

Contents lists available at SciVerse ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Rotations and units in quaternion algebras $\stackrel{\text{\tiny{theta}}}{\longrightarrow}$

Capi Corrales-Rodrigáñez*

Departamento de Álgebra, Facultad de Matemáticas, Universidad Complutense de Madrid, Madrid, Spain

ARTICLE INFO

Article history: Received 31 March 2010 Revised 9 April 2011 Accepted 2 December 2011 Available online 3 February 2012 Communicated by Tsit Yuen Lam

Keywords: Quaternion algebras Quadratic fields Special orthogonal group of the space of pure quaternions in a quaternion algebra over a quadratic field

ABSTRACT

Unit groups of orders in quaternion algebras over number fields provide important examples of non-commutative arithmetic groups. Let $K = \mathbb{Q}(\sqrt{d})$ be a quadratic field with d < 0 a square-free integer such that $d \equiv 1 \pmod{8}$, and let R be its ring of integers. In this note we study, through its representation in $SO_3(R)$, the group of units of several orders in the quaternion algebra over K with basis $\{1, i, j, k\}$ satisfying the relations $i^2 = j^2 = -1$, ij = -ji = k.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The Pell equation is the equation $x^2 - dy^2 = 1$, for a given nonzero integer d > 1, to be solved in integers. One may rewrite this equation as $(x + \sqrt{d})(x - \sqrt{d}) = 1$ and, so, finding a solution is equivalent to finding a non-trivial unit of norm 1 in the ring $\mathbb{Z}[\sqrt{d}]$. If the solutions are ordered by magnitude, this reformulation allows us to express the *n*th solution (x_n, y_n) in terms of the first one (x_1, y_1) , by $x_n + y_n\sqrt{d} = (x_1 + y_1\sqrt{d})^n$. Accordingly, the first solution is called the fundamental solution to the Pell equation, and solving the Pell equation comes down to finding a fundamental unit in the group $\mathbb{Z}[\sqrt{d}]^*$. This connection to Pell's equation made the group of units in a quadratic number field an important object of study for number theorists since the seventeenth century [12]. In the study of group rings of finite groups over number rings, emerges the Diophantine equation $x^2 - ay^2 - bz^2 + abt^2 = 1$, which can be considered an analogue to Pell equation, in the sense that the solutions to Pell equation form a discrete subgroup of an algebraic torus isomorphic to \mathbb{Z} , and the integral solutions to this equation form an arithmetic subgroup of $SL_2(\mathbb{R})$ commensurable with the

* Research partially supported by CICYT of Spain, No. MTM 2006-14688.

* Fax: +34 913944662.

E-mail address: capi_corrales@mat.ucm.es.

0022-314X/\$ – see front matter @ 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.jnt.2011.12.009

group of units of an order in a quaternion algebra over \mathbb{Q} , quaternion algebras being non-commutative analogues of quadratic fields.

In general, if *K* is a number field with ring of integers *R*, a quaternion algebra *A* over *K* is a fourdimensional algebra over *K* with basis {1, *i*, *j*, *k*} satisfying the relations $i^2 = a$, $j^2 = b$, ij = -ji = kfor $a, b \in K^*$. It is well known that the algebra *A*, denoted by $A = (\frac{a,b}{K})$, is a central simple algebra. An order \mathcal{O} in *A* is an *R*-lattice (i.e., a finitely generated *R*-module such that $K \cdot \mathcal{O} = A$) that is a subring. If \mathcal{O} is an order in *A*, its group of units \mathcal{O}^* is commensurable with $(Z\mathcal{O})^* \times \mathcal{O}^1$, where $Z\mathcal{O}$ is the center of \mathcal{O} and \mathcal{O}^1 is the subgroup of elements of reduced norm 1. Here the reduced norm map is the quadratic form $q: A \to K$ that multiplies each quaternion $x_0 + x_1i + x_2j + x_3k$ by its conjugate $x_0 - x_1i - x_2j - x_3k$. Therefore, the study of the structure of $(Z\mathcal{O})^*$, only \mathcal{O}^1 needs to be investigated. We observe that the elements of \mathcal{O}^1 correspond to solutions over $(Z\mathcal{O})^*$ of the equation $x^2 - ay^2 - bz^2 + abt^2 = 1$. We identify \mathcal{O}^1 with classical groups in two ways.

