

Proof. Let F : Oop(X) Set. Let’s consider for all x ∈ X the stalk Fx. We define ΛF =⊔
x∈X Fx. Note this useful description

ΛF := {germx s | x ∈ X, s ∈ F(U) with U a neighbourhood of x}

Our first observation is that given s ∈ ΛF since s lives in just one Fx we can map it to x.
Therefore, we have a morphism ΛF

π
X. Now we proceed to give ΛF a topology that will

make π a continuous map. Every section of the sheaf determines a function ṡ : U ΛF given
by ṡ(x) = germx s. We declare every subset of the form ṡ(U) = sU open and we topologize ΛF

with this basis. Let sU a basic open of ΛF and v̇ : W ΛF. It’s easy to see that if W ∩U = ∅
then v̇−1(sU ) = ∅. Therefore given W such that W ∩ U 6= ∅ we have:

v̇−1(sU ) = {x ∈ U ∩W | germx v = germx s.}

For every point in the preimage we have as a consequence of the definition of germx that ∃A
open in X such that A ⊂ U ∩W with s|A = v|A. It follows that ṡ are continuous. In a similar
way it’s easy to check that for every open set U in X, π−1(U) = {germx s | s ∈ F(U), x ∈ U}
which obviously can be expressed as an union of basic open sets . Let’s note that π ◦ ṡ = 1X .
It’s been shown that ΛF

π
X is a bundle, now it’s only left to check that this construction
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is functorial. Given two presheaves F, G and η : F G a natural transformation, we know
from previous results that it induces a map between stalks for all x ∈ X denoted ηx. This family
of maps between stalks induces another map η̇ : ΛF ΛG.

We want to show that η̇ is a continuous map between(ΛF, π1) and (ΛG, π2) satisfying π2◦η̇ = π1.
Let germx v ∈ ΛF, since η is the disjoint union of the maps ηx we know that η(germx v) =
ηx(germx v) = germxw. To check continuity let’s take a basic open set wU ⊂ ΛG. Using
η−1
U (w) ⊂ F(U) we consider

⋃
sU with s ∈ η−1

U (w) which equals η−1(wU ).

Remark 3.3.9. The bundle obtained with this procedure is an étalé bundle. It’s enough to
observe that given germx s with s ∈ F(U) we can take sU satisfying local homeomorphism
condition.

Proposition 3.3.10. If F is a sheaf F ∼= ΓΛF

Proof. To prove this isomorphism we need to construct a natural isomorphism, we’ll do this
component wise:

ηU : F(U) ΓΛF(U)
s ṡ.

Given s, t ∈ F(U) such that ṡ = ṫ we have germx s = germx t for every x ∈ U . This means that
we can find a neighbourhood Vx such that s|Vx

= t|Vx
. In this way we can get an open cover {Vx}

such that s, t coincide in the intersections. By Axiom I it follows that s = t. Moreover, ηU is a
monomorphism. We continue the proof in order to show that our natural transformation is an
epimorphism. Since we’re working in Set we will have an isomorphism. Given h ∈ ΓΛF(U) it’s
clear from the definition that for every x ∈ U , h(x) = germx s

x for some section sx defined in
Ux. Considering the open set ṡx(Ux) and its inverse image h−1(ṡx(Ux)) = Vx we get an open set
contained in U satisfying h|Vx

= sx|Vx
. Repeating this process with every x in U ⊂ X we find an

open cover with sections sx ∈ F(Ux) with the following property:

For every Ux ∩ Uy 6= ∅ then h|Ux∩Uy
= ṡx|Ux∩Uy

= ṡy|Ux∩Uy

Since ṡx matchs with ṡy in Ux ∩Uy it means that if we consider sx ∈ F(Ux) and sy ∈ F(Uy) they
have the same germ for every point in the intersection. Recalling the results from previous sections
we see that the existence of monomorphism as in Proposition 3.2.1 implies that sx|Ux∩Uy

=
sy|Ux∩Uy

.
We defined a family of sections in a cover which are compatible in the intersections of the

elements of the cover, so Axiom II tells us that exists some s ∈ F(U) such that v̇ = h. We omit
the proof of the compatibility of ηU with the restrictions since it’s clear.

F ΓΛF

G

θ

η
∃!σ

Diagram 3.3.1

F ΓΛF

G ΓΛ G

θF

η Λη

θG

Diagram 3.3.2

Proposition 3.3.11. The composition of functors given by ΓΛ: SetOop(X) Sh(X) has the
following universal property:
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Given a natural transformation between a presheaf F and a sheaf G there’s a unique
natural transformation making Diagram 3.3.1 commutative

Proof. Using the previous proposition we know that ΓΛ G ∼= G. So we can define Diagram 3.3.2
where θG is an isomorphism allowing us to define σ = θ−1

G ◦Λη satisfying commutativity conditions.
It’s left to check that the morphism is indeed unique.

Claim I: Let F be a presheaf in X and let σ, τ : ΓΛF G where G is a sheaf. If σ ◦θ = τ ◦θ
then σ = τ .

Given h ∈ ΓΛF(U), by the proof of the previous proposition we know that there are some
open sets Ux for every point in U with the property that h|Ux

= ṡx = θ(sx) with sx ∈ F(Ux).
Observing that fact that σ(h) ∈ G(U) verifies that:

σ|Ux
(h) = σ(h|Ux

) = (σ ◦ θ)(sx) = τ |Ux
(h).

Therefore,1 we have found a cover of U such that σ|Ux
(h) = τ |Ux

(h). Since G is a sheaf it
follows that σ(h) = τ(h). Since the choice of h was arbitrary we conclude that both natural
transformations are the same.

To ease our notation we’ll call the sheafification of F as F+.

Example 3.3.12. The constant presheaf with section M , AM is defined in the following way:

AM (U) = M with trivial restriction maps.

It’s clear that the stalks of this presheaf at each point areM . We’ll compute now the sheafification
of M , the so called constant sheaf which plays a central role in geometrical theories, for example
in cohomology. Note that ΛA =

⊔
x∈XM

∼= M ×X. Moreover, each basic open in our topology
looks like sU = {m} × U .
Using a well known argument it’s clear that for every h ∈ A+

M (U) and x ∈ U we can find
x ∈ Vx ⊂ U such that h(Vx) = {m} × Vx. So we can identify this new sheaf with a sheaf of
locally constant functions with values in M . Composing h with a projection we can get the
desired locally constant function and given a locally constant function f we can associate to it
the section f(x) = (m,x).

Remark 3.3.13. There is another useful description of F+.

F+(U) = {germp s with p ∈ U , such that there exists an open neighbourhood V of p

contained in U and t ∈ F(V ) with germp s = germp t for all q ∈ V }

This gives us the interpretation of the sections of the sheafification as the set of compatible
germs.

Corollary 3.3.14. The inclusion Sh(X) SetOop(X) = Psh(X) has a left adjoint given by
Γ ◦ Λ. This gives Sh(X) the structure of a reflective subcategory of SetOop(X)

Proof. We’ll send each morphism between F and G seen as presheaves to the universal morphism
1There is a small abuse of notation since we haven’t specified the components of the natural transformations (for
example σU )
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of Proposition 3.3.11.

f : HomPsh(X)(F, i( G)) HomSh(X)(F+, G), η σ

Injectivity is clear. Furthermore, given ξ ∈ HomSh(X)(F+, G) we have that θ ◦ ξ is mapped to ξ.
Naturality is a consequence of our proposition.

Corollary 3.3.15. The inclusion of presheaves into Sh(X) preserves limits, as an example we
can see that a monomorphism of sheaves in the same as a monomorphism of presheaves.

Theorem 3.3.16. There is an adjunction given by:

Top/X = Bund(X) SetOop(X)Γ

Λ

This adjunction gives rise to an equivalence of categories when restricted to:

Étale(X) Sh(X)
Γ

Λ

Proof. We will omit the proof of the first part of the theorem, the interested reader is refered to
[4]. We showed previousy that F ∼= ΓΛF. What’s left to prove is that given an étalé bundle Y ,
ΛΓY ∼= Y . Note that if Y is not étalé ΛΓY ∼= Y is much bigger than Y .

It’s clear that ΓY has as stalks the germs of sections of Γ. Let’s consider the following map:

εY : ΛΓY Y

germx h h(x)

Of course this map is well defined, if we take another representant germx v of the equivalence
class they should agree in a open set so v(x) = h(x). In order to show that this function is
continuous we consider an open set in W ⊂ Y . Observing that ε−1

Y (W ) = {germx h | x ∈ Ux, h ∈
ΓY (Ux) such that h(x) ∈W} we can argue in the following way:
Given germx h ∈ ε−1

Y (W ) we can find a section h ∈ ΓY (Ux) in some neighbourhood of x ∈ X
such that h(x) ∈ W . We know that h is a continuous section so h−1(W ) ⊂ Ux. Let’s call
h−1(W ) = V x so that ḣ|V x(V x) is an open subset of ΛΓY contained in ε−1

Y (W ). As a final
observation we note that π1 germx h = π2h(x). Let’s construct an inverse to this morphism:

θΛΓY
: Y ΛΓY
y germx s

With s(x) = y.

Claim I: This correspondence is independent of the choice of section.

Assume s1, s2 two sections such that s1(x) = s2(x) = y ∈ Y . We can assume without loss of
generality (WLOG) that s1, s2 ∈ ΓY (π(U)) with U an open neighbourhood of y satisfying the
local homeomorphism condition. We want to find an open subset V ⊂ π(U) such that ∀x ∈ V ,
si(x) ∈ U . In that case since πU is injective πU (s1(x)) = πU (s2(x)) =⇒ s1(x) = s2(x).
Let s−1

i (U) = Vi clearly V1 ∩ V2 = V is an open neighbourhood of x satisfying that ∀z ∈
V si(z) ∈ U . As a final remark note that since s1|V = s2|V we get germx s1 = germx s2.
To prove continuity we take a basic open set ṡ(U) ⊂ ΛΓY (U). Then θ−1

ΛΓY
(sU ) = {y ∈ Y |

∃x ∈ U with s(x) = y}. Let s(x) = y using the previous remark we can construct an open set
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W ⊂ U such that s(W ) ⊂ V with V a trivializing open. That is ∀z ∈ s(W ) ∃x ∈ U such that
s(x) = z, of course, s(W ) is an open set of Y . Naturality follows easily from this construction.
Moreover, it is clear that these two natural transformations are mutual inverses finishing the
proof.

3.4 Change of base: The functors f ∗, f∗

To continue developing the theory and to make it geometrically interesting it’s necesary to have
a notion of change of base space. We prove in this section that for every f : X Y we have
two adjoint functors:

Sh(X) Sh(Y )
f∗

f∗

Definition 3.4.1. Given a map f : X Y it induces a functor f∗ called the direct image
under f .

f∗ : Sh(X) Sh(Y ).

The functor is defined on sheaves : f∗F(V ) = F(f−1(V )). We omit the proof of the fact that
f∗F is indeed a sheaf since it’s obvious. Given a natural transformation F,H between functors
on X it’s clear that f∗ induces a natural transformation f∗F f∗H

Remark 3.4.2. Let V ⊂ Y , y ∈ V and s ∈ f∗F(V ) then the stalk at y is given by:

f∗Fy = colim
y∈U

f∗F = colim
f−1(y)⊂f−1(W )

F

Lemma 3.4.3. Given a pullback diagram in Top:

f∗E E

X Y

π

f

With E étale over Y then f∗E is étale over X.

