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ALEXANDER GROTHENDIECK’S WORK ON
FUNCTIONAL ANALYSIS

FERNANDO BOMBAL

Abstract. Alexander Grothendieck obtained the Medal Fields in 1966
for his contributions to Homological Algebra and Algebraic Geometry.
However, Grothendieck’s work on Functional Analysis, appeared in 25
papers between 1950 and 1957, had a tremendous and deep influence in
the development of this area of Mathematics. Along this paper, we shall
try to give a perspective of this work, Grothendieck’s ideas to study and
introduce new properties in topological vector spaces and a quick look
at part of his heritage.

Dedicated to the Memory of Miguel de Guzmán.

Introduction.

Alexander Grothendieck is one of the most influential mathematicians
of the twentieth century. He received the Field’s Medal in 1966 ”for his
contributions to Homological Algebra and Algebraic Geometry”, but this is to
say little about the impact of Grothendieck’s work in modern Mathematics.
Quoting [Ca1]:

The mere enumeration of Grothendieck’s best known contri-
butions is overwhelming: topological tensor products and nu-
clear spaces, sheaf cohomology as derived functors, schemes, K-
theory and Grothendieck-Riemann-Roch, the emphasis on work-
ing relative to a base, defining and constructing geometric ob-
jects via the functors they are to represent, fibred categories and
descent, stacks, Grothendieck topologies and topoi, derived cat-
egories, formalisms of local and global duality, étale cohomology
and the cohomological interpretation of L-functions, crystalline
cohomology, ”standard conjectures”, motives and the ”yoga of
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weights”, tensor categories and motivic Galois groups. It is dif-
ficult to imagine that they all aprang from a single mind.

The above cite is impressive, and surely part of the theories mentioned
are unfamiliar to most of the readers. And it is not less impressive to know
that the list of ”official” Grothendieck’s publications begins in 1950 (with
a paper appeared in C. R. Acad. Sci Paris), and ends in 1974 (Groupes
de Barsottti-Tate et cristaux de Dieudonné, Séminaire de Mathématiques
Supérieures. 45 (Été 1970). Les Presses d l’Université de Montréal, 1974)1.

Several colleagues and friends refers his total dedication to the research,
living alone and working for 25 or 26 hours each ”day”. Hence, why did he
abruptly ended a career so fertile at the age of 42? The official reason given
by Grothendieck himself to resigned his position at the Intitut des Hautes
Etudes Scientifiques (IHES) was that he had discovered that the Ministry of
Defense had partly subsidized the Institute. But it seems that the reaction
is, at least, exaggerated. P. Cartier, friend and colleague at the IHES,
refers in [Ca2] his opinions about this fact:

...He ([Grothendieck]) is the son of a militant anarchist who
had devoted his life to revolution... He lived as an outcast
throughout his entire childhood and was a ”displaced person” for
many years, traveling with a United Nations passport ([is citi-
zenship papers disappeared in Berlin, during 1945]... He lived
his principles, and his home was always wide open to ”stray
cats”. In the end, he came to consider Bures-sur-Yvette [where
was located the IHES] a gilded cage that kept him away from
real life. To this reason, he added a failure of nerve, a doubt as
to the value of scientific activity... He confided his doubts to me
and told me that he was considering activities other than math-
ematics. One should perhaps add the effect of a well-known
”Nobel syndrome”... yielding to the pernicious view that sets
40 as the age when mathematical creativity ceases. He may
have believed that he had passed his peak and that thenceforth
he would be able only to repeat himself with less effectiveness.

The mood of the time also had a strong influence. The dis-
aster that had been the second Viet Nam war, from 1963 to
1972, has awakened many consciences... A significant num-
ber of French mathematicians took concrete action and traveled
to Hanoi, as he (and I) did... The cold war was at its height,
and the risk of a nuclear confrontation was very real. The prob-
lems of overpopulation, pollution, and uncontrolled development
-everything that is now classified as ecology- had also begun to
attract attention. There were plenty of reasons to call science
into question!

1A list of all Grothendieck’s papers on Functional Analysis is included as Appendix at
the end of the paper
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I think that this long cite gives some light about Grothendieck’s character
and his personal circumstances. For the sake of completeness, probably it
should be convenient to give a quick look at Grothendieck’s timeline. But be-
fore proceeding, one remark: Most of the available biographical information
about Grothendieck coincides in the fundamental, but there is a constant
reference to the inaccuracies of the other biographies. I have followed essen-
tially the biographical notes included in [Ca2] and the information appeared
at the web page http://www.math.jussieu.fr/∼leila/biog.html enti-
tled a brief timeline for the life of Alexander Grothendieck (with the added
subtitle: which has the advange of accuracy):

Alexander Grothendieck was born in Berlin, in 1928. His father, Alexan-
der Schapiro (called Sascha) was a revolutionary Jew born in Russia, who
participated in many of the revolutionary movements occurred in central
Europe during the first decades of the twentieth century. In the 1920’s
he lived in Germany, working as a street photographer and fighting politi-
cally against Hitler and the Nazis. He met there Johanna Grothendieck
(called Hanka) a german jewish woman sharing Sascha’s ideals. After 1933,
the couple fled to Paris, leaving young Alexander with a foster family in
Hamburg. Sascha and Hanka joined the anarchists of the F.A.I. when the
Spanish Civil War broke out in 1936. They returned to France in 1939 and
Hanka found work in Nı̂mes.

Alexander’s foster mother decided to send him to joint his parents in
France in 1939, due to the political situation. After the French defeat in
1940, Vichy’s collaborationist government promulgated anti-jewish laws for
the unoccupied zone, and Hanka and his son Alexander were interned in
the Rieucros Camp. Sascha was interned in Le Vernet camp and then sent
directly to Auschwitz, where he died in 1942.