The field K[i] is a maximal subfield of A, and the Galois group of the extension K[i]/K is a cyclic group of order two generated by the restriction σ of the inner automorphism of A induced by j, that is $\sigma(x) = jxj^{-1}$, for every $x \in K$. Thus, $A = K[i] \oplus K[i]j$ can be embedded in $M_2(\mathbb{C})$ by the map

$$x + yj \stackrel{\iota}{\mapsto} \begin{pmatrix} x & y \\ b\sigma(y) & \sigma(x) \end{pmatrix}.$$

The embedding ι maps the elements of reduced norm 1 into $SL_2(\mathbb{C})$, and we may identify \mathcal{O}^1 with an arithmetic group of the group $SL_2(\mathbb{C})$. Since $PSL_2(\mathbb{C})$ is the group of orientation preserving isometries of the three-dimensional hyperbolic space H^3 , the group \mathcal{O}^1 acts on H^3 , and we can use this action to study \mathcal{O}^* . The best situation is when this action is discontinuous, since in this case we can use Poincaré's method to find a fundamental domain for the action \mathcal{O}^1 on H^3 which will give us, in turn, a presentation of \mathcal{O}^1 [10,2,9,5]. It should be noted, though, that it is not easy in general to apply Poincaré's method.

Next, we consider the *K*-vector space with basis $B = \{i, j, k\}$ consisting in the elements with trace 0 in *A*. It is denoted by A_0 and is stable under conjugation by elements of *A*. There is an exact sequence of groups [8, Theorem 3.1],

$$1 \to K^* \to A^* \xrightarrow{\tau} SO_3(K) \to 1 \tag{1}$$

where, for $y \in A^*$, $\tau(y)$ is the matrix which represents conjugation of the elements of A_0 by y with respect to B, and $SO_3(K)$ is the orthogonal group with respect to the quadratic form q restricted to A_0 . Restriction of the map τ allows us to investigate \mathcal{O}^1 trough the study of its action on A_0 . The action of \mathcal{O}^1 on H^3 is discontinuous only in six cases: (a) when A is a totally definite quaternion algebra; (b) when $A = M_2(\mathbb{Q})$; (c) when $A = M_2(\mathbb{Q}[\sqrt{d}])$ with $0 > d \in \mathbb{Z}$; (d) when $A = (\frac{a,b}{\mathbb{Q}})$ is a division algebra with a or b positive; (e) when $A = (\frac{a,b}{K})$, K is totally real and A ramifies at all real embeddings of K but one, and (f) when $A = (\frac{a,b}{K})$, K has exactly two complex embeddings and A is a division algebra that ramifies at all the real embeddings of K. In the first three situations \mathcal{O}^1 is known to be, respectively, a finite group, a group commensurable with $SL_2(\mathbb{Z})$ and a Bianchi group [6,5], and cases (d) and (e) were amply studied in, respectively, [1] and [11]. The first example of unit group of type (f) was computed in [4], with $A = (\frac{-1, -1}{K})$, $K = \mathbb{Q}(\sqrt{-7})$, R ring of integers of K and $\mathcal{O} = R[1, i, j, ij]$.

In general, little is known about the structure of $SO_3(R)$ when R is the ring of integers of a number field. In [4], Poincaré's method was used to find a presentation of \mathcal{O}^* ; next, the cokernel of $\tau : \mathcal{O}^* \to SO_3(R)$ was described, and the previously found presentation of \mathcal{O}^* was used to give a presentation of $SO_3(R)$ as well. The simplest examples of type (e), are provided by orders \mathcal{O} of quaternion algebras $A = (\frac{-1,-1}{K})$, where $K = \mathbb{Q}(\sqrt{d})$ and d < 0 is a square-free integer, such that the center of \mathcal{O} is the ring of integers R of K. Quaternion algebras of this type are division algebras, and not matrix algebras, if and only if $d \equiv 1 \pmod{8}$. In this note we consider such orders, and we describe the cokernel of the restriction to \mathcal{O}^* of map τ in (1). It should be noted that among the

fields considered, only $\mathbb{Q}[\sqrt{-7}]$ has class number 1, a condition which significantly simplifies the situation; for example, in general the cokernel of the restriction to \mathcal{O}^* of map τ in (1), is isomorphic to a subgroup of a quotient of the class group of *K* [7, Theorem 7.2.20], trivial when the class number is 1. If, with adequate computer programs, we were to obtain a presentation of \mathcal{O}^* via the action of \mathcal{O}^1 on H³, this identification would allow us to translate it into a presentation of $SO_3(R)$.

2. Description of the results

Let *A* be the quaternion algebra $A = (\frac{-1,-1}{K})$, with $K = \mathbb{Q}(\sqrt{d})$ and d < 0 a square-free integer such that $d \equiv 1 \pmod{8}$. Let $R = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ be the ring of integers of *K*, and let $R[1/2] = \{x/2^k \mid x \in R, k \in \mathbb{Z}\}$. The ideal 2*R* splits completely in two distinct primes. We set $2R = \wp \bar{\wp}$ and we define

$$\delta = \begin{cases} 1 & \text{if there exists } x \in K^* \text{ with } v_{\ell}(x) \text{ even for all } \ell \neq \wp \text{ and } v_{\wp}(x) \text{ odd,} \\ 0 & \text{else,} \end{cases}$$
(2)

where, for any nonzero prime ideal ℓ of R and any $a \in K^*$, $v_{\ell}(a)$, the ℓ -adic valuation of a, is the power of ℓ appearing in the factorization of the fractional ideal Ra.