Proof. We know that pullbacks in Top are of the form E = {(x, e) | π(e) = f(x)} topologizing E
with the product topology. The maps are simple projections. Now, let’s take e ∈ E such that
π(x) = f(x) and consider an open set U ⊂ E mapped homeomorphically to π(U) = V . Clearly
f−1(V ) is a neighbourhood of x so we can consider f−1(V ) × U ⊂ X × E. It’s clear that this
open set when restricted to the pullback it’s an open neighbourhood of (x, e) in f∗E so we get a
local homeomorphism onto f−1(V ).

Corollary 3.4.4. f : X Y induces a functor:

f∗ : Étale(Y ) Étale(X).

Definition 3.4.5. The inverse image of a sheaf F is constructed as:

Sh(Y ) Λ Étale(Y ) f∗ Étale(X) Γ Sh(X)

Proposition 3.4.6. Given continuous maps X f
Y

g
Z then (g ◦ f)∗ ∼= f∗ ◦ g∗.
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(g ◦ f)∗E

f∗(g∗E) g∗E E

X Y Z

γ2

u

γ1

β2

β1

α2

α1

π

f g

Diagram 3.4.1

ix
∗ΛF ΛF

{∗} X
ix

Diagram 3.4.2

Proof. This result is a basic consequence of pullback properties so the proof given will not make
any references to sheaves. We will be using Diagram 3.4.1 throughout the proof.
We consider γ1 and f ◦ γ2. And we can see that π ◦ γ1 = g ◦ f ◦ γ2 so we get the universal

arrow (g ◦ f)∗E u
g∗E with the property that α1 ◦ u = γ1 and α2 ◦ u = f ◦ γ2. Repeating

the same process with u and γ2 we get an universal arrow from (g ◦ f)∗E to f∗(g∗E). Finally
considering α1 ◦ β1 and g ◦ f ◦ β2 we find another universal arrow from f∗(g∗E) to (g ◦ f)∗E. It
is straightfoward to check that we’ve just defined an isomorphism.

Remark 3.4.7. Each section t ∈ f∗F(U) satisfies t(x) = (x, germf(x) t), x ∈ f−1(V ) for some
V ⊂ Y . Given a section s ∈ F(U) we can form a section of the inverse image

ts : f−1(U) Λf∗F
x (x, germx s)

Moreover, since each section is an open map the opens ts(U) cover Λf∗F. With this point of
view it is clear that every function k : Λf∗F X is continuous if and only if each k ◦ ts is
continuous for every s.

Remark 3.4.8. There is another useful description of the inverse image given by the sheafification
of

f∗F : U colim
f(U)⊂V

F.

Theorem 3.4.9. The functor f∗ is left adjoint to f∗

Proof. Invoking Theorem 3.3.16 we can see that HomSh(X)(f∗F, G) ∼= HomÉtale(X)(Λf∗F,Λ G).
We are going to show that there exists a natural bijection in both arguments between:

HomÉtale(X)(Λf
∗F,Λ G) ∼= HomSh(Y )(F,ΓΛf∗ G).

Throughout the proof we will use the identification between a sheaf and the sheaf of sections of
its étalé bundle. Let k ∈ HomÉtale(X)(Λf∗F,Λ G) and construct

F(U) f∗ΓΛ G(U)
s k ◦ ts.

This correspondence defines a natural transformation and it is natural in both variables, F, G.
To find an inverse given η ∈ HomSh(Y )(F,ΓΛf∗ G) set

Λf∗F η Λ G

(p, germf(p) s) ηU (s)(p).
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This map does not depend on the representative of germf(p) s chosen. To see that η is continuous
we will check that each η ◦ ts is continuous. This is clear from the description given below.

η ◦ ts : f−1(V ) Λ G

p ηU (s)(p).

Finally we need to check that both correspondences are inverse to each other. Start with a bundle
map k, and denote its associated natural transformation ηk, we need to show that ηk = k. But
clearly

ηk(p, germf(p) s) = ηk(s)(p) = k ◦ ts(p) = k(p, germf(p) s).

Given η ∈ HomSh(Y )(F,ΓΛf∗ G) denote by ε the natural transformation induced by η then let
s ∈ F(V )

εV (s)(p) = η ◦ ts(p) = η(p, germf(p) s) = ηV (s)(p).

Naturality of bijections is clear from the construction so the proof is finished.

Corollary 3.4.10. The functor Stalkx is left adjoint to Skyx.

Proof. There is a natural equivalence of categories between sheaves on the one point space and
the category Set. If we consider the map:

ix : {∗} X

∗ x.

In this light we can identify the skyscrapper sheaf at x with the direct image ix∗. The only
delicate point is to remember that F(∅) = {∗}.

Also applying the inverse image construction to ix we can form diagram Diagram 3.4.2. It is a
consequence of commutativity that ix∗ΛF ∼= Fx so ix∗F ∼= Stalkx F

Corollary 3.4.11. The stalk of f∗F at x ∈ X is given by ix∗f∗F ∼= (f ◦ ix)∗F ∼= if(x)
∗F ∼=

Ff(x).

4 Sheaves with algebraic structures

4.1 Sheaves of abelian groups.

Definition 4.1.1. Given F in AbOop(X) we say that F is a sheaf of abelian groups if the following
diagram2 is an exact sequence in Ab:

0 F(U)
∏
i

F(Ui)
∏
i,j

F(Ui ∩ Uj)
t−s

The last map is well define since Hom in Ab has the structure of an abelian group. This category
will be denoted as ShAb(X)

Proposition 4.1.2. Filtered colimits exist in Ab, hence we can consider an abelian version of
the Stalkx functor namely:

Stalkx : AbOop(X) Ab
F Fx.

2This definition can be generalized to any abelian category.
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Proof. We start given Fx the structure of an abelian group. Given germx s1 and germx s2 we
define the sum as the germ of s1|U∩V + s2|U∩V which is clearly well defined. Also the 0 element
is defined as the germ of the 0 element. It’s a consequence of the abelian group structure defined
of the stalk that the injection maps are homomorphisms.

Corollary 4.1.3. Consider the étalé space construction. Then π−1(x) = Fx has the structure
of an abelian group, furthermore since for every x ∈ X every section verifies si(x) ∈ Fx we can
define addition pointwise giving ΓΛF the structure of an abelian sheaf.

Remark 4.1.4. All constructions of the previous sections regarding sheafification and change of
base functors still apply to sheaves of abelian groups. In particular all theorems about adjunctions
hold.

Definition 4.1.5. Given F
η

G the kernel presheaf is defined pointwise as:

Kerη(U) = KerηU F(U) ηU G(U).

Following previous remarks the kernel presheaf coincides with the kernel sheaf.

Definition 4.1.6. The presheaf cokernel in general doesn’t coincide with the sheaf cokernel but
since sheafification preserves colimits we can define the presheaf cokernel as:

F
η

G ΓΛCokerη.

4.2 OX-Modules

In this sections all rings are commutative with unity otherwise stated.

Definition 4.2.1. Let OX a sheaf of rings on X. Given F a sheaf of abelian groups we say that
F has the structure of a OX -Module if and only if for every V ⊂ U ⊂ X the following diagram
commutes and the rows define a module structure on F(Ui):

OX(U)×F(U) F(U)

OX(V )×F(V ) F(V )

This definition can be thought as a natural transformation OX ×F F with some extra
axioms.

Definition 4.2.2. A morphism of OX -Modules F
η

G is a sheaf morphism with each
component ηU an OX(U)-Module morphism. We will denote the category of OX -Modules by
OX -Mod.

Proposition 4.2.3. The stalk of F at p has a natural structure of OX,p module.

Proof. If we forget some structure and we regard OX as an abelian group it’s clear that since we
have for every open set a map OX(U)×F(U) F(U) it induces a bilinear map:

OX,p ×Fp Fp
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That means that some of the module axioms are automatically satisfied, in particular:

a(x+ y) = ax+ ay

(a+ b)x = ax+ bx

For the multiplication we just define ap germp s = germp as in some neighbourhood in which we
can take the operation. The rest of the axioms follow easily from this definition.

Definition 4.2.4. Given two sheaves of OX -Modules F, G, we can construct the tensor product
presheaf as follows

F⊗ G : U F(U)⊗OX(U) G(U).

We will drop subscripts when it is clear form the context. Let V ⊂ U and t⊗ s ∈ (F⊗ G)(U)
setting (s⊗OX(U) t)|V = s|V ⊗OX(V ) t|V it is clear that we have just defined a presheaf. Using
sheafification we can define the tensor product of sheaves.

4.2.1 Locally free sheaves and vector bundles

Definition 4.2.5. A sheaf F of OX -Modules is called locally free if for every x ∈ X there exists
some x ∈ U , open such that F|U ∼= OnX |U .

Definition 4.2.6. Every locally free sheaf defines a locally constant function given by:

rank F : X N

x n

n ∈ N is given by the isomorphism F|U ∼= OnX |U .

Remark 4.2.7. If X is connected rank F is a constant function. We will say that F is a sheaf
of rank = n.

Definition 4.2.8 (Vector Bundle). Let E π
X be a bundle over X. E is called a vector

bundle of rank n if the following conditions hold

• ∀x ∈ X, π−1(x) ∼= Kn for some vector space.
• There exists a cover {U}i∈I of X such that π−1(Ui) ∼= Ui × Kn. This isomorphism is a

morphism in Top/Ui and is linear at each point.

The category of vector bundles over X wil be denoted VBund(X).

Remark 4.2.9. Suppose that X is a topological space together with a sheaf OX of continuous
functions into K. And consider the sheaf of sections of the bundle E in Definition 4.2.8 denoted
by Γ. Clearly Γ is an OX -Module via pointwise multiplication of functions. Moreover, given an
open set in the cover Ui

Γ(Ui) = {s : Ui Ui ×Kn} ∼= OnX(Ui).

Definition 4.2.10 (Transition functions). Let F be a locally free sheaf on X and two opens
Ui, Uj with non empty intersection such that F|Uk

∼= OnX |Uk
, k = i, j. Denote Ui ∩ Uj = Uij ,

and each isomorphism by gk. Then

gj |Uij
◦ g−1

i |Uij
: OnX |Uij

OnX |Uij
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is a natural isomorphism whose Uij component is given by an element Mij ∈ GL(n,OX(Uij)).
We can define now a family of maps

pij : Uij GL(n,Kn)
p Mij(p)

called transition functions.

π−1(Uij) Uij ×Kn π−1(Uij)

π−1(Uij) Uij ×Kn π−1(Uij)

χi|ij

pij

χi
−1|ij

χj |ij χj
−1|ij

Diagram 4.1.1

OnX(Uij) F(Uij) OnX(Uij)

OmX (Uij) G(Uij) OmX (Uij)

ξi|Uij
ηUij ξj |Uij

Diagram 4.1.2

Proposition 4.2.11 (Cocycle condition). In the conditions of Definition 4.2.10 consider a
triple intersection Uijk = Ui ∩ Uj ∩ Uk 6= ∅. Then Mjk ◦Mij = Mik ∈ GL(n,OX(Uijk)).

