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Unit groups of orders in quaternion algebras over number fields
provide important examples of non-commutative arithmetic
groups. Let K = Q(

√
d ) be a quadratic field with d < 0 a square-

free integer such that d ≡ 1(mod 8), and let R be its ring
of integers. In this note we study, through its representation
in SO3(R), the group of units of several orders in the quaternion
algebra over K with basis {1, i, j,k} satisfying the relations i2 =
j2 = −1, i j = − ji = k.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The Pell equation is the equation x2 − dy2 = 1, for a given nonzero integer d > 1, to be solved
in integers. One may rewrite this equation as (x + √

d )(x − √
d ) = 1 and, so, finding a solution is

equivalent to finding a non-trivial unit of norm 1 in the ring Z[√d ]. If the solutions are ordered
by magnitude, this reformulation allows us to express the nth solution (xn, yn) in terms of the first
one (x1, y1), by xn + yn

√
d = (x1 + y1

√
d )n . Accordingly, the first solution is called the fundamental

solution to the Pell equation, and solving the Pell equation comes down to finding a fundamental
unit in the group Z[√d ]∗ . This connection to Pell’s equation made the group of units in a quadratic
number field an important object of study for number theorists since the seventeenth century [12].
In the study of group rings of finite groups over number rings, emerges the Diophantine equation
x2 − ay2 − bz2 + abt2 = 1, which can be considered an analogue to Pell equation, in the sense that
the solutions to Pell equation form a discrete subgroup of an algebraic torus isomorphic to Z, and the
integral solutions to this equation form an arithmetic subgroup of SL2(R) commensurable with the
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group of units of an order in a quaternion algebra over Q, quaternion algebras being non-commutative
analogues of quadratic fields.

In general, if K is a number field with ring of integers R , a quaternion algebra A over K is a four-
dimensional algebra over K with basis {1, i, j,k} satisfying the relations i2 = a, j2 = b, i j = − ji = k
for a,b ∈ K ∗ . It is well known that the algebra A, denoted by A = ( a,b

K ), is a central simple algebra.
An order O in A is an R-lattice (i.e., a finitely generated R-module such that K · O = A) that is
a subring. If O is an order in A, its group of units O∗ is commensurable with (Z O)∗ × O1, where
Z O is the center of O and O1 is the subgroup of elements of reduced norm 1. Here the reduced
norm map is the quadratic form q : A → K that multiplies each quaternion x0 + x1i + x2 j + x3k by
its conjugate x0 − x1i − x2 j − x3k. Therefore, the study of the structure of O∗ is reduced to that of
(Z O)∗ and O1. Since the Dirichlet Unit Theorem explains the structure of (Z O)∗ , only O1 needs
to be investigated. We observe that the elements of O1 correspond to solutions over (Z O)∗ of the
equation x2 − ay2 − bz2 + abt2 = 1. We identify O1 with classical groups in two ways.

The field K [i] is a maximal subfield of A, and the Galois group of the extension K [i]/K is a cyclic
group of order two generated by the restriction σ of the inner automorphism of A induced by j, that
is σ(x) = jxj−1, for every x ∈ K . Thus, A = K [i] ⊕ K [i] j can be embedded in M2(C) by the map

x + yj
ι�→

(
x y

bσ(y) σ (x)

)
.

The embedding ι maps the elements of reduced norm 1 into SL2(C), and we may identify O1 with an
arithmetic group of the group SL2(C). Since PSL2(C) is the group of orientation preserving isometries
of the three-dimensional hyperbolic space H3, the group O1 acts on H3, and we can use this action
to study O∗ . The best situation is when this action is discontinuous, since in this case we can use
Poincaré’s method to find a fundamental domain for the action O1 on H3 which will give us, in turn,
a presentation of O1 [10,2,9,5]. It should be noted, though, that it is not easy in general to apply
Poincaré’s method.