Let $A_R = R[1, i, j, k]$, $A_R = R[1, i, j, k, \frac{1+i+j+k}{2}]$ and $A_{R[1/2]} = R[1/2][1, i, j, k]$. Our aim in these pages is to identify the cokernel of the restriction to A_R^* of map τ in (1). In order to do so, we will successively consider the restrictions of τ to the chain of groups $A_R^* \subset A_R^* \subset A_{R[1/2]}^* \subset A^*$. It is known [7, Theorem 7.2.20] that there is an exact sequence

$$1 \to R[1/2]^* \to A_{R[1/2]}^* \xrightarrow{\tau} SO_3(R[1/2]) \xrightarrow{\psi} Cl(R[1/2])_2,$$
(3)

where $Cl(R[1/2])_2$ is the 2-torsion part of the class group $Cl(R[1/2]) = \mathbb{I}(R[1/2])/\mathbb{P}(R[1/2])$, with $\mathbb{I}(R[1/2])$ the group of fractional ideals of R[1/2] and $\mathbb{P}(R[1/2])$ its subgroup of fractional principal ideals.¹ We will see that, as a consequence of our Lemma 1, the image under τ of $A_{R[1/2]}^*$ is, in fact, contained in $SO_3(R)$, and we will successively study the cokernels B_1 , B_2 and B_3 of ψ in the three upper rows of the following commutative diagram with exact rows and inclusions in the vertical maps,

We will start by defining the map ψ . Next, in Lemma 2 we will see that every prime factor q of d can be expressed as a sum of four squares in qR; this fact will be used in Theorem 3 to show that $B_1 \simeq Cl(R[1/2])_2$.

¹ It is essential in the proof of this result as well as to our strategy, that the smallest ring in which the matrix with respect to $\{i, j, k\}$ of the bilinear form associated to the sums of squares form is invertible is R[1/2], with the ideal 2*R* splitting completely in *R*. In the general case, with $i^2 = a$, $j^2 = b$, $a, b \in K^*$, the corresponding matrix has determinant $8a^2b^2$, and the situation gets much more complicated.

In Lemma 4 we will describe the quotient group $A_{R[1/2]}^* / R[1/2]^* \Lambda_R^*$. Knowledge of this group and of B_1 will allow us to prove in Theorem 5 that

 $B_2 \simeq \{a \in K^*; \ v_\ell(a) \text{ even for all prime ideals } \ell \neq \wp, \bar{\wp}\}/K^{*2}R^*.$

Finally, in Lemma 6 we will give a description Λ_R^*/A_R^* , which we will then use in Theorem 7 to show that B_3 is isomorphic to a semi-direct product of $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ and B_2 , its action to be specified later.

3. Proofs of the results

The image under map τ in (1) of any element $y \in A^*$ is given by the matrix $\tau(y) = \frac{1}{q(y)}(m_{rs})$, with

$$(m_{rs}) = \begin{pmatrix} y_0^2 + y_1^2 - y_2^2 - y_3^2 & 2(y_1y_2 - y_0y_3) & 2(y_0y_2 + y_1y_3) \\ 2(y_0y_3 + y_1y_2) & y_0^2 - y_1^2 + y_2^2 - y_3^2 & 2(y_2y_3 - y_0y_1) \\ 2(y_1y_3 - y_0y_2) & 2(y_0y_1 + y_2y_3) & y_0^2 - y_1^2 - y_2^2 + y_3^2 \end{pmatrix}.$$
 (5)

Lemma 1. Let $A(\mathbb{Q}_2)$ be the quaternion ring over the 2-adic field. For $y \in A(\mathbb{Q}_2)$, the matrix which represents the map $A(\mathbb{Q}_2) \to A_0(\mathbb{Q}_2)$ defined by $x \to yxy^{-1}$ with respect to the basis $\{i, j, k\}$ of $A_0(\mathbb{Q}_2)$, has all of its entries in \mathbb{Z}_2 .

Proof. It suffices to show that $y_iy^{-1} \in A_0(\mathbb{Z}_2)$. If $y = y_0 + y_1i + y_2j + y_3k$, $y_i \in \mathbb{Q}_2$, matrix (5) tells us that $q(y)y_iy^{-1} = (y_0^2 + y_1^2 - y_2^2 - y_3^2)i + 2(y_0y_3 + y_1y_2)j + 2(-y_0y_2 + y_1y_3)k$. We may write $y = y_0 + y_1i + y_2j + y_3k = \frac{a_0}{2\pi} + \frac{a_1}{2\pi}i + \frac{a_2}{2\pi}j + \frac{a_3}{2\pi}k$, with $n \in \mathbb{Z}$, $a_i \in \mathbb{Z}_2$ and a_r odd for

at least one value of r. Hence,

$$(a_0^2 + a_1^2 + a_2^2 + a_3^2)yiy^{-1} = (a_0^2 - a_1^2 + a_2^2 - a_3^2)i + 2(a_0a_3 + a_1a_2)j + 2(-a_0a_2 + a_1a_3)k,$$

