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1. Introduction

The Pell equation is the equation x> — dy? =1, for a given nonzero integer d > 1, to be solved
in integers. One may rewrite this equation as (x + +/d)(x — ~/d) = 1 and, so, finding a solution is
equivalent to finding a non-trivial unit of norm 1 in the ring Z[+/d]. If the solutions are ordered
by magnitude, this reformulation allows us to express the nth solution (x,, y,) in terms of the first
one (X1, 1), by xn + ynv/d = (x1 + y1+/d)". Accordingly, the first solution is called the fundamental
solution to the Pell equation, and solving the Pell equation comes down to finding a fundamental
unit in the group Z[~/d]*. This connection to Pell's equation made the group of units in a quadratic
number field an important object of study for number theorists since the seventeenth century [12].
In the study of group rings of finite groups over number rings, emerges the Diophantine equation
x% — ay? — bz% + abt? = 1, which can be considered an analogue to Pell equation, in the sense that
the solutions to Pell equation form a discrete subgroup of an algebraic torus isomorphic to Z, and the
integral solutions to this equation form an arithmetic subgroup of SL,(R) commensurable with the
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group of units of an order in a quaternion algebra over (Q, quaternion algebras being non-commutative
analogues of quadratic fields.

In general, if K is a number field with ring of integers R, a quaternion algebra A over K is a four-
dimensional algebra over K with basis {1,1, j, k} satisfying the relations i? =a, j2=b, ij = —ji=k
for a,b € K*. It is well known that the algebra A, denoted by A = (%), is a central simple algebra.
An order O in A is an R-lattice (i.e., a finitely generated R-module such that K - O = A) that is
a subring. If O is an order in A, its group of units O* is commensurable with (ZO)* x O!, where
ZO is the center of @ and O! is the subgroup of elements of reduced norm 1. Here the reduced
norm map is the quadratic form ¢q: A — K that multiplies each quaternion xo + x1i + x2j + X3k by
its conjugate xo — x1i — xj — x3k. Therefore, the study of the structure of O* is reduced to that of
(ZO)* and O!. Since the Dirichlet Unit Theorem explains the structure of (ZO)*, only O! needs
to be investigated. We observe that the elements of @' correspond to solutions over (ZO)* of the
equation x? — ay? — bz? + abt? = 1. We identify O' with classical groups in two ways.

The field K[i] is a maximal subfield of A, and the Galois group of the extension K[i]/K is a cyclic
group of order two generated by the restriction o of the inner automorphism of A induced by j, that
is o (x) = jxj~1, for every x € K. Thus, A = K[i]® K[i]j can be embedded in M,(C) by the map

1 X y
Xty (bo(y) o(x))'

The embedding « maps the elements of reduced norm 1 into SL,(C), and we may identify ©O! with an
arithmetic group of the group SL,(C). Since PSL,(C) is the group of orientation preserving isometries
of the three-dimensional hyperbolic space H3, the group O! acts on H3, and we can use this action
to study O*. The best situation is when this action is discontinuous, since in this case we can use
Poincaré’s method to find a fundamental domain for the action @! on H? which will give us, in turn,
a presentation of @' [10,2,9,5]. It should be noted, though, that it is not easy in general to apply
Poincaré’s method.

Next, we consider the K-vector space with basis B = {i, j, k} consisting in the elements with
trace 0 in A. It is denoted by Ag and is stable under conjugation by elements of A. There is an
exact sequence of groups [8, Theorem 3.1],

1— K* = A* 5 SO3(K) — 1 (1)

where, for y € A*, t(y) is the matrix which represents conjugation of the elements of Ag by y with
respect to B, and SO3(K) is the orthogonal group with respect to the quadratic form g restricted
to Ao. Restriction of the map 7 allows us to investigate O! trough the study of its action on Ap. The
action of @' on H3 is discontinuous only in six cases: (a) when A is a totally definite quaternion
algebra; (b) when A = M3(Q); (c) when A = M»(Q[+/d]) with 0>d € Z; (d) when A = (%) is a

division algebra with a or b positive; (e) when A = (%), K is totally real and A ramifies at all

real embeddings of K but one, and (f) when A = (%), K has exactly two complex embeddings and
A is a division algebra that ramifies at all the real embeddings of K. In the first three situations
O is known to be, respectively, a finite group, a group commensurable with SL,(Z) and a Bianchi
group [6,5], and cases (d) and (e) were amply studied in, respectively, [1] and [11]. The first example
of unit group of type (f) was computed in [4], with A = (= k‘]), K = Q(+/=7), R ring of integers
of K and O =R[1,1, j, ij].

