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Abstract

We give an algorithm to determine a finite set of generators of the unit group of an order in

a non-split classical quaternion algebra HðKÞ over an imaginary quadratic extension K of the

rationals. We then apply this method to obtain a presentation for the unit group of

HðZ½1þ
ffiffiffiffiffi
�7

p

2
�Þ: As a consequence a presentation is discovered for the orthogonal group

SO3ðZ½1þ
ffiffiffiffiffi
�7

p

2
�Þ: These results provide the first examples of a characterization of the unit group

of some group rings that have an epimorphic image that is an order in a non-commutative

division algebra that is not a totally definite quaternion algebra.

r 2003 Elsevier Inc. All rights reserved.

MSC: primary 16U60; secondary 11R27; 16A26

1. Introduction

The unit group of an order in a finite dimensional semisimple algebra A over the
rationals is an important example of an arithmetic group. Hence it forms a
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fundamental topic of interest. Recall that a subring G of A is said to be an order if G
is a finitely generated Z-module that contains a Q-basis of A: Prominent examples of
orders are group rings RG of finite groups G over the ring of integers R of an
algebraic number field. The unit group RG� of RG has received a lot of attention and
most of it has been given to the case R ¼ Z; for surveys we refer to [7,9,12]. It is well
known that the unit group G� of an order G is a finitely presented group. However,
only for very few finite non-abelian groups G the unit group ZG� has been described,
and even for fewer groups G a presentation of ZG� has been obtained. Nevertheless,
for many finite groups G a specific finite set B of generators of a subgroup of finite
index in ZG� has been given. The only groups G excluded in this result are those for
which the rational group algebra QG has a simple component that is either a non-
commutative division algebra different from a totally definite quaternion algebra or
a 2 
 2 matrix ring M2ðFÞ; where F is either Q; a quadratic imaginary extension of Q
or a non-commutative division algebra. One of the important tools used to prove
that the group generated by B (which we will denote by /BS) is of finite index, is to
show that if MnðDÞ is a simple component of QG and G is an order in the division
algebra D then /BS contains a subgroup of finite index in SLnðGÞ; the group of
matrices in MnðGÞ of reduced norm one. As mentioned above, the case n ¼ 1 and D a
non-commutative division algebra different from a totally definite quaternion
algebra is excluded. If G is an order in D then the unit group G� is a Q-group that is
anisotropic. Hence even describing some generic classes of units in this group is hard.
For the known results on unit groups in division algebras we refer to [8]; the author
mainly concentrates on the case that the non-commutative division algebra D splits
over R:

The aim of this paper is to present a finite algorithm to compute a finite set of
generators of the unit group of an order in a non-split classical quaternion algebra
HðKÞ over an imaginary quadratic extension K of the rationals. We then apply this

method in case K ¼ Qð
ffiffiffiffiffiffiffi
�7

p
Þ and obtain a presentation of HðZ½1þ

ffiffiffiffiffi
�7

p

2
�Þ�: Since the

latter group is closely related to SO3ðZ½1þ
ffiffiffiffiffi
�7

p

2
�Þ we also obtain a presentation of this

group. The difficulty with this is that the bilinear form associated to the group

SO3ðZ½1þ
ffiffiffiffiffi
�7

p

2
�Þ is non-singular because 2 is not invertible in Z½1þ

ffiffiffiffiffi
�7

p

2
�: Hence we will

have to obtain a new exact sequence from the well-known Cartan–Diedonné
sequence [6, 7.2.20] relating the two mentioned groups.

Let Q8 denote the quaternion group of order 8: Clearly Qð
ffiffiffiffiffiffiffi
�7

p
ÞQ8 ¼

4Qð
ffiffiffiffiffiffiffi
�7

p
Þ"HðQð

ffiffiffiffiffiffiffi
�7

p
ÞÞ and thus Z½1þ

ffiffiffiffiffi
�7

p

2
�Q8D4Z½1þ

ffiffiffiffiffi
�7

p

2
�"HðZ½1þ

ffiffiffiffiffi
�7

p

2
�Þ: As

Z½1þ
ffiffiffiffiffi
�7

p

2
�� ¼ f1;�1g it follows that ðZ½1þ

ffiffiffiffiffi
�7

p

2
�Q8Þ�Df1;�1g4 
HðZ½1þ

ffiffiffiffiffi
�7

p

2
�Þ�: Hence

the above gives us a description of the unit group of the group ring Z½1þ
ffiffiffiffiffi
�7

p

2
�Q8: This

is the ‘‘simplest example’’ of a group ring for which no finite set of generators of a
subgroup of finite index in its unit group is known (see [7,12]). For integral group
rings, the group of least order for which this problem is still open is Q8 
 C7; the

direct product of Q8 with the cyclic group C7 of order 7: In this situation, Z½Q8 

C7��Df1;�1g4 
7Q8 
 ðZ½x7��Þ4 
 ðZ½x7��Þ4HQðZ½x7�Þ�; where x7 is a primitive
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7th root of unity. Hence the study of the unit group is reduced to that of HðZ½x7�Þ:
Now HðZ½1þ

ffiffiffiffiffi
�7

p

2
�ÞDHðZ½x7�Þ and there are 6 complex embeddings of Qðx7Þ: Hence

the calculations become much more involved and it remains a challenge to obtain a

presentation for HðZ½x7�Þ�:

2. Preliminaries

In this section we introduce some notation and recall a fundamental result that is
essential for our investigations.

Let K be an algebraic number field and R its ring of integers. For nonzero a; bAK

we denote by HðKÞ ¼ ða;b
K
Þ the quaternion K-algebra induced by a; b; that is, HðKÞ is

the K-algebra given by

HðKÞ ¼ K ½i; jji2 ¼ a; j2 ¼ b; ji ¼ �ij�:

As usual we write k ¼ ij; so that f1; i; j; kg is a K-basis of HðKÞ: If a; bAR then let

HðRÞ ¼ a; b

R

� �
¼ R½i; j�;

that is, HðRÞ is the R-algebra consisting of the R-linear sums of f1; i; j; kg: Let
n : HðKÞ-K denote the norm map, that is,

nðxÞ ¼ x2
0 � ax2

1 � bx2
2 þ abx2

3 ð1Þ

for x ¼ x0 þ x1i þ x2j þ x3kAHðKÞ: The group of units HðRÞ� of HðRÞ is
commensurable with (i.e., it has a common subgroup of finite index with) R� 

SL1ðHðRÞÞ where

SL1ðHðRÞÞ ¼ fxAHðRÞ j nðxÞ ¼ 1g:

Therefore the study of the structure of HðRÞ� is reduced to that of R� and
SL1ðHðRÞÞ: Since the Dirichlet Unit Theorem deals with the structure of R� we will
investigate SL1ðHðRÞÞ: In case R� ¼ f71g then of course SL1ðHðRÞÞ is of index at

most 2 in HðRÞ�:
The field F ¼ K ½i� is a maximal subfield of HðKÞ; and HðKÞ ¼ F"Fj is a crossed

product over F : The Galois group of the extension F=K is a cyclic group of order
two generated by the restriction s of the inner automorphism of HðKÞ induced by j;

that is sðxÞ ¼ jxj�1; for every xAF : Then HðKÞ can be embedded in M2ðCÞ by the
map

x þ yj/
x y

bsðyÞ sðxÞ

� �
: ð2Þ
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Moreover, this embedding maps the elements of norm 1 into SL2ðCÞ: Therefore we
may identify SL1ðHðKÞÞ and SL1ðHðRÞÞ with subgroups of SL2ðCÞ:

Since PSL2ðCÞ is the group of orientation preserving isometries of the three-

dimensional hyperbolic space H3; the group SL1ðHðRÞÞ acts on H3 and we can use

this action to study HðRÞ�: The best situation is when this action is discontinuous or
equivalently when SL1ðHðRÞÞ is discrete. In case HðKÞ splits, then, using that the
rank of a free abelian discrete subgroup of SL2ðCÞ is at most 2 [3, Theorem 1.1.8]
and at most 1 if it is embedded in PSL2ðRÞ (see Theorems 2.2.5 and 2.2.7 in [5]), it is

easy to see that the action of HðRÞ on H3 is discontinuous if and only if K ¼ Q or an
imaginary quadratic field. In this situation SL1ðHðRÞÞ ¼ SL2ðRÞ and the investiga-
tions reduce to the study of the corresponding Bianchi group PSL2ðRÞ: These groups
have been widely studied [2,3,5,11]. In this paper we are interested in the non-
splitting case and mainly in the case that K is imaginary quadratic. The following

theorem shows that then the action of SL1ðHðRÞÞ on H3 is discontinuous.

