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On a characterization of the analytic and

meromorphic functions defined on some rigid domains

par CAPI CORRALES RODRIGÁÑEZ

0. Introduction

’ 

Let C be a non-singular projective curve (i.e. an integral, regular scheme
of finite type and dimension 1) defined over a complete non-archimedean
algebraically closed field k of characteristic 0. Let C’ be the analyti-
fication of C, and X = C B f dl, - - - , ds }, where di is a point of C, or
X = C B Ui=,,...,sDi, where Di is isomorphic to a disc in Pk. Let

u, v E Oc~~ {X ) (holomorphic functions on X ) or u, v E (mero-
morphic functions on X)..

In this work we are interested in the following problem:
to find the smallest integer r such that whenever ai; .. , ar E k and

= for 1  i _ r, then u = v.

In other words, how many fibers determine the holomorphic (respectively
meromorphic) functions on X ?

This study could be thought of as a continuation of the article by Adams
and Straus (see [A-S] ) , who considered the same problem in the case of the
projective line Pt.

In section 1 we prove the following results: .

THEOREM. Let k be complete with respect to a non-archimedean valua-
tion. Suppose that k is algebraically closed and has characteristic 0. Let
C denote a projective, non-singular and irreducible curve over k. Let X be
the anal ytic subspace of C obtained by deleting frorri C a finite number of
points and closed discs. Then X has the following property.

Suppose that u, v are holomorphic functions on X (resp. meromorphic
functions); suppose that the zero set of u is infinite. Let a,, a2, a3
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(resp. al,... denote distinct elements of k; suppose 
for i = 1, 2, 3 (resp. i = 1,... 5). Then u = v.

The strategy we take is the following: using the Riemaim-Roch theorem,
we construct a function T E 7l, the set of rational functions on C, having
exactly { d I , - - - , at its set of poles; d.} = U X p

P

with X p := fx E C, I :5 It turns out that, for p E k* large
3

enough, we get = {x E X, I pl  I  B {di}, where

dj E := {x E P¡, 1 } . This fact allows us to make
use of the results obtained by Adams and Straus for functions defined on
puntured discs and annuli of the projective line (see [A-S], theorem 4-6).

In section 2 we consider the algebraic situation, i.e. the case in which u
and v are rational functions defined on the curve. We finish with a series
of remarks and questions in section 3.

The author wants to express her gratitude to J. Fresnel for his valuable
help throughout this work, as well as for the beautiful way in which he
introduced to her some of the inner mechanisms of this impressive machine
which is the rigid geometry.

1. On the number of fibers over elements of k which determine,
in certain cases, the elements of Qcari (X ) and 

For the analytification of algebraic varieties we refer to [F-M], p. 161.
THEOREM. Let k be complete urith respect to a non-archiTnedean valua-
tion. Suppose that k is algebraically closed and has characteristic 0. Let
C denote a projective, non-singular and irreducible curve over k. Let X be
the analytic subspace of C obtained by deleting from C a finite number of
points and closed discs. Then X has the following property.

Suppose that u, v are holomorphic functions on X znerorriorphic
functions; suppose that the zero set of u is infinite. Let ai, a2, a3

(resp. al, - - - , as) denote distinct elements of k; suppose that 
for i = 1, 2, 3 (resp. i = 1, 5). Then u = v.

Proof.

The theorem is known to be true in the following two cases:
1. X is a punctured disk (Theorem 5, [A-S] ) .
2. X is a "semi-open annulus" , i.e. isomorphic to { z E r _ ~ Izi  1 }

(theorem 4, [A-S]). It suffices now to prove the following lemma.



119

LEMMA. Let X be defined as in the theomm. Then X is connected. X has
1, Xo 1

being either a punctured disc or a semi-open annulus.

Since u has finitely many zeros on the affinoid Xo, there is an Xi (i &#x3E; 1)
where u has infinitely many zeros. Using the known cases, one finds that
u - v is identically zero on Xi. It follows that u - v is zero on a connected
component of X. Since X is connected, this means that u = v holds on X.

Proof (of the lemma) .
1) We suppose that X = C B {d1, d2,... , d,}. As di is a regular point of

C, it is well known that di is contained in an aBEnoid subset Di of with

Di = B) (the unit disc). Let f E’R(C) (rational functions on C) be such
that its poles are exactly d~ } . For 7r small enough we have

where Di is a subdisc of We put

We also have

For the connexity we use the following step.