In general, little is known about the structure of SO3(R) when R is the ring of integers of a
number field. In [4], Poincaré’s method was used to find a presentation of O*; next, the cokernel
of 7:0* — SO3(R) was described, and the previously found presentation of O* was used to give
a presentation of SO3(R) as well. The simplest examples of type (e), are provided by orders O of
quaternion algebras A = (=%=1), where K = Q(+/d) and d < 0 is a square-free integer, such that the
center of O is the ring of integers R of K. Quaternion algebras of this type are division algebras,
and not matrix algebras, if and only if d = 1(mod 8). In this note we consider such orders, and we

describe the cokernel of the restriction to O* of map t in (1). It should be noted that among the




890 C. Corrales-Rodrigdfiez / Journal of Number Theory 132 (2012) 888-895

fields considered, only Q[+/—7] has class number 1, a condition which significantly simplifies the
situation; for example, in general the cokernel of the restriction to O* of map t in (1), is isomorphic
to a subgroup of a quotient of the class group of K [7, Theorem 7.2.20], trivial when the class number
is 1. If, with adequate computer programs, we were to obtain a presentation of O* via the action
of O! on H3, this identification would allow us to translate it into a presentation of SO3(R).

2. Description of the results

Let A be the quaternion algebra A = (_1,’{1), with K = Q(+/d) and d < 0 a square-free integer

such that d = 1(mod 8). Let R = Z[Hz—‘/a] be the ring of integers of K, and let R[1/2] = {x/2¥ | x € R,
k € Z}. The ideal 2R splits completely in two distinct primes. We set 2R = g and we define

(2)

5= { 1 if there exists x € K* with v,(x) even for all £ # g and v, (x) odd,
0 else,

where, for any nonzero prime ideal ¢ of R and any a € K*, v,(a), the ¢-adic valuation of a, is the

power of ¢ appearing in the factorization of the fractional ideal Ra.

Let A = R[1,i, j,kl, Ag = R[1,i, j,k, "] and Agj1/2) = R[1/21[1,1, j,k]. Our aim in these
pages is to identify the cokernel of the restriction to A} of map t in (1). In order to do so, we
will successively consider the restrictions of 7 to the chain of groups Ay C A} C AE[]/ZJ cC A* It is
known [7, Theorem 7.2.20] that there is an exact sequence

1— R[1/2]" — Ag1 g 5 S03(R[1/2]) Y, CI(R[1/2]),. (3)

where CI(R[1/2]); is the 2-torsion part of the class group CI(R[1/2]) = I(R[1/2])/P(R[1/2]), with
I(R[1/2]) the group of fractional ideals of R[1/2] and P(R[1/2]) its subgroup of fractional principal
ideals.! We will see that, as a consequence of our Lemma 1, the image under 7 of A’fm/z] is, in fact,
contained in SO3(R), and we will successively study the cokernels B, By and B3 of ¥ in the three
upper rows of the following commutative diagram with exact rows and inclusions in the vertical
maps,

2
1 R* Ay — s SO3(R) —> By —> 1
* A* t %—w —
1 R t SO3(R) —> By —> 1
| (4)

v
1 —= R[1/2]* — A}j1/2) —> SO3(R) —= By —> 1

l

1 K* A* — = SO3(K) —= 1.

We will start by defining the map . Next, in Lemma 2 we will see that every prime factor q of d
can be expressed as a sum of four squares in gR; this fact will be used in Theorem 3 to show that
By ~ CI(R[1/2])>.