Next, we consider the K -vector space with basis B = {i, j,k} consisting in the elements with
trace 0 in A. It is denoted by A0 and is stable under conjugation by elements of A. There is an
exact sequence of groups [8, Theorem 3.1],

1 → K ∗ → A∗ τ−→ SO3(K ) → 1 (1)

where, for y ∈ A∗ , τ (y) is the matrix which represents conjugation of the elements of A0 by y with
respect to B , and SO3(K ) is the orthogonal group with respect to the quadratic form q restricted
to A0. Restriction of the map τ allows us to investigate O1 trough the study of its action on A0. The
action of O1 on H3 is discontinuous only in six cases: (a) when A is a totally definite quaternion
algebra; (b) when A = M2(Q); (c) when A = M2(Q[√d ]) with 0 > d ∈ Z; (d) when A = ( a,b

Q
) is a

division algebra with a or b positive; (e) when A = ( a,b
K ), K is totally real and A ramifies at all

real embeddings of K but one, and (f) when A = ( a,b
K ), K has exactly two complex embeddings and

A is a division algebra that ramifies at all the real embeddings of K . In the first three situations
O1 is known to be, respectively, a finite group, a group commensurable with SL2(Z) and a Bianchi
group [6,5], and cases (d) and (e) were amply studied in, respectively, [1] and [11]. The first example
of unit group of type (f) was computed in [4], with A = (−1,−1

K ), K = Q(
√−7 ), R ring of integers

of K and O = R[1, i, j, i j].
In general, little is known about the structure of SO3(R) when R is the ring of integers of a

number field. In [4], Poincaré’s method was used to find a presentation of O∗; next, the cokernel
of τ : O∗ → SO3(R) was described, and the previously found presentation of O∗ was used to give
a presentation of SO3(R) as well. The simplest examples of type (e), are provided by orders O of
quaternion algebras A = (−1,−1

K ), where K = Q(
√

d ) and d < 0 is a square-free integer, such that the
center of O is the ring of integers R of K . Quaternion algebras of this type are division algebras,
and not matrix algebras, if and only if d ≡ 1(mod 8). In this note we consider such orders, and we
describe the cokernel of the restriction to O∗ of map τ in (1). It should be noted that among the
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fields considered, only Q[√−7 ] has class number 1, a condition which significantly simplifies the
situation; for example, in general the cokernel of the restriction to O∗ of map τ in (1), is isomorphic
to a subgroup of a quotient of the class group of K [7, Theorem 7.2.20], trivial when the class number
is 1. If, with adequate computer programs, we were to obtain a presentation of O∗ via the action
of O1 on H3, this identification would allow us to translate it into a presentation of SO3(R).

2. Description of the results

Let A be the quaternion algebra A = (−1,−1
K ), with K = Q(

√
d ) and d < 0 a square-free integer

such that d ≡ 1(mod 8). Let R = Z[ 1+√
d

2 ] be the ring of integers of K , and let R[1/2] = {x/2k | x ∈ R,

k ∈ Z}. The ideal 2R splits completely in two distinct primes. We set 2R = ℘℘̄ and we define

δ =
{

1 if there exists x ∈ K ∗ with v�(x) even for all � 	= ℘ and v℘(x) odd,

0 else,
(2)

where, for any nonzero prime ideal � of R and any a ∈ K ∗ , v�(a), the �-adic valuation of a, is the
power of � appearing in the factorization of the fractional ideal Ra.

Let AR = R[1, i, j,k], ΛR = R[1, i, j,k,
1+i+ j+k

2 ] and AR[1/2] = R[1/2][1, i, j,k]. Our aim in these
pages is to identify the cokernel of the restriction to A∗

R of map τ in (1). In order to do so, we
will successively consider the restrictions of τ to the chain of groups A∗

R ⊂ Λ∗
R ⊂ A∗

R[1/2] ⊂ A∗ . It is
known [7, Theorem 7.2.20] that there is an exact sequence

1 → R[1/2]∗ → A∗
R[1/2]

τ−→ SO3
(

R[1/2]) ψ−→ Cl
(

R[1/2])2, (3)

where Cl(R[1/2])2 is the 2-torsion part of the class group Cl(R[1/2]) = I(R[1/2])/P(R[1/2]), with
I(R[1/2]) the group of fractional ideals of R[1/2] and P(R[1/2]) its subgroup of fractional principal
ideals.1 We will see that, as a consequence of our Lemma 1, the image under τ of A∗