2) Let f E ?Z(C), Y = {~ E C, I/(x)1 ~ 1 }, and suppose that

{~ E C, Ij(x)1 ~ 1 } is an union of closed discs. Then Y is connected.
Let {~ E C, I/(x)1 ~ 1 } = Dl U D2 U ~ - - U D,, where Di is a disc

with center ai, ai 0 Y. Suppose Y = V U W, union of admissible sets.
Let Ci be the circumference of Di with center ai, then V n Di = Ci or
ø and W n Di = Ci or 0. Up to reordering indices, we have Ci = V n
Di for 1  i  t, Cj = W n Dj for t + 1  j _ s. It follows that
V* := V U W* := W U are admissible sets of can with

t - 7

C = V * U W * . As Can is connected by GAGA, one has V = 0 or W = 0,
i.e. Y is connected.

It follows that X defined in 1) is connected.

3) Let D be a closed subdisc of Can. Then D is strictly contained in a
closed subdisc D’ of can.
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One has Ocon(D) = k  g &#x3E; =· k  z &#x3E;, for some g E Since

Oc., (D) f1 R(C) is dense in (see [F-M] theorem 4), there exists
f E 7l(C) such that OCa.. (D) = k  f &#x3E; (choose f E n 1?,(C)
such that III - gilD  1). Also, there exists D, affine open set of C
with Oc(Z) = k(.fa~ fs~ ~ .. , and D = {z E Z, 1, 2  i  m}.
We consider Z’ = {2? E C, f E Oc,s}; we then have

Up to multiphcation of ,m+1, , ft by a constant, we may assume
 1 for m + 1 ~ i  t. It follows that

and that I with f = fl. Since

On the other hand, since f 2, ,f 3, ’ ’ ’ , ,f t are algebraic over and thus
over k  f &#x3E;, we can use [B-D-R] theorem 1, and guarantee the exis-
tence of p, jpj &#x3E; 1, with lim ¡pin =0, 2 ~ ~ ~ t. Let pl - p,_ _

Pi := for 2 ~ i  t, and

It follows easily from (1) and (2) and from Ocam (D’) = k  {;7, , , ,f;; &#x3E;
P2 ) I pt

that the homorphism ’Y : k  p &#x3E; OCGft(D’) is surjective, and sinceP

k  l &#x3E; is integral of dimension 1, the map y must also be injective.lp

4) We suppose that X = C B {Dl U ... U D8 }; where Di are closed discs.
By 3) Di is strictly contained in a subdisc D~ of Can. By [F-M] theorem 1,
there exists f E n(G) such that u Di = {x E C, f E 1 :5 1 .i=i J L I

Let 
, ,1 1

Then for E small enough , Xe is a semi-open annulus. Furthermore
by 2) Xe is connected, and thus X is connected.
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2. The algebraic case

THEOREM. Let k be an algebraically closed field, char k = 0, C a projec-
tive non-singular curve of genus 9 defined over k, u (resp. v) a surjective
morphism from C onto Let co?c"- a2g+3 be distinct elements of
Pt. = then we have u = v.

Proof.

Case 1: case when g = 0. We may assume u, v E a,o = 0, ai = 00,
and deg (divisor of zeros of u) &#x3E; deg(divisor of zeros of v). Let w =

~ .(u - v). We will show w = 0. 0.

i) Let z E X with z ~ 00, and 0 (vz is the valuation defined by
z). -

Consequently,

(5) deg(divisor of zeros of w~ &#x3E; deg(divisor of zeros of

(6) deg(divisor of zeros of 2v~ &#x3E;_ deg(divisor of zeros of

ii) oo with vz(u)  0. We then have,

It follows from (7) that

(8) deg(divisor of poles of c.v~  deg(divisor of poles of u2v) 0.
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(7) shows that 
‘ 

(9) deg(divisor of poles of  deg( divisor of poles of  0.

iii) We now have:
. if 0, using (5) and (8),

deg(divisor of zeros of w) &#x3E; 3 deg(divisor of zeros of u),

deg(divisor of zeros of w)  3 deg(divisor of zeros of u),
and thus a contradiction.

~ if  0, with (6) and (9)

deg(divisor of zeros of w) &#x3E;_ 3 deg(divisor of zeros of u),

deg(divisor of zeros of w)  3 deg(divisor of zeros of u),
and thus a contradiction.

Hence, u = v, Q.E.D. 0

Case 2: case when g &#x3E;_ 1, i.e. dim 1.