Proof. In the following composition of isomorphisms we will use the abuse of notation gi = gi|Uijk

then
OnX |Uijk

g−1
i F|Uijk

gj OnX |Uijk

g−1
j F|Uijk

gk OnX |Uijk

Theorem 4.2.12 (Reconstruction of a bundle). Given the following data

• A connected topological space X together with a cover {Ui}i∈I
• For every Uij 6= ∅ a transition function pij as in Definition 4.2.10 satisfying the cocycle

condition

We can recover an unique (up to isomorphism) vector bundle E π
X.

Proof. Let
E =

⊔
i∈I

Ui ×Kn

we will think about the elements of E as triples (i, u, k) such that i ∈ I, u ∈ Ui and k ∈ Kn.
Declare two elements equivalent (i1, u1, k1) ∼ (i2, u2, k2) if and only if u1 = u2, k2 = p12(u1)k1.
Since Mii is the identity map it follows that “∼” is an equivalence relation and we can consider
the quotient space

E
π

X

[(i, u, k)] u

It is clear that π−1(Ui) ∼= Ui ×Kn (denote this isomorphism by χi) since Ui ×Kn E is a
monomorphism due to pii = Id. To construct the vector space structure in each fiber we set:

(i, u, ki) + (j, u, kj) = (i, u, ki) + (i, u, pji(u)kj) = (i, u, ki + pji(u)kj)

Finally to see that this construction is unique up to isomorphism, consider another bundle
E

π
X with the same trivializing opens and transition functions. Fix the family {χ−1

i ◦ χi}i∈I
this is a family of isomorphism on a cover of E that can be glued to a bundle isomorphism since
Diagram 4.1.1 commutes.

Proposition 4.2.13. Given a locally free sheaf we can construct a bundle as in Theorem 4.2.12.
This construction is functorial.
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Proof. The first part is clear we only need to form the transition functions of the sheaf and then
apply Theorem 4.2.12. Let F, G be two locally free sheaves of rank m,n respectively together
with a natural transformation F

η
G. It is clear that we can form a cover {Ui}i∈I that

trivializes both sheaves. Let gi, gi denote the Ui component of the natural isomorphisms of the
trivialization and set ξi = gi ◦ ηUi ◦ g

−1
i finally

fi : Ui ×Kn Ui ×Km

(u, k) (u, ξi(u)k).

Commutativity of Diagram 4.1.2 shows that

ξj ◦ pij = pij ◦ ξi with pij , pij the corresponding transition functions

So {fi}i∈I is a family of functions that can be glued to a bundle morphism.

Theorem 4.2.14. Let (X,OX) be a connected topological space together with a sheaf of continuous
functions into K. Then the category of locally free sheaves on X is equivalent to the category of
vector bundles with fiber K.

Proof. Starting with the sheaf of sections of a vector bundle E, it is easy to verify that the tran-
sition functions of the sheaf coincide with the transition functions of the bundle. Theorem 4.2.12
shows that the bundle obtained from the sheaf of sections is isomorphic to E.
For the other direction if we start with a sheaf F and construct its associated bundle EF

we will construct a natural isomorphism. Let U ⊂ X and fix a cover of U by trivializing opens
{Ui}i∈I . Given f ∈ F(U) consider {f |Ui

}i∈I a compatible family of sections. Let fi = gi(f |Ui
) it

is easy to see that
fi : Ui Kn such that fi|Uij

= pijfj |Uij
.

This condition given by the transition functions allows us to define a family of gluable sections.

si : Ui Ui ×Kn

u (u, fi(u)).

The comprobation that this natural transformation induces an isomorphism on stalks is left to
the reader.

Theorem 4.2.15. Let X be a connected topological space, the subcategory of locally free sheaves
of rank 1 has a group structure recieving the name of Picard Group of X, Pic(X).

Proof. First we note that the map induced by the multiplication of OX is an isomorphism of
presheaves between

OX ⊗OX ∼= OX .

It is a well known fact that sheafification is an exact functor, so we get a sheaf isomorphism. Now
let F, G be locally free sheaves of rank 1. It is a quick consequence of the definition of product
that given a trivializing open for both sheaves

F|U × G|U ∼= (F×G)|U .

so (F⊗ G)|U ∼= OX |U ⊗OX |U ∼= OX |U and the previous discussion applies. A similar argument
shows that F⊗OX is locally isomorphic to F.
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The last part is a little bit more delicate, we need to find an inverse for this operation. Consider
HomOX -Mod(F,OX) and U a trivializing open for F. Then

HomOX -Mod(F,OX)(U) = {η : F|U OX |U} ∼= {η : OX |U → OX |U} ∼= OX |U

Taking HomOX -Mod(F,OX)⊗F for every open set V ⊂ X we can construct natural transformation
given by:

ξV : (HomOX -Mod(F,OX)⊗F)(V ) OX(V )
η ⊗ t η(t)

Clearly this map when restricted to a trivializing open induces an isomorphism so it must induce
an isomorphism on stalks hence this is a natural isomorphism of sheaves.

5 Applications

5.1 Ringed Spaces

Usually some geometrical categories are not well behaved with respect to the categorical point
of view. That is one of the main reasons to substitute categories of manifolds or varieties by
(locally) ringed spaces modelled on some particular structure.

Definition 5.1.1. A locally ringed space (X,OX) is a topological space together with a sheaf
OX of rings (or algebras) playing the role of the sheaf of “good” functions on each open subset
of X.

Example 5.1.2. Consider a smooth manifold (M,OM ) and the sheaf of C∞ functions. We are
going to use this example to find the right definition of morphism of ringed spaces. Suppose
(N,ON ) another smooth manifold and a C∞ map M

f
N . Clearly we can see that given

g ∈ ON (U) the assignation g ◦ f ∈ OM (f−1(U)) = f∗OM (U) is a natural transformation.

Definition 5.1.3. A morphism between ringed spaces (X,OX) and (Y,OY ) is the following
data:

• A continuous map f : X Y between the underlying topological spaces
• A natural transformation f ] : OY f∗OX

We will denote this pair (f, f ]).

Example 5.1.4. Following the previous example we see that the stalk, OM,p is given by the set
of germs of C∞ functions at p. Considering the ideal mp = {germp f | f(p) = 0}, it is clear that
every element not in mp is a unit. That tell us that mp is a local ring, i.e it has only one maximal
ideal. The evaluation morphism induces an isomorphism OM,p

/
mp
∼= R. So this maximal ideal

seems like a good option for generalizing the idea of evaluation of functions. We have in mind
that our structure sheaf is a generalization of the sheaf of “good” functions on X. Moreover,
given M f

N and p ∈M we can consider the induced map OY,f(p)
f]

f(p) f∗OX,f(p) OX,x
which clearly sends every function vanishing on f(p) to a function vanishing on p.

Definition 5.1.5. A locally ringed space (X,OX) is a ringed space with the property that every
stalk OX,p is a local ring. A morphism of locally ringed spaces is a morphism of ringed spaces
such that for every p ∈ X the induced map on stalks satisfies:

f ]f(p) : OY,f(p) OX,p, mY
f(p) f ]f(p)(m

Y
f(p)) ⊂ mX

p .
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Example 5.1.6 (Spectrum of a Ring). As we saw before there is a functor sending commu-
tative rings to topological spaces. Actually there is a way of improving this functor changing its
codomain to the category of locally ringed spaces. Consider the spectrum of a ring SpecA, it is
an easy fact that V (f)c = D(f) with f ∈ A is a basis for SpecA. We set:

OA(D(f)) = Af with Af the localization of A in the multiplicative subset of powers of f.

Given D(f) ⊂ D(g) we want to find a restriction map p|D(f) : Ag Af . We only need to find
a map p : A Af sending g to a unity in Af . The universal property of the localization will
induce the desired map.

Choosing p to be the canonical inclusion of A in Ag we claim that p(g) is a unity. Suppose for
contradiction that g is contained in some maximal ideal m, then p−1(m) is a prime ideal of A
containing g. We need to note that since p(f) is a unity it cannot be contained in m. It is also
straightfoward to see that f /∈ p−1(m) and this a contradiction since D(f) ⊂ D(g). The universal
property of the localization guarantees that we have just defined a presheaf on a basis of SpecA.

Proposition 5.1.7. The presheaf OA is a sheaf on a basis of SpecA.

Proof. To check sheaf axioms we need to remember some basic commutative algebra facts:

• There is a bijection between SpecAf and D(f).
• SpecA is quasicompact i.e for every cover we can substract a finite subcover.
• D(fi) ∩D(fj) = D(fifj) and

⋃
i∈I D(fi) = D(

∑
i∈I

fi).

We start with f = 1 so that D(f) = SpecA and a cover SpecA =
⋃
i∈I D(fi). It is enough to

check this particular case since otherwise D(f) is equivalent to SpecAf and we can adapt the
argument. Suppose that we have g, h ∈ A such that g − h = 0 in each Afi

. That means that for
every fi exists some Ni such that fNi

i (g − h) = 0. Since SpecA is quasicompact we can assume
that the cover is finite. Given the expansion of the unity given by 1 =

∑
i
aifi we know that there

exists a natural number N such that
( ∑
i=1

aifi
)N annihilates (f − g) implying that f = g. This

shows Axiom I hold.
For the second sheaf axiom, we start with compatible sections gi ∈ Afi

. Compatibility means
that exists some Nij such that (fifj)Nij (gi − gj) = 0, also for every gi there is some Ni such
that fNi

i gi is the image of some hi ∈ A via the cannonical map. Since the cover is finite there
exists some N that works for every gi. We know that (1) can be generated by {fNi | i ∈ I} . Let
1 =

∑
i
eif

N
i , we are claiming that g =

∑
i
eif

N
i gi. As a final comprobation we can see that

fNj g =
∑
i

eif
N
i f

N
j gi =

∑
i

eif
N
i f

N
j gj = fNj gj

∑
i

eif
N
i = fNj gj .

Proposition 5.1.8. The pair (SpecA,OA) forms a locally ringed space called an affine scheme.
In other words,

Spec: Rngop AffSch
A (SpecA,OA).

More precisely OA,p ∼= Ap.

Proof. We are going to show that Ap satisfies the universal property of the stalk. Every D(fi)
such that p ∈ D(fi) is by definition an prime ideal not containing fi so every fi maps to a
unit in Ap. We get this way maps Afi

ifi Ap satisfying commutativity conditions. Suppose
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ϕi : Afi
B one can easily check that setting ϕ : Ap B, ϕ(ab ) = ϕ(ii( ai

fn
i

)) = ϕi( ai
fn

i
) is

the necessary factorization for the universal property.
We need to show how the functor Spec induces a morphism of locally ringed spaces. We already

showed that given A
f

B a ring morphism, Spec(f) : SpecB SpecA is a continuous
map. Let D(h) ⊂ SpecA it is clear that Spec(f)−1(D(h)) = D(f(h)) and f induces a ring map:

ηD(h) : Ah Bf(h).

Compatible with restrictions and giving rise to the desired natural transformation. It is straight-
foward to check that this map is an homomorphism of local rings.

Remark 5.1.9. We will show at the end of this project that Rngop is equivalent to the category
AffSch of affine schemes. The observation that Rngop is essentially a geometric category is one of
the key points of Algebraic Geometry. From this point of view, the study of classical algebraic
structures can be understood as the algebraic realization of a geometrical theory and vice versa.

Example 5.1.10. In order to finish our analogy with smooth manifolds we need to translate
the local homeomorphism condition into sheaf theoretical language. We recall that (Rn,ORn) is
a locally ringed space. Let U ⊂M , such that U ∼= Rn, and denote the isomorphism by f . Then
it is clear that OM |U ∼= ORn . So (M,OM ) is a locally ringed space which is locally isomorphic to
(Rn,ORn). Rn will be called the modelling space of M .