T It is essential in the proof of this result as well as to our strategy, that the smallest ring in which the matrix with respect to
{i, j, k} of the bilinear form associated to the sums of squares form is invertible is R[1/2], with the ideal 2R splitting completely
in R. In the general case, with i2 =a, j2 =b, a,b € K*, the corresponding matrix has determinant 8ab?, and the situation gets
much more complicated.
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In Lemma 4 we will describe the quotient group A;U/zj/R[l/Z]*A;;. Knowledge of this group and
of By will allow us to prove in Theorem 5 that

By > {a € K*; v,(a) even for all prime ideals £ # g, @}/I(*ZR*.

Finally, in Lemma 6 we will give a description A} /A%, which we will then use in Theorem 7 to
show that B3 is isomorphic to a semi-direct product of Z/3Z x Z/37Z and B,, its action to be specified
later.

3. Proofs of the results

The image under map t in (1) of any element y € A* is given by the matrix t(y) = ﬁ(mrs),
with

Vi+yi—yi—yi 2(iya—yoys)  2(Voy2+y1y3)
mrs)=| 2oy3+y1y2) Y&—yi+ys—y3 2(y2y3—Yyoy1) |- (5)
201y3—Yoy2)  2(yoy1+Y2y3)  Yi—Yi—-yi+y3

Lemma 1. Let A(Q>) be the quaternion ring over the 2-adic field. For y € A(Q>), the matrix which represents
the map A(Qy) — Ao(Qy) defined by x — yxy~1 with respect to the basis {i, j, k} of Ag(Qy), has all of its
entries in Zo.

Proof. It suffices to show that yiy~! € Ag(Z). If y = yo + y1i + y2j + y3k, yi € Qo, matrix (5) tells
us that q(y)yiy ' = (y§ + y§ — ¥3 — ¥3)i + 2(yoy3 + y1¥2)j + 2(—=yoy2 + y1y3)k.

We may write y = yg+ y1i+ y2j+ y3k = 3¢ + Shi+ 5% j+ 3k, with n € Z, a; € Z, and a, odd for
at least one value of r. Hence,

(a5 +af + a3 +a3)yiy ™" = (af — af + a3 — a3)i + 2(aoas + a1a2) j + 2(—apaz + aras)k,

with a; € Z;, for all r, and a? odd for at least one value of i. Since a3 +a2 +a3 +a3 = a2 —a? +a3 —al =

+aga, + asa;(mod 2) for all r, s, t, all coefficients of yiy~! are in Z,. O
Corollary. As a consequence of Lemma 1, the image of A;H /21 under t is contained in SO3(R).

In order to define the map i, we consider the ring S ={a € K | v¢(a) > 0, all £ # p}, with
R C S and CI(S) = CI(R)/{[e]) = CI(R[1/2]). We have the following commutative diagram with ex-
act rows,

1 {£1} {a € K* | v¢(a) even for all £}/K*2 2 . CI(R); ——= 1

| | e

1 —> §*%/§*2 — {a € K* | v¢(a) even for all £ # p}/K*? 2 CI(R[1/2])2 —= 1

where $* = {+1}€% for some fundamental g@-unit € with v,(¢) =0 for all £ # p and, with some
abuse of notation, w(a) = []£"¢@/2, the product running along the prime ideals ¢ in the correspond-

ing ring. Thus, CI(R[1/2])2 g {a € K* | v¢(a) even for all £ p}/S*K*2, where ¢ maps each class of
order 2 in CI(R[1/2]) to the generator of its square modulo $*K*2, and ¢! = w. The isomorphism ¢
allows us to identify CI(R[1/2]), with a quotient of a subset of K*.
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Finally, we must check that for each quaternion y such that t(y) € SO3(R), v¢(q(y)) is even for
all prime ideals ¢ # g, » of R. Suppose that for some prime ideal ¢ # g, 0, v¢(q(y)) is odd; say
ve(q(y)) =2k + 1 with k € Z. We know [4, Lemma 5.1] that t induces an isomorphism