R[1/2] is, in fact,
contained in SO3(R), and we will successively study the cokernels B1, B2 and B3 of ψ in the three
upper rows of the following commutative diagram with exact rows and inclusions in the vertical
maps,

1 R∗ A∗
R

τ
SO3(R)

ψ
B3 1

1 R∗ Λ∗
R

τ
SO3(R)

ψ
B2 1

1 R[1/2]∗ A∗
R[1/2]

τ
SO3(R)

ψ
B1 1

1 K ∗ A∗ τ
SO3(K ) 1.

(4)

We will start by defining the map ψ . Next, in Lemma 2 we will see that every prime factor q of d
can be expressed as a sum of four squares in qR; this fact will be used in Theorem 3 to show that
B1 � Cl(R[1/2])2.

1 It is essential in the proof of this result as well as to our strategy, that the smallest ring in which the matrix with respect to
{i, j,k} of the bilinear form associated to the sums of squares form is invertible is R[1/2], with the ideal 2R splitting completely
in R . In the general case, with i2 = a, j2 = b, a,b ∈ K ∗, the corresponding matrix has determinant 8a2b2, and the situation gets
much more complicated.
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In Lemma 4 we will describe the quotient group A∗
R[1/2]/R[1/2]∗Λ∗

R . Knowledge of this group and
of B1 will allow us to prove in Theorem 5 that

B2 � {
a ∈ K ∗; v�(a) even for all prime ideals � 	= ℘, ℘̄

}
/K ∗2 R∗.

Finally, in Lemma 6 we will give a description Λ∗
R/A∗

R , which we will then use in Theorem 7 to
show that B3 is isomorphic to a semi-direct product of Z/3Z×Z/3Z and B2, its action to be specified
later.

3. Proofs of the results

The image under map τ in (1) of any element y ∈ A∗ is given by the matrix τ (y) = 1
q(y)

(mrs),

with

(mrs) =
⎛
⎝

y2
0 + y2

1 − y2
2 − y2

3 2(y1 y2 − y0 y3) 2(y0 y2 + y1 y3)

2(y0 y3 + y1 y2) y2
0 − y2

1 + y2
2 − y2

3 2(y2 y3 − y0 y1)

2(y1 y3 − y0 y2) 2(y0 y1 + y2 y3) y2
0 − y2

1 − y2
2 + y2

3

⎞
⎠ . (5)

Lemma 1. Let A(Q2) be the quaternion ring over the 2-adic field. For y ∈ A(Q2), the matrix which represents
the map A(Q2) → A0(Q2) defined by x → yxy−1 with respect to the basis {i, j,k} of A0(Q2), has all of its
entries in Z2 .

Proof. It suffices to show that yiy−1 ∈ A0(Z2). If y = y0 + y1i + y2 j + y3k, yi ∈ Q2, matrix (5) tells
us that q(y)yiy−1 = (y2

0 + y2
1 − y2

2 − y2
3)i + 2(y0 y3 + y1 y2) j + 2(−y0 y2 + y1 y3)k.

We may write y = y0 + y1i + y2 j + y3k = a0
2n + a1

2n i + a2
2n j + a3

2n k, with n ∈ Z, ai ∈ Z2 and ar odd for
at least one value of r. Hence,

(
a2

0 + a2
1 + a2

2 + a2
3

)
yiy−1 = (

a2
0 − a2

1 + a2
2 − a2

3

)
i + 2(a0a3 + a1a2) j + 2(−a0a2 + a1a3)k,

with ar ∈ Z2 for all r, and a2
r odd for at least one value of i. Since a2

0 +a2
1 +a2

2 +a2
3 ≡ a2

0 −a2
1 +a2

2 −a2
3 ≡

±a0ar + asat(mod 2) for all r, s, t , all coefficients of yiy−1 are in Z2. �
Corollary. As a consequence of Lemma 1, the image of A∗

R[1/2] under τ is contained in SO3(R).

