Elliptic PDE's, Stochastic Processes & Dynamic Programming Equations

Ángel Arroyo García

Universidad Complutense de Madrid

Congreso Bienal de la RSME 18 de Enero de 2022 1 Introduction: the linear case (p = 2)

2 Dynamic programming equations with bounded and measurable increments

3 Open questions

 $n \ge 2$ and $\Omega \subset \mathbb{R}^n$ denotes a bounded open domain.

The Laplacian of $u \in C^2(\Omega)$:

$$\Delta u = \text{Tr}\{D^2 u\} = \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i^2}$$

A function $u \in C^2(\Omega)$ is harmonic in Ω if $\Delta u = 0$.

u is harmonic in $\Omega \iff u$ satisfies the mean value property in Ω :

$$u(x) = \int_{B_r(x)} u(z) dz$$
 for every $B_r(x) \in \Omega$.

- The asymptotic mean value property

Let $u \in C^2(\Omega)$ and fix $x \in \Omega$. Average with respect to $z \in B_1$ the Taylor's expansion of u:

$$u(x + \varepsilon z) = u(x) + \varepsilon \langle \nabla u(x), z \rangle + \frac{\varepsilon^2}{2} \operatorname{Tr} \{ D^2 u(x) \cdot z \otimes z \} + o(\varepsilon^2)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\int_{B_{\varepsilon}(x)} u(y) \, dy = u(x) + \qquad 0 \qquad + \qquad \frac{\varepsilon^2}{2} \cdot \frac{\Delta u(x)}{n+2} \qquad + o(\varepsilon^2)$$

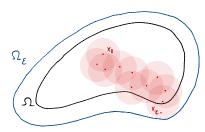
Blaschke, Privaloff, Zaremba (1900's)

Let
$$u \in C(\Omega)$$
. Then
$$u \text{ is harmonic in } \Omega \iff \int_{B_{\varepsilon}(x)} u(y) \ dy = u(x) + o(\varepsilon^2), \quad x \in \Omega.$$

- The random walk

The Random Walk is a stochastic process describing the location of a particle jumping from one position to another inside Ω .

- $-\{x_0,x_1,x_2,\ldots\}\subset\Omega$ describes the location of a particle at each time $j\geqslant0$.
- $-x_{j+1} \in \Omega$ is randomly chosen in $B_{\varepsilon}(x_j)$ for each $j \geqslant 0$.
- The process stops the first time the particle exits Ω at some $x_{\tau} \notin \Omega$.



– Then the amount $F(x_{\tau})$ is collected, where F is a pay-off function defined outside Ω ;

$$F \in C(\Omega_{\varepsilon} \setminus \Omega),$$

where Ω_{ε} is the ε -extension of Ω ,

$$\Omega_{\varepsilon} := \{x \in \mathbb{R}^n : \operatorname{dist}(x,\Omega) < \varepsilon\}.$$

- 1. Introduction: the linear case (p = 2)
- Harmonic functions, the mean value property and random walks

Let $u_{\varepsilon}(x_0)$ be the expected pay-off of a random walk starting from $x_0 \in \Omega$, i.e.

$$u_{\varepsilon}(x_0) := \mathbb{E}[F(x_{\tau}) | x_0].$$

Then, $u_{\varepsilon}:\Omega_{\varepsilon}\to\mathbb{R}$ and, by conditional probability, u_{ε} satisfies

$$u_{arepsilon}(x) = \left\{ egin{array}{ll} f_{B_{arepsilon}(x)} u_{arepsilon}(y) \ dy & ext{if } x \in \Omega, \ F(x) & ext{if } x \in \Omega_{arepsilon} \setminus \Omega. \end{array}
ight.$$

 u_{ε} satisfies the mean value property for each ball $B_{\varepsilon}(x) \subset \Omega_{\varepsilon}$.

This is the so-called Dynamic Programming Equation (DPE).