{y=yo+yii+y2j+yske A" |4y,ys €q(y)R, forall 1 <r,s <3}/K* ~S03(R) (7)

and, thus, since 7(y) € SO3(R), it is 4 € q(y)R, and, consequently, q(y) divides 43’1'2 fori=0,1,2,3.
This implies that ve(y;) > ZkT“ and, hence, v¢(y;) >k + 1 for each i. But then v,(q(y)) > 2k + 2,
which is a contradiction. We can now define ¢ as the map that sends each matrix s in SO3(R) to
the image under w of the norm q(y) of a quaternion y for which t(y) =s, as described by the
composition of maps in the following diagram

SO3(R) <> SO3(K) ~ A*/K" 3> lae K* | ve(a)evenforall ¢ # p}/S*K** 2 CI(R[1/2]),.

Lemma 2. If q is a prime factor of d and qR = Q?, with Q prime ideal in R, then q can be expressed as a sum
of four squares in Q.

Proof. Since the ideal Q is generated as a Z module by q and +/d, it suffices to write g as q =
Zfzo(q -as + +/d - bs)? with as, bs € Z for 0 <s < 3. Let z1, z2 be positive integers such that z; - q +
—d

Z - g = 1. We can find t € Z such that ¢ - ’Td + z1 = 2(mod 4) and, since 7 is odd, necessarily

t =zy(mod 2). We take x; =t - _Td + 2z and x; =t -q + z2. Then we have x1 -q+ X2 - g =1, where
X2 =2y +t-q=23 +2z1 -q=1(mod 2). Thus, x;x =2(mod 4) and, not being of the form 4"(8m + 7),
it can be expressed as the sum of three squares.

It follows that x;x; = A2 + B2 + C2 for certain integers A, B, C. In other words, the norm of the
quaternion Ai + Bj + Ck is x1xy. Consequently, there are two integral quaternions u = ag + ai +
azj +ask and v = bg + bqi + by j + b3k with Z?:o a2 = x; and 23:0 bs® = x,, such that u-v =
Ai+ Bj + Ck, and so, Z?:o ashs =0. If we let s =q-as + Vd - b, then

3 3 3 3
Zasz:q22a52+d2b52+2q\/32a5b5:qz-x1+d-x2:q. ]
s=0 s=0 s=0 s=0

Theorem 3. The map SO3(R)/T(AE[1/2]) LN CI(R[1/2]), induced by v is an isomorphism.

Proof. Since sequence (3) is exact, we know that v is well defined and injective. Let us see that it
is also surjective. Applying the Snake Lemma in (6), we obtain the exact sequence

1— Keraw — S*/{+1}S*? > I' — CI(R[1/2]),/a(CI(R)2) — 1, (8)

where §*/{£1}5*2 is a group of order 2 and the group I = {a € K*; v¢(a) even all £ + p}/{a € K*;
v¢(a) even all £} has order 1 or 2, and it is not trivial if and only if there exists x € K with all
valuations even except the g-adic one. Since taking 2-torsion is left exact, Kero = ({[¢]))2. If the
order of [g] in CI(R) is odd, then ({[¢]))2 is trivial, ¢ is injective and (8) becomes

1— S*/{£1}$* — I' — CI(R[1/2]), /e (CI(R)2) — 1.

Consequently, the fundamental g-unit € must have odd g-valuation, the map $*/{£1}S*2 — I' is
surjective and « is an isomorphism. Let r be the number of prime factors of d; then, CI(R[1/2]); ~
CI(R); ~ (Z/2Z)"! and it is generated by the classes of the prime factors of d. If the order of [g]
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in CI(R) is even, then Ker« has order 2 and, from the exactness of (8), we deduce that the funda-
mental g-unit € has even g-valuation and I — CI(R[1/2])2/a(CI(R)3) is an isomorphism. Conse-
quently, if [p] ¢ CI(R)?, the map « is surjective and CI(R[1/2])2 =~ CI(R)2/{[9])2 = (Z/2Z) ~2; while
if [p] € CI(R)?, the map « is not surjective and there exists a non-trivial element & € K* \ §* with
odd g-valuation and even ¢-valuation for all £  g. In this case, CI(R[1/2])2 ~ (Z/2Z) ! and it
is generated by the r — 2 classes in «(CI(R)2) and the class image under w of & We conclude
that

CI(R[1/2]), = (Z/2Z)"**, (9)

with § as defined in (2).