with $a_r \in \mathbb{Z}_2$ for all r, and a_r^2 odd for at least one value of i. Since $a_0^2 + a_1^2 + a_2^2 + a_3^2 \equiv a_0^2 - a_1^2 + a_2^2 - a_3^2 \equiv a_0^2 - a_1^2 + a_2^2 - a_3^2 \equiv a_0^2 - a_1^2 + a_2^2 - a_3^2 \equiv a_0^2 - a_1^2 - a_3^2 = a_0^2 - a_0^2 = a_0^2 - a_0^2 = a_0^2 - a_0^2 = a_0^2 = a_0^2 - a_0^2 = a_0^2 = a_0^2 - a_0^2 = a_0^2 - a_0^2 = a_0^2 - a_0^2 = a_0^2 - a_0^2 = a_0^2 = a_0^2 - a_0^2 = a_0^2$ $\pm a_0 a_r + a_s a_t \pmod{2}$ for all r, s, t, all coefficients of $y_i y^{-1}$ are in \mathbb{Z}_2 . \Box

Corollary. As a consequence of Lemma 1, the image of $A^*_{R[1/2]}$ under τ is contained in SO₃(R).

In order to define the map ψ , we consider the ring $S = \{a \in K \mid v_{\ell}(a) \ge 0, \text{ all } \ell \neq \wp\}$, with $R \subset S$ and $Cl(S) = Cl(R)/\langle [\wp] \rangle = Cl(R[1/2])$. We have the following commutative diagram with exact rows,

where $S^* = \{\pm 1\} \epsilon^{\mathbb{Z}}$ for some fundamental \wp -unit ϵ with $v_{\ell}(\epsilon) = 0$ for all $\ell \neq \wp$ and, with some abuse of notation, $\omega(a) = \prod \ell^{\nu_{\ell}(a)/2}$, the product running along the prime ideals ℓ in the corresponding ring. Thus, $Cl(R[1/2])_2 \stackrel{\phi}{\simeq} \{a \in K^* \mid v_\ell(a) \text{ even for all } \ell \neq \wp\}/S^*K^{*2}$, where ϕ maps each class of order 2 in $Cl(R[1/2])_2$ to the generator of its square modulo S^*K^{*2} , and $\phi^{-1} = \omega$. The isomorphism ϕ allows us to identify $Cl(R[1/2])_2$ with a quotient of a subset of K^* .

Finally, we must check that for each quaternion y such that $\tau(y) \in SO_3(R)$, $\nu_\ell(q(y))$ is even for all prime ideals $\ell \neq \wp, \bar{\wp}$ of R. Suppose that for some prime ideal $\ell \neq \wp, \bar{\wp}$, $\nu_\ell(q(y))$ is odd; say $\nu_\ell(q(y)) = 2k + 1$ with $k \in \mathbb{Z}$. We know [4, Lemma 5.1] that τ induces an isomorphism

$$\left\{ y = y_0 + y_1 i + y_2 j + y_3 k \in A^* \mid 4y_r y_s \in q(y)R, \text{ for all } 1 \leq r, s \leq 3 \right\} / K^* \simeq SO_3(R)$$
(7)

and, thus, since $\tau(y) \in SO_3(R)$, it is $4 \in q(y)R$, and, consequently, q(y) divides $4y_i^2$ for i = 0, 1, 2, 3. This implies that $v_\ell(y_i) \ge \frac{2k+1}{2}$ and, hence, $v_\ell(y_i) \ge k+1$ for each *i*. But then $v_\ell(q(y)) \ge 2k+2$, which is a contradiction. We can now define ψ as the map that sends each matrix *s* in $SO_3(R)$ to the image under ω of the norm q(y) of a quaternion *y* for which $\tau(y) = s$, as described by the composition of maps in the following diagram

$$SO_3(R) \hookrightarrow SO_3(K) \simeq A^*/K'' \xrightarrow{q} \{a \in K^* \mid v_\ell(a) \text{ even for all } \ell \neq \wp\}/S^*K^{*2} \xrightarrow{\omega} Cl(R[1/2])_2$$

Lemma 2. If q is a prime factor of d and $qR = Q^2$, with Q prime ideal in R, then q can be expressed as a sum of four squares in Q.

Proof. Since the ideal Q is generated as a \mathbb{Z} module by q and \sqrt{d} , it suffices to write q as $q = \sum_{s=0}^{3} (q \cdot a_s + \sqrt{d} \cdot b_s)^2$ with $a_s, b_s \in \mathbb{Z}$ for $0 \le s \le 3$. Let z_1, z_2 be positive integers such that $z_1 \cdot q + z_2 \cdot \frac{d}{q} = 1$. We can find $t \in \mathbb{Z}$ such that $t \cdot \frac{-d}{q} + z_1 \equiv 2 \pmod{4}$ and, since $\frac{-d}{q}$ is odd, necessarily $t \equiv z_1 \pmod{2}$. We take $x_1 = t \cdot \frac{-d}{q} + z_1$ and $x_2 = t \cdot q + z_2$. Then we have $x_1 \cdot q + x_2 \cdot \frac{d}{q} = 1$, where $x_2 \equiv z_2 + t \cdot q \equiv z_2 + z_1 \cdot q \equiv 1 \pmod{2}$. Thus, $x_1x_2 \equiv 2 \pmod{4}$ and, not being of the form $4^n(8m + 7)$, it can be expressed as the sum of three squares.