In order to define the map ψ , we consider the ring S = {a ∈ K | v�(a) � 0, all � 	= ℘}, with
R ⊂ S and Cl(S) = Cl(R)/〈[℘]〉 = Cl(R[1/2]). We have the following commutative diagram with ex-
act rows,

1 {±1} {a ∈ K ∗ | v�(a) even for all �}/K ∗2 ω
Cl(R)2

α

1

1 S∗/S∗2 {a ∈ K ∗ | v�(a) even for all � 	= ℘}/K ∗2 ω
Cl(R[1/2])2 1

(6)

where S∗ = {±1}εZ for some fundamental ℘-unit ε with v�(ε) = 0 for all � 	= ℘ and, with some
abuse of notation, ω(a) = ∏

�v�(a)/2, the product running along the prime ideals � in the correspond-

ing ring. Thus, Cl(R[1/2])2
φ� {a ∈ K ∗ | v�(a) even for all � 	= ℘}/S∗K ∗2, where φ maps each class of

order 2 in Cl(R[1/2])2 to the generator of its square modulo S∗K ∗2, and φ−1 = ω. The isomorphism φ

allows us to identify Cl(R[1/2])2 with a quotient of a subset of K ∗ .
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Finally, we must check that for each quaternion y such that τ (y) ∈ SO3(R), v�(q(y)) is even for
all prime ideals � 	= ℘, ℘̄ of R . Suppose that for some prime ideal � 	= ℘, ℘̄ , v�(q(y)) is odd; say
v�(q(y)) = 2k + 1 with k ∈ Z. We know [4, Lemma 5.1] that τ induces an isomorphism

{
y = y0 + y1i + y2 j + y3k ∈ A∗ ∣∣ 4yr ys ∈ q(y)R, for all 1 � r, s � 3

}
/K ∗ � SO3(R) (7)

and, thus, since τ (y) ∈ SO3(R), it is 4 ∈ q(y)R , and, consequently, q(y) divides 4y2
i for i = 0,1,2,3.

This implies that v�(yi) � 2k+1
2 and, hence, v�(yi) � k + 1 for each i. But then v�(q(y)) � 2k + 2,

which is a contradiction. We can now define ψ as the map that sends each matrix s in SO3(R) to
the image under ω of the norm q(y) of a quaternion y for which τ (y) = s, as described by the
composition of maps in the following diagram

SO3(R) ↪→ SO3(K ) � A∗/K ′′ q−→ {
a ∈ K ∗ ∣∣ v�(a) even for all � 	= ℘

}
/S∗K ∗2 ω−→ Cl

(
R[1/2])2.

Lemma 2. If q is a prime factor of d and qR = Q2, with Q prime ideal in R, then q can be expressed as a sum
of four squares in Q.

Proof. Since the ideal Q is generated as a Z module by q and
√

d, it suffices to write q as q =∑3
s=0(q · as + √

d · bs)
2 with as,bs ∈ Z for 0 � s � 3. Let z1, z2 be positive integers such that z1 · q +

z2 · d
q = 1. We can find t ∈ Z such that t · −d

q + z1 ≡ 2(mod 4) and, since −d
q is odd, necessarily

t ≡ z1(mod 2). We take x1 = t · −d
q + z1 and x2 = t · q + z2. Then we have x1 · q + x2 · d

q = 1, where
x2 ≡ z2 + t · q ≡ z2 + z1 · q ≡ 1(mod 2). Thus, x1x2 ≡ 2(mod 4) and, not being of the form 4n(8m + 7),
it can be expressed as the sum of three squares.

It follows that x1x2 = A2 + B2 + C2 for certain integers A, B , C . In other words, the norm of the
quaternion Ai + B j + Ck is x1x2. Consequently, there are two integral quaternions u = a0 + a1i +
a2 j + a3k and v = b0 + b1i + b2 j + b3k with

∑3
s=0 as

2 = x1 and
∑3

s=0 bs
2 = x2, such that u · v =

Ai + B j + Ck, and so,
∑3

s=0 asbs = 0. If we let αs = q · as + √
d · bs , then

3∑
s=0

αs
2 = q2

3∑
s=0

as
2 + d

3∑
s=0

bs
2 + 2q

√
d

3∑
s=0

asbs = q2 · x1 + d · x2 = q. �

Theorem 3. The map SO3(R)/τ (A∗
R[1/2])

ψ1−→ Cl(R[1/2])2 induced by ψ is an isomorphism.

