PROBLEMAS DE GEOMETRIA LINEAL (grupo M2) Curso 2025/26, hoja 2

- (9,10)**1)** Encontrar la ecuación del plano de \mathbb{P}^3_k que pasa por el punto (0:1:1:0) y contiene a la recta $\begin{cases} X_0=X_2+X_3\\ X_1=2X_2-X_3 \end{cases}$
- $_{(11,12)}\mathbf{2)}$ Demostrar que la aplicación proyectiva $f:\mathbb{P}^1_k \to \mathbb{P}^3_k$ definida por

$$f(t_0:t_1)=(t_0-t_1:t_1+2t_0:2t_1-t_0:t_0+t_1)$$

es inyectiva. Calcular las ecuaciones del subespacio lineal $f(\mathbb{P}^1)$.

(1,2)3) Parametrizar la recta de \mathbb{P}^3_k obtenida como intersección de los planos

$$\Pi_1 = <(0:1:1:1), (1:0:1:0), (1:-1:0:0)>$$

$$\Pi_2 = <(1:0:0:0), (0:2:1:1), (1:1:-1:0)>$$

- 4) Determinar los enunciados duales de:
 - (3,4)a) Si dos rectas en \mathbb{P}^4_k están contenidas en un plano, entonces se cortan en un punto.
 - $_{(5,6)}{\rm b})$ Si dos planos en \mathbb{P}^4_k están contenidos en un hiperplano, entonces se cortan en una recta.
 - (7,8)c) Dos rectas cualesquiera de \mathbb{P}^4_k están siempre contenidas en un mismo hiperplano.
 - d) Si una recta y un plano de \mathbb{P}^4_k están en un mismo hiperplano, entonces se cortan en algún punto.
 - e) Si una recta y un plano de \mathbb{P}^4_k tienen algún punto en común, entonces están contenidos en algún hiperplano común.
 - f) Si dos planos en \mathbb{P}^5_k están contenidos en un subespacio de dimensión tres, entonces se cortan en una recta.
 - g) Si dos planos en \mathbb{P}^5_k están contenidos en un hiperplano, entonces se cortan en un punto.
- (9,10)**5)** Demostrar que, dadas dos rectas disjuntas r y r' de \mathbb{P}^3_k y un punto P que no esté en ninguna de ellas, existe una única recta ℓ que pase por P y corte a las rectas r y r' ¿Es cierto el resultado análogo en el espacio afín? Calcular la recta ℓ anterior cuando $k = \mathbb{R}, P = (0:1:-1:1),$ y las rectas r y r' tienen ecuaciones

$$r: \begin{cases} X_1 = 0 \\ X_2 = X_0 + X_3 \end{cases}$$
 $r': \begin{cases} X_2 = 0 \\ X_0 = X_3 \end{cases}$

- **6)** Dado un espacio proyectivo $\mathbb{P}(V)$ y un hiperplano suyo $\mathbb{P}(W) \subset \mathbb{P}(V)$, sea $\mathbb{A} := \mathbb{P}(V) \setminus \mathbb{P}(W)$.
 - (i) Fijado $v_0 \in V \setminus W$, demostrar que cada punto $p \in \mathbb{A}$ es la clase de un único vector de la forma $v_p = v_0 + w_p$.
 - (ii) Demostrar que la aplicación $\varphi_{v_0}: \mathbb{A} \times W \to \mathbb{A}$ que manda cada (p, w) a la clase de $v_p + w$ dota a \mathbb{A} de estructura de espacio afín con espacio vectorial asociado W.
 - (iii) Demostrar que la estructura anterior no depende de la elección de v_0 , en el sentido de que, elegido otro vector $v_0' \in V \setminus W$, si $\lambda \in k \setminus \{0\}$ es el único elemento tal que $v_0' \lambda v_0 \in W$, entonces la estructura de espacio afín obtenida con este nuevo v_0' es la que en el Ejercicio 10 de la hoja 1 denotábamos por \mathbb{A}_{λ} , y por tanto es un espacio afín isomorfo a \mathbb{A} .
- 7) Sea $k = \mathbb{Z}_p$ el cuerpo finito de p elementos. Calcular el número de puntos de \mathbb{P}^2_k . ¿Cuántas rectas hay en \mathbb{P}^2_k y cuántos puntos contiene cada una?
- (11,12)8) Sea el haz de planos de $\mathbb{P}^3_{\mathbb{R}}$ de ecuaciones $U_0 + U_1 + U_2 = U_2 + U_3 = 0$. Calcular la recta de $\mathbb{P}^3_{\mathbb{R}}$ contenida en todos los planos del haz.
 - (1,2)**9)** Dar la ecuación de una recta L_{∞} de \mathbb{P}^2_k de forma que los puntos A=(1:0:1), B=(1:-1:0), C=(0:2:1) y D=(0:0:1) sean los vértices de un paralelogramo en el plano afín $\mathbb{P}^2_{\mathbb{R}} \backslash L_{\infty}$ (de lados AB, BC, CD, DA). ¿Es única la recta L_{∞} en estas condiciones?
- (3,4)**10)** Sean P = (1:0:0), Q = (0:0:1) y L la recta $X_0 + X_1 + X_2 = 0$. En el plano afín $\mathbb{P}^2_{\mathbb{R}} \setminus L$ se considera la traslación g que transforma P en Q. Calcular la imagen por g del punto (1:0:1).
- (5,6)**11)** Demostrar que no existe ninguna aplicación proyectiva $\mathbb{P}^2_k \longrightarrow \mathbb{P}^3_k$ que mande respectivamente los puntos (1:0:0), (0:1:0), (0:0:1), (1:1:1) a los puntos (1:0:0:0), (0:1:0), (0:0:1:0), (0:0:1), pero que hay más de una aplicación proyectiva $\mathbb{P}^2_k \longrightarrow \mathbb{P}^1_k$ que manda respectivamente los puntos (1:0:0), (0:1:0), (0:0:1), (1:1:1) a los puntos (1:0), (0:1), (1:1), (1:1).
- (7,8)**12)** Dar las ecuaciones de la aplicación proyectiva $\bar{f}: \mathbb{P}^2_{\mathbb{R}} \to \mathbb{P}^3_{\mathbb{R}}$ que es la extendida de la aplicación afín $f: \mathbb{A}^2_{\mathbb{R}} \to \mathbb{A}^3_{\mathbb{R}}$ definida por f(1,0) = (1,0,2), f(1,2) = (0,1,1) y f(2,0) = (2,0,0).
- (9,10)**13)** Demostrar que, dada una referencia afín \mathcal{R} de un espacio afín \mathbb{A} de dimensión n, la aplicación $\mathbb{A} \to \{X_0 + \ldots + X_n = 1\} \subset \mathbb{A}_k^{n+1}$ que manda cada punto de \mathbb{A} a sus coordenadas baricéntricas respecto de \mathcal{R} es una afinidad.