Also in 1942 the Rieucros camp is dissolved. Alexander was sent to the
village Le Chambon sur Lignon and was housed at the Swiss Foyer, attending
the Collège Cévenol during his baccalaureat. He studied mathematics at
the University of Montpellier from 1945 to 1948 and, having finished his
licensure, he went to Paris for his doctorate, with a letter of recommendation
to Élie Cartan. His son, Henri Cartan advices Grothendick to do his
doctorate in Nancy with Laurent Schwartz. He finished his Thesis (a real
masterpiece) in 1953 and spent the following two years in Brazil. In 1955 he
visited the Universities of Kansas and Chicago and hoped to find a position
in France, in spite of his foreign nationality.

In 1959, the IHES is created in Bures-sur-Yvette and a research posi-
tion is offered to Grothendieck. During the 12 years spended there, he
renewed completely the Algebraic Geometry. His Élements de Géométrie
Algébrique (he wrote, with Dieudonné, 4 volumes) and the series Séminaire
de Géométrie Algébrique (one per year, from 1960-61 to 1967-68; some of
them divided in several volumes) form an epoch-making contribution.

As we have said, Grothendieck left the IHES in 1970. After then, he
became vividly interested in Ecology for some time, and founded the group
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Survivre et Vivre. For two years, he had a temporary post at the prestigious
Collége de France in Paris, but he used his lectures to talk more about
questions of ecology and peace than of mathematics.

In 1972 Grothendieck obtains the French nationality and from 1973 to
1984 he lectures at Montpellier University. In 1984 he applied for a posi-
tion of Director or Research at CNRS, specifying that he did not want to
have any regular research duty. After some long discussion at the National
Committee, the position was given to Grothendieck.

In 1988 he retired officially. At the same year he was awarded (jointly
with his student Pierre Deligne the Crafoord Prize, from the Swedish
Royal Academy of Sciences, but he declined the prize on ethical grounds. A
letter explaining his reasons, appeared in 1989 (see [G7]).

In 1991 he left his home suddenly and disappeared. He is said to live
in some part of the Pyrenées, refusing practically every human contact and
spending his time dedicated to meditation on philosophical questions. The
monumental manuscript Récoltes et Semailles (”Harvesting and Sowing”),
a kind of very personal autobiography, with more than 2000 pages, is now
available on Internet in several languages.

There is an interesting web site devoted to Grothendieck, http://www.
grothendieck-circle.org/, with a large amount of mathematical and bi-
ographical information, photos and links to other related sites.

Grothendieck and Functional Analysis

Grothendieck’s contributions to Algebraic Geometry are well known for
general mathematicians. A great part of the three volumes in [Ca1], pub-
lished on the occasion of Grothendieck’s sixtieth birthday, are devoted to
these aspects of his work. [AJ] is also a good survey (in Spanish) on the
work of Grothendieck, focusing mainly on those topics related to Algebraic
Geometry. In the following pages, I shall try to give account of some of his
contributions done at the beginning of his career: those related with Func-
tional Analysis. They are included in 24 papers and one book, appeared
between 1950 and 1957 (except a short note about the trace of certain op-
erators between Banach spaces, published in 1961). Among them, there
are some of the most influential works in the development of Functional
Analysis.

I shall focus mainly my attention on his contributions to the theory of
topological tensor products, first in the setting of locally convex spaces (the
subject of his Thesis) and later as a powerful tool to study the structure of
Banach spaces (mainly contained in the famous São Paolo’s Résumé). Be-
tween these two great masterpieces, I shall briefly comment the remarkable
paper on C(K)-spaces appeared in the Canadian J. Math., where Grothen-
dieck axiomatizes some important properties. And not only for its tran-
scendence in the future development of the theory, but because I think is a
paradigmatic example of Grothendieck’s way of thinking. In any case, I’ll
try not to be very technic, giving always priority to clearness over precision.
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The Thesis: ”Produits tensoriels topologiques et espaces nucléaires.”

As we have seen, Grothendieck went to Paris to do his doctorate in 1949.
After attending some courses there, he followed the advise of H. Cartan and
went to Nancy to work with Laurent Schwartz and Jean Dieudonné.
Let Schwartz himself describe his impressions:

We [Dieudonné and Schwartz] received Grothendieck in oc-
tober, 1951. He showed to Dieudonné a 50 pages paper on ”In-
tegration with values in a topological group”. It was exact, but
with no interest at all. Dieudonné, with all the aggressiveness
he could have, ([and he could a lot] gave him a severe ticking-
off, arguing that he should not work in such a manner, just
generalizing for the pleasure of doing so...Dieudonné was right,
but Grothendieck never admitted it...

We had just published a paper on ”Les espaces F et LF”...
that included 14 questions, problems that we were not able to
solve. Dieudonné proposed Grothendieck to think about some
of them, those that he preferred. We did not see him for some
weeks. When he appeared again, he had solved one half of the
questions! Deep and difficult solutions which needed new no-
tions. We were wondered. [Sch, p. 292-293].

Schwartz realized at once that he had met a mathematician of first or-
der, and in the spring of 1953 he proposed to Grothendieck, as a subject
of his Thesis, the general problem of finding a ”good” topology on the ten-
sor product E

⊗
F of two locally convex spaces E and F . At this time,

Schwartz was starting the theory of vector-valued distributions, that is, the
study of the space D′(F ) := L(D, F ) of continuous linear operators from
the test space D = D(Rn) (the space of C∞ scalar functions with compact
support, endowed with his usual inductive limit topology) into the locally
convex space F . A good topology for this space was evident, inducing a
corresponding good topology on its dense subspace D′ ⊗ F . But this was
not obvious in general.

