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Abstract

We give an algorithm to determine a finite set of generators of the unit group of an order in
a non-split classical quaternion algebra H(K) over an imaginary quadratic extension K of the
rationals. We then apply this method to obtain a presentation for the unit group of

H(Z[%j]) As a consequence a presentation is discovered for the orthogonal group

SO3(Z[”‘2/’_7}). These results provide the first examples of a characterization of the unit group
of some group rings that have an epimorphic image that is an order in a non-commutative
division algebra that is not a totally definite quaternion algebra.
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1. Introduction

The unit group of an order in a finite dimensional semisimple algebra 4 over the
rationals is an important example of an arithmetic group. Hence it forms a
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fundamental topic of interest. Recall that a subring I" of A4 is said to be an order if I"
is a finitely generated Z-module that contains a (D-basis of 4. Prominent examples of
orders are group rings RG of finite groups G over the ring of integers R of an
algebraic number field. The unit group RG* of RG has received a lot of attention and
most of it has been given to the case R = Z; for surveys we refer to [7,9,12]. It is well
known that the unit group I'* of an order I' is a finitely presented group. However,
only for very few finite non-abelian groups G the unit group ZG* has been described,
and even for fewer groups G a presentation of ZG* has been obtained. Nevertheless,
for many finite groups G a specific finite set B of generators of a subgroup of finite
index in ZG* has been given. The only groups G excluded in this result are those for
which the rational group algebra QG has a simple component that is either a non-
commutative division algebra different from a totally definite quaternion algebra or
a2 x 2 matrix ring M, (F), where F is either Q, a quadratic imaginary extension of Q
or a non-commutative division algebra. One of the important tools used to prove
that the group generated by B (which we will denote by ( B)) is of finite index, is to
show that if M, (D) is a simple component of QG and I' is an order in the division
algebra D then (B) contains a subgroup of finite index in SL,(I"), the group of
matrices in M,,(I") of reduced norm one. As mentioned above, the casen = 1 and D a
non-commutative division algebra different from a totally definite quaternion
algebra is excluded. If I' is an order in D then the unit group I'* is a Q-group that is
anisotropic. Hence even describing some generic classes of units in this group is hard.
For the known results on unit groups in division algebras we refer to [8]; the author
mainly concentrates on the case that the non-commutative division algebra D splits
over R.

The aim of this paper is to present a finite algorithm to compute a finite set of
generators of the unit group of an order in a non-split classical quaternion algebra
H(K) over an imaginary quadratic extension K of the rationals. We then apply this

method in case K = Q(v/—7) and obtain a presentation of H(Z [H\/_]) Since the

latter group is closely related to 503(2[@}) we also obtain a presentation of this
group. The difficulty with this is that the bilinear form associated to the group

SO3(Z[”‘2/’_7D is non-singular because 2 is not invertible in Z[”\/_] Hence we will
have to obtain a new exact sequence from the well-known Cartan—Diedonné
sequence [6, 7.2.20] relating the two mentioned groups.
Let Qg denote the quaternion group of order 8. Clearly Q(v/—7)Qs =
40(V=T)@H(Q(V=7)) and thus Z[HYT|Qsc47T @ H(Z[HT).  As
7T = {1, -1} it follows that (Z[“Y=T]0g)" = {1, —1}* x H(Z[“{=T])". Hence

the above gives us a description of the unit group of the group ring Z[%j] Qs. This
is the “simplest example” of a group ring for which no finite set of generators of a
subgroup of finite index in its unit group is known (see [7,12]). For integral group
rings, the group of least order for which this problem is still open is Qg x C7, the

direct product of Qg with the cyclic group C; of order 7. In this situation, Z[Qg x
Gl {1, —1Y x + Qg x (Z[&])* x (2[&,)) HQ(Z[E,])", where & is a primitive
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7th root of unity. Hence the study of the unit group is reduced to that of H(Z[&;]).

Now H(Z[@})QH(Z[@]) and there are 6 complex embeddings of Q(&;). Hence
the calculations become much more involved and it remains a challenge to obtain a
presentation for H(Z[&;])".

2. Preliminaries

In this section we introduce some notation and recall a fundamental result that is
essential for our investigations.
Let K be an algebraic number field and R its ring of integers. For nonzero a,be K

we denote by H(K) = (%) the quaternion K-algebra induced by a, b, that is, H(K) is
the K-algebra given by

H(K) = K[i,j|i* = a,j* = b,ji = —ij].

As usual we write k = ij, so that {1,i,j,k} is a K-basis of H(K). If a,be R then let

HR) = (%) = RiidL

that is, H(R) is the R-algebra consisting of the R-linear sums of {1, j, k}. Let
n: H(K)— K denote the norm map, that is,

n(x) = x; — ax} — bx3 + abx3 (1)

for x = xo+ x1i+ x2j + x3k€H(K). The group of units H(R)" of H(R) is
commensurable with (i.e., it has a common subgroup of finite index with) R* x
SL;(H(R)) where

SLi(H(R)) = {xeH(R) |n(x) = 1}.

Therefore the study of the structure of H(R)" is reduced to that of R* and
SL;(H(R)). Since the Dirichlet Unit Theorem deals with the structure of R* we will
investigate SL;(H(R)). In case R* = {+ 1} then of course SL;(H(R)) is of index at
most 2 in H(R)".

The field F = K[i] is a maximal subfield of H(K), and H(K) = F @ Fj is a crossed
product over F. The Galois group of the extension F/K is a cyclic group of order
two generated by the restriction ¢ of the inner automorphism of H(K) induced by j,
that is o(x) = jxj~!, for every xe F. Then H(K) can be embedded in M;(C) by the
map

(2)
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Moreover, this embedding maps the elements of norm 1 into SL,(C). Therefore we
may identify SL;(H(K)) and SL;(H(R)) with subgroups of SL,(C).