We now prove that v is surjective. Since the product of two sums of four squares is also a
sum of four squares, it suffices to take x either a prime divisor of d, or x € K* with v,(x) odd and
ve(x) =0 for all £ # gp. For x a prime divisor of d, let xR = Q%> with Q prime ideal of R. Using
the isomorphism (7), it suffices to find y € Ag with coefficients in Q and such that q(y) = x. This
is equivalent to writing x as sum of four squares in Q, which is Lemma 2. Let next x € K* with
V(%) odd and v (x) =0 for all £ # p. We know that every element in R can be expressed as a sum
of four squares [3, p. 536], which easily implies that every element in K is the reduced norm of
a quaternion in A. As a consequence, there exists y € A such that q(y) =x and, by Lemma 1, T7(y) €
SO3(R). O

Lemma 4. In the situation described in diagram (4), we have
A§[1/2]/R[1/2]*AT3 ~7/27 x 7.]27. (10)

Proof. We consider the following diagram,

B
1—= R*—R[1/2]" —Z x Z

Lk

]%—AEH—A‘EU/Z]H—ZXZ

where B(u) = (v, (u), v () for u € R[1/2]*, B'(x) = (v (q(x)), v(q(x))) for x € AT?[]/Z] and the map
Z x 7 % 7 x 7 is defined by (a,b) — (2a, 2b). Then, A’,g[l/z]/R[l/Z]*A; ~ ﬁ/(AEH/Z])/Zﬁ(R[l/Z]*),
with 28(R[1/2]*) C ﬁ/(A’E[l/Z]) C B(R[1/2]*) CZ x Z.

The image B(R[1/2]*) contains (1, 1) = B(2). Also, if t is the order of [p] in CI(R), it is ' =¢R,
with ¢ € R and v,(¢) =0 for all £ # p. Thus, ¢ € R[1/2]* and (t,0) = (v, (£), v5(2)) € B(R[1/2]%).
Next, as {(t, 0), (1, 1)} are linearly independent over Z, it is B(R[1/2]*) = (1, 1)Z + (t, 0)Z, a lattice of
index t in Z x Z, and 28(R[1/2]*) =2((1, 1)Z + (t, 0)Z). Finally, on the one hand (1,1)=8'(1+1i) €
ﬂ’(A;‘m/zj) and on the other, since every element of R can be expressed as sum of four squares
in R [3, p. 536], there exists x € Aﬂfm/z] with q(x) =¢, so (t,0) = B'(x) € ﬁ’(A’fQ[l/z]). Consequently,
ﬁ’(A"I;H/Z]) =1,1DZ+ (t,0)Z and A}[l/Z]/R[l/Z]*A’,; ~7/27 x Z/2Z. 1O

Remark. We have A C A} C A;[l/Z]' On the one hand, diagram (11) implies that A} is a normal
subgroup of A}[]/z]- On the other, A} is stable under conjugation by elements of AE[l/z] and, thus,
also normal in Ayfm/zj‘ Consequently, T(A}) is normal in SO3(R).

Theorem 5. Let By = {a € K*; v,(a) evenif ¢ # g, $}/K*2R*. The map SO3(R)/T(A}) Y, B induced
by i is an isomorphism.
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Proof. Let s € SO3(R) and y =yo+ y1i+y2j+yske Awith t(y)=s.If y €A,y #y and 7(y) =s,
then y/y’ € K* and, hence, q(y) and q(y’) differ in a square in K*. As was argued when defining the
map V, for each prime ideal £ # p, % of R, v¢(q(y)) is even. We finally observe that ¥ (t(A%)) C
R*/K*2. This shows that the map 1 is a well-defined homomorphism.