Grothendieck spent the summer of 1953 in Brazil and, at the end of July,
he wrote to Schwartz a, in certain sense, deceptive letter: on E ⊗ F there
were two topologies, as natural one as the other, and different! Schwartz did
not know what to say, because on D′ ⊗ F there were one natural topology.
Fortunately, two weeks latter a triumphal letter arrived: the two natural
topologies coincide on D′ ⊗ F (and with the natural one)!

The two natural topologies discovered for Grothendieck are what we now
know as the projective or π-topology and the injective or ε-topology. The
π-topology is the greatest ”reasonable” one (in some precise sense), and
makes, with the natural identifications, L(E⊗π F, G) = B(E×F, G), all the
continuous bilinear maps from E × F into G. The ε-topology is the least
”reasonable” topology and had a great importance in the development of
important classes of operators.
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Grothendieck’s Thesis was completed in 1953. It is a masterpiece of more
than 300 pages which contains not only the main theorems of the theory
of topological tensor products, but also new methods, technics and a lot of
seminal ideas which were to renew Functional Analysis. But let us hear the
opinion of his Thesis’ advisor, L. Schwartz:

... ”It is a monument, a masterpiece of the first order. It was
necessary to read it, to understand it, to learn from it, because
it was difficult and deep. It took to me six months at full time.
What a hard work, but what a joy!... I learnt a lot of new things.
It was the most beautiful of ”my” Thesis...” [Sch, p. 294]

Besides the definition of the π and ε topologies on a tensor product of
locally convex spaces and a deep study of this new objects, examples and
applications to the study of vector-valued function spaces, etc., the Thesis
contains much more. We shall mention some of the contents:

I.- The Approximation Property. Since the π-topology is finer than the ε-
topology, we can extend the identity operator to the respective completions,
obtaining a canonical map

E⊗̂πF → E⊗̂εF,

not necessarily injective, as Grothendieck points out. He says that he does
not know any example where the injectivity fails, and poses the Problème
de biunivocité and its relative, the Problème d’approximation. He gives a
great number of different formulations of these problems and introduces a
sufficient condition to answer in the positive both questions: E or F to have
the condition d’approximation (approximation property), which means that
the identity operator can be uniformly approximate on precompact subsets
by operators of finite rank. When considering Banach spaces, he introduces
also the metric approximation property (just imposing that the approximat-
ing operators have norm ≤ 1). He proves that the classical Banach spaces,
their duals, biduals, etc. have the metric approximation property. Also
the nuclear spaces and most of the usual locally spaces that appear in the
Theory of Distributions have the approximation property. Then Grothen-
dieck states as an important problem to know if every locally convex space
(equivalently, every Banach space) has the approximation property. He gives
several equivalent conditions and different properties of permanence, show-
ing in particular that it is equivalent to the problem No. 153 of the famous
Scottish Book, created by S. Banach in 1935 to write down the problems
posed by the group of mathematicians joined around Banach and Steinhaus
in Lwow and their invited visitors. Problem 153 was posed in November 6,
1936 by S. Mazur, and the prize offered for the solution was a live goose.
And, in fact, Mazur had the opportunity of giving the prize in 1973 to
Per Enflo, who had solved in the negative the conjecture the year before.
Of course, Grothendieck’s work was fundamental in the later work on the
problem and its negative solution obtained.
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II.- Nuclear, integral and related operators. When E, F are Banach
spaces, the natural inclusion E′⊗ F ↪→ L(E,F ) can be extended (being
L(E, F ) complete with its usual norm) to a map E⊗̂πF → L(E, F ). The
operators in the image of this map are called by Grothendieck nuclear [] op-
erators. In the general case, an operator T : E → F between locally convex
spaces is called nuclear if it can be factorized in the form T = A ◦ S ◦ B,
with S a nuclear operator between two Banach spaces. Grothendieck fulfills
a deep study of this class of operators, and gives many examples.

Another important class of operators isolated by Grothendieck is that
of integral operators: Since the ε-topology is coarser that the π one, the
topological dual E⊗̂εF )′ is a subset J(E, F ) ⊂ B(E,F )(≡ (E⊗̂πF )′). The
bilinear forms in J(E, F ) are called integral by Grothendieck, who gives also
a characterization in terms of an integral representation. A linear operator
T : E → F is integral if the corresponding bilinear form on E×F ′ is integral.
In case of Banach spaces, Grothendieck gives immediately a factorization
criterium: T : E → F is integral if and only if the composition of T with
the canonical embedding of F in its bidual F” can be factorized in the form
E → L∞(µ) i→ L1(µ) → F”,where µ is a probability on some compact space
and i is the natural inclusion.

This method of factoring an operator through classical Banach spaces in
order to take advantage of the knowledge of these spaces, probably was not
due to Grothendieck, but he made a systematic use of it, and this is one of
the great heritage that Functional Analysis received from him.

Grothendieck carries out a deep study of integral maps, with surprising
applications to classical analysis, summable sequences, vector measures, etc.

The nuclear maps are always compact and integral, and the composition
of two integral maps is nuclear.

In the case of Banach spaces, Grothendieck introduced also, other in-
teresting classes of operators: the right (resp.,left) semi-integral (or ”pre-
integral”) operators T : E → F , just imposing that the composition with
an embedding of F into a L∞-space (resp., with a quotient map from an
L1-space onto E) be integral. The right semi-integral operators are pre-
cisely the familiar absolutely summing operators, generalized and studied in
the sixties by Mityagin, Pelczynski and Pietsch, among others, to the
important class of absolutely p-summing operators (1 ≤ p < ∞).