Proof. Since sequence (3) is exact, we know that ψ1 is well defined and injective. Let us see that it
is also surjective. Applying the Snake Lemma in (6), we obtain the exact sequence

1 → Ker α → S∗/{±1}S∗2 → Γ → Cl
(

R[1/2])2/α
(
Cl(R)2

) → 1, (8)

where S∗/{±1}S∗2 is a group of order 2 and the group Γ = {a ∈ K ∗; v�(a) even all � 	= ℘}/{a ∈ K ∗;
v�(a) even all �} has order 1 or 2, and it is not trivial if and only if there exists x ∈ K with all
valuations even except the ℘-adic one. Since taking 2-torsion is left exact, Ker α = (〈[℘]〉)2. If the
order of [℘] in Cl(R) is odd, then (〈[℘]〉)2 is trivial, α is injective and (8) becomes

1 → S∗/{±1}S∗2 → Γ → Cl
(

R[1/2])2/α
(
Cl(R)2

) → 1.

Consequently, the fundamental ℘-unit ε must have odd ℘-valuation, the map S∗/{±1}S∗2 → Γ is
surjective and α is an isomorphism. Let r be the number of prime factors of d; then, Cl(R[1/2])2 �
Cl(R)2 � (Z/2Z)r−1 and it is generated by the classes of the prime factors of d. If the order of [℘]
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in Cl(R) is even, then Ker α has order 2 and, from the exactness of (8), we deduce that the funda-
mental ℘-unit ε has even ℘-valuation and Γ → Cl(R[1/2])2/α(Cl(R)2) is an isomorphism. Conse-
quently, if [℘] /∈ Cl(R)2, the map α is surjective and Cl(R[1/2])2 � Cl(R)2/〈[℘]〉2 � (Z/2Z)r−2; while
if [℘] ∈ Cl(R)2, the map α is not surjective and there exists a non-trivial element ξ ∈ K ∗ \ S∗ with
odd ℘-valuation and even �-valuation for all � 	= ℘ . In this case, Cl(R[1/2])2 � (Z/2Z)r−1 and it
is generated by the r − 2 classes in α(Cl(R)2) and the class image under ω of ξ . We conclude
that

Cl
(

R[1/2])2 � (Z/2Z)r−2+δ, (9)

with δ as defined in (2).
We now prove that ψ1 is surjective. Since the product of two sums of four squares is also a

sum of four squares, it suffices to take x either a prime divisor of d, or x ∈ K ∗ with v℘(x) odd and
v�(x) = 0 for all � 	= ℘ . For x a prime divisor of d, let xR = Q2 with Q prime ideal of R . Using
the isomorphism (7), it suffices to find y ∈ AR with coefficients in Q and such that q(y) = x. This
is equivalent to writing x as sum of four squares in Q, which is Lemma 2. Let next x ∈ K ∗ with
v℘(x) odd and v�(x) = 0 for all � 	= ℘ . We know that every element in R can be expressed as a sum
of four squares [3, p. 536], which easily implies that every element in K is the reduced norm of
a quaternion in A. As a consequence, there exists y ∈ A such that q(y) = x and, by Lemma 1, τ (y) ∈
SO3(R). �
Lemma 4. In the situation described in diagram (4), we have

A∗
R[1/2]/R[1/2]∗Λ∗

R � Z/2Z × Z/2Z. (10)

Proof. We consider the following diagram,

1 R∗ R[1/2]∗ β

Z × Z

2

1 Λ∗
R A∗

R[1/2]
β ′

Z × Z

(11)

where β(u) = (v℘(u), v℘̄ (u)) for u ∈ R[1/2]∗ , β ′(x) = (v℘(q(x)), v℘̄ (q(x))) for x ∈ A∗
R[1/2] and the map

Z × Z
2−→ Z × Z is defined by (a,b) → (2a,2b). Then, A∗

R[1/2]/R[1/2]∗Λ∗
R � β ′(A∗

R[1/2])/2β(R[1/2]∗),
with 2β(R[1/2]∗) ⊂ β ′(A∗

R[1/2]) ⊂ β(R[1/2]∗) ⊂ Z × Z.