Definition 5.1.11. We say that a locally ringed space (X,OX) is modelled on (A,OA) if for
every point x ∈ X there exists a neighbourhood x ∈ U such that (U,OX |U ) ∼= (A,OA) as locally
ringed spaces.

Definition 5.1.12. Let M denote a class of models. Many geometrical theories can be regarded
as theories that study locally ringed spaces based on a certain class of models. Here we list some
examples.

• Putting M = {(Rn,ORn) | ORn is the sheaf of C∞ functions on Rn} we obtain smooth
manifolds.

• PuttingM = {(C,OC)|OC is the sheaf of holomorphic functions on C} we obtain Riemann
surfaces.

• Putting M = {(SpecA,OA) | OA is the structure sheaf of the spectrum of a ring} we ob-
tain schemes.

5.2 Local Systems

All topological spaces considered in this section are connected, path connected and semilocally
simply connected. Under this conditions the existence of an universal covering is guaranteed. We
refer to [5] for the theory of covering spaces.

Definition 5.2.1. Let X be a topological space, a local system L on X is a sheaf such that for
every x ∈ X there exists some U ⊂ X open and an isomorphism L|U ∼= A|U with A a constant
sheaf.

Proposition 5.2.2. Given a trivializing open subset of X then ∀x1, x2 ∈ U,Lx1
∼= Lx2 .

Proof. We may assume that U is connected. Then clearly L|U ∼= A|U . In this neighbourhood
L(U) looks like the sheaf of locally constant functions on U , but since U is connected locally
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constant functions are constant. Clearly given x1 ∈ U germx1 f can be extended to a section
f ∈ L(U) so Lx1

∼= L(U) ∼= Lx2 .

Remark 5.2.3. Given x1, x2, x3 ∈ U then Lx1
∼= Lx3 coincides with Lx1

∼= Lx2
∼= Lx3

Proposition 5.2.4. A sheaf L is constant if and only if its corresponding étalé space is of the
form

ΛL =
⊔
i∈I

Vi such that π|Vi
: Vi X is an homeomorphism

Proof. (⇒ ) Let germx f ∈ ΛL. Since X is connected we know that a representative of this germ
section f ∈ L(X). Now we can consider the basic open set:

ḟ(X) = {germx f | x ∈ X}

Clearly the projection restricted to this open set is an homeomorphism onto its image. We
claim that Vi = ḟi(X) for some fi ∈ L(X). Suppose germx g ∈ Vi ∩ Vj . Then we can find
neighborhoods Ui and Uj of x such that

g|Ui
= fi and g|Uj

= fj with fi 6= fj

However, since we can find a connected open set contained in the intersection it follows that
fi = fj finding a contradiction. So ΛL =

⊔
i∈I Vi.

(⇐ ) We have already proven that the sheaf of sections of this bundle is isomorphic to L. Let
U ⊂ X, clearly π−1(U) =

⊔
i∈IWi with the restriction of π an homeomorphism. It follows

from this fact that the sections of this sheaf satisfy s(U) ⊂Wi and can be regardad as locally
constant functions with values in the index set I. That proves that L is a constant sheaf.

ΛL|U ΛL

U Xi

Diagram 5.1.1

Y X

Y X

f

π π

f

Diagram 5.1.2

Proposition 5.2.5. The étalé space of a local system L is a covering space of X.

Proof. Suppose U a connected trivializing open for L then π−1(U) is given by Diagram 5.1.1,
but this is basically the étalé space of L|U = i∗L and the previous proposition tell us that this is
the disjoint union of open sets homeomorphic to U .

Remark 5.2.6. It is obvious from the construction that we have to allow disconnected covering
spaces in our definition.

Corollary 5.2.7. A local system L is a constant sheaf if and only if has a global section.

Proof. (⇒ ) Obvious

(⇐ ) Consider the étalé space ΛL and a global section X s ΛL. Then each loop in X can be
lifted to a loop in the covering space. The basic theory of covering spaces shows that either
ΛL is disconnected or ΛL is homeomorphic to X so L must be a constant sheaf.
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Proposition 5.2.8. The sheaf of sections of a covering space is locally constant.

Proof. Given a trivializing open we can apply the proof of Proposition 5.2.4.

Proposition 5.2.9. The pullback of a covering space is a covering space.

Proof. Following Diagram 5.1.2 let U ⊂ X such that π−1(U) =
⊔
i∈I Ui and f−1(U) ⊂ Y . It

follows from the definition of pullbacks in Top that

π−1(f−1(U)) = {(y, x) | y ∈ f−1(U) and f(y) = π(s)}

Clearly, x ∈ π−1(U). Let Vi = {(y, x) | x ∈ Ui}, we are claiming that

π−1(f−1(U)) =
⊔
i∈I

Vi with π|Vi
: Vi f−1(U) an homeomorphism

The map clearly is surjective because given y ∈ f−1(U) we can take xi ∈ π−1(f(y)) and
injectivity is guaranteed by the fact that X is a covering space. It is trivial to check that we have
an homeomorphism.

Corollary 5.2.10. The inverse image of local system is a local system.

Proof. This is inmediate since the inverse image is constructed using the pullback of the étalé
space of L.

Corollary 5.2.11. Given a map f : Y X with Y simply connected, then f∗L is a constant
sheaf on Y .

Proof. Let f∗L and consider its étalé space. Clearly by Proposition 5.2.5 it is a covering space
but the covering spaces of Y are trivial so f∗L is constant sheaf by Proposition 5.2.4.

Λγ∗L ΛL

I X

γ

π π

γ

Diagram 5.2.1

LH(0,0) L(I × I) LH(0,1)

LH(1,0) L(I × I) LH(1,1)

Diagram 5.2.2

Definition 5.2.12 (Monodromy). Given a loop γ : I X the composition of isomorphisms:

γ∗Lγ(0) ∼= γ∗L([0, 1]) ∼= γ∗Lγ(1)

is called the monodromy of L along γ. The isomorphism will be denoted by ρ(γ).

Remark 5.2.13. We will drop the notation of γ∗ when it is clear from the context and we will
denote the stalk of the inverse image simply by Lγ(t).

Remark 5.2.14. In order to make Definition 5.2.12 effective we need to see how this isomor-
phism works. Following Diagram 5.2.1 let germγ(0) s ∈ Lγ(0) this section gives rise to a section
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(0, germγ(0) s) ∈ Λγ∗L. This section can be extended to a section of s ∈ γ∗L([0, 1]) with the
property

π ◦ γ ◦ s = γ

So γ ◦ s is the unique lifting of γ. Finally we can see that γ ◦ s(1) ∈ π−1(γ(0)). We have shown
that the monodromy sends each element of Lγ(0) to the element of that stalk determined by the
lifting of γ.

Proposition 5.2.15. The monodromy of L only depends on the homotopy class of γ.

Proof. Let γ0, γ1 two paths and an homotopy between them given by I × I H
X such that

H(i, t) = γi, i = 0, 1. Following the same argument as in Corollary 5.2.11 we can see that H∗L
is a constant sheaf on I × I. Commutativity of Diagram 5.2.2 is guaranteed by Remark 5.2.3
and the composition of the top and bottom rows are respectively the monodromy of γ0 and the
monodromy of γ1.

Remark 5.2.16. From now on we will be dealing with local systems with stalks a K-vector
space L. In this setting ρL(γ) ∈ (HomVecK(L,L))∗ = AutK(L), the the vector space of linear
automorphisms of L.

The aim of this section is to show that there is an equivalence of categories between the
category of local systems on X and the category of representations of π1(X, p) on L. We will
introduce the very first definitions of representation theory.

Definition 5.2.17. Given a group G an its associated group category G (see Example 2.1.8).
The category of representations of G is simply [ G,VecK].

Proposition 5.2.18. Given a local system L and let p ∈ X. Then the mapping

π1(X, p) AutK(L)
γ ρL(γ)

is a representation of the fundamental group on L.

Proof. Since ρ only depends of the homotopy class of each loop the map is well defined. Let
p : I X be the constant map in X. Clearly the constant loop in X lifts to a constant loop
in ΛL proving that the induced automorphism is the identity. Now we only need to check that
composition of loops yields composition of automorphisms of L.
Let γ1 ∗ γ2 ∈ π1(X, p)3, and liftings γ1, γ2, clearly composition of the liftings is a lifting of

γ1 ◦ γ2 this is a translation of what we were looking for in the language of monodromy.

ΛL1 ΛL2

I X

η

π1
π2

γ

Diagram 5.3.1

L1 L2

L1 L2

η

ρL1 (γ) ρL2 (γ)

η

Diagram 5.3.2

Proposition 5.2.19. The construction of Proposition 5.2.18 is functorial.
3“ *” denotes the composition of paths in the fundamental group.
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Proof. Given two local systems L1,L2 with stalks L1, L2. Let L1
η L2 yielding a continuous

map between the corresponding étalé spaces, denoted by η. Then given a loop γ, the lifting I γ2

ΛL2 is given by the composition η ◦ γ1 by commutativity of Diagram 5.3.1. Let germp s ∈ ΛL1
this germ is mapped via monodromy to some other germp t. By the above remarks η(germp s) is
mapped via monodromy to η(germq t) making Diagram 5.3.2 commute.

Proposition 5.2.20. Consider a representation ρ of π1(X, p) on L then we can associate to ρ a
local system Lρ.

Proof. For every x ∈ X let’s fix a path αx joining p and x. Then we can give the following
definition

Lρ(U) = {f : U L | for every path γ, f(γ(1)) = ρ(αγ) · f(γ(0))}

αγ = α−1
γ(1) ∗ γ ∗ αγ(0)

Lemma 5.2.21. Lρ is a sheaf.

Proof. The first axiom is trivial, both functions must agree if they agree when restricted to
an open cover. The only thing to see is that the glued function is equivariant with respect to
the representation. Let U ⊂ X together with an open cover {Ui}i∈I and compatible sections
fi ∈ Lρ(Ui). Forgetting about the equivariant condition we might glue the sections to form
U

f
L. Considering a path γ, since γ(I) is compact inX we can substract a finite subcovering of

{Ui}i∈I and find a partition of I into 0 = a0 < a1 < a2 < · · · < an = 1 such that γ([ai, ai+1]) ⊂ Ui.
Let’s denote by γi = γ|[ai,ai+1]. Now f(γ(1)) = ρ(αγn−1) · f(γ(an−1)). Applying induction to this
process yields the desired result.

Lemma 5.2.22. Lρ is locally constant. Lρ|U ∼= L|U . L is the constant sheaf with stalk L.

Proof. Let U ⊂ X such that every loop in U is nullhomotopic in X. Fix x ∈ U and set

Lρ(U) L(U)
f f(x)

Every f ∈ Lρ(U) is completely defined by its image in x. Indeed, given another y ∈ U we have
f(y) = ρ(αγ) · f(x) with γ a path joining x and y. This is well defined since given another path γ′

the composition γ−1 ∗γ′ is nullhomotopic in X. This map is clearly injective, suppose f(x) = g(x)
then

f(y) = ρ(αγ) · f(x) = ρ(αγ) · g(x) = g(y) =⇒ f = g

Moreover, defining for every l ∈ L the function

fl : U L

y ρ(α−1
y ∗ γ ∗ αx) · l

with γ any path joining x and y we can see that this map is surjective and that fl(x) = l.