Since PSL,(C) is the group of orientation preserving isometries of the three-
dimensional hyperbolic space H?, the group SL;(H(R)) acts on H? and we can use
this action to study H(R)". The best situation is when this action is discontinuous or
equivalently when SL;(H(R)) is discrete. In case H(K) splits, then, using that the
rank of a free abelian discrete subgroup of SL,(C) is at most 2 [3, Theorem 1.1.8]
and at most 1 if it is embedded in PSL,(R) (see Theorems 2.2.5 and 2.2.7 in [5)), it is
easy to see that the action of H(R) on H? is discontinuous if and only if K = @ or an
imaginary quadratic field. In this situation SL;(H(R)) = SL,(R) and the investiga-
tions reduce to the study of the corresponding Bianchi group PSL,(R). These groups
have been widely studied [2,3,5,11]. In this paper we are interested in the non-
splitting case and mainly in the case that K is imaginary quadratic. The following
theorem shows that then the action of SL;(H(R)) on H? is discontinuous.

Theorem 2.1 (Elstrodt et al. [3, Theorem 10.1.2]). Let H(K) = K[i,j|i* = a,j*> = b,
Jji = —ij] be a quaternion algebra over a number field K and assume that the following
conditions hold.

® K has exactly one pair of complex embeddings (also known as complex archemedean
places);

® H(K) is ramified at all the real places, that is, H(c(K))® kR is a division ring
(necessarily the ring of Hamiltonian quaternions H(R)), for every real embedding o
of K.

Then for every order I' in H(K):

1. SLi(T') is discrete.

2. SLy(I') has finite covolume (i.e. the fundamental domains have finite volume) and
hence [3, Theorem 2.27] it is geometrically finite (i.e., all Dirichlet or Poincaré
normal polyhedra have finitely many sides).

3. SLi(I) is cocompact (i.e. it has a compact fundamental domain) if and only if H(K)
is a division ring.

Assume that the conditions of Theorem 2.1 hold. Then both the Poincaré [10] and
the Swan methods [15] give presentations of SL;(H(R)). For more details on these
methods and on groups acting discontinuously on H?3 we refer the reader to [1,3,5].
Note that to use the Poincaré method it is necessary to compute a convex locally
finite fundamental polyhedron for SL; (H(R)). For the Swan method, it is enough [3,
Theorem 2.7.1] to find a connected bounded open subset X of H? that contains a
fundamental domain (indeed, since the fundamental domain is compact the set
{geSLi(H(R)): X ng(X)+#0} is finite).

As in [3], we identify H? with the following subset of the Hamiltonian quaternions
H(R):

H? = {z+4rjlzeC,reR"},
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where C is considered inside H(R) in the obvious way. The hyperbolic distance p in
H? is determined by the formula
d(P,P)

hp(P,P)=06(P,P)=1
cosh p(P, P) = (P, P') = 1+ 522,

where d is the Euclidean distance and P = z + rj and P' = Z/ 4 //j are two elements of
H?. The open and closed ball of radius >0 centred at PeH> are denoted
respectively by

B(P,I’) - {XEH3|p(x7P)<V}7

B(P,r) = {xeH*|p(x, P)<r}.

The norm in M,(C) is denoted by || ||, that is, if g = (;ﬁ g) € M, (C) then

llgll® = 1o + 1B + 171 + 6.

If ¢ and d are two different elements of H> then the set of points equidistant (in the
metric p) to both ¢ and d is a geodesic plane called the bisector between ¢ and d and
it intersects orthogonally the hyperbolic segment joining ¢ and d. This bisector is the
border of two open convex subsets of H> (called half spaces) one containing ¢ and
the other containing d. If geSL,(C) and ce H? is not a fixed point of g, then put

Dy(c) = {xe H’|p(x,c)<p(x,g(c))},

the half space containing c. If G is a discrete group contained in SL,(C) and ce H? is
not fixed by any non-trivial element of G then

Do(e)= () Dyle)

l#geG

is known as a Dirichlet or Poincaré fundamental polyhedron of G with centre ¢ and
it is well known that D¢(c) is a convex locally finite fundamental polyhedron of G.

It is easy to see that every Dirichlet fundamental domain of a cocompact discrete
group is compact.

3. A finite algorithm to compute a fundamental domain of cocompact discrete groups
The difficulty with computing Dg(c) is that, theoretically, it is necessary to
compute the intersection of as many sets as the cardinality of G. We now describe a

finite algorithm to compute a Dirichlet fundamental polyhedron for cocompact
discrete groups. For a positive real number r let

Di(¢) = ({{Dy(c)|1 #9g€G,g(c) e B(e,r)}.

If Dg(c) is compact, then there is a positive real number r such that Dg(c) = D,(c).
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Proposition 3.1. Let G be a cocompact discrete group and let ce H? not fixed by any
non-trivial element of G. Then the following algorithm computes the Dirichlet
Sfundamental polyhedron D = Dg(c) in a finite number of steps.

Input: G.

Step 1: Select a strictly increasing unbounded sequence (k) of positive numbers.

Step 2: Compute Dy, (c),Di,(c), ... until Dy, (c) is compact (or, equivalently,
bounded).

Step 3: Compute r = max({%}u{p(c, x): xeDy, (c)}).

Step 4: Compute D = Dy, (c).

Output: D.