III. The kernel theorem and Nuclear spaces. During the International
Congress of Mathematics of 1950, Schwartz had announced his surprising
Théorème des noyaux (”Kernel Theorem”), asserting that every continuous
linear operator T ∈ L(D,D′) (≡ B(D×D), i.e., the continuous bilinear maps
on D×D), came from a ”distributional kernel”, that is, a distribution in two
variables K(x, y) ∈ D′(Rn × Rm) such that for ϕ ∈ D(Rn) and ψ ∈ D(Rm),

T (ϕ)(ψ) = 〈ϕ(x)ψ(y),K(x, y)〉 = 〈ϕ⊗ ψ, K〉
that could be written formally as

∫
K(x, y)ϕ(x)ψ(y) dxdy. This is really

surprising, because it is not true for most of the usual function spaces. For
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instance, the identity operator in the usual L2 space, cannot be expressed
as a kernel operator.

In general, since the pioneering works of D. Hilbert and F. Riesz it was
well known that the operators on some function space, like L2, of the type

T (f)(x) :=
∫

K(x, y)f(y) dy

(kernel operator) had especially good properties, but unfortunately they did
not exhaust all the possible operators. And, by the way, this was one of the
main difficulties in the rigorous formulation of Quantum Mechanic. The
idea of P. Dirac and others was to express any observable (∼ ”linear
operator”) in terms of a base formed by the ”states” (ψp) of the system (the
eigenfunctions corresponding to the eigenvalues of the operator, that is, the
”spectrum” of the observable). But in most cases, this spectrum was not
countable (in words of Dirac: ”... the total number of independent states
is infinite, and equal to the number of points of a line” [DIR]) Then the
corresponding ”matrix” (αpq) was indexed by two continuous parameters,
p, q ∈ R, and the action of the observable α on some state ψq should be
written in the form

α(ψq) =
∫

R
αpqψp dp,

that is, as a kernel operator. But then, if one wants to represent in this way
the operator ”multiplication for a non zero constant c”, we need a kernel of
the type αpq = cδ(p− q), that is, a singular function. Dirac used also other
singular functions and its derivatives, just applying formally the method of
”integration by parts”.

Hilbert tried to follow a similar method, but the appearance of singular
functions, made him to look for another point of view: this was the J.
von Neumann’s spectral theory of (non necessarily bounded) operators on
subspaces of a Hilbert space.

The kernel theorem allows to justify rigorously part of the ideas of Dirac:
in fact, if E and F are function spaces over open subsets of U ⊂ Rn, V ⊂ Rm

usually we have
D(U) ↪→ E ↪→ D′(U)

and
D(V ) ↪→ F ↪→ D′(V )

(with continuous embeddings, the first one with dense range). Hence, every
continuous operator S : E → F gives rise, by composition, to a continu-
ous operator T : D(U) → D′(V ). Therefore, it can be represented by a
(distributional) kernel operator!

This long detour tries to explain why a great part of Grothendieck’s thesis
is devoted to the study and characterization of those locally convex spaces
E such that E ⊗π F = E ⊗ε F for every locally convex space F . He called
such spaces nuclear spaces. The reason is that the spaces D (and D′) are
nuclear, and the kernel theorem is a trivial consequence of this fact and
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the (easy) result that D(U) ⊗ε D(V ) is a dense topological subspace of
D(U × V ): In fact, let T : D(U) → D′(V ) be a continuous linear map, and
let B : D(U) × D(V ) → K be the corresponding continuous bilinear map.
Then,

B ∈ B(D(U)×D(V ),K) = (D(U)⊗̂πD(V ))′ = (D(U)⊗̂εD(V ))′ = D′(U×V )

(where the ̂ means the completion of the corresponding space), which is
essentially the content of the kernel theorem, via the natural identifications.

Grothendieck carries out a deep study of these class of locally convex
spaces (which contains no Banach space of infinite dimension), proving that
they enjoy very good properties of stability and permanence, and giving
many examples and applications.

By the way, this is a typical example of Grothendieck’s way of doing
mathematics: put the problem in a more general setting and find a general
theory (usually, very deep and far-reaching) which contains the solution
of the initial problem as a particular case. Of course, this is the way as
most of the twentieth century mathematics were developed, but usually the
general theories were created by many authors along a certain time. In
Grothendieck’s work, this is a constant procedure!

Grothendieck’s Thesis [G1] contains, of course, much more. I have just
tried to give a quick look at it, mentioning some of the most relevant re-
sults presented there. It also contains a great number of open questions and
problems that motivated a great research activity when Grothendieck’s work
became to be known among the specialists. The Thesis appeared published
in 1955, as the Vol. No. 16 of the prestigious Memoir of the American
Mathematical Society. Since it took such a long time to be published, Gro-
thendieck wrote a survey ([G2]) quoting some of the more relevant results
and as available references for his later works on the subject.

The Dunford-Pettis and relatives properties

In 1953 appeared in the Canadian Journal of Mathematics the paper
[G3], ”...devoted essentially to the study of the weakly compact linear op-
erators from a C(K)-space into an arbitrary locally convex space F . ([G3],
introduction). By transposition, this is equivalent to the study of weakly
compact subsets of the space of Radon measures on K (the dual of C(K)).
And, in fact, the paper contains some of the most useful weak compactness
criteria on the spaces of Radon measures. But it contains much more.

Grothendieck’s favorite method of studying general classes of operators
by factoring them through ”classical” spaces of type C(K), L1(µ) or Hilbert
spaces (used in his Thesis, but much more in the forthcoming Résumé),
made quite important to know the behavior of different classes of operators
on these spaces. And there are in the paper several important results in this
direction, starting with a Riesz-type representation in terms of vector mea-
sures. He remarked that, from the Riesz’s classical representation theorem,
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any operator T : C(K) → E could be represented in the form

T (f) =
∫

K
f dm

where m is a regular, finitely additive vector measure with finite semi-
variation on the Borel subsets of K, with values in E” (the representing
measure of T ). Grothendieck proved that T is weakly compact if and only
if its representing measure takes values in E or, equivalently, it is countably
additive.