This finishes the proof of Proposition 5.2.20.

Proposition 5.2.23. The construction of Proposition 5.2.20 is functorial.
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Proof. Given two representations ρ, θ of π1(X, p) and ρ η
θ. Let’s denote the unique component

of this natural transformation by T . Then we can define the following natural transformation
componentwise

Lρ(U) Lθ(U)
f T ◦ f

The rest of the comprobations are trivial.

Theorem 5.2.24. There is an equivalence of categories between the local systems on X with
stalk K-vector spaces and representations of π1(X, p) on K-vector spaces.

Proof. The results of Proposition 5.2.18 and Proposition 5.2.20 show that we have functors
in both directions. We will show that the compositions are naturally isomorphic to the corre-
sponding identity functors. Consider the sheaf given by equivariant functions with respect to the
representation induced by the monodromy. We are going to identify L with the sheaf of sections
of its étalé bundle ΛL. Let f ∈ Lρ(U) with U simply connected, we want to send f to a section
of ΛL. First we note that every stalk of L is isomorphic to some L the codomain of f . After
identifying L ∼= Lp we can set

sf : U ΛL
x ρ(αx) · f(x)

Let s be a section of ΛL such that s(x) = sf (x) we can assume that s is defined in U without
losing generality. We need to check that s(y) = sf (y), ∀y ∈ U . We can see that s(y) = ρ(γ) · s(x)
because the section s is a proper lift of a any path in U , also any two paths in U are homotopic
by assumption. Finally, given γ joining x and y,

sf (y) = ρ(αy)·f(y) = ρ(αy)ρ(αγ)·f(x) = ρ(αy∗α−1
y ∗γ∗αx)·f(x) = ρ(γ)ρ(αx)·f(x) = ρ(γ)·s(x) = s(y)

To find the inverse to this natural transformation let s ∈ L(U) and consider

fs : U Lp
x ρ(α−1

x ) · s(x)

We need to check that fs is equivariant, let γ be a path joining x and y.

fs(y) = ρ(α−1
y ) · s(y) = ρ(α−1

y )ρ(γ) · s(x) = ρ(α−1
y ∗ γ ∗ αx)ρ(α−1

x ) · s(x) = ρ(α−1
y ∗ γ ∗ αx) · fs(x)

The reader might think that this is not a valid natural transformation since is only defined on
some special open sets. However, our hypothesis guarantee that these sets form a basis of the
topology of X so after a gluing process similar to the one exposed in Theorem 3.1.12 we will find
a natural isomorphism.
To finish the proof we need to see that starting with a representation ρ of π1(X, p) on L the

representation defined by the monodromy of the sheaf of equivariant functions satisfies ρL ∼= ρ.
Consider germx f ∈ ΛL such that f ∈ L(U) a simply connected set. We remark the fact that
the stalks of L are isomorphic to L and that germx f can be identified with f(x) ∈ L. Given
I

γ0
U between x and y, it is clear that f(y) = ρL(γ0) · f(x), moreover

f(y) = ρ(α−1
y ∗ γ0 ∗ αx) · f(x) since f is equivariant =⇒ ρL(γ0) = ρ(α−1

y ∗ γ0 ∗ αx)

Let I γ
X be an arbitrary loop. Select a cover by simply connected open sets of γ(I), namely
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{Ui}i∈I and find a partition of I as in the proof of Proposition 5.2.20. Using the same notation
we can see

ρL(γ) = ρ(α−1
γ(0) ∗ γ0 ∗ αγ(a1)) · ρ(α−1

γ(a1) ∗ γ1 ∗ αγ(a2)) · · · ρ(α−1
γ(an−1) ∗ γn−1 ∗ αγ(an)) = ρ(γ)

We have used the fact that αp is the constant loop. This completes the proof.

6 Appendix I: Internal structure of SetCop and sheaf categories

Definition 6.0.1 (Category of elements). Consider a functor F : A Set from a category
A to the category of sets and mappings. The category Elts(F ) is defined in the following way:

• The objects of Elts(F ) are the pairs (A, a) where A ∈ |A| and a ∈ FA.
• A morphism f : (A, a) (B, b) is an arrow f : A B in A such that Ff(a) = b ∈ FB.
• The composition of Elts(F ) is that induced by the composition of A.

Remark 6.0.2. In the case of a contravariant functor F : Aop → Set we will obviously require
that for f : (A, a) (B, b) we get Ff(b) = a.

Definition 6.0.3. Let F : A Set and the category of elements Elts(F ) then we can define
the projection functor

πF : Elts(F ) A

(A, a) A

with the obvious action on morphisms.

P (C1) HomE(A(C1), E)

P (C2) HomE(A(C2), E)

ηC1

P (f)
ηC2

−◦A(f)

Diagram 6.1.1

Theorem 6.0.4. Given a functor A : C E from a small category to a cocomplete category
we can define a functor R : E Set Cop given by

R(E) : Cop Set
C HomE(A(C), E)

This functor has a left adjoint L:

L : Set Cop
E

P colim
Elts(P )

(A ◦ πP )

Proof. Let η ∈ HomPsh(C)(P,R(E)). For every (C, p) ∈ Elts(P ) consider

ηC(p) ∈ R(E)C = HomE(A(C), E).

We need to show that these maps form a cocone, consider a morphism f : (C1, p1) (C2, p2)
of Elts(P ), then commutativity of Diagram 6.1.1 shows that we have just defined a cocone
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on A ◦ πP getting a unique factorization map fη ∈ HomE(L(P ), E). In a similar way given
f ∈ HomE(L(P ), E) we can form a family of maps namely {f ◦ s(Ci,p)}i∈I that can be clearly
seen as a natural transformation P ηf R(E). The universal property of the colimit shows that
both mappings are inverse to each other. Naturality follows from the construction.

Corollary 6.0.5. Every presheaf F in Set Cop with C a small category, is the colimit of repre-
sentable presheaves.

Proof. Set E = Set Cop and A = Y the Yoneda embedding functor. It is immediate to see that

R(F)C = HomPsh( C)(Y (C),F) ∼= F(C)

so R is isomorphic to the identity functor. Recalling Corollary 2.3.4 we can see that L must be
isomorphic to the identity.

Before showing that the category of presheaves on a small category is cartesian closed we will
need a previous result about limits in presheaf categories.

Proposition 6.0.6. Limits in Set Cop are constructed pointwise. In other words, given a diagram
F : I Set Cop with the notation FI = FI

lim
I∈I

FI : Cop Set

C lim
I∈I

FI(C)

Proof. It is necessary to construct the natural transformations lim
I∈I

FI
pI FI and verify the

universal property of the limit. First note that every for every C ∈ |C| we have a map

lim
I∈I

FIC
pC

I FIC.

Given C1
f

C2 by setting {FI(f) ◦ pC2
I }I∈|I| we can form a cone on FI(C1) inducing a

factorization map:
lim
I∈I

FIC2 lim
I∈I

FIC1

It is immediate to see that this construction shows that every pI is a natural transformation.
For the universal property suppose a presheaf P with natural transformations P pI FI . Then
evaluating the diagram of P in each C ∈ |C| we can find factorization maps in Set that form
a natural transformation. We omit this last comprobation since is analogous to the previous
one.

Remark 6.0.7. This construction can be dualized to show that colimits in Set are constructed
pointwise. Since the category of sets and mappings is complete and cocomplete we get as a
corollary that Set Cop is also complete and cocomplete.

Corollary 6.0.8. Finite products commute with colimits in Set Cop

Proof. Let FI denote an I-indexed diagram in Set Cop with lim
I∈|I|

FI = F then our corollary

asserts that
lim
I∈|I|

(FI × P ) ∼= F × P
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Since limits are constructed pointwise ∀C ∈ |C|:

lim
I∈|I|

(FI × P )(C) = lim
I∈|I|

(FIC × PC) ∼= lim
I∈|I|

FIC × PC = FC × PC

Where we have used the fact that Set is cartesian closed in the first isomorphism to see that
since the functor −× PC is a left adjoint preserves colimits.

Theorem 6.0.9. Given a small category C then the presheaf category Set Cop is cartesian closed

Proof. Suppose that the exponential of P exists, so we can use a Yoneda argument as follows

HomPsh( C)(Y (C)× P,Q) ∼= HomPsh( C)(Y (C), QP ) ∼= QP (C)

Now we can drop the assumption of the existence of −P and define the exponential with the
formula above. It is left to prove that we still have an adjunction even in the non-representable
case. Let f ∈ HomPsh( C)(F × P,Q) and use Corollary 6.0.5 to find a diagram {FI}I∈I with
colimit F and each FI = Y (CI) representable. Then F × P ∼= lim

I∈I
FI × P so f can be identified

with a family of maps

fI ∈ HomPsh( C)(FI × P,Q) ∼= HomPsh( C)(Y (CI), QP ) I ∈ |I|

Naturality of the isomorphism shows that {fI}I∈|I| is a cocone on QP so the universal property
induces a unique map

HomPsh( C)(F × P,Q) θ HomPsh( C)(F,QP )

To find an inverse for θ we only need to do this construction backwards. It is important to note
that every step used in this proof is natural so there is nothing left to prove.

Remark 6.0.10. If C = O(X) then the internal Hom for presheaves is given by

HomPsh(X)(F, G)(U) = {η : F|U G|U}

It is convenient now to reduce the level of generality in our disgression. Although every result
that we will prove generalizes in the obvious way to sheaves on “topological categories” (sites) we
find this point of view out of the scope of this memoir. An interested reader might want to look
at [4]. We will focus on sheaves on topological spaces with the aim of showing that this category
inherits the internal logic of a cartesian closed category. Before doing this some results about
reflective categories will be given to describe limits in sheaf categories. We recall that a reflective
subcategory is a full subcategory replete in the sense of [2] with a left adjoint to the inclusion
functor.

HomA(GFA,GFA) HomB(FA,FGFA)

HomA(GFA,A) HomB(FA,FA)

αA◦− ηF A◦−

Diagram 6.2.1

Lemma 6.0.11. Consider a functor A
F

B with G left adjoint to F . Denote by (η, ε) the
unit and the counit respectively then if F is full and faithful, ε is an isomorphism.
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Proof. Let FA ηF A FGFA since F is a full functor there exists some A αA GFA with
F (αA) = ηFA. We claim that αA is the inverse to εA.

F (εA ◦ αA) = F (εA) ◦ F (αA) = F (εA) ◦ ηFA = 1FA =⇒ (εA ◦ αA) = 1A since F is faithful.

Now observing Diagram 6.2.1 it easy to see that

θ(αA ◦ εA) = ηFA = θ(1GFA) =⇒ αA ◦ εA = 1GFA

HomB(L, irL) HomA(rL, rL)

HomB(L, iFD) HomA(rL, FD)

iqD◦− qD◦−

Diagram 6.3.1

HomB(L, irL) HomA(rL, rL)

HomB(L, irL) HomA(rL, rL)

i(νL)◦− νL

Diagram 6.3.2

Proposition 6.0.12. Given a full reflective subcategory of a complete category,

A B
i

r

then A is also complete.