Theorem 2.1 (Elstrodt et al. [3, Theorem 10.1.2]). Let HðKÞ ¼ K ½i; jji2 ¼ a; j2 ¼ b;
ji ¼ �ij� be a quaternion algebra over a number field K and assume that the following

conditions hold:

* K has exactly one pair of complex embeddings (also known as complex archemedean

places);
* HðKÞ is ramified at all the real places, that is, HðsðKÞÞ#KR is a division ring

(necessarily the ring of Hamiltonian quaternions HðRÞ), for every real embedding s
of K :

Then for every order G in HðKÞ:

1. SL1ðGÞ is discrete.
2. SL1ðGÞ has finite covolume (i.e. the fundamental domains have finite volume) and

hence [3, Theorem 2.27] it is geometrically finite (i.e., all Dirichlet or Poincaré

normal polyhedra have finitely many sides).
3. SL1ðGÞ is cocompact (i.e. it has a compact fundamental domain) if and only if HðKÞ

is a division ring.

Assume that the conditions of Theorem 2.1 hold. Then both the Poincaré [10] and
the Swan methods [15] give presentations of SL1ðHðRÞÞ: For more details on these

methods and on groups acting discontinuously on H3 we refer the reader to [1,3,5].
Note that to use the Poincaré method it is necessary to compute a convex locally
finite fundamental polyhedron for SL1ðHðRÞÞ: For the Swan method, it is enough [3,

Theorem 2.7.1] to find a connected bounded open subset X of H3 that contains a
fundamental domain (indeed, since the fundamental domain is compact the set

fgASL1ðHðRÞÞ : X-gðX Þa|g is finite).

As in [3], we identify H3 with the following subset of the Hamiltonian quaternions
HðRÞ:

H3 ¼ fz þ rjjzAC; rARþg;
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where C is considered inside HðRÞ in the obvious way. The hyperbolic distance r in

H3 is determined by the formula

cosh rðP;P0Þ ¼ dðP;P0Þ ¼ 1 þ dðP;P0Þ
2rr0

;

where d is the Euclidean distance and P ¼ z þ rj and P0 ¼ z0 þ r0j are two elements of

H3: The open and closed ball of radius r40 centred at PAH3 are denoted
respectively by

BðP; rÞ ¼ fxAH3jrðx;PÞorg;

%BðP; rÞ ¼ fxAH3jrðx;PÞprg:

The norm in M2ðCÞ is denoted by jj jj; that is, if g ¼ a b
g d

� �
AM2ðCÞ then

jjgjj2 ¼ jaj2 þ jbj2 þ jgj2 þ jdj2:

If c and d are two different elements of H3 then the set of points equidistant (in the
metric r) to both c and d is a geodesic plane called the bisector between c and d and
it intersects orthogonally the hyperbolic segment joining c and d: This bisector is the

border of two open convex subsets of H3 (called half spaces) one containing c and

the other containing d: If gASL2ðCÞ and cAH3 is not a fixed point of g; then put

DgðcÞ ¼ fxAH3jrðx; cÞprðx; gðcÞÞg;

the half space containing c: If G is a discrete group contained in SL2ðCÞ and cAH3 is
not fixed by any non-trivial element of G then

DGðcÞ ¼
\

1agAG

DgðcÞ

is known as a Dirichlet or Poincaré fundamental polyhedron of G with centre c and
it is well known that DGðcÞ is a convex locally finite fundamental polyhedron of G:

It is easy to see that every Dirichlet fundamental domain of a cocompact discrete
group is compact.

3. A finite algorithm to compute a fundamental domain of cocompact discrete groups

The difficulty with computing DGðcÞ is that, theoretically, it is necessary to
compute the intersection of as many sets as the cardinality of G: We now describe a
finite algorithm to compute a Dirichlet fundamental polyhedron for cocompact
discrete groups. For a positive real number r let

DrðcÞ ¼
\

fDgðcÞj1agAG; gðcÞA %Bðc; rÞg:

If DGðcÞ is compact, then there is a positive real number r such that DGðcÞ ¼ DrðcÞ:
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Proposition 3.1. Let G be a cocompact discrete group and let cAH3 not fixed by any

non-trivial element of G: Then the following algorithm computes the Dirichlet

fundamental polyhedron D ¼ DGðcÞ in a finite number of steps.
Input: G:
Step 1: Select a strictly increasing unbounded sequence ðknÞ of positive numbers.
Step 2: Compute Dk1

ðcÞ;Dk2
ðcÞ;y until Dkn

ðcÞ is compact (or, equivalently,

bounded).

Step 3: Compute r ¼ maxðfkn

2
g,frðc; xÞ: xADkn

ðcÞgÞ:
Step 4: Compute D ¼ D2rðcÞ:
Output: D:

Proof. The fact that Step 2 stops after finitely many computations is a consequence
of the fact that DGðcÞ is compact and has finitely many sides. To prove that D ¼
DGðcÞ; note that

DGðcÞ ¼ D2rðcÞ-
\

rðc;gðcÞÞ42r

DgðcÞ:

Thus it is enough to show that for every gAG such that rðc; gðcÞÞ42r;

DDDkn
ðcÞD %Bðc; rÞDDgðcÞ: The first equality is obvious and the second is a consequence

of the selection of r in Step 3. Finally, if xA %Bðc; rÞ\DgðcÞ; then dðx; gðcÞÞodðx; cÞpr:

Thus 2rodðc; gðcÞÞpdðc; xÞ þ dðx; gðcÞÞo2r; a contradiction. &

Note also that for the Swan method it is enough to stop the algorithm of
Proposition 3.1 when Step 2 has finished because then Dkn

ðcÞ is contained in a

bounded connected open subset O of H3 and therefore O-gðOÞ ¼ | for all but
finitely many gAG: However even for the Swan method it is convenient to perform
Steps 3 and 4 in order to make the open and connected set O smaller. Indeed, the
open set can be taken inside the open ball Bðc; r þ eÞ for small e: Then the group

elements gAG that satisfy O-gðOÞa| also satisfy dðc; gðcÞÞp2ðr þ eÞ:
Let G be a cocompact discrete group. In order to make the algorithm of

Proposition 3.1 effective we need effective algorithms for the following tasks.

Task 1: Compute all the elements gAG; so that gðcÞA %Bðc; rÞ; for a given r40:
Task 2: Compute maxfrðc; xÞ: xAPg; for a convex and compact polyhedron P in

H3 containing c and with finitely many sides.
Task 2 is easy to achieve because the maximum distance to a point in a convex

polyhedron is realized at one of its vertices and if the polyhedron has finitely many
sides this can be calculated with finitely many computations.

For Task 1 remember that for every gASL2ðCÞ [1, Theorem 4.2.1]

jjgjj2 ¼ 2 cosh rðj; gðjÞÞ: ð3Þ

Therefore if c ¼ j; Task 1 reduces to
Task 10: For a given positive number r; compute all elements of G of norm at

most r:
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For most of the interesting groups, j is fixed by some non-trivial element.

Theoretically, this problem can be solved by replacing G by g�1Gg where gASL2ðCÞ
is such that gðjÞ ¼ c; and hence we may assume that c ¼ j: Nevertheless, this usually
increases the difficulty of Task 10 and consequently decreases the effectiveness of the
possible algorithms to accomplish it. In order to avoid this conjugation process we
propose the following alternative method to compute a fundamental domain of G:
Let Gj ¼ fgAG : gðjÞ ¼ jg the stabilizer of G; which is finite because G is discrete.

Then it is usually easy to compute a convex fundamental polyhedron F of Gj: For

every gAG\Gj let Fg ¼ F-DgðjÞ and for every positive real number r let Fr be the

intersection of all the sets Fg with gAG so that 0orðc; gðcÞÞpr:

Proposition 3.2. Let G be a cocompact discrete group, Gj ¼ fgAG: gðjÞ ¼ jg the

stabilizer of j under the action of G on H3 and F a convex fundamental polyhedron of

Gj : Then the following algorithm computes a convex fundamental polyhedron of G in a

finite number of steps.
Input: G:
Step 1: Compute a fundamental domain of the stabilizer Gj of j:

Step 2: Select a strictly increasing unbounded sequence of positive numbers kn:
Step 3: Compute Fk1

;Fk2
;y until Fkn

is compact (or, equivalently, bounded).

Step 4: Compute r ¼ maxðfkn

2
g,frðj; xÞ: xAFkn

gÞ:
Step 5: Compute D ¼ F2r:
Output: D:

Proof. After proving that D1 ¼
T

gAG\Gj
Fj is a convex and compact fundamental

domain of G one can proceed as in the proof of Proposition 3.1. So let us prove that
D1 has these properties.

