GEOMETRÍA ALGEBRAICA (Curso 2025/2026) HOJA DE PROBLEMAS Nº 2

- 1) Calcular los siguientes polinomios de Hilbert:
 - (3)(i) De la unión de dos rectas disjuntas de \mathbb{P}^3_k .
 - (4)(ii) De la unión de dos rectas de \mathbb{P}^3_k que se cortan en un punto.
 - (1)(iii) Del ideal $(X_3^2, X_1X_3, X_2X_3, X_1X_2) \subset k[X_0, X_1, X_2, X_3]$ (ver hoja 1, ejercicio 3).
 - (2)(iv) De la unión de una cónica de \mathbb{P}^3 y de un punto fuera de la cónica.
- (3)2) Calcular el grado de las variedades de Segre y Veronese y buscar una interpretación geométrica.
 - 3) Se llama género aritmético de una curva proyectiva X a $P_a(X) := 1 p_X(0)$.
 - (i) Demostrar que una curva plana de grado d tiene género aritmético (d-1)(d-2)/2.
 - (4)(ii) Calcular el género aritmético de cualquier curva racional normal (ejercicio 9 de la hoja 1) y de la curva del ejercicio 13 de la hoja 1).
- (1)4) Encontrar una descomposición primaria del ideal $(X_0X_3 X_1X_2, X_1X_3 X_2^2)$ de $k[X_0, X_1, X_2, X_3]$ e interpretarla geométricamente.
- (2)5) Sea X el conjunto del ejercicio 13 de la hoja 1. Demostrar que una descomposición primaria de $I(X)+(X_1-X_2)$ es $(X_0,X_1,X_2)\cap(X_1,X_2,X_3)\cap(X_0-X_1,X_1-X_2,X_2-X_3)\cap(X_0+X_1,X_1-X_2,X_2+X_3)\cap(X_1-X_2,X_3-\lambda X_2,X_2-\lambda X_0,X_0^3)$, para cualquier $\lambda \neq 0,1,-1$. Encontrar la saturación del ideal.
 - 6) Demostrar la igualdad $(X_0X_2, X_0X_3, X_1X_2, X_2X_3) + (X_1 X_2) = (X_0, X_1, X_2) \cap (X_1, X_2, X_3) \cap (X_1 X_2, X_0 \lambda X_1, X_3 \mu X_1, X_1^2)$ para cualesquiera $\lambda, \mu \in k$.
 - 7) Demostrar que existe un monomorfismo natural $k[X_1, \ldots, X_n]_{\mathfrak{P}} \to k[[X_1, \ldots, X_n]],$ donde $\mathfrak{P} = (X_1, \ldots, X_n).$
- (3)8) Demostrar que, si $\varphi: A \to B$ es un homomorfismo de k-álgebras finitamente generadas, entonces la imagen inversa por φ de un ideal maximal es necesariamente maximal.
- (4)**9)** Dado el morfismo $\operatorname{Spec}(\mathbb{R}[X,Y]/(Y^2-X)) \to \mathbb{A}^1_{\mathbb{R}}$ definido por la inclusión $\mathbb{R}[X] \hookrightarrow \mathbb{R}[X,Y]/(Y^2-X)$, calcular la fibra de los elementos (X-a) (con $a \in \mathbb{R}$) y (X^2+1) . Lo mismo para $\operatorname{Spec}(\mathbb{R}[X,Y]/(X^2+Y^2-1)) \to \mathbb{A}^1_{\mathbb{R}}$.
- (1)**10)** Dar un morfismo de $D(T) \subset \operatorname{Spec} k[[T]]$ a \mathbb{A}^n_k que no se pueda extender a $\operatorname{Spec} k[[T]]$. Demostrar que, en cambio, todo morfismo de D(T) a \mathbb{P}^n_k sí se puede extender.

- (2)**11)** Dar un morfismo $\operatorname{Spec}(k[[T]]) \to \operatorname{Spec}(k[X,Y]/(XY-X-Y))$ tal que la imagen de (T) sea la clase de (X,Y).