Proof. Consider a diagram in A given by F : D A and let L denote the limit of i ◦ F
with cannonical maps L pD i ◦ FI. Let qD = θ(pD) ∈ HomA(rL, FD) then commutativity of
Diagram 6.3.1 shows that iqD ◦ ηL = pD. Given d : D D′, the relation

i(Fd ◦ qD) ◦ ηL = iFd ◦ iqD ◦ ηL = iFd ◦ pD = pD′ = iqD′ ◦ ηL

implies that Fd ◦ qD = q′D by naturality of the bijection of the adjunction. So the morphisms
(qD)D∈|D| constitute a cone on F and thus (iqD)D∈|D| constitutes a cone on iF . This yields an
unique factorization map µL : irL L such that pD ◦ µL = iqD. Then

pD ◦ µL ◦ ηL = iqD ◦ ηL = pD =⇒ µL ◦ ηL = 1L by the universal property

Finally ηL ◦ µL : irL irL can be written as i(νL) since i is full and faithfull. Finally

i(νL) ◦ ηL = ηL =⇒ νL = 1rL by Diagram 6.3.2

We have shown that irL ∼= L. Since A is replete this means that L belongs already to A.

Proposition 6.0.13. Given a full reflective subcategory of a cocomplete category,

A B
i

r

then A is also cocomplete.

Proof. Consider a diagram in A of a colimit F : D A and let L denote the colimit of i ◦ F .
Since r is a left adjoint then rL is the colimit of r ◦ i ◦ F ∼= F by Lemma 6.0.11.

Corollary 6.0.14. The category of sheaves on a topological space, Sh(X) is complete and
cocomplete.
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Theorem 6.0.15. The category of sheaves on a topological space is cartesian closed.

Proof. We showed previously that the category of presheaves over X has an internal Hom. We
only need to check that if F, G are sheaves, then HomSh(X)(F, G) is also a sheaf.
Let be U ⊂ X an open set together with a cover {Ui} and suppose that we have compatible

natural transformations ηi ∈ HomSh(X)(F, G)(Ui). We want to be able to define a natural
transformation:

η : F|U G|U with the property η|Ui
= ηi

We start by taking V ⊂ U and using the open cover {Ui} to form an open cover {Vi} of V . Now
given t ∈ F(V ) we use the restriction maps to get ti ∈ F(Vi) and since each Vi ⊂ Ui we can map
the elements via ηi|Vi

= η̄i. We are going to denote η̄i|Vi∩Vj
= η̄ij . The condition of compatibility

translates to η̄ij = η̄ji. In a similar way we denote ti|Vi∩Vj
= tij . Moreover, if Vi ∩ Vj 6= ∅ since

the natural transformations match in the intersection and every natural transformation commute
with the restriction maps we can see that:

η̄i(ti)|Vi∩Vj
= η̄ij(tij) = η̄ji(tji) = η̄j(tj)|Vi∩Vj

Observing the fact that η̄i(ti) is a family of compatible sections of G(V ) we can glue them to form
η(t). It’s clear that we have found a way of sending elements of F(V ) to G(U), the last thing to
check is that this map constitutes a natural transformation but we omit that last comprobation
since all the maps in our construction are natural so they won’t change much when restricted.

Remark 6.0.16. Component-wise addition of natural transformations shows that ShAb(X) has
an internal HomShAb(X)(−,−). However, this category is not cartesian closed since it has a zero
object.

Remark 6.0.17. Sheafification of the tensor product of presheaves of OX -Modules yields the
right definition of tensor product of sheaves. As expected, a familiar argument to the one used in
R-Mod shows that the tensor product of sheaves is adjoint to Hom.

6.1 Subobject classifiers

Definition 6.1.1 (Subobject). Let C be a category and C ∈ |C|. We say that two monomor-
phisms S f

C, R
g

C are equivalent if there exists an isomorphism τ : S R such that
g ◦ τ = f . An equivalence class of monomorphisms with codomain C is called a subobject of C.
Dually we have the notion of quotient of C. We usually refer to this class (which is not always a
set!) as Sub(C).

Definition 6.1.2. A category is said to be well-powered when the subobjects of every object
constitute a set.

X X

D C

g

n m

f

Diagram 6.4.1

S 1

C Ω

true
χS

Diagram 6.4.2

X S 1

D C Ω

true
f χS

Diagram 6.4.3
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Proposition 6.1.3. Given a well-powered category C there is a subobject functor

Sub : C Set

Proof. The action on objects is clear. Let C D be an arrow in C and X m
C and form

the pullback square of Diagram 6.4.1. Then given u, v : M S such that n ◦ u = n ◦ v we can
see that:

m ◦ g ◦ u = f ◦ n ◦ u = f ◦ n ◦ v = m ◦ g ◦ v =⇒ g ◦ u = g ◦ v.

Meaning that u, v are possible factorizations for the maps n ◦ u, g ◦ u then the universal property
shows that u = v so n is a monomorphism and S is a subobject of D.

Definition 6.1.4 (Subobject classifier). In a finitely complete category C, a pair (true,Ω), Ω ∈
|C| and true : 1 Ω is called a subobject classifier if for every object C ∈ |C| and every sub-
object S C there exists a map C χS Ω such that Diagram 6.4.2 is a pullback square.

Sub(Ω) Hom C(Ω,Ω)

Sub(C) Hom C(C,Ω)

SubχS −◦χS

Diagram 6.5.1

C Ω0

C Ω

χ

t0

t0◦χ

Diagram 6.5.2

C Ω0

C Ω

χ′

t0

t0◦χ′

Diagram 6.5.3

Proposition 6.1.5. A category C has a subobject classifier Ω is and only if

Sub ∼= Hom C(−,Ω)

Proof. (⇒ ) Let C ∈ |C| and a subobject S C then define

εC : Sub(C) Hom C(C,Ω)
S χS

this map is well defined since the arrow χS is unique and does not depend on the representative
S. Conversely to define ε−1

C we set for every f ∈ Hom C(C,Ω) the pullback as in Diagram 6.4.2
obtaining a subobject of C. It is convinient to recall that any map from the terminal object to
any other object in the category is a monomorphism. To finish this proof we need to check
that this family of maps indeed defines a natural transformation. Given D f

C looking at
Diagram 6.4.3 we can see that the outer rectangle is a pullback since both inner squares are
by the same argument as Proposition 3.4.6 that shows that f ◦ χC = χD.

(⇐ ) Suppose that Sub is representable with representing object Ω. Then there exists some
subobject Ω0

t0 Ω mapped to 1Ω ∈ Hom C(Ω,Ω). Similarly for every subobject S C

there is some χS ∈ Hom C(C,Ω). Then since naturality guarantees that Diagram 6.5.1 commutes
it is clear that SubχS(Ω0) = S and the subobject can be obtained by a pullback square along
a unique function. It is left to see that Ω0 ∼= 1. Suppose χ, χ′ : C Ω0 and consider C
as a subobject of itself via 1C . Then both Diagram 6.5.2 and Diagram 6.5.2 are pullbacks
squares since t0 is a monomorphism. Now uniqueness of the pullback square shows that
t0 ◦ χ = t0 ◦ χ′ =⇒ χ = χ′, so Ω0 ∼= 1.

Remark 6.1.6 (Subobject of a functor). Let Set Cop with C small. We are interested in
finding a good description of subobjects in this category. Starting from the definition a subfunctor
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is a equivalence class of monomorphisms Q P , monomorphisms in this category are
constructed pointwise since they are a special case of a pullback. Then it is possible to define a
subfuctor (more formally is it possible to pick a representative of the class) as a functor satisfying

• For every C ∈ |C|, Q(C) ⊂ P (C)
• For every D f

C, Qf = Pf |QC

Remark 6.1.7. In the case of representable presheaves a subfunctor F Y C sends every
X ∈ |C| to a subset of Hom C(X,C) with the property that for all arrows f ∈ FX and R h

X

the composite f ◦ h ∈ FX.

Definition 6.1.8 (Sieve). Given an C ∈ |C| a sieve on C is a set S of arrows with codomain
C such that for every arrow h composable with f ∈ S we have f ◦ h ∈ S. It is trivial to check
that sieves on C are exactly the subfunctors of Y C. Going further since given a map B g

C

there is a natural transformation Y B → Y C it is natural to consider the corresponding case in
the language of sieves. This is given by

S · g = {h | g ◦ h ∈ S}

Q 1

P Ω

true
χ

Diagram 6.6.1

Q(C) 1

P (C) Ω(C)

true

χC

Diagram 6.6.2

P (A) Ω(A)

P (C) Ω(C)

θA

Pf Ω(f)
θC

Diagram 6.6.3

Proposition 6.1.9. The category Set Cop has a subobject classifier.

Proof. Following the same “Yoneda” point of view suppose that Ω exists and set

HomPsh( C)(Y (C),Ω) ∼= Sub(Y C) ∼= Ω(C).

Now dropping the assumption we set Ω(C) = {S |S is a sieve on C} and the action on a morphism
B

g
C is defined to be:

Ω(g) : Ω(C) Ω(B)
S S · g

For every C ∈ |C| the maximal sieve t(C) is defined to be the set of all arrows with codomain C.
It is readily clear that t(C) · g = t(B) so there is a natural transformation true : 1 Ω with
trueC(∗) = t(C).
Let Q be a subfunctor of P . For every x ∈ PC set

χC(x) = {f | Pf(x) ∈ Q(dom(f))}.

This definition considers the set of maps f : A C that sends an element x ∈ PC to
Pfx ∈ QA ⊂ PA. Given g : B A we can see that P (f ◦ g)(x) = Pg ◦ Pf(x) and since
Pf(x) ∈ Q(A) then clearly Pg(Pf(x)) ∈ Q(B) by definition of subfunctor implying that χC(x)
is a sieve on C. We can observe that

χA(Pf(x)) = {h | Ph(Pf(x)) = P (f ◦ h)(x) ∈ Q(dom h)} = χC(x) · f
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proving naturality of the natural transformation P χ Ω. Moreover, if x ∈ Q(C) we have that
χC(x) = t(C) showing commutativity of Diagram 6.6.1 and that Diagram 6.6.2 is a pullback
square. We need to show that χ is the unique natural transformation satisfying the pullback
condition, to see this suppose P θ Ω such that Q is the pullback of true and θ. Given
x ∈ P (C) and A

f
C, the pullback condition means that Pf(x) ∈ Q(A) if and only if

θA(Pf(x)) = trueA; by naturality of Diagram 6.6.3 this equals to θC(x) · f = trueA, showing that
f ∈ θC(x). The elements of θC(x) then are those with Pf(x) ∈ Q(A) so the pullback condition
forces the definition of χ uniquely.

7 Appendix II: Functorial algebraic geometry

In this section we are going to consider functors on non-small categories giving rise to some set
theoretical issues. We refer to [3] for a discussion of these problems and its solution via universes.

Definition 7.0.1 (Affine schemes). Let SetRng every representable functor F with representing
object A is called the affine scheme of the ring A.

Definition 7.0.2 (Affine line). The functor L that sends every A ∈ |Rng| to its underlying
set is called the affine line.

Remark 7.0.3. One can easily verify that L ∼= HomSetRng(Z[T ],−).

Remark 7.0.4. The set HomSetRng(F,L) has a natural ring structure. Given two natural trans-
formations we can easily perfom a pointwise sum in each component. This ring is called the ring
of functions on F and will be denoted by O(F).

In the process of showing that this approach is essentially equivalent to the geometric vision of
locally ringed spaces we need to stablish some category theoretical results. In this section locally
ringed spaces will be called geometric spaces and its category will be denoted by GSp.