If $u \in C^2(\Omega)$ and $\nabla u \neq 0$, then $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$.

$$\mathcal{T}_{\varepsilon}u(x) := \frac{p-2}{n+p} \cdot \frac{1}{2} \left\{ \sup_{B_{\varepsilon}(x)} u + \inf_{B_{\varepsilon}(x)} u \right\} + \frac{n+2}{n+p} \int_{B_{\varepsilon}(x)} u(y) \ dy$$

Manfredi-Parviainen-Rossi, 2010

Let $u \in C^2(\Omega)$ and $x \in \Omega$ such that $\nabla u(x) \neq 0$. Then $\Delta_p u(x) = 0$ if and only if $\mathcal{T}_{\varepsilon} u(x) = u(x) + o(\varepsilon^2).$

There is a stochastic interpretation of the *p*-Laplacian in terms of Tug-of-war games with noise, whose corresponding value functions are the solutions of the DPE

$$u_{arepsilon} = egin{cases} \mathcal{T}_{arepsilon} u_{arepsilon} & ext{in } \Omega, \ F & ext{in } \Omega_{arepsilon} \setminus \Omega. \end{cases}$$

1 Introduction: the linear case (p = 2)

2 Dynamic programming equations with bounded and measurable increments

3 Open questions

- Elliptic PDE's in non-divergence form

Given $0 < \lambda \leqslant \Lambda < \infty$, let us consider the PDE in non-divergence form

$$Lu(x) = Tr\{A(x) \cdot D^2 u(x)\} = 0$$

where the coefficients $A(\cdot) = \{a_{ij}\}_{ij}$ are (measurable, bounded) symmetric and uniformly elliptic, i.e.

$$|\lambda|\xi|^2 \leqslant \langle A(x) \cdot \xi, \xi \rangle \leqslant \Lambda |\xi|^2 \qquad (\xi \in \mathbb{R}^n, \ x \in \Omega)$$

Krylov-Safonov (1979)

Solutions of Lu = 0 are $C^{0,\alpha}$ for some $\alpha \in (0,1]$.

Is there a DPE related to this PDE?

- 2. Dynamic programming equations with bounded and measurable increments
- Uniformly elliptic, bounded and measurable increments

In what follows we consider a more general class of Dynamic Programming Equations that take the form

$$\int_{B_1} u(x + \varepsilon z) \ d\mu_{\mathsf{x}}(z) = u(x), \qquad x \in \Omega.$$

$$\int_{B_1} u(x + \varepsilon z) \ d\mu_{\mathsf{x}}(z) = u(x), \qquad x \in \Omega$$

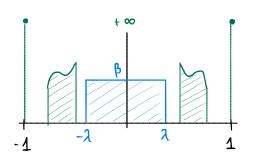
Let μ be a Radon measure supported in B_1 satisfying:

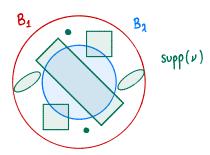
- II Unit measure: $\mu(B_1) = 1$;
- 2 Symmetry: $\mu(E) = \mu(-E)$ for every $E \subset \mathbb{R}^n$ measurable;
- **3** *Ellipticity*: there exist $\beta, \lambda \in (0,1]$ and ν a unit Radon measure supported in B_1 such that

$$\mu(E) = \beta \frac{|E \cap B_{\lambda}|}{|B_{\lambda}|} + (1 - \beta)\nu(E) \qquad \forall \ E \subset \mathbb{R}^n \text{ meas.}$$

We denote by $\mathcal{M}_{\beta,\lambda}$ the set of all measures μ satisfying these conditions.

$$\mu(E) = \beta \frac{|E \cap B_{\lambda}|}{|B_{\lambda}|} + (1 - \beta)\nu(E)$$





$$\int_{B_1} u(x + \varepsilon z) \ d\mu_x(z) = u(x), \qquad x \in \Omega$$

- In addition, we assume that the choice of measures $x \longmapsto \mu_x$ is:
 - **1** Uniformly elliptic: $\mu_x \in \mathcal{M}_{\beta,\lambda}$ for each $x \in \Omega$;
 - Bounded and measurable: the map

$$x \longmapsto \int_{B_1} w \ d\mu_x$$

defines a Borel measurable bounded function $\Omega \to \mathbb{R}$ for every $w: B_1 \to \mathbb{R}$ Borel measurable.

Indeed, we consider non-homogeneous dynamic programming equations:

$$\int_{B_1} u(x + \varepsilon z) \ d\mu_{\mathsf{x}}(z) = u(x) + \varepsilon^2 f(x), \qquad x \in \Omega$$

where f is a Borel measurable bounded function.