Suppose, next, that q(y) = a?u, a € K*, u € R*. Substituting y by y/a, we may assume q(y) € R*.
This implies that the entries in matrix (5) defining t(y) are all in R. As a consequence of this, 4yl.2 eR
for all i and, hence, v,(y) > 0 if £ # g, . Taking sums and differences of the elements in the diagonal
of (5), we verify that v,(2(y? & y?)) >0 and vp2(y? + y?)) > 0. Since 2 does not ramify in R,
this implies that y; = y;(mod 2) for each i, j, y € A} and, so, the sequence 1 — R* — A} Z,
SO3(R) Y, B5 is exact and the map v, injective. )

Let us see that v is also surjective. There is an exact sequence 1 — CI(R); 2, B; LN [1v22/22,
where ¢ sends each class to a generator of its square and B(x) = (vp(x)(mod 2), v (x)(mod 2))
for x € B. We set B(x) = (vp(X), v (x)), so B(x) = B(x)(mod 2). Then, (1,1) = B(2) e ImB and we
know that there exists x € K* with v, (x) odd and v,(x) even for £ # g if and only if § = 1. Thus,
ImB = (2/27)'*% and

By ~ (Z/27)™?. (12)
On the other hand, we have the following commutative diagram,

T

1 R* AR S03(R)/T(AR) . Y (S03(R)/T(AR)) —= 1

Lo L l

14
1 —= R[1/2]* —> Ajp1jz) — SO3(R)/T(Agpy ) —— CUR[1/2])2 — 1.

Using the Snake Lemma, (9), (10) and (12) on this diagram, we get ¥ (S03(R)/T(A})) = B> and the
theorem is proved. O

Lemma 6. In the situation described in diagram (4), it is A} /Ay ~Z/3Z x Z/3Z.

Proof. Direct computations show that for x € A and y € Ay, xyx~le Ay and A}y is a normal sub-
group of A%. We start by giving a characterization of the elements of A}/Ay. Writing every x € A}

as x = a+(a+2b)x+(a;26)1+(a+2d)k

, we may define a map o =(01,02): A} — R x R by

a+ (a+2b)i+ (a+2c)j+ (a+2d)k
2

— (@,b+c+d).
It is easy to check that for x, y € A%,

xy ' eAl o 01(002(y) +01(y)o2(x) = 0(mod 2R). (13)

Since |R/2R| =4 and, as a consequence of (13), o is injective, it is |[A}/A%| < 16. Furthermore, the
element u = M has order 3 in A} /A%, which implies that [A%/A%| € {3,6,9, 12, 15}. Computing
o (u) and o (u?), (13) guarantees that, for x € AR /Ay itis

xe Ay & 01(x) =0(mod 2R),
x=u(mod A%) < 02(x)=0(mod 2R), (14)
x=u?(mod A}) & 02(x) #0(mod 2R) and o1 (x) = 03 (x)(mod 2R).
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If we set d =1 — 8k with k € N, the integer 8k + 3 is not of the form 4"(8m + 7), so there exist

w3, wi, w3 € 1+8-Z with 8k+3 = wj+ w4+ w2, and we may choose w; such that w, = —1(mod 4)

for all r. The element w = w has order 3 in A%/A} and it verifies o1 (w) = 0(mod 2R)

while oy (w) = %E # 0, 1(mod 2R), which implies, using (14), that it is not in (u)A%}. We deduce
that A% /Ay ~(u, w) ~Z/3Z x Z/3Z. O

Theorem 7. Let p = T (u), 0 = T(w) with u, w as in the proof of Lemma 6. Then SO3(R) /T (A}) = (p, i)
S03(R)/T (A}), and the action of SO3(R)/T (A}) on (p, ) is given by

p* = p(mod T (A})) and u* = p(mod T (A%)) if v, (¥ () odd and v (¥ (x)) even;

- p* = p?(mod t(A})) and p* = p?(mod T (A})) if v (¥ (X)) even and v (¥ (x)) odd;
- p*= p(mod t(AR)) and u* = p(mod T (AR)) if v (¥ (%)) = v (¥ (x)) = 0(mod 2);

- p* = p?(mod t(A})) and pu* = p? (mod T (A%)) if v (¥ (%)) = v (¥ (x)) = 1(mod 2).

Proof. Similar arguments to those used in Theorem 5, together with Lemma 6 and (14), give us
Theorem 7. O
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