First, D1 is convex as a consequence of the fact that it is the intersection of convex
sets. To prove that D1 is a fundamental domain it is enough to use the ideas of the
proof of [1, Theorem 9.6.1]. We include a self-contained proof for completeness. The

boundary of D1 is embedded in the union of countably many geodesic planes of H3

and hence it has Lebesgue measure zero. So it only remains to prove that if gðxÞ ¼ y

with x and y interior points of D1 and gAG then x ¼ y and every orbit contains one
element in the closure of D1: To prove the former, let g; x and y be as above and
assume that xay: Then ga1 and x and y belong to the interior of F : Since F is a
fundamental domain of Gj we have that geGj : Furthermore, x and y belong to the

interior of DgðjÞ and hence

rðj; yÞorðgðjÞ; yÞ ¼ rðj; xÞorðj; gðxÞÞ ¼ rðj; yÞ;

a contradiction. Now let O be an orbit of the action of G on H3; we have to prove
that it contains one element in the closure of D1: Since the intersection of O with

every compact set of H3 is finite, there is an uAO-F so that rðu; jÞprðv; jÞ for every
vAO: We claim that uAD1: Suppose the contrary, then there is gAG so that
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rðu; jÞ4rðu; gðjÞÞ: Let hAGj be so that hg�1ðuÞAF : It follows that

rðu; jÞ4rðu; gðjÞÞ ¼ rðhg�1ðuÞ; hðjÞÞ ¼ rðhg�1ðuÞ; jÞ; in contradiction with the choice
of u:

Finally, we prove that D1 is compact. Notice that since G is cocompact it has a

compact fundamental domain, X say, containing j: Let XD %Bðj; rÞ for r40: We claim

that D1D %Bðj; rÞ (and thus the compactness of D1 follows). Indeed, if ze %Bðj; rÞ then

zeX and, hence, there is gAG such that gðzÞAX : Then dðg�1ðjÞ; zÞ ¼ dðj; gðzÞÞpr

and, consequently, dðz; jÞ4dðg�1ðjÞ; zÞ; it follows that g�1eGj and zeFg�1ðjÞ: Thus

zeD1: &

4. An example

In this section we show how to apply the algorithm of Proposition 3.2 to the group

SL1ðHðRÞÞ where R ¼ Z½o� is the ring of integers of K ¼ Qð
ffiffiffiffiffiffiffi
�7

p
Þ; o ¼ 1þ

ffiffiffiffiffi
�7

p

2
and

HðKÞ ¼ �1;�1
K

� �
; the classical quaternion algebra over K :

The first two steps can be done in the more general context of quadratic imaginary

extensions K ¼ Qð
ffiffiffiffiffiffiffi
�d

p
Þ; where d is a square-free positive integer congruent with 7

modulo 8: It then follows that the ring of integers is R ¼ Z½o� with o ¼ 1þ
ffiffiffiffiffi
�d

p

2
and

that the prime integer 2 splits in R; that is, 2R ¼ pq where p and q are different prime
ideals of R: As a consequence of the behaviour of the prime 2 one can deduce using
local class field theory [13] that HðKÞ is a division algebra. An alternative approach
is noticing that HðKÞ splits if and only if �1 is a sum of squares in K : Using this
approach the fact that HðKÞ is a division ring for d prime is a consequence of the
results of [4].

Clearly, the maximal subfield of HðKÞ mentioned in the introduction is F ¼
K ½i� ¼ Q½

ffiffiffiffiffiffiffi
�d

p
; i�: The Galois group of F=Q has four elements f1; s; t; stg and these

act as follows:

sðoÞ ¼ o; sðiÞ ¼ �i;

tðoÞ ¼ %o; tðiÞ ¼ i:

Let S ¼ R½i� ¼ Z½o; i� and B ¼ f1; i;o;oig: Note that the automorphism s of F is
induced by conjugating by j: Hence, we may identify SL1ðHðRÞÞ with the subgroup
G of SL2ðCÞ consisting of all matrices of the form

g ¼
g1 g2

�sðg2Þ sðg1Þ

� �
ð4Þ

with

g1 ¼ a0 þ b0oþ a1i þ b1oiAS and g2 ¼ a2 þ b2oþ a3i þ b3oiAS;
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where all ai’s and bi’s are rational integers. (Note that the discreteness of G; ensured
by Theorem 2.1, is now elementary because it is well known from algebraic number

theory that the map ð1; sÞ : S-C2 maps S onto a lattice of C2 ¼ R4:)
In order to go through the several steps, we first deal with Task 10: Thus, let gAG

be as in (4) and set

a ¼ a2
0 þ a2

1 þ a2
2 þ a2

3;

b ¼ b2
0 þ b2

1 þ b2
2 þ b2

3;

g ¼ a0b0 þ a1b1 þ a2b2 þ a3b3:

Note that

jg1j2 þ jsðg1Þj2 ¼ 2ða2
0 þ a2

1Þ þ
d þ 1

2
ðb2

0 þ b2
1Þ þ 2ða0b0 þ a1b1Þ

and similarly

jg2j2 þ jsðg2Þj2 ¼ 2ða2
2 þ a2

3Þ þ
d þ 1

2
ðb2

2 þ b2
3Þ þ 2ða2b2 þ a3b3Þ:

Therefore

jjgjj2 ¼ 2aþ d þ 1

2
bþ 2g: ð5Þ

Moreover, detðgÞ ¼ a� dþ1
4

bþ ðbþ 2gÞo; so that

detðgÞ ¼ 1 if and only if g� d þ 1

4
b ¼ 1 and bþ 2g ¼ 0: ð6Þ

Lemma 4.1. Let gAG be as in ð4Þ; with detðgÞ ¼ 1 and l ¼ jjgjj2: Then

a ¼ 1 þ ðd þ 1Þðl � 2Þ
4d

; b ¼ l � 2

d
; and g ¼ 2 � l

2d
:

In particular l � 2 mod 2d:

Proof. Because of (5) and (6), a; b and g are integral solutions of the following linear
system of equations:

2aþ d þ 1

2
bþ 2g ¼ l;
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a� d þ 1

4
b ¼ 1;

bþ 2g ¼ 0:

Hence the result follows. &

Hence, in order to deal with Task 10; we need an algorithm to compute the set

Gn ¼ fgAG : jjgjj2 ¼ 2 þ 2dng

for every non-negative integer n: Lemma 4.1 reduces this problem to compute all the
matrices

a0 a1 a2 a3

b0 b1 b2 b3

� �
AM2;4ðZÞ

satisfying the following equations:

a2
0 þ a2

1 þ a2
2 þ a2

3 ¼ 1 þ d þ 1

2
n;

b2
0 þ b2

1 þ b2
2 þ b2

3 ¼ 2n;

a0b0 þ a1b1 þ a2b2 þ a3b3 ¼ �n:

We identify Gn with the set of these matrices.

Let C2 denote the cyclic group of order 2; put C ¼
Q4

i¼1 /siSCC4
2 and let S4

denote the symmetric group on four letters. Obviously S4 acts on C by permutations
of the generators, that is, for gAS4; gðsiÞ ¼ sgðiÞ: Let X ¼ CsS4 denote the induced

semidirect product. Then the following is a right action of X on M2;4ðZÞ:

ðc1; c2; c3; c4Þ � s1 ¼ ð�c1; c2; c3; c4Þ;

ðc1; c2; c3; c4Þ � s2 ¼ ðc1;�c2; c3; c4Þ;

ðc1; c2; c3; c4Þ � s3 ¼ ðc1; c2;�c3; c4Þ;

ðc1; c2; c3; c4Þ � s4 ¼ ðc1; c2; c3;�c4Þ;

ðc1; c2; c3; c4Þ � g ¼ ðcgð1Þ; cgð2Þ; cgð3Þ; cgð4ÞÞ;

where c1;y; c4 are the columns of an element in M2;4ðZÞ and gAS4: Clearly X

induces an action on Gn; and hence to know Gn it is enough to produce a set of
representatives Rn of each X -orbit inside Gn:
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For example, G0 has only one orbit represented by

r0 ¼
1 0 0 0

0 0 0 0

� �

and for d ¼ 7; G1 has two orbits represented by

r1;1 ¼
2 1 0 0

�1 1 0 0

� �
and r1;2 ¼

2 1 0 0

0 �1 1 0

� �
:

Since the stabilizers of r0; r1;1 and r1;2 are /s2; s3; s4; ð2 3 4Þ; ð2 3ÞS; /s3; s4; ð3 4ÞS
and /s4S respectively, the respective orbits have 8, 48 and 192 elements. Hence
jG0j ¼ 8 and jG1j ¼ 240:

Thus, to compute Gn we first compute a set Rn of representatives of the X -orbits of
Gn and, next, for each xARn we first compute a right transversal Sx of X=Xx; where
Xx is the stabilizer of x in X ; and then we compute xg for every gASx:

We now go through the several steps of the algorithm of Proposition 3.2. We
complete Steps 1 and 2 for the general case, and the other steps for d ¼ 7:

Step 1: The stabilizer Gj of j is precisely G0 which has one X -orbit represented by

the matrix r0 and hence Gj has eight elements and

Gj ¼
i 0

0 �i

� �
;

0 1

�1 0

� �	 

;

which is isomorphic to the quaternion group of order 8: Further

F ¼ fP ¼ x þ yi þ rjAH3 : jPjp1; yX0g

is a fundamental domain of Gj:

Step 2: Because of Lemma 4.1 and (3), a good selection for the sequence ðknÞ is
given by the formula 2 cosh kn ¼ 2 þ 2dn:

Step 3: To proceed with the computations, we need to calculate Gnj for n ¼
1; 2;y: We have seen how to compute Gn and thus this task can be executed for
specific d: Furthermore as Gn is a union of G0-cosets, we can simplify these
calculations by working with a set Tn of representatives of the left G0-cosets of the
elements of Gn and note that Gnj ¼ Tnj: Consequently, we only need to compute a
left transversal of Gn=G0: Now note that the right action of G0 on G coincides with
the action of the subgroup Y ¼ /s2s3ð1 2Þð3 4Þ; s3s4ð1 3Þð2 4ÞS of X ; because for
every gAG one has

g
i 0

0 �i

� �
¼ g � s2s3ð1 2Þð3 4Þ and g

0 1

�1 0

� �
¼ g � s3s4ð1 3Þð2 4Þ:

Therefore, to compute Tn it is enough to compute a left transversal Tx of /Y ;XxS in
X for every xAXn; and then Tn ¼ ,xARn

xTx:
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In order to do the actual calculations we need to specify a concrete value for p:
From now on we assume d ¼ 7: As will be explained later we need to compute Xn and
Tn for np10: Table 1 shows the results obtained using Mathematica. In the table,
S3 ¼ /ð1 2Þ; ð1 2 3ÞS and A4 ¼ /ð1 2Þð3 4Þ; ð1 2 3ÞS:

A little word of explanation on how, for example, the second row (with n ¼ 1) is
obtained. We have put R1 ¼ fr1;1; r1;2g; Xr1;2

¼ /s4S and Xr1;1
¼ /s3; s4; ð3 4ÞS:

Then a right transversal of /Y ;Xr1;1S in X is Tr1;1
¼ S3 and a right transversal of

/Y ;Xr1;2S in X is Tr1;2
¼ /s1; s2S
 S3 (note that the latter only is a subset and not a

subgroup of X ; so one should not confuse it with /s1; s2;S3S ¼ X ).
Next, we first compute T1 by applying the six elements of Tr1;1

to r1;1 and the twenty

four elements of Tr1;2 to r1;2; and then we compute gj and the bisectors between j and

gj for all the gAT1: The results appear in the following table, where Cg and Rg denote

the centre and the radius, respectively, of the bisector between j and gj:
We now can compute Fk1

; the intersection of F with the 30 DgðjÞ’s for

which jjgjj2 ¼ 16; that is the 30 half spaces containing j and limited by the 30 spheres
of Table 2. To visualize the result we represent in Fig. 1 the base of these spheres,

that is, the intersection of these spheres with the plane C; border of H3: In Fig. 1, we
represent also the base of the fundamental domain F of Gj computed above:

It is clear that many of the spheres displayed in Fig. 1 do not contribute to the

intersection. The biggest sphere (the one with radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 þ 3

ffiffiffi
7

pp
) contains F ; while

the eight spheres with next biggest radius ð23
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11
2 þ 2

ffiffiffi
7

pq
Þ do not intersect F ; so they

can be dropped from the list of spheres. We can also ignore the seven spheres
completely embedded in the half space not containing j limited by the plane Y ¼ 0:
Of the remaining 14 spheres, the two of biggest radius and the two centred below the
line y ¼ 0 are also unnecessary. The remaining spheres are displayed in Fig. 2. It is
now clear that the remaining ten spheres cover the base F and, hence, it follows
that Fk1

is compact. A three dimensional representation of the ten spheres

and the boundary of F is given in Fig. 3. For further use in the paper we introduce
names and notation for the bisectors. As the picture reminds us of the set up
of an orchestra, we have chosen the names accordingly. In Fig. 4 we illustrate
the projection on C of the 10 contributing spheres. In Table 3 we list the
bisectors (via their center and radius) and the group element associated to each of
them.

So following the notation of Proposition 3.2 Fk1
is compact and hence we already

have completed Step 3.
Step 4: We now need to compute r ¼ maxðfk1=2g,frðj; xÞ : xAFk1

ðjÞgÞ: Since Fk1

is convex, the maximum of the distances rðj; xÞ for xAFk1
is realized at one of the

vertices of Fk1
: These vertices are the points of intersection of three of the 12 sides of

Fk1
: There are 20 such vertices (we present them below as the intersection of three

bisectors):

C-P-Sl ;C-P-Sr;C-Sl-Vl ;C-Sr-Vr;C-Vl-Vr;Sl-D1-P;Sr-Dr-P;
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Table 1

Rn for np10

n Rn Xx Tx jTxj

0 1 0 0 0
0 0 0 0

� �
/s2; s3; s4; ð2 3 4Þ; ð2 3ÞS 1 1

1 2 1 0 0
�1 1 0 0

� �
/s3; s4; ð3; 4ÞS S3 6

2 1 0 0
0 �1 1 0

� �
/s4S /s1; s2S
 S3 24

2 2 2 1 0
0 0 �2 0

� �
/s4; ð1; 2ÞS /s1; s2S
/ð1 2 3ÞS 12

3 2 2 2 1
�2 0 1 �1

� �
1 /s1; s2; s3S
 S3 48

3 2 0 0
�1 0 �2 �1

� �
1 /s1; s2; s3S
 S3 48

4 3 2 2 0
0 �2 0 �2

� �
1 /s1; s2; s3S
 S3 48

5 3 2 2 2
�1 �2 �1 2

� �
1 /s1; s2; s3S
 S3 48

4 2 1 0
�2 1 1 �2

� �
1 /s1; s2; s3S
 S3 48

4 2 1 0
�2 2 �1 �1

� �
1 /s1; s2; s3S
 S3 48

4 2 1 0
0 �3 1 0

� �
/s4S /s1; s2S
 S3 24

6 4 2 2 1
�2 0 2 �2

� �
1 /s1; s2; s3S
 S3 48

4 2 2 1
0 �2 �2 2

� �
/ð2; 3ÞS /s1S
 A4 24

4 3 0 0
0 �2 �2 �2

� �
/ð3; 4ÞS /s1S
 A4 24

7 4 3 2 0
0 �3 1 �2

� �
1 /s1; s2; s3S
 S3 48

4 3 2 0
0 �1 �2 �3

� �
1 /s1; s2; s3S
 S3 48

8 4 3 2 2
0 0 �4 0

� �
1 /s1; s2; s3S
 S3 48

5 2 2 0
0 �4 0 0

� �
/s4S /s1; s2S
 S3 24

9 4 4 2 1
�3 0 0 3

� �
1 /s1; s2; s3S
 S3 48

4 4 2 1
�3 2 �2 �1

� �
1 /s1; s2; s3S
 S3 48

/ð1; 2ÞS /s1S
 A4 24
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Sl-Dl-Wl ;Sr-Dr-Wr;Sl-Vl-Wl ;Sr-Vr-Wr;Ch-Vr-Wr;Ch-Vl-Wl ;

Ch-Vl-Vr;Dr-R-P;Dl-R-P;Dl-Wl-R;Dr-Wr-R;Ch-Wl-R;

Ch-Wr-R

Computing rðj; vÞ for all the vertices v; one obtains that the maximum is cosh�16:

Moreover, 2cosh k1 ¼ 16 and therefore k1 ¼ cosh�18: Thus r ¼
maxðcosh�18

2
; cosh�16Þ ¼ cosh�16:

Step 5: Next we calculate D ¼ F2r; which is the fundamental domain of our group.