For convenience, we rewrite the DPE as

$$\mathcal{L}_{\varepsilon}u(x) := \int_{B_1} \frac{u(x + \varepsilon z) - u(x)}{\varepsilon^2} d\mu_{x}(z) = f(x)$$

$$\mathcal{L}_{\varepsilon}u(x):=\int_{B_1}\frac{u(x+\varepsilon z)+u(x-\varepsilon z)-2u(x)}{2\varepsilon^2}\ d\mu_{x}(z)=f(x)$$

- The limiting PDE

Let $u \in C^2(\Omega)$. Then:

$$u(x + \varepsilon z) = u(x) + \varepsilon \langle \nabla u(x), z \rangle + \frac{\varepsilon^2}{2} \operatorname{Tr} \{ D^2 u(x) \cdot z \otimes z \} + o(\varepsilon^2)$$

Integrating with respect μ_x we get

$$\mathcal{L}_{\varepsilon}u(x) = \int_{B_{1}} \frac{1}{2} \operatorname{Tr}\{D^{2}u(x) \cdot z \otimes z\} d\mu_{x}(z) + o(\varepsilon^{0})$$

$$= \operatorname{Tr}\left\{D^{2}u(x) \cdot \left(\underbrace{\frac{1}{2} \int_{B_{1}} z \otimes z d\mu_{x}(z)}_{=A(x)}\right)\right\} + o(\varepsilon^{0})$$

$$= Lu(x) + o(\varepsilon^{0})$$

Let $u \in C^2(\Omega)$. Then:

$$Lu(x) = 0 \iff \mathcal{L}_{\varepsilon}u(x) = u(x) + o(\varepsilon^2)$$

- The limiting PDE

For
$$A(x) = \frac{1}{2} \int_{B_1} z \otimes z \ d\mu_x(z)$$
, then
$$\left\langle A(x) \cdot \xi, \xi \right\rangle = \frac{|\xi|^2}{2} \int_{B_1} \left\langle \frac{\xi}{|\xi|}, z \right\rangle^2 \ d\mu_x(z).$$

It is easy to estimate

$$\frac{\beta\lambda^2}{2(n+2)}|\xi|^2 \leqslant \langle A(x)\cdot\xi,\xi\rangle \leqslant \frac{1}{2}|\xi|^2,$$

so $A(\cdot)$ is uniformly elliptic in Ω .

- 2. Dynamic programming equations with bounded and measurable increments
- An example: the ellipsoid process

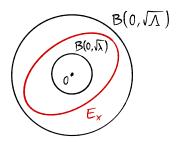
 \square Each positive definite matrix A(x) defines an ellipsoid.

Assuming that $det{A(x)} = 1$ for each $x \in \Omega$ we can define

$$E_x = \sqrt{A(x)} B_1 = \{ y \in \mathbb{R}^n : \langle A(x)^{-1} \cdot y, y \rangle < 1 \}$$

The uniform ellipticity of $A(\cdot)$ yields that

$$B_{\sqrt{\lambda}} \subset E_x \subset B_{\sqrt{\Lambda}}, \qquad x \in \Omega.$$

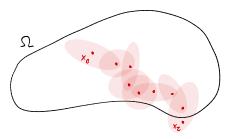


- 2. Dynamic programming equations with bounded and measurable increments
- Uniformly elliptic PDEs in non-divergence form and the ellipsoid process

If
$$u \in C^2(\Omega)$$
 then

$$\operatorname{Tr}\{D^2u(x)\cdot A(x)\}=0 \ \text{in } \Omega \ \iff \ \int_{x+\varepsilon E_x}u(z)\ dz=u(x)+o(\varepsilon^2).$$

The Ellipsoid Process is a generalization of the random walk in which the next step in the process is taken inside a space-dependent ellipsoid.



The expected pay-off function u_{ε} satisfies the dynamic programming principle

$$u_{arepsilon}(x) = egin{cases} f_{x+arepsilon E_x} u_{arepsilon}(z) \ dz & ext{if } x \in \Omega, \ F(x) & ext{if } x \in \Omega_{arepsilon} \setminus \Omega. \end{cases}$$

- 2. Dynamic programming equations with bounded and measurable increments
- Existence and uniqueness

A.-Blanc-Parviainen (2020 & 2021)

Let $f:\Omega\to\mathbb{R}$ and $g:\mathbb{R}^n\setminus\Omega\to\mathbb{R}$ be measurable bounded functions. There exists a unique solution u to the DPE

$$\left\{ egin{aligned} \mathcal{L}_{arepsilon}u = f & & ext{in } \Omega, \ u = g & & ext{in } \Omega_{arepsilon} \setminus \Omega. \end{aligned}
ight.$$

What is the regularity of the solutions of $\mathcal{L}_{\varepsilon}u=f$?

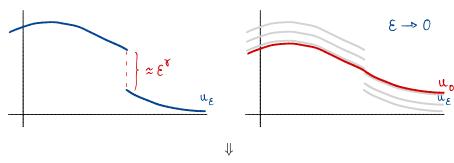
The main problem is that the solutions of $\mathcal{L}_{\varepsilon}u=f$ might present discontinuities. This is due to the fact that the averages are take in balls that might exit de domain.

