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Another Elementary Proof
of the Nullstellensatz

Enrique Arrondo

In [1], May reproduced an elegant and elementary proof of the Nullstellensatz provided
by Munshi in [2]. We offer here an alternative elementary proof, in which we avoid
some of the algebraic technicalities needed in [1] and [2]. As a counterpart, we need
a simple version of the Noether normalization lemma (Lemma 1). On the other hand,
our proof requires the resultant of two polynomials, but in such a simple way that only
one property of it is needed (and we include it within the proof).

We restrict ourselves to the weak form of the Nullstellensatz (Theorem 2), since the
strong form is easily derived from the weak one with the aid of the Rabinowitsch trick.
For this and other historical comments we refer to [1], from which we have tried to
preserve the notation. We also assume the elementary background given there.

The geometric idea behind the proof is very simple. We prove that the zero locus
of an ideal is not empty by doing induction on the dimension of the ambient affine
space. To do this we project to a smaller affine space (this is why we need to use a
resultant). But a projection can miss some points, so we need to put the zero locus
in good position before projecting (this is why we need Lemma 1). Surprisingly, by
combining these two things in a suitable way we obtain a complete proof.

We proceed with the proof, starting with this simple (and standard) version of
Noether’s normalization lemma.

Lemma 1. If F is an infinite field and f is a nonconstant polynomial in F[x1, . . . , xn]
with n ≥ 2, then it is possible to find λ1, . . . , λn−1 in F such that in

f (x1 + λ1xn, . . . , xn−1 + λn−1xn, xn)

the coefficient of xd
n (where d is the total degree of f ) is nonzero.

Proof. If fd is the homogeneous component of f of degree d, then the coeffi-
cient of xd

n in f (x1 + λ1xn, . . . , xn−1 + λn−1xn, xn) is fd(λ1, . . . , λn−1, 1). Since
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fd(x1, . . . , xn−1, 1) is a nonzero polynomial in F[x1, . . . , xn−1] and F is infinite,
there is some point (λ1, . . . , λn−1) of Fn−1 at which it does not vanish (this can be
established in a straightforward way by induction on the number of variables). This
proves the lemma.

Theorem 2. Let I be a proper ideal of F[x1, . . . , xn]. If F is algebraically closed,
then there exists (a1, . . . , an) in Fn such that f (a1, . . . , an) = 0 for all f in I .

Proof. Let us assume I �= 0, since otherwise the result is trivial. We prove the theorem
by induction on n. The case n = 1 is immediate, because any nonzero proper ideal I
of F[x] is generated by a nonconstant polynomial. A generator of I necessarily has
some root a in F , for F is algebraically closed. Therefore, f (a) = 0 for all f in I .

We assume now that n > 1. Lemma 1 allows us, modulo a change of coordinates
and scaling, to suppose that I contains a polynomial g monic in the variable xn . Fixing
such a polynomial g, we consider the ideal I ′ of F[x1, . . . , xn−1] consisting of those
polynomials in I that do not contain the undeterminate xn . Since 1 is not in I , it fol-
lows that I ′ is a proper ideal. Therefore, by the induction hypothesis there is a point
(a1, . . . , an−1) at which all the polynomials of I ′ vanish. We now assert the following:

Claim. The set J = { f (a1, . . . , an−1, xn) : f ∈ I } is a proper ideal of F[xn].
Suppose to the contrary that there exists f in I such that f (a1, . . . , an−1, xn) = 1.

Thus we can write f = f0 + f1xn + · · · + fd xd
n , with all the fi in F[x1, . . . , xn−1],

f1(a1, . . . , an−1) = · · · = fd(a1, . . . , an−1) = 0, and f0(a1, . . . , an−1) = 1. On the
other hand, we can express the monic polynomial g in the form g = g0 + g1xn +
· · · + ge−1xe−1

n + xe
n with g j in F[x1, . . . , xn−1] for j = 0, . . . , e − 1.