Proof. The fact that Step 2 stops after finitely many computations is a consequence
of the fact that Dg(c) is compact and has finitely many sides. To prove that D =
D¢(c), note that

Dg(c) = Dy(c)n () Dylo).
pleg(c))>2r

Thus it is enough to show that for every geG such that p(c,g(c))>2r,
D< Dy, (¢)= B(c,r) <= Dy(c). The first equality is obvious and the second is a consequence
of the selection of r in Step 3. Finally, if xe B(c,r)\D,(c), then d(x, g(c))<d(x,c)<r.
Thus 2r<d(c,g(c))<d(c,x) + d(x,g(c)) <2r, a contradiction. [

Note also that for the Swan method it is enough to stop the algorithm of
Proposition 3.1 when Step 2 has finished because then Dy, (c) is contained in a
bounded connected open subset O of H* and therefore Ong(0) =0 for all but
finitely many ge G. However even for the Swan method it is convenient to perform
Steps 3 and 4 in order to make the open and connected set O smaller. Indeed, the
open set can be taken inside the open ball B(c,r + ¢) for small e. Then the group
elements ge G that satisfy Ong(0)#0 also satisfy d(c, g(c))<2(r +¢).

Let G be a cocompact discrete group. In order to make the algorithm of
Proposition 3.1 effective we need effective algorithms for the following tasks.

Task 1: Compute all the elements ge G, so that g(c)e B(c,r), for a given r>0.

Task 2: Compute max{p(c, x): xe P}, for a convex and compact polyhedron P in
H? containing ¢ and with finitely many sides.

Task 2 is easy to achieve because the maximum distance to a point in a convex
polyhedron is realized at one of its vertices and if the polyhedron has finitely many
sides this can be calculated with finitely many computations.

For Task 1 remember that for every geSL,(C) [1, Theorem 4.2.1]

llgll* = 2 cosh p(j, g()). (3)

Therefore if ¢ = j, Task 1 reduces to
Task 1: For a given positive number r, compute all elements of G of norm at
most r.
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For most of the interesting groups, j is fixed by some non-trivial element.
Theoretically, this problem can be solved by replacing G by g~!Gg where geSL,(C)
is such that g(j) = ¢, and hence we may assume that ¢ = j. Nevertheless, this usually
increases the difficulty of Task 1’ and consequently decreases the effectiveness of the
possible algorithms to accomplish it. In order to avoid this conjugation process we
propose the following alternative method to compute a fundamental domain of G.
Let G; = {geG: ¢g(j) =j} the stabilizer of G, which is finite because G is discrete.
Then it is usually easy to compute a convex fundamental polyhedron F of G;. For
every ge G\Gj let F;, = FnD,(j) and for every positive real number r let F, be the
intersection of all the sets F,, with ge G so that 0<p(c, g(c)) <r.

Proposition 3.2. Let G be a cocompact discrete group, G; ={geG: g(j) =j} the
stabilizer of j under the action of G on H* and F a convex fundamental polyhedron of
G;. Then the following algorithm computes a convex fundamental polyhedron of G in a
finite number of steps.

Input: G.

Step 1: Compute a fundamental domain of the stabilizer G; of j.

Step 2: Select a strictly increasing unbounded sequence of positive numbers k.

Step 3: Compute Fy,, Fy,, ... until Fy, is compact (or, equivalently, bounded).

Step 4: Compute r = max({%}u{p(j, X): X€F,}).

Step 5: Compute D = F,.

Output: D.

Proof. After proving that Dy = (1,5, £ is a convex and compact fundamental

domain of G one can proceed as in the proof of Proposition 3.1. So let us prove that
D, has these properties.

First, Dy is convex as a consequence of the fact that it is the intersection of convex
sets. To prove that D; is a fundamental domain it is enough to use the ideas of the
proof of [1, Theorem 9.6.1]. We include a self-contained proof for completeness. The
boundary of D; is embedded in the union of countably many geodesic planes of H?
and hence it has Lebesgue measure zero. So it only remains to prove that if g(x) =y
with x and y interior points of D; and g€ G then x = y and every orbit contains one
element in the closure of D;. To prove the former, let g, x and y be as above and
assume that x#y. Then g#1 and x and y belong to the interior of F. Since F is a
fundamental domain of G; we have that g¢ G;. Furthermore, x and y belong to the
interior of D,(j) and hence

p(,3)<p(9(),y) = p(,x)<p(,9(x)) = p(j,»),

a contradiction. Now let O be an orbit of the action of G on H?; we have to prove
that it contains one element in the closure of D;. Since the intersection of O with
every compact set of H? is finite, there is an ue O F so that p(u,j) <p(v,j) for every
ve 0. We claim that ueD;. Suppose the contrary, then there is ge G so that
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p(u,j)>p(u,g(j)). Let heG; be so that hg~'(u)eF. It follows that
p(u,j)>p(u,9(j)) = p(hg="(u), h(j)) = p(hg~"(u),/), in contradiction with the choice
of u.

Finally, we prove that D, is compact. Notice that since G is cocompact it has a
compact fundamental domain, X say, containing j. Let X < B(j, r) for r>0. We claim
that Dy < B(j, r) (and thus the compactness of D; follows). Indeed, if z¢ B(j, r) then
z¢ X and, hence, there is ge G such that g(z)e X. Then d(g7'(j),z) = d(j,g(z)) <r
and, consequently, d(z,j)>d(g'(j),z); it follows that g~' ¢ G; and z¢ F,-1(j). Thus
Z¢D1. O

4. An example

In this section we show how to apply the algorithm of Proposition 3.2 to the group

SL;(H(R)) where R = Z|w] is the ring of integers of K = Q(v—7), o = %’—7 and

H(K) = (%), the classical quaternion algebra over K.