It follows that $x_1x_2 = A^2 + B^2 + C^2$ for certain integers *A*, *B*, *C*. In other words, the norm of the quaternion Ai + Bj + Ck is x_1x_2 . Consequently, there are two integral quaternions $u = a_0 + a_1i + a_2j + a_3k$ and $v = b_0 + b_1i + b_2j + b_3k$ with $\sum_{s=0}^3 a_s^2 = x_1$ and $\sum_{s=0}^3 b_s^2 = x_2$, such that $u \cdot v = Ai + Bj + Ck$, and so, $\sum_{s=0}^3 a_s b_s = 0$. If we let $\alpha_s = q \cdot a_s + \sqrt{d} \cdot b_s$, then

$$\sum_{s=0}^{3} \alpha_s^2 = q^2 \sum_{s=0}^{3} a_s^2 + d \sum_{s=0}^{3} b_s^2 + 2q \sqrt{d} \sum_{s=0}^{3} a_s b_s = q^2 \cdot x_1 + d \cdot x_2 = q. \quad \Box$$

Theorem 3. The map $SO_3(R)/\tau(A^*_{R[1/2]}) \xrightarrow{\psi_1} Cl(R[1/2])_2$ induced by ψ is an isomorphism.

Proof. Since sequence (3) is exact, we know that ψ_1 is well defined and injective. Let us see that it is also surjective. Applying the Snake Lemma in (6), we obtain the exact sequence

$$1 \to \operatorname{Ker} \alpha \to S^* / \{\pm 1\} S^{*2} \to \Gamma \to \operatorname{Cl}(R[1/2])_2 / \alpha(\operatorname{Cl}(R)_2) \to 1,$$
(8)

where $S^*/\{\pm 1\}S^{*2}$ is a group of order 2 and the group $\Gamma = \{a \in K^*; v_\ell(a) \text{ even all } \ell \neq \wp\}/\{a \in K^*; v_\ell(a) \text{ even all } \ell\}$ has order 1 or 2, and it is not trivial if and only if there exists $x \in K$ with all valuations even except the \wp -adic one. Since taking 2-torsion is left exact, $Ker \alpha = (\langle [\wp] \rangle)_2$. If the order of $[\wp]$ in Cl(R) is odd, then $(\langle [\wp] \rangle)_2$ is trivial, α is injective and (8) becomes

$$1 \to S^* / \{\pm 1\} S^{*2} \to \Gamma \to \operatorname{Cl}(R[1/2])_2 / \alpha(\operatorname{Cl}(R)_2) \to 1.$$

Consequently, the fundamental \wp -unit ϵ must have odd \wp -valuation, the map $S^*/\{\pm 1\}S^{*2} \to \Gamma$ is surjective and α is an isomorphism. Let r be the number of prime factors of d; then, $Cl(R[1/2])_2 \simeq Cl(R)_2 \simeq (\mathbb{Z}/2\mathbb{Z})^{r-1}$ and it is generated by the classes of the prime factors of d. If the order of $[\wp]$

in Cl(*R*) is even, then *Ker* α has order 2 and, from the exactness of (8), we deduce that the fundamental \wp -unit ϵ has even \wp -valuation and $\Gamma \to \text{Cl}(R[1/2])_2/\alpha(\text{Cl}(R)_2)$ is an isomorphism. Consequently, if $[\wp] \notin \text{Cl}(R)^2$, the map α is surjective and $\text{Cl}(R[1/2])_2 \simeq \text{Cl}(R)_2/\langle [\wp] \rangle_2 \simeq (\mathbb{Z}/2\mathbb{Z})^{r-2}$; while if $[\wp] \in \text{Cl}(R)^2$, the map α is not surjective and there exists a non-trivial element $\xi \in K^* \setminus S^*$ with odd \wp -valuation and even ℓ -valuation for all $\ell \neq \wp$. In this case, $\text{Cl}(R[1/2])_2 \simeq (\mathbb{Z}/2\mathbb{Z})^{r-1}$ and it is generated by the r-2 classes in $\alpha(\text{Cl}(R)_2)$ and the class image under ω of ξ . We conclude that

$$\operatorname{Cl}(R[1/2])_{2} \simeq (\mathbb{Z}/2\mathbb{Z})^{r-2+\delta},\tag{9}$$

with δ as defined in (2).