Definition 7.0.5. We have a contravariant functor Γ from the category of geometric spaces with
values in the ring category defined as

Γ: GSp Rngop

(X,OX) OX(X)

Theorem 7.0.6. The functor Γ is left adjoint to Spec:

GSpop RngopΓ

Spec

Proof. We will show the natural isomorphism HomGSp(X,SpecA) ∼= HomRng(A,ΓX), note the
subscript of the second Hom-set where we can see that we will be working with Spec as a
contravariant functor instead of working in the opposite category.
Given a morphism of geometrical spaces (f, f ]) : X SpecA it is clear that we can send

(f, f ]) to the global component of the natural transformation. Conversely let ϕ ∈ HomRng(A,ΓX)
we can define the pair (fϕ, f ]ϕ) as follows,

fϕ : X SpecA
x ϕ−1 ◦ p−1

x (mx)
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where px denotes the canonical morphism OX(X) px OX,x. We need to check that

f−1
ϕ (D(g)) = {x ∈ X | fϕ(x) ∈ D(g)} = {x ∈ X | ϕ(g) is invertible in OX,x}

is open. To see this consider x ∈ f−1
ϕ (D(g)) and sϕ, sϕ−1 two sections on an open set U

representing germx ϕ(g), germx ϕ(g)−1. First we note that there is some neighborhood V1 ⊂ U
such that sϕ, sϕ−1 are mutual inverses also it is easy to see that exists some V2 ⊂ U such that
ϕ(g)|V2

= sϕ|V2
, then it follows that we can find and open set V ⊂ f−1

ϕ (D(g)) such that x ∈ V .
Now we need to construct the natural transformation OA

f]
ϕ fϕ,∗OX . Consider a basic open

set D(g) ⊂ SpecA it is an easy exercise to show that ϕ(g)|
f−1

ϕ (D(g)) is invertible in fϕ,∗OX(D(g))
since this section is invertible at each stalk. Now the universal property of the localization induces
a map,

f ]ϕ|D(g) : Ag fϕ,∗OX(D(g)).

which is clearly natural due to the universal property of the localization.
To finish the proof we need to see that both assignations are inverse to each other. Let

ϕ ∈ HomRng(A,ΓX) is clear that the global component of f ]ϕ equals ϕ. Finally let (f, f ]) ∈
HomGSp(X,SpecA), and denote by ϕ = f ](SpecA). We will finish this proof in two lemmas.

Af(x) OX,x

A OX(X)

f]
f(x)

pf(x)

ϕ

px

Diagram 7.1.1

A OX(X)

Ag f∗OX(D(g))

ϕ

f]|
D(g)

Diagram 7.1.2

Lemma 7.0.7. In the conditions of Theorem 7.0.6 we have (f, f ]) = (fϕ, f ]ϕ).

Proof. Considering Diagram 7.1.1 we can see that ϕ−1 ◦ p−1
x (mx) = fϕ(x) = p−1

f(x) ◦ f
],−1
f(x) (mx).

Then we can note that since f ]f(x)(mf(x)) ⊂ mx implies that f ],−1
f(x) (mx) = mf(x) but the inverse

image of mf(x) under pf(x) equals f(x). We can finish the proof of this lemma together with
the proof of Theorem 7.0.6 by noting that Diagram 7.1.2 commutes and applying the universal
property of the localization. We left naturality comprobations to the reader.

Corollary 7.0.8. Denote by AffSch the category of geometric spaces isomorphic to the spectrum
of a given ring then the previous adjuction restricts to an isomorphism of categories

AffSch ∼= Rngop

Proof. Obvious.

Definition 7.0.9. For every X ∈ |GSp| we have its associated functor given by

H : GSp SetRng

X HX = HomGSp(Spec−, X)

Remark 7.0.10. If SpecA ∈ |AffSch| then clearly H SpecA ∼= HomRng(A,−).

Theorem 7.0.11. There is a functor |−| : SetRng GSp which is left adjoint to H
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Proof. This is a consequence of Theorem 6.0.4. A thoughtful reader might ask why we did not
show that GSp is cocomplete, this can be seen in [3]. We skip this proof since it is a technicality
with no interest to this section. We remind the reader that this proof depends on the two universes
setting defined in [3] since Rng is not small.

Proposition 7.0.12. For every affine scheme F = HomRng(A,−) we have |F| ∼= SpecA.

Proof. Again consider the category Elts(F) and the diagram of the functor Spec ◦π we can see
that every SpecRi in the diagram comes from some (Ri, fi) such that fi ∈ HomRng(A,Ri). Then
we can set a family of maps given by {Spec fi}i∈I (modulo set theory) such that

Spec fi : Ri A

Given (Ri, fi)
ϕ (Rj , fj) it clear that since this is a morphism in Elts(F) we have ϕ ◦ fi = fj

which amounts to the fact that the family of maps {Spec fi}i∈I forms a cocone. We have now
a unique factorization map |F| α SpecA. Let (|F|, si) denote the colimit together with its
canonical cocone then we have a map SpecA sA |F|. It is now inmediate to check that we
have just defined an isomorphism.

In our task of finding a functorial foundation of algebraic geometry we can see that the
idea of representable functor captures correctly the notion of affine scheme. We seek to find a
functorial description of general schemes avoiding locally ringed spaces this amounts to finding a
subcategory of SetRng such that |−| restricts to an equivalence of categories with the subcategory
Sch of schemes.

7.1 Some reflections about the notion of a point

The revolutionary ideas introduced by Alexander Grothendieck in the field of algebraic geometry
had a tremendous impact on the way we look at very familiar notions in geometry such as points.
For example, considering a parabola X, we may ask what are the points of this geometric object.
At first sight these points are solutions of a polynomial equation, namely, y = x2. However,
translating this idea to affine schemes we encounter a problem: Which of the following schemes
truly represent the parabola?

X1 = SpecZ[t1, t2]/(t2 − t21) X2 = SpecR[t1, t2]/(t2 − t21) X3 = SpecC[t1, t2]/(t2 − t21)

A first answer would be to say that it depends on which kind solutions to the equation you are
interested in, but geometrically this is not very satisfactory. We should have one parabola and
different kinds of points in it. A categorical solution to this problem is to understand points
through morphisms.

Example 7.1.1. Consider a point (a1, a2) ∈ R in the parabola. Then we can construct the
morphism,

ϕ : Z[t1, t2] R

ti ai

then clearly this maps factorizes to

ϕ ∈ HomRng(Z[t1, t2]/(t2 − t21),R) ∼= HomGSp(SpecR,SpecZ[t1, t2]/(t2 − t21)).
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Definition 7.1.2 (k-points). Let X be a locally ringe space. A k-point is an element of
(xk, x]k) ∈ HomGSp(Spec k,X).

Remark 7.1.3. Clearly as a set Spec k is just one point, accordingly the topological map
is determined by xk(∗) = x ∈ X. The map on the structure sheaves should be a local ring
map in the stalks, OX,x Ok,∗, so mx must be mapped to zero getting a factorization
k(x) = OX,x/mx k. The reader might check that the data of a k-point is equivalent to the
data of a point x ∈ X together with a field extension of the residue field k(x) k.

Definition 7.1.4. Let F ∈ SetRng, we shall define the underlying set of F as

|F|s = colim
Field

F

Proposition 7.1.5. The underlying set of HomRng(A,−) coincides with the set of prime ideals
of A. This bijection is natural in A.

Proof. We start by giving a specific construction for this underlying set,

colim
Field

HomRng(A,−) ∼=
⊔

K∈Field
HomRng(A,K)/ ∼

where “∼” is the smallest equivalence relation making the disjoint union inclusions the maps of
a cocone. Then, every x ∈ |HomRng(A,−)|s can be represented by a function f : A K1 for
some field whose kernel is an element px ∈ SpecA. To see that this map is well defined, we need
to check that given u : K1 K2, we have Ker(u ◦ f) = Ker(f). This follows inmediatly from
the fact that every field morphism is injective. Conversely given a prime ideal of A we can send
p to the cannonical map of A into its residue field at p, i.e. the fraction field of A/p. It is easy to
check that we have defined a natural bijection.

Theorem 7.1.6. The underlying set of the functor F : Rng Set is naturally isomorphic to
the underlying set of the topological space |F|.

Proof. Define the bifunctor,

Elts(F)× Field Set
(A, a)×K HomRng(A,K)

and note that colim
Elts(F)

HomRng(A,−) ∼= F. Therefore, the underlying set functor can be interpreted

as a double colimit of a bifunctor. Since Set is cocomplete the two colimits involved commute
with each other. Finally,

|F|s = colim
Elts(F)

colim
Field

HomRng(A,K) ∼= colim
Elts(F)

SpecA ∼= |F|.

Spec k(x) X

Spec k(f(x)) Y

f

Diagram 7.2.1

HomRng(A,−)D(I) HomRng(A,−)

U F

η

i

Diagram 7.2.2
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Proposition 7.1.7. Let F be the functor that sends every geometric space to its underlying set.
Then F ∼= colim

K∈Field
H−.

Proof. Let x ∈ X, we can define a morphism of locally ringed space by setting

ϕx : Spec k(x) X

∗ x

and the identity map on the stalk, OX,x. Conversly for every element in the colimit represented
by a morphism ϕ : Spec k X we can associate the point ϕ(∗) ∈ X. This map is clearly well
defined and it can be shown that both maps are mutual inverses. Given a morphism of locally
ringed spaces X f

Y , a simple verification shows that Diagram 7.2.1 commutes, proving the
naturality of the bijection.

7.2 Open subfunctors

|G| |F|

s−1
R (|G|) SpecR

i

sR

Diagram 7.3.1

Definition 7.2.1. Let F ∈ |SetRng|, and U ⊂ |F|, then we shall define the following subfunctor,

FU (R) = {p ∈ F(R) | ∀ϕ : R K with K a field , [Fϕ(x)] ∈ U}.

Here we make the following abuse of notation, we identify

[Fϕ(x)] ∈ colim
K∈Field

F

with its image under the canonical bijection of Theorem 7.1.6.

Remark 7.2.2. It is a consequence of the previous definition that

colim
K∈Field

FU ∼= U

Proposition 7.2.3. Let G
ε

F, then for every U ∈ |F| the pullback of ε and the canonical
inclusion of FU is isomorphic to GQ where Q = |ε|−1(U).

Proof. Let P denote the pullback because limits of presheaves are compute pointwise we have,

P (R) = {x ∈ G(R) | εR(x) ∈ FU (R)}.

Now we might use the naturality of ε to see that for every morphism ϕ of R into a field K,
Fϕ(εR(x)) = εK( Gϕ(x)). The right hand side of this equality just states that x ∈ P (R), if and
only if, |ε|(Gϕ(x)) ∈ U , for every ϕ : R K.

Definition 7.2.4 (Open subfunctor). A subfunctor U
i

F is said to be open if for every
representable functor and every natural transformation η : HomRng(A,−) F, the pullback
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of this two morphisms is given by Diagram 7.2.2.

Proposition 7.2.5. If U is open in |F| then FU is an open subfunctor of F.

Proof. This is an inmediate consequence of Proposition 7.2.3.

Proposition 7.2.6. If U is an open subfunctor of F then the geometric realization of U is open
in |F|. Moreover, U ∼= F|U|.