The relationships between properties of the operator and its representing
vector measure will be widely used in the later work on this subject, being
very fruitful for both theories: linear operators on C(K) spaces (and also on
vector valued function spaces C(K, E)) and vector measures.

On the other hand, the article emphasizes the ”functorial” point of view of
Grothendieck: In order to study the structure of some mathematical object,
you have to look at the behavior of the morphisms on and into it. This
was quite usual in some parts of Mathematics, but not so in Analysis. The
paper contains the first systematic treatment of what I called in [Bo] the
homological method for defining properties on Banach spaces (Grothendieck
treats the general case of operators between locally convex spaces, but he
also mention that Ce travail pu se traiter sans sortir du cadre des espaces
de Banach.).

The general scheme, as exposed in [Bo], is the following: Let Θ, Φ be
two classes of linear operators between Banach spaces (in such a way that
Θ(E, F ), Φ(E,F ) denote subsets of L(E,F ) for every pair E, F of Banach
spaces), and let E be a certain class of Banach spaces. We shall say that E
has property P (Θ, Φ; E), and we’ll write E ∈ P (Θ, Φ; E), if

Θ(E, F ) ⊂ Φ(E, F ), for every F ∈ E .

(When E is the class of all Banach spaces, we shall omit its mention, writing
simply P (Θ, Φ)). Clearly, the property consider could be interested only
when the defining relation does not hold trivially.

Usually, the classes Θ and Φ have some structure; more concretely, they
are usually operator ideals (which means that the class is stable under com-
position with continuous linear operators and Θ(E, F ) is a vector subspace
of L(E, F ), containing the finite rank operators). In this case, property
P (Θ,Φ; E) is an isomorphic invariant, stable under finite products and pass-
ing to complemented subspaces. It is easy to prove that when Φ is a surjec-
tive operator ideal, P (Θ,Φ; E) is also stable under the formation of quotients
by closed subspaces.

In order to give some examples, let us consider the following classes of
operators:

-L: all the operators.
-K: the compact operators, i.e., those sending bounded set into relatively

compact subsets.
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-W: the weakly compact operators, i.e., those sending bounded sets into
weakly relatively compact subset.)

-DP: the Dunford-Pettis (or completely continuous) operators, i.e., those
that sends weakly convergent sequences into norm convergent ones (equiva-
lently, they transform weakly compact subsets into norm compact subsets.)

-D: the Dieudonné (or weakly completely continuous) operators, i.e., those
which transforms weakly Cauchy sequences into weakly convergent ones.

All the above classes are operators ideals, closed under the usual operator
norm. Besides, K and W are surjective. It is also clear that

K ⊂ W ⊂ D ⊂ L (1)

and
K ⊂ DP ⊂ D ⊂ L, (2)

with strict inclusions, and with no other general relation. With our nota-
tions, we have obviously:

- E ∈ P (L,K) if and only if E is finite dimensional.
-E ∈ P (L,W) if and only if E is reflexive.
-E ∈ P (L,DP) if and only if weakly convergent sequences in E are norm

convergent, i.e., E is a Schur space.
-E ∈ P (L,D) if and only if E is weakly sequentially complete.

The Dunford-Pettis property.
This was the first property introduced by Grothendieck in the paper we

are considering. His motivation was a long article by N. Dunford and J.
Pettis appeared in 1940, in which they proved that weakly compact op-
erators on L1-spaces were (in our notation) Dunford-Pettis operators (i.e.,
L1 ∈ P (W,DP)). Important consequences were derived from this fact. Gro-
thendieck axiomatized this property and called it the Dunford-Pettis Prop-
erty (DPP in short). He gave several equivalent formulations and proved
immediately than the property pass from E′ to E. Since the dual of an L1

space (built over a Radon measure) is an L∞ space, hence isomorphic to a
C(K) space, it is enough to prove that this last space enjoys the DPP for
recovering the Dunford and Pettis’ result. And this is one of the important
results contained in Grothendieck’s memory.

The DPP is ”far” from reflexivity, since reflexive spaces with the DPP
are finite dimensional. Also, the DPP can be localized, in the sense that it
coincides with the property P (W,DP; {c0}).

The DPP has been extensively studied (we remit the interested reader to
the survey [Di]), and it gives important information on the structure of the
spaces having it . Besides the C(K) and L1-spaces, the disc algebra A (the
space of all continuous functions on the unit disc D := {z ∈ C : |z| ≤ 1},
which are analytic in the open unit disc), their analogous d-dimensional, the
ball algebra A(Bd) and the polydisc algebra A(Dd), and the space H∞ of all
bounded analytic functions on the open unit disc, enjoy the DPP (the last
three results are due to J. Bourgain, in a series of deep papers published in
1983-84 in Studia Math. and in Acta Math.. He also gave a correct proof of
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a result announced by Grothendieck: the space Ck(U) of all complex-valued
functions which are continuous with all their derivatives or order ≤ k, on a
d-dimensional compact manifold U , has the DPP).
The Reciprocal Dunford Pettis and the Dieudonné properties.

Following the same idea, Grothendieck introduces two more properties.
In our notation:

-P (DP,W): the reciprocal Dunford-Pettis property (RDPP in short; the
reason of the name is obvious.)

-P (D,W): the Dieudonné property (DP in short; the name is due to a
Dieudonné’s result on weakly convergent sequences of Radon measures).

In reality, any of the above properties is equivalent, by duality, to a weak
compactness criteria in the dual of the space enjoying it. And this is the
way as Grothendieck proved that C(K)-spaces enjoy both properties. He
also proved that both properties were stable under complemented subspaces,
finite products and quotients (a trivial consequence of the mentioned fact
that W is a surjective operator ideal).