We now prove that ψ_1 is surjective. Since the product of two sums of four squares is also a sum of four squares, it suffices to take *x* either a prime divisor of *d*, or $x \in K^*$ with $v_{\wp}(x)$ odd and $v_{\ell}(x) = 0$ for all $\ell \neq \wp$. For *x* a prime divisor of *d*, let $xR = Q^2$ with Q prime ideal of *R*. Using the isomorphism (7), it suffices to find $y \in A_R$ with coefficients in Q and such that q(y) = x. This is equivalent to writing *x* as sum of four squares in Q, which is Lemma 2. Let next $x \in K^*$ with $v_{\wp}(x)$ odd and $v_{\ell}(x) = 0$ for all $\ell \neq \wp$. We know that every element in *R* can be expressed as a sum of four squares [3, p. 536], which easily implies that every element in *K* is the reduced norm of a quaternion in *A*. As a consequence, there exists $y \in A$ such that q(y) = x and, by Lemma 1, $\tau(y) \in SO_3(R)$. \Box

Lemma 4. In the situation described in diagram (4), we have

$$A_{R[1/2]}^* / R[1/2]^* \Lambda_R^* \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$
(10)

Proof. We consider the following diagram,

$$1 \longrightarrow R^{*} \longrightarrow R[1/2]^{*} \xrightarrow{\beta} \mathbb{Z} \times \mathbb{Z}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow^{2}$$

$$1 \longrightarrow \Lambda_{R}^{*} \longrightarrow A_{R[1/2]}^{*} \xrightarrow{\beta'} \mathbb{Z} \times \mathbb{Z}$$
(11)

where $\beta(u) = (v_{\wp}(u), v_{\bar{\wp}}(u))$ for $u \in R[1/2]^*$, $\beta'(x) = (v_{\wp}(q(x)), v_{\bar{\wp}}(q(x)))$ for $x \in A^*_{R[1/2]}$ and the map $\mathbb{Z} \times \mathbb{Z} \xrightarrow{2} \mathbb{Z} \times \mathbb{Z}$ is defined by $(a, b) \to (2a, 2b)$. Then, $A^*_{R[1/2]}/R[1/2]^* \Lambda^*_R \simeq \beta'(A^*_{R[1/2]})/2\beta(R[1/2]^*)$, with $2\beta(R[1/2]^*) \subset \beta'(A^*_{R[1/2]}) \subset \beta(R[1/2]^*) \subset \mathbb{Z} \times \mathbb{Z}$.

The image $\beta(R[1/2]^*)$ contains $(1, 1) = \beta(2)$. Also, if t is the order of $[\wp]$ in Cl(R), it is $\wp^t = \zeta R$, with $\zeta \in R$ and $\nu_\ell(\zeta) = 0$ for all $\ell \neq \wp$. Thus, $\zeta \in R[1/2]^*$ and $(t, 0) = (\nu_\wp(\zeta), \nu_{\bar{\wp}}(\zeta)) \in \beta(R[1/2]^*)$. Next, as $\{(t, 0), (1, 1)\}$ are linearly independent over \mathbb{Z} , it is $\beta(R[1/2]^*) = (1, 1)\mathbb{Z} + (t, 0)\mathbb{Z}$, a lattice of index t in $\mathbb{Z} \times \mathbb{Z}$, and $2\beta(R[1/2]^*) = 2((1, 1)\mathbb{Z} + (t, 0)\mathbb{Z})$. Finally, on the one hand $(1, 1) = \beta'(1 + i) \in \beta'(A^*_{R[1/2]})$ and on the other, since every element of R can be expressed as sum of four squares in R [3, p. 536], there exists $x \in A^*_{R[1/2]}$ with $q(x) = \zeta$, so $(t, 0) = \beta'(x) \in \beta'(A^*_{R[1/2]})$. Consequently, $\beta'(A^*_{R[1/2]}) = (1, 1)\mathbb{Z} + (t, 0)\mathbb{Z}$ and $A^*_{R[1/2]}/R[1/2]^*A^*_R \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. \Box

Remark. We have $A_R^* \subset A_R^* \subset A_{R[1/2]}^*$. On the one hand, diagram (11) implies that A_R^* is a normal subgroup of $A_{R[1/2]}^*$. On the other, A_R^* is stable under conjugation by elements of $A_{R[1/2]}^*$ and, thus, also normal in $A_{R[1/2]}^*$. Consequently, $\tau(A_R^*)$ is normal in $SO_3(R)$.

Theorem 5. Let $B_2 = \{a \in K^*; v_\ell(a) \text{ even if } \ell \neq \wp, \bar{\wp}\}/K^{*2}R^*$. The map $SO_3(R)/\tau(\Lambda_R^*) \xrightarrow{\psi_2} B_2$ induced by ψ is an isomorphism.