We may assume ao 0. Let i

Let z be such that 0; then

Since vz(du) = vz(u) - 1, and vz(u - v) &#x3E; 1, we have vz(u) -
vz (dw); on the other hand, dr..J E H°(C,S2) implies that dw only has zeros
and is of degree 2g - 2. We thus have, after some calculations,

(10) deg(divisor of zeros of u(u - a2)~~~(u - az9+3)) ~
deg(divisor of zeros of W) + 2g - 2,

(11) deg(divisor of poles of W) :5 2g - 2 + 3 deg(divisor of poles of u).

Suppose that deg(divisor of poles of u) &#x3E;_ deg(divisor of poles of v) &#x3E;_ 2,
(the last inequality comes from 9 &#x3E; 1). It follows from (10) and (11) that

(2g + 3) deg(divisor of zeros of u)  deg(divisor of zeros of W) + 2g - 2 =

deg(divisor of poles of W) + 2g - 2  4g - 4 + 3 deg(divisor of poles of u),
which is clearly a contradiction. Consequently, u = v. 0
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3. Remarks and questions

3.1. Remarks

1. In their theorem 5, Adams and Straus (see [A-S] ) deal with the case
in which either u or v has a singularity in the missing point of a punctured
disc, and they proof r to be 3 in such a case. What would happen if u and
v are both holomorphic on a disc?

The following example shows that, provided the field has enough ele-
ments (say, char k = 0), one can take r arbitrarily large. That is, for any
chosen r we can find a~ , - ~ ~ , ar E k distinct, and functions f and g holo-
morphic on the unit disc, such that = for 1  i  r,
and still f ~ g.

Fix r &#x3E; 2, and let k be a non-archimedean valued field, algebraically
closed and with char k = 0. Choose 7r E k with 0  11r1  1, and let
g(z) = z2 (z - ~r) . Let ai = 0, a2 = 1, and, for 2  i  r, let ai E k be such
that I ai = 1; g(z) - ai = (z - Ai)(z - Ci) with Bs, Ci distinct;

aj if i # j; this is possible because char k = 0. We define

vanishing that is,

It follows that

To see that vi E k  z &#x3E; x, we only need to notice that vi (z) 
with Ilhill  1, for 2  i :5 r. The fact that u E k  z &#x3E; " follows from

looking at the Newton polygon of

which tells us that the only zero of h(z) in the unit disc is precisely ~r.

2. In the algebraic case, in the case where g = 0 the conditions of the
theorem are necessary, as the following example shows: let
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we look for x such
We choose 1r with

3.2. Q uest ions Two questions remain unanswered: _

1. Is the result of the theorem in the algebraic case best possible in case

2. Open question since 1971: would the conclusions of theorems 4-6
in [A-S], (and thus our theorem in 1.) remain valid if the hypothesis on
the number of values attained at the same points are reduced from three to
two and from five to four respectively? As Adams and Straus observe (see
[A-S], Problem and theorem 8, p. 424), the answer is yes if we strengthen
the hypothesis to saying that two functions attain certain values at the
same points with the same multiplicities.

BIBLIOGRAPHY

[A-S] W. W. ADAMS, E. G. STRAUS, Non-archimedean analytic functions taking
the same values at the same points, Illinois J. of Math 15 (1971), 418-424.

[B] N. BOURBAKI, Eléments de mathématiques. Espaces vectoriels topologiques,
Chap. I, Hermann, Paris, 1953.

[B-D-R] S. BOSCH, B. DWORK, P. ROBBA, Un théorème de prolongement pour des
fonctions anatytiques, Math. Ann. 252 (1980), 165-173.

[B-G-R] S. BOSCH, U. GFJNTZER, R. REMMERT, Non archimedean analysis, Grund.
der Math 262, Springer Verlag, 1984.

[F] J. FRESNEL, Géométrie anlytique rigide, Université Bordeaux I, 1984.

[F-M] J. FRESNEL, M. MATIGNON, Sur les espaces analytiques quasi-compacts de
dimension 1 sur un corps valué complet ultramétrique, Annali di matematica
pura ed applicata (IV) CXLV (1986), 159-210.



125

[F-vdP] J. FRESNEL, M. van der PUT, Géométrie analytique rigide et applications,
Progress in Math. 18, Birkhäuser, 1981.

[K] R. KIEHL, Theorem A und Theorem B in der nichtarchimedischen Funktio-
nertheorie, Invent. Math. 2 (1967), 256-273.

[S] J.-P. SERRE, Géométrie algebrique et géométrie analytique, Ann. Inst. Fourier
6 (1956), 1-42.

Capi Corrales Rodriganez
Departamento de algebra
Facultad de matemáticas
Universidad Complutense de Madrid
Madrid 28040 - Espagne