Using cosh2x ¼ e2xþ2þe�2x

4
¼ 1þcoshð2xÞ

2
we obtain that cosh 2r ¼ 2cosh2r � 1 ¼ 71:

Because of (3) the elements of the orbit of j in %Bðj; 2rÞ coincide with the elements of

the form gj with gAG satisfying jjgjj2p142: These are the group elements associated
to the matrices displayed in the second column of Table 1. Hence we can compute
the set O of elements in the orbit of j at distance less than or equal to 2r: Next, for
any xAO we have to compute the bisector between j and x and we have to check if
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Table 1 (continued)

n Rn Xx Tx jTxj

4 4 2 1
�2 �2 3 1

� �

4 4 2 1
0 0 �3 �3

� �
/ð1; 2ÞS /s1S
 A4 24

4 4 2 1
2 �3 �2 �1

� �
1 /s1; s2; s3S
 S3 48

5 2 2 2
�3 �1 2 2

� �
/ð3; 4ÞS /s1S
 A4 24

5 2 2 2
�3 0 0 3

� �
/ð2; 3ÞS /s1S
 A4 24

5 2 2 2
1 �3 �2 �2

� �
/ð3; 4ÞS /s1S
 A4 24

6 1 0 0
�2 3 �2 �1

� �
1 /s1; s2; s3S
 S3 48

6 1 0 0
�1 �3 �2 �2

� �
/ð3; 4ÞS /s1S
 A4 24

10 4 4 3 0
�4 0 2 0

� �
/s4S /s1; s2S
 S3 24

5 4 0 0
�2 0 �4 0

� �
/s4S /s1; s2S
 S3 24

6 2 1 0
0 �4 �2 0

� �
/s4S /s1; s2S
 S3 24
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Table 2

The bisectors for the elements of T1

gAT1 gj Cg Rg

1 þ 2i þ w � iw ð8 þ 3i � 6iwÞj ð0; 0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 þ 3

ffiffiffi
7

pp

2 þ i � w þ iw ð8 � 3i þ 6iwÞj ð0; 0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � 3

ffiffiffi
7

pp
Þ

i þ iw þ ð2 � wÞj 3i � 6iw þ j

8

3ffiffiffi
7

p ; 0

� �

1 þ w þ ð2 � wÞj 3 � 6w þ j

8
0;� 3ffiffiffi

7
p

� � ffiffiffi
2

7

r

2i � iw þ ð1 þ wÞj �3i þ 6iw þ j

8
� 3ffiffiffi

7
p ; 0

� �

ð2 � wÞ þ ð1 þ wÞj �3 þ 6w þ j

8
0;

3ffiffiffi
7

p
� �

�2 � iw þ ð1 � wÞj � 1

18
� i þ 8w

9
þ 4iw

9
þ 2

9
� i

18
þ iw

9

� �
j �1

3
ð�2 þ

ffiffiffi
7

p
Þ; 2

3
ð�2 þ

ffiffiffi
7

p
Þ

� �

�2 þ i � iw � wj �5

6
� 5i

9
þ 8w

9
� 4iw

9
þ 2

9
� i

18
þ iw

9

� �
j

1

3
ð�2 þ

ffiffiffi
7

p
Þ; 2

3
ð�2 þ

ffiffiffi
7

p
Þ

� �

�1 � 2i þ w � wj 5

9
� 5i

6
þ 4w

9
þ 8iw

9
þ 2

9
� i

18
þ iw

9

� �
j �2

3
ð�2 þ

ffiffiffi
7

p
Þ; 1

3
ð�2 þ

ffiffiffi
7

p
Þ

� �

�1 þ 2i þ w � wj 5

9
þ 5i

6
þ 4w

9
� 8iw

9
þ 2

9
þ i

18
� iw

9

� �
j �2

3
ð�2 þ

ffiffiffi
7

p
Þ;�1

3
ð�2 þ

ffiffiffi
7

p
Þ

� �
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

2
� 2

ffiffiffi
7

pr

2i � w þ ð1 � wÞj �1 þ i

18
þ 4w

9
� 8iw

9
þ 2

9
� i

18
þ iw

9

� �
j

2

3
ð�2 þ

ffiffiffi
7

p
Þ;�1

3
ð�2 þ

ffiffiffi
7

p
Þ

� �

1 � 2i � w � wj �5

9
� 5i

6
� 4w

9
þ 8iw

9
þ 2

9
þ i

18
� iw

9

� �
j �1

3
ð�2 þ

ffiffiffi
7

p
Þ;�2

3
ð�2 þ

ffiffiffi
7

p
Þ

� �

1 � w þ iw þ 2j �10

19
þ 2i

57
þ 32w

57
� 32iw

57
þ 8

57
� i

57
þ 2iw

57

� �
j

1

3
ð�2 þ

ffiffiffi
7

p
Þ;�2

3
ð�2 þ

ffiffiffi
7

p
Þ

� �

2 � iw þ ð1 � wÞj 1

18
� i � 8w

9
þ 4iw

9
þ 2

9
þ i

18
� iw

9

� �
j

2

3
ð�2 þ

ffiffiffi
7

p
Þ; 1

3
ð�2 þ

ffiffiffi
7

p
Þ

� �

�2 � i þ iw � wj �5

6
þ 5i

9
þ 8w

9
þ 4iw

9
þ 2

9
þ i

18
� iw

9

� �
j

1

3
ð�2 �

ffiffiffi
7

p
Þ; 2

3
ð2 þ

ffiffiffi
7

p
Þ

� �

�2 þ iw þ ð1 � wÞj � 1

18
þ i þ 8w

9
� 4iw

9
þ 2

9
þ i

18
� iw

9

� �
j

1

3
ð2 þ

ffiffiffi
7

p
Þ; 2

3
ð2 þ

ffiffiffi
7

p
Þ

� �

�2i þ w þ ð1 � wÞj
1 � i

18
� 4w

9
þ 8iw

9
þ 2

9
� i

18
þ iw

9

� �
j

2

3
ð2 þ

ffiffiffi
7

p
Þ; 1

3
ð2 þ

ffiffiffi
7

p
Þ

� �

2i þ w þ ð1 � wÞj
1 þ i

18
� 4w

9
� 8iw

9
þ 2

9
þ i

18
� iw

9

� �
j

2

3
ð2 þ

ffiffiffi
7

p
Þ;�1

3
ðþ2 þ

ffiffiffi
7

p
Þ

� �
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

2
þ 2

ffiffiffi
7

pr

�2i � w þ ð1 � wÞj �1 � i

18
þ 4w

9
þ 8iw

9
þ 2

9
þ i

18
� iw

9

� �
j �2

3
ð2 þ

ffiffiffi
7

p
Þ; 1

3
ð2 þ

ffiffiffi
7

p
Þ

� �

1 � w � iw þ 2j �10

19
� 2i

57
þ 32w

57
þ 32iw

57
þ 8

57
þ i

57
� 2iw

57

� �
j �1

3
ð2 þ

ffiffiffi
7

p
Þ;�2

3
ð2 þ

ffiffiffi
7

p
Þ

� �

1 þ 2i � w � wj �5

9
þ 5i

6
� 4w

9
� 8iw

9
þ 2

9
� i

18
þ iw

9

� �
j

1

3
ð2 þ

ffiffiffi
7

p
Þ;�2

3
ð2 þ

ffiffiffi
7

p
Þ

� �

2 þ i � iw � wj 5

6
� 5i

9
� 8w

9
� 4iw

9
þ 2

9
þ i

18
� iw

9

� �
j �2

3
ð2 þ

ffiffiffi
7

p
Þ;�1

3
ð2 þ

ffiffiffi
7

p
Þ

� �

�1 þ w � iw þ 2j 10

19
� 2i

57
� 32w

57
þ 32iw

57
þ 8

57
� i

57
þ 2iw

57

� �
j �1

3
ð�1 þ

ffiffiffi
7

p
Þ;�1

3
ð�1 þ

ffiffiffi
7

p
Þ

� �

�i þ w þ iw þ 2j 2

57
þ 10i

19
� 32w

57
� 32iw

57
þ 8

57
� i

57
þ 2iw

57

� �
j

1

3
ð�1 þ

ffiffiffi
7

p
Þ;�1

3
ð�1 þ

ffiffiffi
7

p
Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �

ffiffiffi
7

p

3

r

C. Corrales et al. / Advances in Mathematics 186 (2004) 498–524512



this bisector intersects D ¼ Fk1
: If it does then we reduce D by taking off the half

space limited by this bisector containing gj and then we go on to the next g: Using
Mathematica to execute these calculations one discovers that D ¼ Fk1

and the

algorithm finishes giving as an output the region represented by Fig. 3. Hence, we
also obtain generators for the group under consideration.
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Table 2 (continued)