From the inclusions (1) and (2) it is clear that DP implies the RDPP.
Also, a weakly sequentially complete space E (that is, E ∈ P (L,D)) has
the DP if and only if L(E, ·) = W(E, ·), i.e., E is reflexive. Consequently,
no infinite dimensional L1-space enjoys the DP. And, since such a space
contains a complemented copy of `1, it also fails the RDPP. On the other
hand, Rosenthal’s dichotomy theorem yields immediately that If E contains
no copy of `1, it enjoys the DP and the RDPP.

Grothendieck gave several applications of his results to the structure of
classical Banach spaces.

The ”Grothendieck spaces” and the hereditary properties.

Last chapter in Grothendieck’s paper is devoted to some particular classes
of C(K) spaces. In the first part he considers the case when K is a stonean
space (or extremally disconnected), what means that the closure of every
open set is open. This is equivalent to the fact that CR(K) is a complete
lattice for the usual pointwise order. A typical example is the Stone-Cech
compactification of any discrete topological space. Every L∞(µ)-space is
isomorphic to a C(K)-space with K stonean.

Grothendieck proved that any continuous linear operator from such a
C(K)-space into a separable Banach space, is weakly compact. In other
words, if S denotes the class of all separable Banach spaces, the spaces
C(K) with K stonean verify property P (L,W;S). These spaces are now
known as Grothendieck spaces. An internal characterization (obtained also
by Grothendieck) is that weak∗ convergent sequences in the dual space are
weakly convergent. Obviously, reflexive spaces are Grothendieck (and they
are the only separable Grothendieck spaces). Let us add that J. Bourgain
proved in 1983 that H∞ is a Grothendieck spaces, and that the property
can also be localized: it coincides with the P )L,W; {c0}).
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The last important result included in the paper asserts that every sub-
space of c0 enjoys the DPP, the DP and the RDPP. This is the prototype of
the so called (by obvious reasons) ”hereditary properties”. A crucial lemma
for the proof is that every normalized weakly null sequence in c0 contains a
basic sequence equivalent to the usual c0-basis.

The seminal ideas contained in this paper were not well appreciated for
Banach space researchers for more than 10 years. But then, they became
tremendously influential in the development of the theory.

As for the ”homological method”, let us mention that E ∈ P (W,K)
is equivalent to E′ being Schur and, by a result of Odell and Rosenthal,
E ∈ P (DP,K) if and only if contains no copy of `1. Of course, when
considering new classes of operators one obtains new properties (see [Bo].)

The São Paulo’s ”Résumé”

Surely many specialists in Banach spaces will subscribe the opinion of A.
Pietsch, that this is the most spectacular paper of modern Banach space
theory (and one of the most influential, I would add). It was submitted to
the Bulletin of the Sao Paolo’s Mathematical Society in June 1954, and it
appeared in 1956, but was not grasped for more than 10 years. In 1968
appeared in Studia Mathematica a long paper of more than 50 pages ([LP])
intending to show to the mathematical community some of the jewels hidden
in the Résumé. The authors wrote in the introduction:

”The main purpose of the present paper is to give a new
presentation as well as new applications of the results contained
in Grothendieck’s paper...

Though the theory of tensor products constructed in Grothen-
dieck’s paper has its intrinsic beauty we feel that the results of
Grothendieck and their corollaries can be more clearly presented
without the use of tensor products....

The paper of Grothendieck is quite hard to read and its re-
sults are not generally known even to experts in Banach space
theory...”

And, in fact, the authors bypassed the language of tensor products, by
using systematically what now is konwn as p-summing operators, whose
foundation had appeared in another seminal paper of A. Pietsch published
also in Studia in 1967.

But let us come back to Grothendieck’s Résumé. The underlying idea in
the paper is to obtain new classes of operators between Banach spaces by
defining suitable norms, on E ⊗ F . When E and F are finite-dimensional,
E′ ⊗ F = L(E,F ), and a norm in E′ ⊗ F defines an operator norm. The
extension of this procedure to infinite-dimensional spaces is not trivial. It
involves a skillful use of the so called trace duality (in the finite dimensional
case, this essentially means the duality between the spaces E⊗F ≡ L(F ∗, E)
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and (E ⊗ F )∗ ≡ L(E, F ∗), given by the trace of the composition). Obvi-
ously, this cannot be trivially extended to the setting of infinite-dimensional
Banach spaces and continuous linear maps. Grothendieck was aware of
this problem and he devoted the firs chapter of the Memory to establish a
method for defining ”good” norms on a tensor product of Banach spaces: the
⊗-norms (or tensor norms). Such a norm ‖ · ‖α should be, in the firs place,
reasonable, what means that ‖x ⊗ y‖α = ‖x‖‖y‖ and x′ ⊗ y′ ∈ (E ⊗α F )′,
with (dual) norm ‖x′ ⊗ y′‖α′ = ‖x′‖ ‖y′‖ (hence, E′ ⊗ F ′ is a subspace of
(E ⊗α F )′. The dual norm α′ induces then on E′ ⊗ F ′ another reasonable
norm.)

Of course, the norms ε and π are reasonable (and duals one of the other).
In fact, a norm α defined for every pair of normed spaces is reasonable if
and only if ε ≤ α ≤ π.

On the other hand, the ⊗-norms should verify a good functorial property:
the so called metric mapping property. This means that whenever ui ∈
L(Ei, Fi) (i = 1, 2), then ui ⊗ u2 ∈ L(E1 ⊗α E2, F1 ⊗α F2), with norm
≤ ‖u1‖ ‖u2‖.