The image β(R[1/2]∗) contains (1,1) = β(2). Also, if t is the order of [℘] in Cl(R), it is ℘t = ζ R ,
with ζ ∈ R and v�(ζ ) = 0 for all � 	= ℘ . Thus, ζ ∈ R[1/2]∗ and (t,0) = (v℘(ζ ), v℘̄ (ζ )) ∈ β(R[1/2]∗).
Next, as {(t,0), (1,1)} are linearly independent over Z, it is β(R[1/2]∗) = (1,1)Z + (t,0)Z, a lattice of
index t in Z × Z, and 2β(R[1/2]∗) = 2((1,1)Z + (t,0)Z). Finally, on the one hand (1,1) = β ′(1 + i) ∈
β ′(A∗

R[1/2]) and on the other, since every element of R can be expressed as sum of four squares
in R [3, p. 536], there exists x ∈ A∗

R[1/2] with q(x) = ζ , so (t,0) = β ′(x) ∈ β ′(A∗
R[1/2]). Consequently,

β ′(A∗
R[1/2]) = (1,1)Z + (t,0)Z and A∗

R[1/2]/R[1/2]∗Λ∗
R � Z/2Z × Z/2Z. �

Remark. We have A∗
R ⊂ Λ∗

R ⊂ A∗
R[1/2] . On the one hand, diagram (11) implies that Λ∗

R is a normal
subgroup of A∗

R[1/2] . On the other, A∗
R is stable under conjugation by elements of A∗

R[1/2] and, thus,
also normal in A∗

R[1/2] . Consequently, τ (A∗
R) is normal in SO3(R).

Theorem 5. Let B2 = {a ∈ K ∗; v�(a) even if � 	= ℘, ℘̄}/K ∗2 R∗ . The map SO3(R)/τ (Λ∗
R)

ψ2−→ B2 induced
by ψ is an isomorphism.
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Proof. Let s ∈ SO3(R) and y = y0 + y1i + y2 j + y3k ∈ A with τ (y) = s. If y′ ∈ A, y′ 	= y and τ (y′) = s,
then y/y′ ∈ K ∗ and, hence, q(y) and q(y′) differ in a square in K ∗ . As was argued when defining the
map ψ , for each prime ideal � 	= ℘, ℘̄ of R , v�(q(y)) is even. We finally observe that ψ(τ (Λ∗

R)) ⊂
R∗/K ∗2. This shows that the map ψ2 is a well-defined homomorphism.

Suppose, next, that q(y) = a2u, a ∈ K ∗ , u ∈ R∗ . Substituting y by y/a, we may assume q(y) ∈ R∗ .
This implies that the entries in matrix (5) defining τ (y) are all in R . As a consequence of this, 4y2

i ∈ R
for all i and, hence, v�(y) � 0 if � 	= ℘, ℘̄ . Taking sums and differences of the elements in the diagonal
of (5), we verify that v℘(2(y2

i ± y2
j )) � 0 and v℘̄ (2(y2

i ± y2
j )) � 0. Since 2 does not ramify in R ,

this implies that yi ≡ y j(mod 2) for each i, j, y ∈ Λ∗
R and, so, the sequence 1 → R∗ → Λ∗

R
τ2−−→

SO3(R)
ψ−→ B2 is exact and the map ψ2 injective.

Let us see that ψ2 is also surjective. There is an exact sequence 1 → Cl(R)2
φ−→ B2

β̄−→ ∏
v|2 Z/2Z,

where φ sends each class to a generator of its square and β̄(x) = (v℘(x)(mod 2), v℘̄ (x)(mod 2))

for x ∈ B . We set β(x) = (v℘(x), v℘̄ (x)), so β̄(x) = β(x)(mod 2). Then, (1,1) = β(2) ∈ Im β̄ and we
know that there exists x ∈ K ∗ with v℘(x) odd and v�(x) even for � 	= ℘ if and only if δ = 1. Thus,
Im β̄ = (Z/2Z)1+δ and

B2 � (Z/2Z)r+δ. (12)

On the other hand, we have the following commutative diagram,

1 R∗ Λ∗
R

τ
SO3(R)/τ (Λ∗

R)
ψ

ψ(SO3(R)/τ (Λ∗
R)) 1

1 R[1/2]∗ A∗
R[1/2]

τ
SO3(R)/τ (A∗

R[1/2])
ψ

Cl(R[1/2])2 1.