Proof. Let $s \in SO_3(R)$ and $y = y_0 + y_1i + y_2j + y_3k \in A$ with $\tau(y) = s$. If $y' \in A$, $y' \neq y$ and $\tau(y') = s$, then $y/y' \in K^*$ and, hence, q(y) and q(y') differ in a square in K^* . As was argued when defining the map ψ , for each prime ideal $\ell \neq \wp$, $\bar{\wp}$ of R, $v_\ell(q(y))$ is even. We finally observe that $\psi(\tau(\Lambda_R^*)) \subset R^*/K^{*2}$. This shows that the map ψ_2 is a well-defined homomorphism.

Suppose, next, that $q(y) = a^2 u$, $a \in K^*$, $u \in R^*$. Substituting y by y/a, we may assume $q(y) \in R^*$. This implies that the entries in matrix (5) defining $\tau(y)$ are all in R. As a consequence of this, $4y_i^2 \in R$ for all i and, hence, $v_\ell(y) \ge 0$ if $\ell \ne \wp$, $\widehat{\wp}$. Taking sums and differences of the elements in the diagonal of (5), we verify that $v_{\wp}(2(y_i^2 \pm y_j^2)) \ge 0$ and $v_{\widehat{\wp}}(2(y_i^2 \pm y_j^2)) \ge 0$. Since 2 does not ramify in R, this implies that $y_i \equiv y_j \pmod{2}$ for each i, j, $y \in \Lambda_R^*$ and, so, the sequence $1 \rightarrow R^* \rightarrow \Lambda_R^* \xrightarrow{\tau_2} SO_3(R) \xrightarrow{\psi} B_2$ is exact and the map ψ_2 injective.

Let us see that ψ_2 is also surjective. There is an exact sequence $1 \to Cl(R)_2 \xrightarrow{\phi} B_2 \xrightarrow{\bar{\beta}} \prod_{\nu|2} \mathbb{Z}/2\mathbb{Z}$, where ϕ sends each class to a generator of its square and $\bar{\beta}(x) = (v_{\wp}(x) \pmod{2}), v_{\bar{\wp}}(x) \pmod{2})$ for $x \in B$. We set $\beta(x) = (v_{\wp}(x), v_{\bar{\wp}}(x))$, so $\bar{\beta}(x) = \beta(x) \pmod{2}$. Then, $(1, 1) = \beta(2) \in Im \bar{\beta}$ and we know that there exists $x \in K^*$ with $v_{\wp}(x)$ odd and $v_{\ell}(x)$ even for $\ell \neq \wp$ if and only if $\delta = 1$. Thus, $Im \bar{\beta} = (\mathbb{Z}/2\mathbb{Z})^{1+\delta}$ and

$$B_2 \simeq \left(\mathbb{Z}/2\mathbb{Z}\right)^{r+\delta}.\tag{12}$$

On the other hand, we have the following commutative diagram,

Using the Snake Lemma, (9), (10) and (12) on this diagram, we get $\psi(SO_3(R)/\tau(\Lambda_R^*)) = B_2$ and the theorem is proved. \Box

Lemma 6. In the situation described in diagram (4), it is $\Lambda_R^*/A_R^* \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

Proof. Direct computations show that for $x \in A_R^*$ and $y \in A_R^*$, $xyx^{-1} \in A_R^*$ and A_R^* is a normal subgroup of A_R^* . We start by giving a characterization of the elements of A_R^*/A_R^* . Writing every $x \in A_R^*$ as $x = \frac{a + (a+2b)i + (a+2c)j + (a+2d)k}{2}$, we may define a map $\sigma = (\sigma_1, \sigma_2) : A_R^* \to R \times R$ by

$$\frac{a+(a+2b)i+(a+2c)j+(a+2d)k}{2}\mapsto (a,b+c+d).$$

It is easy to check that for $x, y \in \Lambda_R^*$,

$$xy^{-1} \in A_R^* \quad \Leftrightarrow \quad \sigma_1(x)\sigma_2(y) + \sigma_1(y)\sigma_2(x) \equiv 0 \pmod{2R}.$$
 (13)

Since |R/2R| = 4 and, as a consequence of (13), σ is injective, it is $|\Lambda_R^*/A_R^*| \le 16$. Furthermore, the element $u = \frac{1+i+j+k}{2}$ has order 3 in Λ_R^*/A_R^* , which implies that $|\Lambda_R^*/A_R^*| \in \{3, 6, 9, 12, 15\}$. Computing $\sigma(u)$ and $\sigma(u^2)$, (13) guarantees that, for $x \in \Lambda_R^*/A_R^*$ it is

$$\begin{cases} x \in A_R^* \quad \Leftrightarrow \quad \sigma_1(x) \equiv 0 \pmod{2R}, \\ x \equiv u \pmod{A_R^*} \quad \Leftrightarrow \quad \sigma_2(x) \equiv 0 \pmod{2R}, \\ x \equiv u^2 \pmod{A_R^*} \quad \Leftrightarrow \quad \sigma_2(x) \not\equiv 0 \pmod{2R} \text{ and } \sigma_1(x) \equiv \sigma_2(x) \pmod{2R}. \end{cases}$$
(14)