The first two steps can be done in the more general context of quadratic imaginary
extensions K = @(\/—_d), where d is a square-free positive integer congruent with 7
modulo 8. It then follows that the ring of integers is R = Z[w] with w = @ and
that the prime integer 2 splits in R, that is, 2R = pq where p and ¢ are different prime
ideals of R. As a consequence of the behaviour of the prime 2 one can deduce using
local class field theory [13] that H(K) is a division algebra. An alternative approach
is noticing that H(K) splits if and only if —1 is a sum of squares in K. Using this
approach the fact that H(K) is a division ring for d prime is a consequence of the
results of [4].

Clearly, the maximal subfield of H(K) mentioned in the introduction is F =
K[i] = Q[v/—d, i]. The Galois group of F/Q has four elements {1, 7, 7,0t} and these
act as follows:

olw)=0w, d(i)=—i,

(w) =

Q
—~
~.
—

Il

~

Let S = R[i] = Z|w,i] and B = {l,i, w, wi}. Note that the automorphism ¢ of F is
induced by conjugating by j. Hence, we may identify SL;(H(R)) with the subgroup
G of SLy(C) consisting of all matrices of the form

9= (—O'g(lgz) 0(gg21)> @

with

g1 = ap +bow +aii + bywieS and g, = a, + byw + aszi + bzwie S,
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where all ¢;’s and b;’s are rational integers. (Note that the discreteness of G, ensured
by Theorem 2.1, is now elementary because it is well known from algebraic number

theory that the map (1,0): S—C? maps S onto a lattice of C*> = R*)
In order to go through the several steps, we first deal with Task 1’. Thus, let ge G
be as in (4) and set

oc:aﬁ—i—af—i—a%—i—a%,
B = b} + bt + b3 + b3,

vy = apby + a1by + axby + azbs.

Note that
d+1
g1 + 1o (g0l = 2(ag + a7) + (b5 + b7) + 2(aobo + arby)
and similarly
d+1
|921° + |o(g2)]” = 2(a3 + a3) + T(fﬁ +b3) + 2(a2by + azb3).
Therefore
d+1
lgll? =22+ =+ 2. (5)

Moreover, det(g) =« — 2L B+ (B + 2y)w, so that

1
det(g) =1 if and only if y — d%ﬁ =1 and B+2y=0. (6)

Lemma 4.1. Let ge G be as in (4), with det(g) = 1 and | = ||g|*. Then

d+1)(-2) 1-2 21

=1
o + 4d

In particular | = 2 mod 2d.

Proof. Because of (5) and (6), o, f and y are integral solutions of the following linear
system of equations:

d+1
2a+%[)’+2y:l,
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d+1
a_Tﬁ_la
p+2y=0.

Hence the result follows. [
Hence, in order to deal with Task 1’, we need an algorithm to compute the set

G, ={geG: ||g|)* =2+ 2dn}

for every non-negative integer 7. Lemma 4.1 reduces this problem to compute all the
matrices

satisfying the following equations:

ap

bg

aj

by

az

by

as

by > €M 4(Z)

d+1
n

a(2)+a%+a%+a§:1+ > ,

b 4 b} + b3 + b3 = 2n,
aoby 4+ a1by + axby + azbz = —n.

We identify G, with the set of these matrices.

Let C, denote the cyclic group of order 2, put ¢ = H?:I (si>~C3 and let Sy
denote the symmetric group on four letters. Obviously Sy acts on ¥ by permutations
of the generators, that is, for ye Sy, 7(s;) = s,(;). Let X = > Sy denote the induced
semidirect product. Then the following is a right action of X on M>4(Z):

(c1,¢2,¢3,¢4) -
(c1,¢2,¢3,¢4) -
(c1,¢2,¢3,¢4) -
(c1,¢2,¢3,¢4) -
(c1,¢2,¢3,¢4) -

where ¢y, ..

s1 = (—c1,¢2,c3,ca),
s = (c1,—¢2,¢3,¢a),
53 = (1,62, —¢3, Ca),
s4 = (c1,¢2,¢3,—Ca),
(3> (4))5

A COIRCTEIN

.,c4 are the columns of an element in M>4(Z) and yeSs. Clearly X

induces an action on G,, and hence to know G, it is enough to produce a set of
representatives R, of each X-orbit inside G,,.
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For example, Gy has only one orbit represented by
< 1 00 0)
ro =
0 0 0O
and for d =7, G; has two orbits represented by

2 1 0 0 2 1 00
ry = and roa = .
’ -1 10 0 ' 0 -1 1 0

Since the stabilizers of ry, r1; and rip are (s2,53,84,(234),(23)>, (s3,5,(34)>
and {s4) respectively, the respective orbits have 8, 48 and 192 elements. Hence
|Go| = 8 and |G| = 240.

Thus, to compute G, we first compute a set R, of representatives of the X-orbits of
G, and, next, for each xe R, we first compute a right transversal S, of X/X,, where
X, is the stabilizer of x in X, and then we compute xg for every geS,.

We now go through the several steps of the algorithm of Proposition 3.2. We
complete Steps 1 and 2 for the general case, and the other steps for d = 7.

Step 1: The stabilizer G; of j is precisely Gy which has one X-orbit represented by
the matrix ro and hence G; has eight elements and

a={(4 *)(5 1))

which is isomorphic to the quaternion group of order 8. Further
F={P=x+yi+rjeH: |P|<1,y>0}

is a fundamental domain of G;.

Step 2: Because of Lemma 4.1 and (3), a good selection for the sequence (k,) is
given by the formula 2 cosh k,, = 2 + 2dn.