- Asymptotic regularity estimates

 $\{u_{\varepsilon} : \varepsilon > 0\}$ is asymptotically Hölder/Lipschitz continuous if

$$|u_{\varepsilon}(x)-u_{\varepsilon}(y)|\leqslant C(|x-y|^{\gamma}+\varepsilon^{\gamma}),$$

for some 0 $< \gamma \leqslant 1$.



 $u_0:=\lim_{\epsilon \to 0} u_{\epsilon} \in C^{0,\gamma}$

- 2. Dynamic programming equations with bounded and measurable increments
- Asymptotic regularity estimates: The coupling method

The coupling method for asymptotic Hölder regularity uses the stochastic interpretation of the DPE for the estimates using probabilistic techniques.

Luiro-Parviainen (2018): Several variants of the tug-of-war game in connection to the p-Laplacian.

Parviainen-Ruosteenoja (2016): Parabolic version.

A.-Heino-Parviainen (2017): Space-dependent version in connection to the normalized p(x)-Laplacian.

Han (2018): Space-dependent parabolic version.

A.-Luiro-Parviainen-Ruosteenoja (2019): Asymptotic Lipschitz estimate for the space-dependent version with $p(\cdot)$ Hölder continuous.

- 2. Dynamic programming equations with bounded and measurable increments
- Asymptotic regularity estimates: The coupling method

A.-Parviainen (2020): The coupling method can be adapted for the Ellipsoid Process in the following cases:

- **I** The assignment of coefficients $x \mapsto A(x)$ is continuous.
- **2** The assignment of coefficients $x \mapsto A(x)$ is measurable and the maximum distortion Λ/λ of the ellipsoids satisfies

$$1\leqslant \frac{\Lambda}{\lambda}<\frac{n+1}{n-1}.$$

Extremal Pucci-type operators

The DPE's described with a choice of measures $x \mapsto \mu_x$ can be extended to a more general class of equations.

The maximal Pucci-type operators is

$$\mathcal{L}_{\varepsilon}^{+}u(x):=\sup_{u\in\mathcal{M}_{\beta}}\int_{B_{1}}\frac{u(x+\varepsilon z)-u(x)}{\varepsilon^{2}}\ d\mu(z),$$

while the minimal Pucci-type operator $\mathcal{L}_{\varepsilon}^{-}u(x)$ is defined analogously taking the infimum.

This can be explicitly computed as

$$\mathcal{L}_{\varepsilon}^{+} u(x) = \beta \int_{B_{\lambda}} \frac{u(x + \varepsilon z) - u(x)}{\varepsilon^{2}} dz + (1 - \beta) \sup_{z \in B_{1}} \left\{ \frac{u(x + \varepsilon z) + u(x - \varepsilon z) - 2u(x)}{2\varepsilon^{2}} \right\}.$$

- Extremal Pucci-type operators

The extremal operators allow to cover a more general range of DPE's.

For example, if $2 \leqslant p < +\infty$, for $\beta = \frac{n+2}{n+p}$ and $\lambda = 1$ it holds that

$$\mathcal{L}_{\varepsilon}^{-}u(x)\leqslant \frac{\mathcal{T}_{\varepsilon}u(x)-u(x)}{\varepsilon^{2}}\leqslant \mathcal{L}_{\varepsilon}^{+}u(x),$$

where $\mathcal{T}_{\varepsilon}u=u$ is the DPE for the *p*-Laplacian.

Thus, if u is a solution to the DPE

$$\mathcal{T}_{\varepsilon}u(x)=u(x)+\varepsilon^2f(x),$$

then

$$\mathcal{L}_{\varepsilon}^{-}u\leqslant f\leqslant \mathcal{L}_{\varepsilon}^{+}u.$$

- 2. Dynamic programming equations with bounded and measurable increments
- Asymptotic Hölder estimate and Asymptotic Harnack inequality

A.-Blanc-Parviainen (2020 & 2021)

There exists $\varepsilon_0 > 0$ such that if u satisfies

$$\mathcal{L}_{\varepsilon}^+ u \geqslant -|f|$$
 and $\mathcal{L}_{\varepsilon}^- u \leqslant |f|$ in B_2

with $\varepsilon \in (0, \varepsilon_0)$, then

$$|u(x) - u(y)| \leqslant C(||u||_{\infty} + ||f||_{\infty})(|x - y|^{\gamma} + \varepsilon^{\gamma}), \qquad x, y \in B_1,$$

for some C > 0 and $\gamma \in (0,1]$ independent of ε .