Proof. From the construction of |F| it is obvious that a set U , is open in the geometric realization
if and only if, the inverse image of U via the canonical maps of the colimit are open in each
SpecR. Let (R, p) with p ∈ F(R). We construct the natural transformation ηp given by the
contravariant Yoneda lemma, namely

HomRng(R,A) ηp,A F(A)
f Ff(p)

.

From this point is just a matter of colimit-“diagram chasing” to see that the diagram of the
pullback of η, i maps under the geometric realization functor to Diagram 7.3.1. Therefore,
applying Proposition 7.2.3 we find that s−1

R (|G|) = D(I). In a similar way we might check that
G ∼= F|G|.

Corollary 7.2.7. There is a bijection between the open subfunctors of F and the open subsets
of |F|.

Proposition 7.2.8. Given an open subfunctor FU , it can be expressed as a canonical colimit,

FU ∼= colim
(R,p)∈|Elts(FU )|

HomRng(R,−)UR
.

Here UR denotes the inverse image of U under the canonical colimit map of the geometric
realization functor associated to (R, p).

Proof. This is a restatement of Corollary 6.0.5. What we should note is that if we compute the
canonical colimit of FU as usual we will encounter the natural transformations

ηp : HomRng(R,−) FU

1R p
.

These morphisms can be used together with Proposition 7.2.3 to show that HomRng(R,−) ∼=
HomRng(R,−)UR

.

Definition 7.2.9 (Covering of a functor). A family {Fi}i∈I of subfunctors of F is said to
cover F if the induced map ⊔

i∈I
colim
K∈Field

Fi colim
K∈Field

F,

is an epimorphism. Similarly a cover by open subfunctors of F is called an open covering.

Example 7.2.10. It is clear that if {Ui}i∈I is a covering of a locally ringed space then {HUi}i∈I
is a open covering of the functor HX. The scenario when X is a scheme is more interesting. In
this case X is covered by opens isomorphic to SpecA for some ring. This amounts to the fact
that HX has an open covering by representable functors.
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7.3 Local functors

Given an affine scheme SpecA we can find a basis for the topology of the form D(fi) with
fi ∈ A. Clearly this induces an open inmersion of SpecAfi

SpecA. Moreover, the data of a
morphism SpecB f SpecA is equivalent to the data of a family of morphisms

SpecB fi SpecAi

which agree on the intersections SpecAfifj
. Translating this behaviour into the functorial language

we have the notion of a local functor.

Definition 7.3.1 (Ring covering). Let A ∈ Rng, and a family of elements fi ∈ A such that
the set {fi}i∈I generates the unit ideal. For every i ∈ I we consider the canonical morphism

ϕi : A Ai Ai = Afi
.

Then a covering of A is a family of morphisms of the form {ϕi}i∈I .

Definition 7.3.2 (Local functor). A functor F : Rng Set is said to be local if for every
ring A and every covering {ϕi}i∈I of A the following diagram is an equalizer,

F(A)
∏
i

F(Ai)
∏
i,j

F(Aij).u t

s

Here u denote the map induced by Fϕi, t denotes the map induced by Fϕij and s denotes the
map induced by Fϕji.

Remark 7.3.3. The reader will realize that this definition is that of a covariant sheaf.

Proposition 7.3.4. For every locally ringed space X, the functor HX is local.

Proof. Topologically we can glue the maps because they agree on the intersections. In addition, we
can use the fact that f−1(U) can be covered by f−1

i (U) to send sections of OX(U) to OA(f−1U).
We leave the comprobations to the reader.

7.4 Structure sheaf of the geometric realization of a functor

Proposition 7.4.1. Given F ∈ |SetRng| the following conditions are equivalent:

1. F is local.
2. For each ring A, the presheaf U HomSetRng(HomRng(A,−)U ,F) is a sheaf of sets over

SpecA.
3. For each functor G, the presheaf U HomSetRng( GU ,F) is a sheaf of sets over |G|.

Proof. (1)⇒ (2) For simplicity, we show that we have a sheaf on a basis of SpecA. Nevertheless,
this is no loss of generality because we know how to glue the information on a basis. Consider
an open set of the form D(f) covered by D(fi). The only thing that we will need to show is
that HomRng(A,−)D(g) = HomRng(Ag,−) but this is fairly trivial. After this we can apply the
Yoneda lemma to see that HomSetRng(HomRng(Ag,−),F) ∼= F(Ag) and conclude.

(2)⇒ (3) We remind that sheaf categories are complete and cocomplete therefore, we have the
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following isomorphisms,

HomSetRng( GU ,F) ∼= HomSetRng(colim HomRng(R,−),F) ∼= lim HomSetRng(HomRng(R,−),F),

where we have introduced the following abuse of notation,

colim HomRng(R,−) := GU ∼= colim
(R,p)∈|Elts( GU )|

HomRng(R,−)UR

(3)⇒ (1) The last implication can be proved using the Yoneda lemma to identify

HomSetRng(HomRng(Ai,−),F) ∼= F(Ai).

Remark 7.4.2. We have the following isomorphisms,

HomSetRng(F,HomRng(A,−) ∼= HomGSp(|F|, SpecA) ∼= HomRng(A,ΓO|F|).

Proposition 7.4.3. The structure sheaf of SpecA is naturally isomorphic to,

O|A| : U HomSetRng(HomRng(A,−)U ,H SpecZ[T ])

Proof. As usual, let’s choose a distinguished open set D(f) which is mapped to,

HomSetRng(HomRng(Af ,−),H SpecZ[T ]) ∼= HomRng(Z[T ],ΓOAf
) ∼= Af

showing that both sheaves coincide on a basis implying that they must be isomorphic.

Theorem 7.4.4. Given a functor F ∈ SetRng the structure sheaf of |F| is isomorphic to

OF : U HomSetRng(FU ,H SpecZ[T ])

Proof. We have already shown that this is true in the affine case. For the general situation
consider

HomSetRng(FU ,H SpecZ[T ]) ∼= lim
Elts(FU )

HomSetRng(HomRng(R,−)UR
,H SpecZ[T ]) ∼= limOR(s−1

R (U)).

The reader should recall that given a diagram (Xi,OXi) of locally ringed spaces the structure
sheaf of the colimit is just the limit of the family of sheaves (sR,∗OXi). This finishes the proof.

7.5 The Comparison Theorem

U |HX| X

D(I) SpecA SpecA

iU Ψ

iA

sA cA

Diagram 7.4.1

HomRng(A,−) H|F|

FSpecA F

i

Φ

Diagram 7.4.2

Definition 7.5.1 (Z-scheme). A functor F ∈ |SetRng| is called a Z-scheme if it is local and has
an open covering of representable functors. The category of Z-schemes will be denoted by Z-Sch.
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Theorem 7.5.2 (Comparison Theorem). There is an equivalence of categories between the
category of schemes and the category of Z-schemes. More precisely, the functors H, |−| restrict
to an equivalence of categories.

Sch Z− Sch
H

|−|

Proof. We split the proof in some lemmas.

Lemma 7.5.3 (Topological lemma). Let X be an scheme, then X and |HX| are homeomor-
phic.

Proof. Let X be a scheme, and consider |HX|. For every morphism SpecA f
X we have an

element (A, f) ∈ |Elts(HX)|. This induces a morphism Ψ: |HX| X. We will show that
Ψ induces an homeomorphism on the underlying topological spaces. It is already known that
Ψ is a bijection (Proposition 7.1.7), so we need to show that Ψ is open. Consider the diagram
Diagram 7.4.1, where the left hand side square is a pullback. Due to the fact that X is an scheme
we can check that Ψ(U) is open in X locally on the affine base. This amounts to show that the
big square in the diagram is a pullback. We leave to the reader this routinary comprobation, as a
hint we should use that Ψ is a injective.

Lemma 7.5.4. An open subfunctor FU of F gives rise to an open subspace in the geometric
realization.

Proof. This is clear once we invoke Corollary 7.2.7, to see that U is open in |F| then the
description of the structure sheaf given in Theorem 7.4.4 shows that the structure sheaf of U
coincides with the restriction of O|F| to U .

Corollary 7.5.5. If X is an scheme then |HX| ∼= X.

Proof. Obvious once we see that the structure sheaf of both locally ringed spaces coincides on a
open covering.

It is clear that given an scheme X the associated functor is a Z-scheme, the covering of HX

being induced by the affine covering of X. Moreover, we already saw that the associated functor
of an scheme is local. Conversely given a Z-scheme, the covering by representable functors induces
an affine covering on the geometric realization by affine open subspaces as we saw previously.

Lemma 7.5.6. Given a local functor F, we have the following isomorphism F ∼= H|F|.

Proof. We are going to use that F is local and Proposition 7.4.1 to glue natural isomorphisms.
Firt of all, there is a canonical morphism,

F(A) ΦA H|F|(A)
a |ηa|

where ηa denotes the natural transformation,

HomRng(A,−) ηa

F

1A ηa(1A) = a ∈ F(A)
.

The inverse of this morphism is constructed locally. Consider HomRng(A,−) i
H|F| a

subfunctor associated to the affine open covering of H|F|. It is an easy comprobation to see
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that |Φ| = Ψ−1. Therefore, we can see in Diagram 7.4.2 that the pullback is isomorphic to
HomRng(A,−).
We already knew that the covering of F is also a covering of H|F| the crucial point is that

Φ restricted to this covering is an isomorphism. Thus, we can construct a compatible family of
local inverses {Φ−1|SpecA} and use Proposition 7.4.1 to glue them and form Φ−1. This finishes
the proof of the Comparison Theorem.

The Comparison Theorem states that the study of schemes can be perfomed in a pure functorial
way. This has some clear advantages, for example the construction of limits is well known in
presheaf categories and carries an easier description than in the category of locally ringed spaces.
Another example is the definition of an algebraic group which is more natural in the functorial
language as a Z-scheme that factorizes through the category of groups.

References

[1] Achar, P. Introduction to Perverse Sheaves. Notes, 2007.

[2] Borceux, F. Handbook of Categorical Algebra. Vol. 1. Cambridge University Press, 1994.

[3] Demazure, M. and Gabriel, P. Groupes algebriques. NH, 1970.

[4] M. Lane, Saunders and Moerdijk, I. Sheaves In Geometry and Logic: A First Introduction
to Topos Theory. Springer-Verlag, 1992.

[5] Muñoz, V. and Madrigal, J. J. Topología Algebraica. Sanz y Torres, 2015.

[6] Tennison, B.R. Sheaf Theory. Vol. 20. London Mathematical Society Lecture Note Series.
Cambridge University Press, 1975.

57


	Introduction
	An introduction to Category Theory
	Generalities
	Arrows and functors: Properties.
	Representable Functors and Yoneda Lemma.

	Limits and Colimits
	Important limits and colimits.
	Interchange of limits
	Filtered colimits

	Adjunctions
	Cartesian closed categories


	Sheaves: The language of geometry
	First Definitions
	Sheaves on a basis

	Understanding sheaves via stalks
	Étalé Space: An equivalence between sheaves and bundles
	Change of base: The functors f*,f*

	Sheaves with algebraic structures
	Sheaves of abelian groups.
	OX-Modules
	Locally free sheaves and vector bundles


	Applications
	Ringed Spaces
	Local Systems

	Appendix I: Internal structure of Set*C and sheaf categories
	Subobject classifiers

	Appendix II: Functorial algebraic geometry
	Some reflections about the notion of a point
	Open subfunctors
	Local functors
	Structure sheaf of the geometric realization of a functor
	The Comparison Theorem