If we set d = 1 - 8k with $k \in \mathbb{N}$, the integer 8k + 3 is not of the form $4^n(8m + 7)$, so there exist $w_0^2, w_1^2, w_2^2 \in 1 + 8 \cdot \mathbb{Z}$ with $8k + 3 = w_0^2 + w_1^2 + w_2^2$, and we may choose w_r such that $w_r \equiv -1 \pmod{4}$ for all *r*. The element $w = \frac{w_0 + w_1 i + w_2 j + \sqrt{dk}}{2}$ has order 3 in Λ_R^* / A_R^* and it verifies $\sigma_1(w) \equiv 0 \pmod{2R}$ while $\sigma_2(w) \equiv \frac{1+\sqrt{d}}{2} \neq 0, 1 \pmod{2R}$, which implies, using (14), that it is not in $\langle u \rangle A_R^*$. We deduce that $\Lambda_R^*/A_R^* \simeq \langle u, w \rangle \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. \Box

Theorem 7. Let $\rho = \tau(u)$, $\mu = \tau(w)$ with u, w as in the proof of Lemma 6. Then $SO_3(R)/\tau(A_p^*) \simeq \langle \rho, \mu \rangle \rtimes$ $SO_3(R)/\tau(\Lambda_P^*)$, and the action of $SO_3(R)/\tau(\Lambda_P^*)$ on $\langle \rho, \mu \rangle$ is given by

- $\rho^{x} \equiv \mu \pmod{\tau(A_{R}^{*})}$ and $\mu^{x} \equiv \rho \pmod{\tau(A_{R}^{*})}$ if $v_{\wp}(\psi(x))$ odd and $v_{\bar{\wp}}(\psi(x))$ even;
- $-\rho^{x} \equiv \mu^{2} (\text{mod } \tau(A_{R}^{*})) \text{ and } \mu^{x} \equiv \rho^{2} (\text{mod } \tau(A_{R}^{*})) \text{ if } v_{\wp}(\psi(x)) \text{ even and } v_{\wp}(\psi(x)) \text{ odd};$ $-\rho^{x} \equiv \rho (\text{mod } \tau(A_{R}^{*})) \text{ and } \mu^{x} \equiv \mu (\text{mod } \tau(A_{R}^{*})) \text{ if } v_{\wp}(\psi(x)) \equiv v_{\wp}(\psi(x)) \equiv 0 (\text{mod } 2);$ $-\rho^{x} \equiv \rho^{2} (\text{mod } \tau(A_{R}^{*})) \text{ and } \mu^{x} \equiv \mu^{2} (\text{mod } \tau(A_{R}^{*})) \text{ if } v_{\wp}(\psi(x)) \equiv v_{\wp}(\psi(x)) \equiv 1 (\text{mod } 2).$

Proof. Similar arguments to those used in Theorem 5, together with Lemma 6 and (14), give us Theorem 7. □

Acknowledgments

The author thanks Ángel del Río and René Schoof for their help with earlier versions of this manuscript, lorge liménez for his help with the proof of Lemma 2 and the anonymous reviewer, whose accurate and detailed observations have been of great help.

References

- [1] M. Alsina, P. Bayer, Quaternion Orders, Quadratic Forms and Shimura Curves, CRM Monogr. Ser., vol. 22, Amer. Math. Soc., 2004.
- [2] A.F. Beardon, The Geometry of Discrete Groups, Springer, Berlin, 1983.
- [3] H. Cohn, G. Pall, Sums of four squares in a quadratic ring, Trans. Amer. Math. Soc. 105 (3) (1962) 536-556.
- [4] C. Corrales-Rodrigáñez, G. Leal, E. Jespers, A. del Río, On the group of units of an order in a non-split quaternion algebra, Adv. Math. 186 (2004) 498-524.
- [5] J. Elstrodt, F. Grunewald, J. Mennicke, Groups Acting on Hyperbolic Space, Harmonic Analysis and Number Theory, Springer, 1998.
- [6] B. Fine, The Algebraic Structure of the Bianchi Groups, Marcel Dekker, 1989.
- [7] A.J. Hahn, O.T. O'Meara, The Classical Groups and K-Theory, Grundlehren Math. Wiss., vol. 291, Springer-Verlag, 1989.
- [8] T.Y. Lam, Introduction to Quadratic Forms over Fields, Grad. Stud. Math., vol. 67, Amer. Math. Soc., 2005.
- [9] B. Maskit, Kleinian Groups, Springer, 1988.
- [10] H. Poincaré, Mémoire sur le groupes, kleinéens, Acta Math. 3 (1883) 49-92.
- [11] J. Voight, Computing Automorphic forms on Shimura curves over fields with arbitrary class number, in: Algorithmic Number Theory, Proceedings of ANTS IX, Nancy, France, 2010, in: Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 357-371.
- [12] A. Weil, Number Theory, an Approach Through History, Birkhäuser, Boston, 1984.