Step 3: To proceed with the computations, we need to calculate G,j for n =
1,2, .... We have seen how to compute G, and thus this task can be executed for
specific d. Furthermore as G, is a union of Gy-cosets, we can simplify these
calculations by working with a set T, of representatives of the left Gy-cosets of the
elements of G, and note that G,j = T,j. Consequently, we only need to compute a
left transversal of G, /Gy. Now note that the right action of Gy on G coincides with
the action of the subgroup Y = {s7s3(12)(34), s354(13)(24)> of X, because for
every g€ G one has

0 1

g<i 0.>=9~S233(12)(34) and g(_l 0

0 —i > =g -5354(13)(24).

Therefore, to compute 7, it is enough to compute a left transversal T of (Y, X, > in
X for every xe X,, and then T, = U cr, XTx.
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In order to do the actual calculations we need to specify a concrete value for p.
From now on we assume d = 7. As will be explained later we need to compute X;, and
T, for n<10. Table 1 shows the results obtained using Mathematica. In the table,
S3=<(12),(123)> and A4 = {(12)(34),(123)).

A little word of explanation on how, for example, the second row (with n = 1) is
obtained. We have put Ry = {ri,r12}, X,, = {ss) and X, = {(s3,5,(34)).
Then a right transversal of (Y, X, > in X is T, = S3 and a right transversal of
(Y, X,,>inXis T, , = {s1,52) X S3 (note that the latter only is a subset and not a
subgroup of X; so one should not confuse it with (s, 57,83 = X).

Next, we first compute 7' by applying the six elements of 7, , to ri; and the twenty
four elements of 7, , to r >, and then we compute gj and the bisectors between j and
gj for all the ge T',. The results appear in the following table, where C, and R, denote
the centre and the radius, respectively, of the bisector between j and gj.

We now can compute Fy,, the intersection of F with the 30 Dy(j)’s for

which ||g||2 = 16, that is the 30 half spaces containing j and limited by the 30 spheres
of Table 2. To visualize the result we represent in Fig. 1 the base of these spheres,
that is, the intersection of these spheres with the plane C, border of H3. In Fig. 1, we
represent also the base of the fundamental domain F of G; computed above:

It is clear that many of the spheres displayed in Fig. 1 do not contribute to the

intersection. The biggest sphere (the one with radius v/8 + 31/7) contains F, while

the eight spheres with next biggest radius (%\ /% +2+/7) do not intersect F, so they

can be dropped from the list of spheres. We can also ignore the seven spheres
completely embedded in the half space not containing j limited by the plane ¥ = 0.
Of the remaining 14 spheres, the two of biggest radius and the two centred below the
line y = 0 are also unnecessary. The remaining spheres are displayed in Fig. 2. It is
now clear that the remaining ten spheres cover the base F' and, hence, it follows
that Fy, is compact. A three dimensional representation of the ten spheres
and the boundary of F is given in Fig. 3. For further use in the paper we introduce
names and notation for the bisectors. As the picture reminds us of the set up
of an orchestra, we have chosen the names accordingly. In Fig. 4 we illustrate
the projection on C of the 10 contributing spheres. In Table 3 we list the
bisectors (via their center and radius) and the group element associated to each of
them.

So following the notation of Proposition 3.2 Fy, is compact and hence we already
have completed Step 3.

Step 4: We now need to compute r = max({k;/2} U {p(j, x) : xe F, () }). Since Fy,
is convex, the maximum of the distances p(j, x) for xe Fj, is realized at one of the
vertices of Fy, . These vertices are the points of intersection of three of the 12 sides of
Fp,. There are 20 such vertices (we present them below as the intersection of three
bisectors):

CnPnS;;CAPAS;CASinVi CaS,nVy, CoaVinVy; SinDinP; S, nD, NP
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Table 1

R, for n<10

n Rn Xx Tx |TY|

0 1000 (52,53,54,(234),(23)) 1 1
00 0 0

1 2 100 (53,5, (3,4) ) Ss 6
-1 1 0 0
2 1 00 {84y {51,820 X 83 24
0 -1 1 0

2 22 1 0 (s4,(1,2)> Csiys20 x ((123)) 12
00 -2 0

3 2 2 2 1 1 {81,82,83) X 83 48
-2 0 1 -1
32 0 0 1 (51,82,83) X 83 43
-1 0 -2 -1

4 32 2 0 1 51,82,83) X 83 43
0o -2 0 -2

5 302 2 2 1 {51,52,85) X S3 48
-1 -2 -1 2
4 21 0 1 51,82,83) X 83 43
-2 1 1 =2
4 2 1 0 1 51,82,53) X 83 43
-2 2 -1 -1
4 2 1 0 <S4> <S1,Sz> X S3 24
0 -3 10

6 2 2 1 1 51,82,83) X 83 43
-2 0 2 =2
4 2 2 1 (2,3)) {s1) X Ay 24
0o -2 -2 2
4 3 0 0 (3,4)) (81D X A4 24
0o -2 -2 =2

7 4 3 2 0 1 (51,82,83) X 83 43
0 -3 1 =2
4 3 2 0 1 {81,82,83) X S3 43
0o -1 -2 -3