If in addition $u \ge 0$, the following asymptotic Harnack inequality holds,

$$\sup_{B_1} u \leqslant C \left(\inf_{B_1} u + \|f\|_{\infty} + \varepsilon^{\sigma} \|u\|_{\infty} \right).$$

- 2. Dynamic programming equations with bounded and measurable increments
- Asymptotic Hölder estimate and Asymptotic Harnack inequality

- There are two different proofs of the asymptotic Hölder estimate:
 - 1 A stochastic proof using probabilistic techniques.
 - A entirely analytic proof.

Both of them are based in two main ingredients:

- A discrete version of the Aleksandrov-Bakelman-Pucci (ABP) estimate.
- 2 A truncated Calderón-Zygmund dyadic cube decomposition.

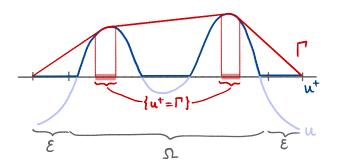
– The ε -ABP estimate

Aleksandrov-Bakelman-Pucci (ABP) estimate: if $f \in C_b(\Omega)$ and $u \in C(\overline{\Omega})$ satisfies

$$\operatorname{Tr}\{A(x)\cdot D^2u(x)\}+f(x)\geqslant 0, \qquad x\in\Omega,$$

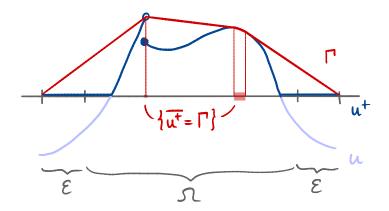
then there exists $C = C(n, \operatorname{diam} \Omega, \lambda, \Lambda)$ such that

$$\sup_{\Omega} u \leqslant \sup_{\partial \Omega} u + C \operatorname{diam} \Omega \left(\int_{\{u^+ = \Gamma\}} |f(x)|^n \ dx \right)^{1/n}.$$

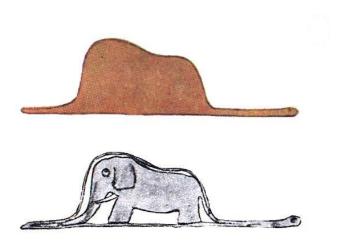


- 2. Dynamic programming equations with bounded and measurable increments
- The ε -ABP estimate
 - Caffarelli-Silvestre (2009): There is a ABP type-estimate for integro-differential equations.

However, in the case of the DPE, the non-local nature of the setting forces to consider non-continuous subsolutions, so Γ might not be $C^{1,1}$...



– The ε -ABP estimate



"Mon dessin ne représentait pas un chapeau. It représentait un serpent boa qui digérait un éléphant." Le Petit Prince.

The ε -ABP estimate (A.-Blanc-Parviainen, 2020 & 2021)

Let $f \in C(\overline{\Omega})$ and $u : \mathbb{R}^n \to \mathbb{R}$ be a bounded measurable function satisfying

$$\mathcal{L}_{\varepsilon}^+ u + f \geqslant 0$$
 in Ω .

Then

$$\sup_{\Omega} u \leqslant \sup_{\mathbb{R}^n \setminus \Omega} u + C(\operatorname{diam} \Omega + \varepsilon) \left(\sum_{Q \in \mathcal{Q}_{\varepsilon}} |Q| \sup_{x \in Q} |f(x)|^n \right)^{1/n}.$$

where $\mathcal{Q}_{\varepsilon}$ is certain pairwise disjoint family of open cubes Q satisfying:

1 Introduction: the linear case (p = 2)

2 Dynamic programming equations with bounded and measurable increments

3 Open questions

3. Open questions

Is it possible to obtain an asymptotic Hölder regularity estimate for solutions of the mean value property

$$\int_{B_{1}} \frac{u(x + \rho(x)y) - u(x)}{\rho(x)^{2}} d\mu_{x}(y) = f(x)$$

where ρ is an admissible radius function in Ω such that

$$\rho(x) \simeq \varepsilon \operatorname{dist}(x, \partial \Omega)$$
?

- Non symmetric probability measures?
- Further regularity? Conditions for asymptotic Lipschitz estimates? And "asymptotic $C^{1,\gamma}$ estimates"?

3. Open questions

- What happens if we replace μ_x by $\mu_{x,\varepsilon,u}$?
- Parabolic version? Lower order terms?

Thanks for your attention!