Using the Snake Lemma, (9), (10) and (12) on this diagram, we get ψ(SO3(R)/τ (Λ∗
R)) = B2 and the

theorem is proved. �
Lemma 6. In the situation described in diagram (4), it is Λ∗

R/A∗
R � Z/3Z × Z/3Z.

Proof. Direct computations show that for x ∈ Λ∗
R and y ∈ A∗

R , xyx−1 ∈ A∗
R and A∗

R is a normal sub-
group of Λ∗

R . We start by giving a characterization of the elements of Λ∗
R/A∗

R . Writing every x ∈ Λ∗
R

as x = a+(a+2b)i+(a+2c) j+(a+2d)k
2 , we may define a map σ = (σ1, σ2) :Λ∗

R → R × R by

a + (a + 2b)i + (a + 2c) j + (a + 2d)k

2
�→ (a,b + c + d).

It is easy to check that for x, y ∈ Λ∗
R ,

xy−1 ∈ A∗
R ⇔ σ1(x)σ2(y) + σ1(y)σ2(x) ≡ 0(mod 2R). (13)

Since |R/2R| = 4 and, as a consequence of (13), σ is injective, it is |Λ∗
R/A∗

R | � 16. Furthermore, the

element u = 1+i+ j+k
2 has order 3 in Λ∗

R/A∗
R , which implies that |Λ∗

R/A∗
R | ∈ {3,6,9,12,15}. Computing

σ(u) and σ(u2), (13) guarantees that, for x ∈ Λ∗
R/A∗

R it is

⎧⎪⎨
⎪⎩

x ∈ A∗
R ⇔ σ1(x) ≡ 0(mod 2R),

x ≡ u
(
mod A∗

R

) ⇔ σ2(x) ≡ 0(mod 2R),

x ≡ u2
(
mod A∗ ) ⇔ σ2(x) 	≡ 0(mod 2R) and σ1(x) ≡ σ2(x)(mod 2R).

(14)
R
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If we set d = 1 − 8k with k ∈ N, the integer 8k + 3 is not of the form 4n(8m + 7), so there exist
w2

0, w2
1, w2

2 ∈ 1+8 ·Z with 8k+3 = w2
0 + w2

1 + w2
2, and we may choose wr such that wr ≡ −1(mod 4)

for all r. The element w = w0+w1 i+w2 j+√
dk

2 has order 3 in Λ∗
R/A∗

R and it verifies σ1(w) ≡ 0(mod 2R)

while σ2(w) ≡ 1+√
d

2 	≡ 0,1(mod 2R), which implies, using (14), that it is not in 〈u〉A∗
R . We deduce

that Λ∗
R/A∗

R � 〈u, w〉 � Z/3Z × Z/3Z. �
Theorem 7. Let ρ = τ (u), μ = τ (w) with u, w as in the proof of Lemma 6. Then SO3(R)/τ (A∗

R) � 〈ρ,μ〉 �

SO3(R)/τ (Λ∗
R), and the action of SO3(R)/τ (Λ∗

R) on 〈ρ,μ〉 is given by

– ρx ≡ μ(mod τ (A∗
R)) and μx ≡ ρ(mod τ (A∗

R)) if v℘(ψ(x)) odd and v℘̄ (ψ(x)) even;
– ρx ≡ μ2(mod τ (A∗

R)) and μx ≡ ρ2(mod τ (A∗
R)) if v℘(ψ(x)) even and v℘̄ (ψ(x)) odd;

– ρx ≡ ρ(mod τ (A∗
R)) and μx ≡ μ(mod τ (A∗

R)) if v℘(ψ(x)) ≡ v℘̄ (ψ(x)) ≡ 0(mod 2);
– ρx ≡ ρ2(mod τ (A∗

R)) and μx ≡ μ2(mod τ (A∗
R)) if v℘(ψ(x)) ≡ v℘̄ (ψ(x)) ≡ 1(mod 2).

Proof. Similar arguments to those used in Theorem 5, together with Lemma 6 and (14), give us
Theorem 7. �
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