8 4 3 2 2 1 51,82,53) X 83 43
00 -4 0
5.2 20 (sa4p {51,520 X 83 24
0 -4 0 0

9 4 4 2 1 1 {81,82,83) X 83 43
-3 0 0 3
4 4 2 1 1 51,82,83) X 83 43
-3 2 -2 -1

{(1,2)> {851 X Ag 24
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Table 1 (continued)

n R, X, T, |Ty|

(4 4 2 1>
-2 -2 31

<4 4 2 1> (1,2)> (s1) X Ay 24
0 0 -3 -3

<4 4 2 1) 1 {51,82,83) X 83 43
2 -3 -2 -1

<5 2 2 2> ((3,4)> (51> X Ay 24
-3 -1 2 2

<5 2 2 2) (2,3)> (51> X Ay 24
-3 0 0 3

<5 2 2 2) ((3,4)> (s1) X Ay 24
1 =3 =2 =2

<6 1 0 0) 1 {51,82,83) X 83 43
-2 3 -2 -1

<6 1 0 o) ((3,4)) (s1) X Ay 24
-1 -3 -2 =2

10 <4 4 3 0) {84 {51,820 X 83 24

-4 0 20

<5 4 0 O> {84y {81,820 X 83 24
-2 0 -4 0

<6 2 1 0) (54> {51,820 X 83 24
0 -4 -2 0

SiInDinWiS, "D, "W SinVin WS, VoW, Chon Vo W, Chon Vin Wi,

ChoaVinV,;D,nRAP;DINnRAP;DinWinR,D,nW,NnR; Chn W;N R,

ChnW,nR

Computing p(j,v) for all the vertices v, one obtains that the maximum is cosh™16.
Moreover, 2cosh k) = 16 and therefore ki = cosh™!8. Thus r=
max (<18 cosh™'6) = cosh™'6.

Step 5: Next we calculate D = F»,, which is the fundamental domain of our group.
Using cosh’x = "2x+2f‘fzx = 1+co;h(2x) we obtain that cosh2r = 2cosh’r — 1 = 71.

Because of (3) the elements of the orbit of j in B(j, 2r) coincide with the elements of

the form gj with ge G satisfying ||g||* < 142. These are the group elements associated
to the matrices displayed in the second column of Table 1. Hence we can compute
the set O of elements in the orbit of j at distance less than or equal to 2r. Next, for
any xe O we have to compute the bisector between j and x and we have to check if
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Table 2
The bisectors for the elements of T
geT qj G Ry
14+2i+w—iw (8 + 3i — 6iw)j (0,0) 8 +3v7
24i—w+iw (8 — 3i + 6iw)j (0,0) V8 =3v7)
i+iw+ (2—w) 3i—6iw+j (i 0)
8 ek
T+w+(2—w)y 3—6w+j (0 7i> B
8 VT 7
2i—iw+ (1+w)j —3i+ 6iw+j (71 0)
8 J7
2-w)+ (1 +w)y -3+ 6w+ (0 i)
8 Vi
=2 —iw+ (1 —w)j —L—i 8n 4m+ 2 i zwl l 24V, ( 24 V)
18 9 3
—24+i—iw—wj 5 51 8w 41w 2 i 1
Gty (i)
—1—=2i+w—wj 5 5i 4w 8iw 2 0w 2
5" et9 s +<§7— )] ( 324V, ( 2+\ﬁ))
—14+2i+w—wj 5 5i 4w 8iw 2 0w\, 2 2 11
§+E+?—T+<§+ﬁ—3>j (g 2+\[ — 2+\ﬁ>> 3 772\/7
2i—w+ (1 —w)j i 4w 8iw 2 0w, 2
gt o oty ) 3 24+V7), ——( 2+V7)
1-2i—w—wj S Si 4w 8iw 2 0w 1
_____ AT -SRI _(=2 )
976 99 +(9+18 9)’ ( 324V, 3( +ﬁ))
I—wHiw+2j 10 2i 32w 32w 8 i 2w\, 1 2
BUAE A G N (IR SN
2—iw+ (1 —w) 1. 8w 4w 2 0w\, 2 1
5 i to et ) 324V 5(=24VT)
—2—i+iw—wj S 5i 8w 4diw 2 0w 1 2
- o, ow, A Low S(=2-V), 52
sTot9 +<9+18 9)-’ (3( VI3 +ﬁ))
24w+ (1—-w)j I 8w 4w (2 0w, 1 2
sttt Gt ) 32 VD32V
=24+ w4+ (1—-w) i 4w 8w (2 i iw . 2 1
-9 totls-1wt9) 3@V +VT)
2i+w+ (1 —w)y i 4w Siw 2 0w\, 2 1 2 M1
R Tl Rt T 3@V, —5(+2+ V) E VT
—2i—w+ (1 -w)j i 4w 8w (2 0w 2
l-gtetotlstm o) —=2+V7)3 Lot vi)
1—w—iw+2j 10 2i 32w 32w 8 i 2w\, 1
B AT AT (O i (2 25
19557 "7 +<57+57 57)’ ( 3@+ =5 “ﬂ)
1+2i—w—wj 5 Si 4w 8iw 20w\, 1
5555t (5 ) (3e+v—3e+v)
24i—iw—wj 5 5i 8w 4diw 2 0w 2 1
e 555 (5 (Se+ v —ervn)
—1l4+w—iw+2j 10 2i 32w 32iw 8 i 2iw R 1 1
e S 1 11
195 57 s +(57 57 57)-’ ( 3TV A +‘ﬁ>>
—i+w+iw+2j 2 10i 32w 32iw 8 i 2w 1 e 47
57719 51 s +(57 57+ 57>] (3( V), H‘ﬁ)) 3
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Table 2 (continued)