- (3)**12)** Demostrar que la proyección $\mathbb{P}^n_k \times \mathbb{P}^m_k \to \mathbb{P}^m_k$ es un morfismo (identificando $\mathbb{P}^n_k \times \mathbb{P}^m_k$ con la variedad de Segre).
 - 13) Demostrar que las inmersiones de Veronese son isomorfismos sobre su imagen.
 - **14)** Demostrar que si dos morfismos $\varphi, \psi : X \to Y$ coinciden en un abierto no vacío de X, Y es separado y X es irreducible, entonces $\varphi = \psi$.
- (4)**15)** Demostrar que, si existe un morfismo no constante de \mathbb{P}_k^n a \mathbb{P}_k^m , entonces $n \leq m$.
 - **16)** Identificando $V(P_{01}P_{23} P_{02}P_{13} + P_{03}P_{12}) \subset \mathbb{P}_k^5$ con $\mathbb{G}(1,3)$, se pide:
 - (1) a) Demostrar que la recta definida por $(p_{01}:p_{02}:p_{03}:p_{12}:p_{13}:p_{23})\in\mathbb{P}^5_k$ está contenida en el plano $X_3=0$ si y sólo si $p_{03}=p_{13}=p_{23}=0$.
 - (2) b) Demostrar que la recta definida por $(p_{01}: p_{02}: p_{03}: p_{12}: p_{13}: p_{23}) \in \mathbb{P}_k^5$ pasa por el punto (1:0:0:0) si y sólo si $p_{12}=p_{13}=p_{23}=0$.
 - (3) c) Demostrar que el conjunto de puntos $(p_{01}:p_{02}:p_{03}:p_{12}:p_{13}:p_{23}) \in \mathbb{P}^5_k$ que corresponden a las rectas de \mathbb{P}^3_k que cortan a la recta $V(X_2,X_3)$ es un conjunto proyectivo de \mathbb{P}^5_k .
 - (4) d) Demostrar que el conjunto de puntos $(p_{01}: p_{02}: p_{03}: p_{12}: p_{13}: p_{23}) \in \mathbb{P}^5_k$ que corresponden a las rectas de \mathbb{P}^3_k que cortan a la cónica $V(X_3, X_0X_2 X_1^2)$ es un conjunto proyectivo de \mathbb{P}^5_k .
 - (1) e) Demostrar que el conjunto de puntos $(p_{01}:p_{02}:p_{03}:p_{12}:p_{13}:p_{23}) \in \mathbb{P}^5_k$ que corresponden a las rectas de \mathbb{P}^3_k contenidas en la cuádrica $V(X_0X_3-X_1X_2)$ es un conjunto proyectivo de \mathbb{P}^5_k .
 - 17) Demostrar que la aplicación $f:V(X_3)\to \mathbb{P}^5_k$ que asocia a cada punto del plano $V(X_3)\subset \mathbb{P}^3_k$ la recta generada por él y por el punto (0:0:0:1) (usando la identificación del ejercicio 16) es un morfismo. Encontrar una expresión para la inversa de f allá donde esté definida.
 - 18) Demostrar que la aplicación $V(P_{03}, P_{13}, P_{23}) \to \mathbb{P}_k^{3*}$ que asocia a cada recta contenida en $V(X_3) \subset \mathbb{P}_k^3$ (ver ejercicio 16) el plano generado por ella y el punto (0:0:0:1) es un morfismo. Encontrar su inverso donde esté definido.
 - 19) Demostrar que la aplicación $(\mathbb{P}_k^{3*} \times \mathbb{P}_k^{3*}) \setminus \Delta \to \mathbb{P}_k^5$ que asocia a cada par de planos distintos su recta intersección es un morfismo.
- (1)**20)** Calcular el grado de $\mathbb{G}(1,4)$.
- (2)**21)** Identificando \mathbb{P}_k^{nm-1} con el proyectivizado del espacio de matrices $n \times m$, demostrar que el subconjunto $X_k \subset \mathbb{P}_k^{nm-1}$ correspondiente a las matrices de rango como mucho k es irreducible de codimensión (n-k)(m-k).