gAT1 gj Cg Rg

i � w � iw þ 2j � 2

57
� 10i

19
þ 32w

57
þ 32iw

57
þ 8

57
� i

57
þ 2iw

57

� �
j �1

3
ð�1 þ

ffiffiffi
7

p
Þ; 1

3
ð�1 þ

ffiffiffi
7

p
Þ

� �

2 � i þ iw � wj 5

6
þ 5i

9
� 8w

9
þ 4iw

9
þ 2

9
� i

18
þ iw

9

� �
j

1

3
ð�1 þ

ffiffiffi
7

p
Þ; 1

3
ð�1 þ

ffiffiffi
7

p
Þ

� �

�1 þ w þ iw þ 2j 10

19
þ 2i

57
� 32w

57
� 32iw

57
þ 8

57
þ i

57
� 2iw

57

� �
j

1

3
ð1 þ

ffiffiffi
7

p
Þ;�1

3
ð1 þ

ffiffiffi
7

p
Þ

� �

i þ w � iw þ 2j 2

57
� 10i

19
� 32w

57
þ 32iw

57
þ 8

57
þ i

57
� 2iw

57

� �
j �1

3
ð1 þ

ffiffiffi
7

p
Þ;�1

3
ð1 þ

ffiffiffi
7

p
Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 þ

ffiffiffi
7

p

3

r

�i � w þ iw þ 2j � 2

57
þ 10i

19
þ 32w

57
� 32iw

57
þ 8

57
þ i

57
� 2iw

57

� �
j

1

3
ð1 þ

ffiffiffi
7

p
Þ; 1

3
ð1 þ

ffiffiffi
7

p
Þ

� �

2 þ iw þ ð1 � wÞj 1

18
þ i � 8w

9
� 4iw

9
þ 2

9
� i

18
þ iw

9

� �
j �1

3
ð1 þ

ffiffiffi
7

p
Þ; 1

3
ð1 þ

ffiffiffi
7

p
Þ

� �

-4 -2 2 4

-4

-2

2

4

Fig. 1.
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Theorem 4.2. Let R ¼ Z
1 þ

ffiffiffiffiffiffiffi
�7

p

2

� �
: The set D ¼ Fk1

is a convex fundamental domain

for SL1ðHðRÞÞ and the group SL1ðHðRÞÞ is generated by the following 12 elements:

i; j; 2 þ i � w þ iw;�1 � 2i þ w � wj;�2 � iw þ ð1 � wÞj;
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� 2 þ i � iw � wj; 2 � iw þ ð1 � wÞj;

i � w � iw þ 2j; 2 � i þ iw � wj; ð2 � wÞ þ ð1 þ wÞj;

2i � iw þ ð1 þ wÞj; i þ iw þ ð2 � wÞj:

Proof. This is a direct consequence of the description of the fundamental domain
and the fact that the group generated by the listed elements has the same
fundamental domain as SL1ðHðRÞÞ and contains �1 (the latter is needed to lift the
information from PSL1ðHðRÞÞ to SL1ðHðRÞÞ: &

The knowledge of the fundamental domain gave at once generators for the
considered group G: However, to obtain a presentation for the group G we now have
to apply the method of Poincaré. Of course this method will first rediscover a set of
generators and then it will also provide us with a complete set of relations. The
generators are the group elements g so that D-gðDÞ has dimension 2. The latter are
called sides and form a tesellation of the border of D: Each side s is associated with
the only group element gs so that s ¼ D-gsðDÞ:

Note that in order to find the generators in Theorem 4.2 we search for coset
representatives g of the stabilizer G0 of j which are such that the bisector between j
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Table 3

The boundary of Fk1

Notation Name Bisector g

P Public Y ¼ 0 i

R Roof Sðð0; 0Þ; 1Þ j

C Conductor S ð0; 0Þ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � 3

ffiffiffi
7

pp� �
2 þ i � w þ iw

Sl Soloists
S � 2

3
�2 þ

ffiffiffi
7

p� �
; 1
3
�2 þ

ffiffiffi
7

p� �� �
; 2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11
2
� 2

ffiffiffi
7

pq� �
�1 � 2i þ w � wj

Sr
S 2

3
�2 þ

ffiffiffi
7

p� �
; 1
3
�2 þ

ffiffiffi
7

p� �� �
; 2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11
2
� 2

ffiffiffi
7

pq� �
2 � iw þ ð1 � wÞj

Vl Violins
S � 1

3
�2 þ

ffiffiffi
7

p� �
; 2
3
�2 þ

ffiffiffi
7

p� �� �
; 2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11
2
� 2

ffiffiffi
7

pq� �
�2 � iw þ ð1 � wÞj

Vr
S 1

3
�2 þ

ffiffiffi
7

p� �
; 2
3
�2 þ

ffiffiffi
7

p� �� �
; 2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11
2
� 2

ffiffiffi
7

pq� �
�2 þ i � iw � wj

Wl Winds
S � �1þ

ffiffi
7

p

3
; �1þ

ffiffi
7

p

3

� �
;

ffiffiffiffiffiffiffiffiffi
4�

ffiffi
7

pp
3

� �
i � w � iw þ 2j

Wr
S �1þ

ffiffi
7

p

3
; �1þ

ffiffi
7

p

3

� �
;

ffiffiffiffiffiffiffiffiffi
4�

ffiffi
7

pp
3

� �
2 � i þ iw � wj

Ch Chorus
S 0; 3ffiffi

7
p

� �
;

ffiffi
2
7

q� � ð2 � wÞ þ ð1 þ wÞj

Dl Drums
S � 3ffiffi

7
p ; 0

� �
;

ffiffi
2
7

q� �
2i � iw þ ð1 þ wÞj

Dr S 3ffiffi
7

p ; 0
� �

;
ffiffi
2
7

q� �
i þ iw þ ð2 � wÞj
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and gðjÞ contributes to one side of the fundamental domain D; clearly, these elements
are not uniquely determined. However, for Poincaré’s method we have to be more
careful, since it could happen that D-gðDÞ is a side while D-ghðDÞ is not a side for
hAG0: We, therefore, need to look for sides of the form D-ghðDÞ with hAG0 and g

in a transversal of G0: In the Mathematica program used to do the calculations for
Theorem 4.2 we have all this data already available. After some more calculations,
fourteen elements (generators) g1h1;y; g14h14 (as above) are found such that the
sides D-gihiðDÞ cover the boundary of D: Let us make a few remarks on the actual
calculations. First, we observe that in order to look for the elements gihi we need to
look amongst the elements that map one of the bisectors that form the border of D to
another bisector. Secondly, two of these elements, the public and the roof, are easily
found by looking geometrically at the action of i and j on D: Thirdly, for all but two
bisectors one finds a group element that maps the bisector to itself.

After some calculations with Mathematica, we find that in our example the sides
coincide with the bisectors except for the conductor C and the chorus Ch; each of
which have to be divided in two sides: Cl ¼ C-ðXp0Þ and Cr ¼ C-ðXX0Þ for the
conductor, and Chl ¼ Ch-ðXp0Þ and Chr ¼ Ch-ðXX0Þ for the chorus. Table 4
gives the pairing between the sides and the associated group elements.

Hence we obtain

Theorem 4.3. Let R ¼ Z
1 þ

ffiffiffiffiffiffiffi
�7

p

2

� �
: The group SL1ðHðRÞÞ is generated by the

following 14 elements:

gP ¼ i gR ¼ j

gCl
¼ ð2 þ i � w þ iwÞj gCr

¼ ð1 � 2i þ w þ iwÞj
gSl

¼ iw þ ð�2 þ i � iwÞj gSr ¼ �i þ iw þ ð2 þ iwÞj
gVl

¼ �i þ iw þ ð2i � wÞj gVr
¼ iw þ ð1 þ 2i � wÞj

gWl
¼ �2i þ ð1 � w þ iwÞj gWr

¼ �2i þ ð�i þ w þ iwÞj
gChl

¼ �i � iw þ ð�2i þ iwÞj gChr
¼ 2i � iw � ði þ iwÞj

gDl
¼ 2i � iw þ ð1 þ wÞj gDr

¼ i þ iw þ ð�2 þ wÞj
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Table 4

The sides

s gs s gs

P i R j

Cl ð2 þ i � w þ iwÞj Cr ð1 � 2i þ w þ iwÞj
Sl iw þ ð�2 þ i � iwÞj Sr �i þ iw þ ð2 þ iwÞj
Vl �i þ iw þ ð2i � wÞj Vr iw þ ð1 þ 2i � wÞj
Wl �2i þ ð1 � w þ iwÞj Wr �2i þ ð�i þ w þ iwÞj
Chl �i � iw þ ð�2i þ iwÞj Chr 2i � iw � ði þ iwÞj
Dl 2i � iw þ ð1 þ wÞj Dr i þ iw þ ð�2 þ wÞj
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We now we have a set of generators of cardinality fourteen. In view of Theorem

4.2, this set may seem redundant. Nevertheless we note that gCr
¼ i3gCl

; gChr
¼

gChl
j:

We also note that Poincaré’s method allows us to calculate relations for discrete
subgroups of PSL2ðCÞ and from these we may easily derive presentations for the
corresponding subgroups of SL2ðCÞ: For example, the next step in Poincaré’s
method is to obtain a pairing between the sides, so that if s1 and s2 are two sides

associated then gs1 ¼ g�1
s2
: The first type of relations, the reflections, then correspond

to the sides that are associated with themselves. In our example, this happens with all
sides as they all have order two in PSL2ðCÞ: Indeed it is easily verified that for every

side s; g2
s ¼ �1:

We next have to find the cycle relations that are associated with the edges of the
fundamental domain. The fundamental domain has thirty four edges (we identify
each edge with a pair of adjacent sides):

ðDl ;SlÞ; ðDl ;WlÞ; ðDl ;PÞ; ðDl ;RÞ; ðDr;SrÞ; ðDr;WrÞ; ðDr;PÞ; ðDr;RÞ;

ðSl ;VlÞ; ðSl ;WlÞ; ðSl ;ClÞ; ðSl ;PÞ; ðVl ;VrÞ; ðVl ;WlÞ; ðVl ;ClÞ; ðVl ;ChlÞ; ðVr;SrÞ;

ðVr;WrÞ; ðVr;CrÞ; ðVr;ChrÞ; ðSr;WrÞ; ðSr;CrÞ; ðSr;PÞ; ðWl ;ChlÞ; ðWl ;RÞ;

ðWr;ChrÞ; ðWr;RÞ; ðCl ;CrÞ; ðCl ;PÞ; ðCr;PÞ; ðChr;ChlÞ; ðChr;RÞ; ðChl ;RÞ; ðP;RÞ:

Recall that a cycle is a list of even length

½e1; g1; e2; g2; e3;y; en; gn�; ð7Þ

where for each i ¼ 1;y; n; ei is an edge, gi is a generator or the inverse of a generator
(that is, one of the group elements of the form gs with s a side, giðeiÞ ¼ eiþ1 and

enþ1 ¼ e1). Each cycle gives rise to a relation ðgnyg1Þk ¼ 1 where k is the order of
gnyg1:

In principle, one can construct infinitely many cycles. However, some of the
relations obtained from cycles can be dropped according to the following two
principles. First, cyclic permutations of even order of the cycles clearly give rise to
new cycles with equivalent associated relations. Therefore these two cycles are
considered as equal. Secondly, we only need irreducible lists, that is, giþ1 should be

different from g�1
i for each i: Of course, merging cycles with the same starting edges

results into new cycles. Hence, in first instance we will only consider cycles such that
eiae1 for i ¼ 2;y; n: The irreducible cycles satisfying this last condition are called
minimal cycles.

Notice that if e is an edge of the side s ¼ D-g�1ðDÞ; then gðeÞ is an edge of the
side gðsÞ: If f is another edge such that gðf Þ is embedded in D; then the convex
closure of gðeÞ and gðf Þ is embedded in gðsÞ ¼ D-gðDÞ: Hence, the convex closure
containing e and f is embedded in the side s; and therefore f is one of the edges of s:
In other words, if g is a generator and e is an edge such that gðeÞ is another edge, then

ARTICLE IN PRESS
C. Corrales et al. / Advances in Mathematics 186 (2004) 498–524 517



e is one of the edges of the side, s ¼ D-gðDÞ; that is g ¼ gs: Thus, each gi in a cycle
should be one of the two generators associated to a side containing ei:

In our case all the generators have order two and this has two consequences. First,
each generator maps the associated side to itself and therefore two consecutive edges
of the list ðe1;y; enÞ belong to the same side. Second, one generator cannot be taken
twice consecutively in the same list. Thus, if gi ¼ gs for the side s; then s contains the
edge ei and gi maps s into itself. Therefore eiþ1 ¼ giðeiÞ is also an edge of s: This
implies that giþ1 ¼ gs1 where eiþ1 ¼ s-s1: Consequently, a minimal cycle as in (7) is

determined by the pair ðe1; g1Þ:
It is now easy to compute the minimal cycles. Up to a cyclic permutation of even

order, the following table lists them all (we have divided the table in several parts in
order to emphasize the symmetry).

These minimal cycles yield us the following extra relations amongst the generators:

Finally, we still have to consider cycles that can be obtained by merging minimal
cycles with the same initial edge. There are six pairs of such ‘‘mergeable’’ cycles:
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Two elements in the same row can be merged to produce new cycles and henceforth
we obtain new relations.

Longer cycles are possible, but it is clear from the relations obtained so far that the
relations obtained from these are a consequence of the former.

To state a presentation it is convenient to introduce an extra generator J which
corresponds with the element �I : To simplify notation we will write a generator gS

simply as S: Hence we have obtained a presentation with fifteen (including J) and 27

relations (including J2 ¼ 1 and J central).
Replacing Sl ; Sr and Chr by their respective inverses, the relations take a nicer

form. It is this presentation that is stated in the following theorem.

Theorem 4.4. Let R ¼ Z 1þ
ffiffiffiffiffi
�7

p

2

h i
: The group SL1ðHðRÞÞ has the presentation defined

by the generators

J;P;R;Cl ;Cr;Sl ;Sr;Vl ;Vr;Wl ;Wr;Chl ;Chr;Dl ;Dr

and the relations

P2 ¼ R2 ¼ C2
l ¼ C2

r ¼ S2
l ¼ S2

r ¼ V2
l ¼ V 2

r ¼ W 2
l ¼ W 2

r

¼ Ch2
l ¼ Ch2

r ¼ D2
l ¼ D2

r ¼ J;

SlClVlChlWlDl ¼ SrCrVrChrWrDr ¼ PDrRDl ¼ VlWlSl ¼ SrWrVr

¼ CrPCl ¼ ChrRChl ¼ 1;

ðSlPSrPÞ2 ¼ ðWlRWrRÞ2 ¼ ðVlVrÞ2 ¼ ðPRÞ2 ¼ J and J2 ¼ 1:

Of course, some of the defining generators are redundant. For example, one can
eliminate Vl ;Dl ;Vr;Dr;P and R: So the group SL1ðHðRÞÞ can be generated by nine
elements.

ARTICLE IN PRESS
C. Corrales et al. / Advances in Mathematics 186 (2004) 498–524 519



5. The orthogonal group

Let K be a number field, R its maximal order, HðKÞ ¼ �1;�1
K

� �
the classical

quaternion algebra over K and tðyÞ is the orthogonal 3 
 3-matrix (with respect to
the norm n (1) and the standard basis i; j; k of the imaginary part H0ðKÞ of HðKÞ)
associated to the isometry ty :H0ðKÞ-H0ðKÞ with tyðxÞ ¼ yxy�1:

A well-known Theorem of Cartan–Dieudonné says that the sequence

1-K�-HðKÞ� !t SO3ðKÞ-1

is exact. If we restrict ourselves to R½1=2� and we denote by Pic2ðR½1=2�Þ the
subgroup of the class group PicðR½1=2�Þ formed by the elements of order two, we
obtain the following sequence:

1-R½1=2��-HðR½1=2�Þ� !t SO3ðR½1=2�Þ-Pic2ðR½1=2�Þ;

also known to be exact (see for example [6, 7.2.20]).
If R is a unique factorization domain, then Pic2ðR½1=2�Þ is trivial, and hence we

have the exact sequence

1-R½1=2��-HðR½1=2�Þ� !t SO3ðR½1=2�Þ-1 ð8Þ

and, by further restriction to R;

1-R�-HðRÞ� !t SO3ðRÞ;

where, as a consequence of a general theorem on arithmetic groups (see for example

[14]), the image tðHðRÞ�Þ of HðRÞ� under t is a subgroup of finite index in SO3ðRÞ:
An element x ¼ r0 þ r1i þ r2j þ r3kAHðRÞ is said to be reduced if nðxÞa0 and the

ideal of R generated by the elements r0; r1; r2 and r3 is R: From the Theorem of
Cartan–Dieudonné we deduce that if R is a unique factorization domain, then every
element in SO3ðRÞ is of the form tðxÞ for some reduced element x of HðRÞ: For this
reason, it is useful to know which reduced elements x verify that tðxÞASO3ðRÞ:

In the following two lemmas we use that if P is a prime ideal of R containing the
prime integer p and both the ramification degree and the residual degree of P over p

are 1, then the embedding of Z in R induces an isomorphism Z=pnZCR=PnR for

every positive integer n: In particular, if p ¼ 2; then either xAP or x2 � 1AP3 for
every xAR:

Lemma 5.1. Assume that 2 splits completely in R and let x be a reduced element of