geT qj G Ry
i—w—iw+2j 2 100 32w 32iw 8 i 2iw\. 1 1
: oo 0w Sl (-1 (-1
57 10 s s (57 57+ 57)-’ ( 3TV +\ﬁ))
2—i+iw—wj 5 5 8w 4diw 2 0wy, 1 1
a+6*7+7+<6*ﬁﬁ)] (3“””*5(*””))
—1+w4iw+2j 10 2i 32w 32w 8 i 2w\, 1 1
AR A (ﬁ*ﬁ*ﬁ)’ (3“*”“5(””))
i+w—iw+2j 2 100 32w 32w 8 i 2iw) . 1 1 4+ 7
: Z 0w oaw (8 12w — .y
5719 57 5 <s7+57 57)" ( 30V, =5 +\ﬁ>> 3
—i—w+iw+2j 2 100 32w 32iw 8 i 2iw\ . 1 1
STt 5 (ﬁ*ﬁ*ﬁ)f (5“*”*5“*”)
24w+ (1 —w)j . 8w diw 2 0wy, 1 1
SRR LA LAY (N N L a
TR CRRTRECY AV +VT)

9 9

Fig. 1.

this bisector intersects D = Fy,. If it does then we reduce D by taking off the half
space limited by this bisector containing gj and then we go on to the next g. Using
Mathematica to execute these calculations one discovers that D = Fy, and the
algorithm finishes giving as an output the region represented by Fig. 3. Hence, we
also obtain generators for the group under consideration.
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C
Fig. 4.
1+v-=7
Theorem 4.2. Let R=7 [—’_2} . The set D = Fy, is a convex fundamental domain

Jor SLi{(H(R)) and the group SL(H(R)) is generated by the following 12 elements:

Lj,24+i—w+iw,—1 =2i+w—wj,—2—iw+ (1 —w)j,
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Table 3
The boundary of Fy,
Notation Name Bisector g
P Public Y=0 i
R Roof 5((0,0), 1) j
C Conductor S<(07 0),v/8 - 3\/7> 24i—wHiw
S, Soloist: 1 —=2i+w—wji
1 oloists S( (¢(- 2+\/— )4 2+\/— )).2/8 2\/—> i+w—w
Sr 2—iw4 (1 —w)j
S<(( 24 V7). A (-2+ V7)), 2 572ﬁ> (1=
Vi Violins 2 —iw+ (1 =w)j
[ ioli S(—(%( 24 V7). 224 V)28 ) iw+ (1 —w)j
v, i iw—wj
s(4-2+ VD324 VD)3 ;—l-m) S
Wi Winds S<f <71+ﬁ 71+\/7> 4—\/7> i—w—iw+2j
3 073 )73
W, S<(’1§‘ﬁ, 7|T\/7>7 4;\/7> 2 —i+iw—wj

3
Ch Chorus ((07\%7)7 \/%) @2=w)+ (1 +w)
D Drums S(— (% O), \g) 2i —iw+ (1 +w)

( 3

D, <,777 0)7 \/g) i+iw+(2—w)

—24i—iw—wj,2—iw+ (1 —w)j,
i—w—iw+2j,2—i+iw—wj,(2—w)+ (1 +w),

2i —iw+ (14 w)j,i 4 iw + (2 — w)j.

Proof. This is a direct consequence of the description of the fundamental domain
and the fact that the group generated by the listed elements has the same
fundamental domain as SL;(H(R)) and contains —1 (the latter is needed to lift the
information from PSL;(H(R)) to SL;(H(R)). O

The knowledge of the fundamental domain gave at once generators for the
considered group G. However, to obtain a presentation for the group G we now have
to apply the method of Poincaré. Of course this method will first rediscover a set of
generators and then it will also provide us with a complete set of relations. The
generators are the group elements g so that D ng(D) has dimension 2. The latter are
called sides and form a tesellation of the border of D. Each side s is associated with
the only group element g, so that s = Dng(D).

Note that in order to find the generators in Theorem 4.2 we search for coset
representatives g of the stabilizer Gy of j which are such that the bisector between j
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Table 4

The sides

s s s s

P i R J

G Q2+i—w+iw) C (I =2i+w+iw)j

S; iw+ (=2 +i—iw)j Sy —i+iw+ (24 iw)f
Vi —i+iw+ (2i —w)j V, iw+ (14 2i—w)j
|44 —2i+ (1 = w+iw)j W, =2i+ (—i+w+iw)j
Chy —i—iw+ (=2i +iw)j Ch, 2i —iw — (i + iw)j
D, 2i —iw+ (1 +w)j D, i+iw+ (=2 +w)

and g(j) contributes to one side of the fundamental domain D; clearly, these elements
are not uniquely determined. However, for Poincaré’s method we have to be more
careful, since it could happen that Dng(D) is a side while D ngh(D) is not a side for
he Gy. We, therefore, need to look for sides of the form D ngh(D) with he Gy and ¢
in a transversal of Gy. In the Mathematica program used to do the calculations for
Theorem 4.2 we have all this data already available. After some more calculations,
fourteen clements (generators) g/, ..., g1ah14 (as above) are found such that the
sides D g;h;(D) cover the boundary of D. Let us make a few remarks on the actual
calculations. First, we observe that in order to look for the elements g;4; we need to
look amongst the elements that map one of the bisectors that form the border of D to
another bisector. Secondly, two of these elements, the public and the roof, are easily
found by looking geometrically at the action of i and j on D. Thirdly, for all but two
bisectors one finds a group element that maps the bisector to itself.

After some calculations with Mathematica, we find that in our example the sides
coincide with the bisectors except for the conductor C and the chorus Ch, each of
which have to be divided in two sides: C; = Cn (X' <0) and C, = Cn (X =0) for the
conductor, and Ch; = Chn (X' <0) and Ch, = Chn (X >0) for the chorus. Table 4
gives the pairing between the sides and the associated group elements.