Let R be the resultant of f and g with respect to the variable xn . In other words, R
is the polynomial in F[x1, . . . , xn−1] given by the determinant

R =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 f1 . . . fd 0 0 . . . 0
0 f0 . . . fd−1 fd 0 . . . 0

. . .

0 . . . 0 f0 f1 . . . fd−1 fd

g0 g1 . . . ge−1 1 0 . . . 0
0 g0 . . . ge−2 ge−1 1 0 . . . 0

. . .
. . .

0 . . . 0 g0 g1 . . . ge−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


 e rows


 d rows

It is then well known that R belongs to I . (In the determinant defining R, add to
the first column the second one multiplied by xn , then the third column multiplied
by x2

n , and so on until one adds the last column multiplied by xd+e−1
n . Expanding the

resulting determinant along the first column reveals that R is a linear combination of
f and g.) Therefore R is a member of I ′. But direct inspection of the determinant
defining the resultant shows that, when evaluated at (a1, . . . , an−1), it reduces to the
determinant of a lower-triangular matrix whose entries on its main diagonal are all 1s.
Hence R(a1, . . . , an−1) = 1, which contradicts the fact that R is in I ′. This proves the
claim.

Therefore J is a proper ideal of F[xn], hence is generated either by a polynomial
h(xn) of positive degree or by h = 0. Since F is algebraically closed, in the former case
h has at least one root an in F . In either case this means that f (a1, . . . , an−1, an) = 0
for all f in I , which completes the proof.
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The Sphere Is Not Flat

P. L. Robinson

The circumstance announced in our title explains why it is impossible to construct
(plane) maps of the (ideal, spherical) Earth in which distances are faithfully repre-
sented. More technically, each sphere S carries a metric under which the distance
between points P and Q of S is the length of the (shorter) great circular arc P Q.
The theorem of our title asserts that there is no isometric (that is, distance-preserving)
function from S (or indeed from any of its nonempty open subsets) to the Euclidean
plane; more generally, there is no isometry to any Euclidean space. This theorem may
be traced back to Euler, in his De repraesentatione superficiei sphaericae super plano
of 1778. A relatively sophisticated proof of this result involves regarding S as a Rie-
mannian manifold and verifying that its curvature does not vanish; a more elementary
proof compares areas of plane triangles and spherical triangles. Here we offer a proof
that is more fundamental (in referring only to distances) and is still elementary (in
using only trigonometry and calculus).

We begin our proof by considering the problem of isometrically embedding finite
metric spaces in Euclidean spaces. It is immediately evident that any two-point metric
space embeds isometrically in the real line with its standard Euclidean metric. It is
slightly less evident (but becomes clear upon inspecting the triangle inequality) that
any three-point metric space embeds isometrically in the Euclidean plane. In view of
this geometrically rather seductive progression, it is perhaps surprising that there exist
four-point metric spaces that admit no isometric embeddings into Euclidean R3 or
indeed into Euclidean space of any dimension.

To construct a simple example of such a space, we start from a three-point space
Y = {n, p, q} with metric given by d(n, p) = d(n, q) = d(p, q) = 2L > 0; the im-
age of Y under any isometric embedding in a Euclidean space comprises the vertices
of an equilateral triangle with 2L as side. Now add to Y a point t so as to obtain
X = {n, p, q, t} and extend the metric d to X by declaring that d(p, t) = d(q, t) = L
but leaving d(n, t) temporarily unspecified. Any isometric embedding f from X into
a Euclidean space necessarily maps t to the midpoint T of the line joining P = f (p)

and Q = f (q). As the Euclidean distance between N = f (n) and T is
√

3L , it fol-
lows that the isometric nature of f forces d(n, t) = √

3L as well. Accordingly, in
order to ensure that X admits no isometric embedding into any Euclidean space we
need arrange only that d(n, t) have a different value, for example, as follows:

Theorem 1. The four-point metric space X = {n, p, q, t} with

d(n, t) = d(n, p) = d(n, q) = d(p, q) = 2L , d(p, t) = d(q, t) = L

admits no isometric embedding into any Euclidean space.
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