Next, Grothendieck gives a method to construct ⊗-norms with good du-
ality properties: First, he considers a ⊗-norm α defined on the class FIN of
all the finite-dimensional Banach spaces. Then, he extends this norm to
every pair of Banach spaces in the following way: If E and F are normed
spaces, for u ∈ E ⊗ F we define

‖u‖−→α := inf{‖u‖α : u ∈ M ⊗N},
when M and N run over the finite dimensional subspaces of E and F ,
respectively. This is what now is known as the finite hull procedure for
extending a tensor norm from the class FIN to the class NORM or all normed
spaces. There is another standard procedure (the cofinite hull, essentially
due to H. P. Lotz) to extend a tensor norm α on FIN to a tensor norm ←−α
on NORM (see [DF], Ch. II), that was not considered by Grothendieck. And
there is a good reason for that. In fact, if E and F have the approximation
property, E⊗−→α F = E⊗←−α F , and the first space without the approximation
property was discovered 20 years after Grothendieck’s Résumé!

Grothendieck considers some operations with the ⊗-norms on FIN, which
are extended to NORM by the finite hull procedure. In particular, when
M,N ∈ FIN, for every ⊗-norm α, M ⊗ N = (M ′ ⊗α N ′)′ (algebraically).
The dual norm induced on M ⊗ N by this identification identification is
denoted by α′ and called the dual norm of α. It is also a ⊗-norm and its
extension

−→
α′ is called the dual tensor norm of −→α . Since α” = α on FIN, the

same relation holds for their extensions.
Now Grothendieck proceeds to define the class of operators and bilinear

forms associated to a tensor norm α: Since α ≤ π, for every pair of Banach
spaces E,F , the dual of the completion E⊗̂αF of E ⊗α F can be identified
to a subspace of B(E,F ), the dual of E⊗̂πF . Grothendieck calls a bilinear
form B on E × F of type α if it belongs to the dual of E⊗̂α′F . Its norm
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in this dual is denoted by ‖B‖α. Analogously, a linear map u : E → F is
of type α if its canonically associated bilinear map on E × F ′ is of type α.
‖u‖α will denote, obviously, the α- norm of the bilinear form. The class of
all linear maps of type α from E to F , endowed with the α-norm, will be
denoted by Lα(E,F ), that is

Lα(E, F ) := (E⊗̂α′F
′)′ ∩ L(E,F ).

(Even more, Lα is a (maximal) normed operator ideal, in the sense of the
theory later developed by Pietsch, There is a one-to-one correspondence
between maximal normed operator ideals and tensor norms, and this duality
has shown to be extremely useful.See [DF] for details.)

Since π′ = ε and ε′ = π, the linear maps of type π are precisely the integral
maps, and those of type ε are all the continuous linear maps. Instead of
defining different tensor norms and look at the corresponding classes of
linear maps (what was done much later by different authors, who identified
the tensor norms that produces the absolutely p-summing, p-integral, p-
dominated or (p, q)-factorable operators, among many others), Grothendieck
develops a general theory of tensor norms, defining new operations (the
right and left projective and injective hull of a tensor norms, connected
to factorization properties of the associated linear maps through classical
Banach spaces of type C = C(K), L = L1(µ) and H = Hilbert space.

Grothendieck proves the fundamental result that the if one starts with the
ε-norm and takes duals, transposed, right or left injective or projective hulls
finitely many times, then one obtains, up to equivalence, only 14 different
tensor norms (the natural tensor norms, and each of them gives rise to a
class of operators characterized by a typical factorization. ([G4, p. 37], [DF,
Chapter 27])

Chapter 3 is devoted to the study of tensor norms on Hilbert spaces.
The so called hilbertian tensor norm is introduced by the property that
the corresponding linear maps factorize through a Hilbert spaces (in [DF] is
designed as w2; in [DJT] is noted as γ2). The relationships with other tensor
norms and the different classes of operators that appear, are studied. In
particular, canonical factorization results for mappings C → H and H → L
are obtained.

But the deepest and most and influential results appear in Chapter 4:
Theorem 4.1, which Grothendieck calls théorème fondamental de la théorie
métrique des produits tensoriels states that the identity operator on a Hilbert
space is what Grothendieck calls ”preintegral”, and its preintegral norm is
bounded by an universal constant KG (Grothendieck’s constant). Grothen-
dieck gave several other formulations (in particular, that the tensor norms
π and w2 are equivalent on C ⊗C) and obtained relevant applications to fac-
torization of operators, Harmonic Analysis, summable sequences, etc. One
of the most important achievements in the mentioned Lindenstrauss and
Pelczynski’s celebrated paper of 1968 was to realize the importance of this
theorem and its reformulation in the form of an inequality involving n × n
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matrices and Hilbert spaces: Let (aij) be an n× n scalar matrix. Then for
each Hilbert space H,

sup





∣∣∣∣∣∣

n∑

i,j=1

aij(xi|yj)

∣∣∣∣∣∣
: ‖xi‖, ‖yj‖ ≤ 1



 ≤ KG sup





∣∣∣∣∣∣

n∑

i,j=1

aijsitj

∣∣∣∣∣∣
: |si|, |tj | ≤ 1



 .

This is why the theorem is now called Grothendieck’s inequality. Their
proof owes much to that of Grothendieck, but this formulation, allied with
the theory of p-summing operators, allows to avoid much of the machinery
of tensor products to present many of Grothendieck’s ideas. Just in [LP]
several important results on the structure of C(K) and Lp spaces (some of
them due to Grothendieck himself!) are obtained. (See [DJT], Chapter 3
for a modern exposition).

As in the case of his Thesis, Grothendieck published some of the results
of the Résumé before its appearance ([G5] and [G6]).

Since 2002 a series of articles under the generic title of the metric theory
of tensor products (Grothendieck’s résumé revisited) are appearing in the
southafrican Journal Quaestiones Math.. The authors are J. Diestel, J.
Fourie and J. Swat and for the moment have been published 5 papers (the
last one in the No. 4 of Vol. 26, corresponding to 2003.)