HðRÞ: Then tðxÞASO3ðRÞ if and only if 4AnðxÞR:
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Proof. Write x ¼ x0 þ x1i þ x2j þ x3k with xiAR: Then

tðxÞ ¼ nðxÞ�1
Mx;

where

Mx ¼ ðmijÞ ¼
x2

0 þ x2
1 � x2

2 � x2
3 2ðx0x3 � x1x2Þ 2ðx0x2 � ax1x3Þ

2ðx0x3 þ x1x2Þ x2
0 � x2

1 þ x2
2 � x2

3 2ðx0x1 þ bx2x3Þ
�2ðx0x2 þ ax1x3Þ �2ðx0x1 � bx2x3Þ x2

0 � x2
1 � x2

2 þ x2
3

0
B@

1
CA:

Assume now that tðxÞASO3ðRÞ; that is, suppose each mijARnðxÞ: It is not difficult

to see that this implies that 4xixjARnðxÞ for all iaj: Moreover,

nðxÞ þ m11 þ m22 þ m33 ¼ 4x2
0

nðxÞ þ m11 � m22 � m33 ¼ 4x2
1

nðxÞ � m11 þ m22 � m33 ¼ 4x2
2

nðxÞ � m11 � m22 þ m33 ¼ 4x2
3

and hence 4x2
i AnðxÞR for all i: Since R ¼

P4
i¼1 Rxi; R ¼

P
i;j Rxixj and then

4AnðxÞR: This proves one implication of the lemma.
To prove the converse, assume 4AnðxÞR: Let p1;y; pk be the prime ideals of R

containing nðxÞ: So nðxÞR ¼ pr1
1 ?p

rk

k for some ri ¼ 0; 1; 2: We need to prove that all

muvAnðxÞR or equivalently muvApri
i for every i: Let p ¼ pi and r ¼ ri: So we have to

prove that every muvAprR: If r ¼ 0 then this is obvious. If r ¼ 1; then since 2Ap; it is

clear that muvAp for uav; and muu ¼ nðxÞ � 2ðx2
u0 þ x2

v0 ÞAp (for some u0; v0). If r ¼ 2;

then, since x is reduced, xu � 1Ap for at least one u and from the fact that x2
0 þ

x2
1 þ x2

2 þ x2
3Ap2 one deduces that xu � 1Ap for all u (recall that R=p2RCZ=4Z).

Hence, 2ðx2
u þ x2

vÞAp2 for all uav and ðxuxv � xu0xv0 ÞAp2: It follows that muvAp2 as

wanted. &

In order to compare tðHðRÞ�Þ with tðHðR½1=2�Þ�Þ we consider the algebra of the
Hurwitz quaternions over R; that is

HuðRÞ ¼ x0 þ x1i þ x2j þ x3k

2
jxiAR and xi � xjA2R

� �
:

Note that if xAHuðRÞ then nðyÞAR: Hence, it is clear that yAHðRÞ� if and only if
nðyÞAR�:

We denote by vP the discrete valuation associated to a prime ideal P of R; and by
RP; the discrete valuation ring associated to vP: Note that if 2eP; then HðRPÞ ¼
HuðRPÞ and if P is a divisor of 2R with ramification index 1, then an element
x ¼ x0 þ x1i þ x2j þ x3k belongs to HðRPÞ if and only if vPðxrÞX0 for every
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rAf0; 1; 2; 3g; and xAHuðRPÞ\HðRPÞ if and only if vPðxrÞ ¼ �1 for every
rAf0; 1; 2; 3g:

Lemma 5.2. Let p be a prime ideal in R such that both its ramification and residual

degree over 2 are one. Assume vAHuðRÞ is such that nðvÞ ¼ p: Then xAHuðRÞv if and

only if nðxÞARp:

Proof. One implication is obvious. For the converse, assume that nðxÞARp: Let

w ¼ xv�1 ¼ x%v=p ¼ w0 þ w1i þ w2j þ w3k: We have to prove that wAHuðRÞ: For
every prime ideal Q in R different from pR we have that wAHuðRQÞ: Thus, it is

sufficient to show that wAHuðRpRÞ: Let mr ¼ �vpðwrÞ: Since x%vAHuðRÞ; either

mrp1 for every r or mr ¼ 2 for every r: Let m ¼ maxfmr j 1prp4g and write wr ¼
yr

pmr ¼ xr

pm; with xrAR: Since nðwÞAR we obtain that

x2
0 þ x2

1 þ x2
2 þ x2

3Ap2mR

If mp0; then wAHðRpRÞ and we are done. Thus we assume that mX1 and hence

xrepR for some rAf0; 1; 2; 3g and

x2
0 þ x2

1 þ x2
2 þ x2

3Ap2R

Using the isomorphism Z=4ZCR=p2R; we deduce that x2
r � 1Ap2R for every r and

hence m ¼ mr for every r: Next, using the isomorphism Z=8ZCR=p3R one deduces

that x2
0 þ x2

1 þ x2
2 þ x2

3 � 4ARp3 and therefore m ¼ 1: We conclude that wAHuðRpRÞ
as desired. &

Assume that R is a unique factorization domain and 2 splits completely in R: Thus
2 ¼ p1?pn; a product of non associate primes. Assume that for every i ¼ 1;y; n

there is a reduced element piAHðRÞ such that nðpiÞ ¼ pi: If xAHðR½1=2�Þ�; then there

are integers a1;y; an such that y ¼ p
�a1
1 ?p�an

n xAHðRÞ: Using Lemma 5.2 we

deduce that there is an element xAHuðRÞ� and integers b1;y; bn such that y ¼
xpb1

1 ?pbn
n : Hence

HðR½1=2�Þ� ¼ fxpb1
1 ?pbn

n pa1
1 ?pan

n j xAHuðRÞ; a1;y; an; b1;y; bnAZg

Moreover, by Lemma 5.1, tðpiÞASO3ðRÞ and so tðHðR½1=2�Þ�ÞDSO3ðRÞ: This

implies in particular that HðRÞ is normalized by HðR½1=2�Þ�:
From now on we consider again our example R ¼ Z½o�; with o ¼ 1þ

ffiffiffiffiffi
�7

p

2
: Note R is a

unique factorization domain and 2 ¼ o %o; where o and %o ¼ 1�
ffiffiffiffiffi
�7

p

2
are non-

associated primes of R: Further, nðoþ iÞ ¼ � %o and nð %oþ iÞ ¼ �o; so that both

tðoþ iÞ and tð %oþ iÞ belong to SO3ðRÞ: Another element in SO3ðRÞ is tð12ð1 þ i þ
j þ kÞÞ: In the next proposition we show that these elements are enough to generate
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SO3ðRÞ=tðHðRÞ�Þ; and a presentation of this quotient group is given. From this and
Theorem 4.4, a presentation of SO3ðRÞ follows.

Proposition 5.3. Let R ¼ Z½1þ
ffiffiffiffiffi
�7

p

2
� and let x ¼ tðoþ iÞHðRÞ�; y ¼ tð %oþ iÞHðRÞ�;

u ¼ tð1
2
ð1 þ i þ j þ kÞÞHðRÞ� and v ¼ x�1ux: Then the following conditions are

satisfied:

1. HðR½1=2�Þ� ¼ fxðoþ iÞnð %oþ iÞmor %os j xAHuðRÞ�; n;m; r; sAZg;
2. HðRÞ� and HuðRÞ� are normal subgroups of HðR½1=2�Þ�;
3. SO3ðRÞ=tðHuðRÞ�Þ is generated by the classes of tðoþ iÞ and tð %oþ iÞ and is

isomorphic to the Klein group Z2
2;

4. HuðRÞ�=HðRÞ�DtðHuðRÞ�Þ=tðHðRÞ�ÞCZ2
3;

5. SO3ðRÞ=tðHðRÞ�Þ ¼ /x; y; uS ¼ /u; vSs/x; ySCZ2
3sZ2

2 and the action of

/x; yS on /u; vS is given by ux ¼ v; vx ¼ u; uy ¼ v2 and vy ¼ u2:

Proof. Statements 1 and 2 and the fact that SO3ðRÞ=tðHuðRÞ�Þ is generated by the
classes of tðoþ iÞ and tð %oþ iÞ; are consequences of the arguments before the

proposition. To prove that SO3ðRÞ=tðHuðRÞ�ÞCZ2
2; it suffices to verify that

½oþ i; %oþ i� ¼ 1 and ðoþ iÞ2= %o and ð %oþ iÞ2=o are units of HðRÞ: This proves
statement 3.

It is easy to verify that u; vAHuðRÞ�; uvu�1v�1AHðRÞ�; u3 ¼ �1 and v3 ¼ �1: It

follows that /tðuÞ; tðvÞS=f1;�1gCZ2
3: A direct verification shows that the nine

elements so obtained form coset representatives for HðRÞ� in HuðRÞ� and statements
4 and 5 readily follow. &
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