GEOMETRÍA ALGEBRAICA (Curso 2023/2024) HOJA DE PROBLEMAS № 3

- 1) Calcular el grado de $\mathbb{G}(1,4)$.
- 2) Identificando \mathbb{P}_k^{nm-1} con el proyectivizado del espacio de matrices $n \times m$, demostrar que el subconjunto $X_k \subset \mathbb{P}_k^{nm-1}$ correspondiente a las matrices de rango como mucho k es irreducible de codimensión (n-k)(m-k).
- 3) Identificando $\mathbb{P}_k^{\frac{n(n+3)}{2}}$ con el proyectivizado del espacio de matrices simétricas de orden (n+1), demostrar que el subconjunto $X_k \subset \mathbb{P}_k^{\frac{n(n+3)}{2}}$ correspondiente a las matrices de rango como mucho k es irreducible, y calcular su codimensión.
- 4) Demostrar que una hipersuperficie general de grado $d \geq 6$ de \mathbb{P}^4 no contiene rectas.
- 5) Demostrar que el esquema de Hilbert de las cónicas en \mathbb{P}_k^4 es irreducible de dimensión 11 y concluir que una hipersuperficie general de grado $d \geq 6$ de \mathbb{P}^4 no contiene cónicas.
- 6) Demostrar que el esquema de Hilbert de las cúbicas alabeadas en \mathbb{P}^3_k es irreducible de dimensión 12 y encontrar a partir de qué grado d una superficie general de grado d en \mathbb{P}^3_k no contiene cúbicas alabeadas.
- 7) Demostrar que el esquema de Hilbert de las cúbicas planas en \mathbb{P}^3_k es irreducible de dimensión 12 y encontrar a partir de qué grado d una superficie general de grado d en \mathbb{P}^3_k no contiene cúbicas planas.
- 8) Demostrar que el esquema de Hilbert de las cúbicas alabeadas en \mathbb{P}^4_k es irreducible de dimensión 16 y concluir que una hipersuperficie general de grado $d \geq 6$ de \mathbb{P}^4 no contiene cúbicas alabeadas.
- 9) Para cada $k, n \in \mathbb{N}$, demostrar que existe d(n, k) tal que, para todo $d \geq d(n, k)$, existen hipersuperficies de grado d en \mathbb{P}^n_k que no contienen subespacios lineales de dimensión k.
- 10) Calcular la dimensión del conjunto de espacios lineales de dimensión k de \mathbb{P}^n_k que cortan a un conjunto proyectivo fijo irreducible de dimensión r.
- 11) Demostrar que el conjunto de espacios lineales de dimensión k de \mathbb{P}^n_k que cortan a un espacio lineal fijo de dimensión r en un subespacio de dimensión al menos s (con $r+k-n \leq s \leq \min\{k,r\}$) es un conjunto proyectivo irreducible de $\mathbb{G}(k,n)$ de codimensión (s+1)(n-k-r+s) en $\mathbb{G}(k,n)$.

- 12) Demostrar que las variedades de Segre y Veronese son lisas.
- 13) Demostrar que es lisa la curva del ejercicio 13 de la Hoja 1.
- **14)** Demostrar que el morfismo $\mathbb{A}^1_k \to V(Y^2 X^3)$ definido por $t \mapsto (t^2, t^3)$ no es un isomorfismo.
- **15)** Sea C la cónica de ecuación $X_1^2 + X_0 X_2 = 0$ definida sobre un cuerpo de característica dos. Demostrar que C es lisa, y que existe un punto de \mathbb{P}^2_k por el que pasan todas las rectas tangentes a C.
- 16) Demostrar que el conjunto de hipersuperficies singulares de \mathbb{P}^n_k de grado d forma una hipersuperficie dentro de $\mathbb{P}^{\binom{n+d}{d}-1}_k$. Calcular la dimensión del conjunto de hipersuperficies reducibles.
- 17) Sea $X \subset \mathbb{P}^n_k$ una variedad proyectiva lisa de dimensión r. Demostrar que la aplicación $\varphi: X \to \mathbb{G}(r,n)$ que asocia a cada punto de X su espacio tangente es una aplicación regular (llamada aplicación de Gauss).
- 18) Identificando \mathbb{P}^5_k con el conjunto de cónicas de \mathbb{P}^2_k , demostrar que el conjunto $X \subset \mathbb{P}^5_k$ de cónicas degeneradas tiene como lugar singular el conjunto de rectas dobles. Dado un par de rectas, describir geométricamente cuál es en \mathbb{P}^5_k el hiperplano tangente a X en el punto correspondiente. Dada una recta doble, describir geométricamente cuál es en \mathbb{P}^5_k el cono tangente a X en el punto correspondiente.
- **19)** Se considera $X' = \{((X_0 : X_1 : X_2), (a_0 : a_1)) \in \mathbb{P}^2_k \times \mathbb{P}^1_k \mid a_0 X_1 = a_1 X_0\}$ y sean p_1 y p_2 sus respectivas proyecciones a \mathbb{P}^2_k y \mathbb{P}^1_k . Sea $\varphi : \mathbb{P}^2_k \times \mathbb{P}^1_k \to \mathbb{P}^5_k$ la inmersión de Segre. Sea $X = \varphi(X')$.
 - a) Demostrar que X es la intersección de la variedad de Segre con un hiperplano $H\subset \mathbb{P}^5_k.$
 - b) Demostrar que la imagen por φ de $E = p_1^{-1}(0:0:1)$ es una recta L de \mathbb{P}_k^5 .
 - c) Demostrar que $\varphi(p_2^{-1}(a))$ es una recta de \mathbb{P}^5_k para cualquier punto $a\in\mathbb{P}^1_k$.
 - d) Demostrar que $\varphi(p_1^{-1}(\ell))$ es una cónica de \mathbb{P}^5_k para cualquier recta $\ell \subset \mathbb{P}^2_k$ y que dicha cónica es no degenerada si y sólo si ℓ no contiene al punto (0:0:1). En este último caso, probar que el plano en que está la cónica genera, junto a la recta L, el hiperplano H de \mathbb{P}^5_k .
 - e) Concluir que X se puede definir de la siguiente forma: Se considera una recta $L \subset H$ y un plano $\Pi \subset H$ de un hiperplano $H \subset \mathbb{P}^5_k$ de forma que $A \subset H$ y un se considera una cónica $A \subset H$ no degenerada y un isomorfismo $A \subset H$ en Entonces $A \subset H$ es la unión de las rectas $A \subset H$ cuando $A \subset H$ recorre $A \subset H$ es la unión de las rectas $A \subset H$ cuando $A \subset H$ recorre $A \subset H$ es la unión de las rectas $A \subset H$ cuando $A \subset H$ recorre $A \subset H$ es la unión de las rectas $A \subset H$ es la unión de la unión de las rectas $A \subset H$ es la unión de la
- **20)** Estudiar si la variedad dual de $\mathbb{G}(1,4) \subset \mathbb{P}^9$ es una hipersuperficie de \mathbb{P}^{9^*} .