Conclusion

As we have seen, Grothendieck’s life is astonishing, in the personal and
as a mathematician. His influence in the twentieth century mathematics
is enormous. And not only because of his magnificent results, but for his
attitude and special vision. His look for general theories and methods, and
the relationships between different areas of mathematics, opened new fields
and lines of research, sometimes developed many years after his contribution.
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Appendix
Grothendieck’s publications on Functional Analysis.

(1) Sur le complétion du dual d’un espace vectoriel localement convexe.
C. R. Acad. Sci. Paris 230 (1950), 605-606.

(2) Quelques résultats relatifs à la dualité dans les espaces (F). C. R.
Acad. Sci. Paris 230 (1950), 1561-1563.

(3) Critères généraux de compacité dans les espaces vectoriels localement
convexes. Pathologie des espaces (LF). C. R. Acad. Sci. Paris 231
(1950), 940-941.

(4) Quelques résultats sur les espaces vectoriels topologiques. C. R.
Acad. Sci. Paris 233 (1951), 839-841.

(5) Sur une notion de produit tensoriel topologique d’espaces vectoriels
topologiques, et une classe remarquable d’espaces vectoriels liée à
cette notion. C. R. cad. ci. Paris 233 (1951), 1556-1558.

(6) Critères de compacité dans les espacies fonctionnels généraux. Amer.
J. of Math. 74 (1952), 168-186.

(7) Sur les applications linéaires faiblement compactes d’espaces du type
C(K). Canadian J. Math. 5 (1953), 129-173.

(8) Sur les espaces de solutions d’une classe générale d’équations aux
dérivées partielles. J. Analyse Math. 2 (1953), 243-280.

(9) Sur certains espaces de fonctions holomorphes, I. J. reine angew.
Math. 192 (1953), 35-64.

(10) Sur certains espaces de fonctions holomorphes, II. J. reine angew.
Math. 192 (1953), 77-95.

(11) Quelques points de la théorie des produits tensoriels topologiques.
Segundo symposium sobre algunos problemas matemáticos que se
están estudiando en Latino América, Julio 1954, 173-177. Centro de
Cooperación Cient́ıfica de la UNESCO para América Latina, Mon-
tevideo, Uruguay, 1954.

(12) Espaces vectoriels topologiques. Instituto de Matematica Pura e
Aplicada, Universidade de São Paulo, 1954.

(13) Résumé des résultats essentiels dans la théorie des produits tensoriels
topologiques et des espaces nucléaires. Ann. Inst. Fourier 4 (1952),
73-112.

(14) Sur certains sous-espaces vectoriels de Lp. Canadian J. Math. 6
(1954), 158-160.

(15) Résultats nouveaux dans la théorie des opérations linéaires, I. C. R.
Acad. Sci. Paris 239 (1954), 577-579.

(16) Résultats nouveaux dans la théorie des opérations linéaires, II. C.
R. Aad. Sci.Paris 239 (1954), 607-609.

(17) Sur les espaces (F) et (DF). Summa Brazil. Math. 3 (1954), 57-123.
(18) Produits tensoriels topologiques et espaces nucléaires. Mem. Amer.

Math. Soc. No. 16, 1955.
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(19) Une caractérisation vectorielle-métrique des espaces L1. Canad. J.
Math. 7 (1955), 552-561.

(20) Erratum au mémoire Produits tensoriels topologiques et espaces nucléaires.
Ann. Inst. Fourier 6 (1955-56), 117-120.

(21) Résumé de la théorie métrique des produits tensoriels topologiques.
Bol. Soc. Mat. São Paulo 8 (1956), 1-79.

(22) La théorie de Fredholm. Bull. Soc. Math. France 84 (1956), 319-
384.

(23) Sur certaines classes de suites dans les espaces de Banach, et le
théorème de Dvoretzky-Rogers. Bol. Soc. Mat. São Paulo 8 (1956),
81-110.

(24) Un résultat sur le dual d’une C∗-algèbre. J. Mat. Pures Appl. 36
(1957), 97-108.

(25) The trace of certain operators. Studia Math. 20 (1961), 141-143.



ALEXANDER GROTHENDIECK’S WORK ON FUNCTIONAL ANALYSIS 19

References

[AJ ] L. Alonso and A. Jeremı́as, La obra de Alexander Grothendieck. La
Gaceta de la RSME, vol. 4, No 3 (2001), 623-638.

[Bo ] F. Bombal, Sobre algunas propiedades de espacios de Banach. Re-
vista Acad. Ci. Madrid, 84 (1990), 83-116.

[Ca 1 ] P. Cartier, L. Illusie, N.M. Katz, G. Laumon, Y. Manin and K. A.
Ribets (ed.), The Grothendieck Festschrift, a collection of articles
written in honor of 60th birthday of Alexander Grothendieck (3 Vol-
umes). Progress in Mathematics, 88. Birkhauser, Boston 1990.

[Ca 2 ] P. Cartier, A mad day’s work: from Grothendieck to Connes and
Kontsevich. The evolutions of concepts of space and symmetry. Bull.
Amer. Math. Soc. 38, 4 (2001), 389-408.

[DF ] A. Defant and K. Floret, Tensor norms and Operator Ideals. North-
Holland Mathematical Studies 176. North Holland, , Amsterdam,
1993.

[Di ] J. Diestel, A survey of results related to the Dunford-Pettis property.
Proc. of the Conference on Integration, Topology and Geometry in
Linear Spaces,. Contemp. Math. 2 (1980), 15-60.

[DIR] P. A. M. Dirac, The Principles of Quantum Mechanics, (4th. Ed.)
Oxford University Press, 1958.

[DJT] J. Diestel, H. Jarchow and A. Tongue, Absolutely Summing Opera-
tors. Cambridge Univ. Press, 1995.

[G1 ] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires.
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