Hence we obtain

Theorem 4.3. Let R=7

1 _
[%—7] The group SLi(H(R)) is generated by the

following 14 elements:

gp=1 gr =]

go, = Q2+i—w+iw)j

gs, = iw—+ (=2 +i—iw)j
gy, = —i+iw+ (2i —w)j
gw, = =2i+ (1 —w+iw)j
gcn, = —i — iw + (=2i + iw)j
gp, =2i—iw+ (1 +w)j

go, = (1 =2i+w+iw)j

gs, = —i+iw+ (2 + iw)j
gy, =iw+ (1 +2i —w)j
gw, = =20+ (=i +w+iw)j
gch, = 2i —iw — (i + iw)j
gp, =i+ iw+ (=2 +w)j
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We now we have a set of generators of cardinality fourteen. In view of Theorem
4.2, this set may seem redundant. Nevertheless we note that g¢, = i3gc,, Jgon =
gCh/j'

We also note that Poincaré’s method allows us to calculate relations for discrete
subgroups of PSL,(C) and from these we may easily derive presentations for the
corresponding subgroups of SL,(C). For example, the next step in Poincaré’s
method is to obtain a pairing between the sides, so that if s; and s, are two sides
associated then g;, = g;l. The first type of relations, the reflections, then correspond
to the sides that are associated with themselves. In our example, this happens with all
sides as they all have order two in PSL,(C). Indeed it is easily verified that for every
side s, g2 = —1.

We next have to find the cycle relations that are associated with the edges of the
fundamental domain. The fundamental domain has thirty four edges (we identify
each edge with a pair of adjacent sides):

(D1, S1); (D1, Wh); (D1, P); (D, R); (Dy, S,); (Dy, W,); (Dy, P); (Dy, R);

(S, V1); (S, W); (S1, G (S1, P); (Vi Ve )s (Vi, W) (Vi, Cr); (Vi Chy); (Ve Sr)s

Ve, Wo); (Vir, )3 (Vi Chy)s Sy, W7)5 (S, Gr)s (S, P)s (W), Chy); (W), R);

(W;, Ch,); (Wr, R); (C, Gy); (Ci, P); (G, P); (Chy, Chy); (Chy, R); (Chy, R); (P, R).
Recall that a cycle is a list of even length

[617911627g27e37'H»enagn]a (7)

where foreach i =1, ..., n, ¢; is an edge, g, is a generator or the inverse of a generator
(that is, one of the group elements of the form g, with s a side, g;(e;) = e;+1 and
en+1 = e1). Each cycle gives rise to a relation (g, ...gl)k = 1 where k is the order of
In---g1.

In principle, one can construct infinitely many cycles. However, some of the
relations obtained from cycles can be dropped according to the following two
principles. First, cyclic permutations of even order of the cycles clearly give rise to
new cycles with equivalent associated relations. Therefore these two cycles are
considered as equal. Secondly, we only need irreducible lists, that is, g;,; should be
different from g; ! for each i. Of course, merging cycles with the same starting edges
results into new cycles. Hence, in first instance we will only consider cycles such that
ei#e) for i =2, ...,n. The irreducible cycles satisfying this last condition are called
minimal cycles.

Notice that if e is an edge of the side s = Dng~!(D), then g(e) is an edge of the
side ¢g(s). If f is another edge such that g(f) is embedded in D, then the convex
closure of g(e) and g(f) is embedded in g(s) = Dng(D). Hence, the convex closure
containing ¢ and f is embedded in the side s, and therefore f is one of the edges of s.
In other words, if g is a generator and e is an edge such that g(e) is another edge, then
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e is one of the edges of the side, s = Dng(D), that is g = g,. Thus, each g; in a cycle
should be one of the two generators associated to a side containing e;.

In our case all the generators have order two and this has two consequences. First,
each generator maps the associated side to itself and therefore two consecutive edges
of the list (ey, ..., e,) belong to the same side. Second, one generator cannot be taken
twice consecutively in the same list. Thus, if g; = g, for the side s, then s contains the
edge ¢; and g; maps s into itself. Therefore e;;; = g;(e;) is also an edge of s. This
implies that g;,| = g,, where e;;; = sns;. Consequently, a minimal cycle as in (7) is
determined by the pair (e, g1).

It is now easy to compute the minimal cycles. Up to a cyclic permutation of even
order, the following table lists them all (we have divided the table in several parts in
order to emphasize the symmetry).

[(D1.81), 90> (D1, W1), g, W1, Cha), gciy» (Vi-Chi)s gvs (V15 Cr), ¢y (51, Ci) gsi ] 5
(Dr,S),9p,, Dr, W), gw,, (W, Chy ), gcn,» Ve, Chy ), gy, (Vr, Cr ), gc, s (Sr, Cr ), gSr] 5
(D1,P), gp,, (D1, R), gr,(Dy,R), g, (Dr, P), gr] ;
(S5, V1), 950 (S, W), gy (Vi W), g1 | 5
(Vrs8¢),9v, Ves W )s gw, s (Sr Wr):gSr] >
(C1.Cr),9¢,,(C1,P), gp,(Cr, P).gc, ] 5
(Chy,Chy), gcn,» (Chr,R), gr, (Chi,R), gcn,] 5

(S1.P), g5, ; (51, P), 9P, (S, P), g5, (S, P), gp) ;
(5.P)gs,|s (S P),gp,(S1,P),gs,, (S, P).gp| 5
(WiLR).gw,|:  [(WiL,R),gr.(Wr,R),gw,,(Wy,R), gg]

-(Wr:R):gWr] 5 [(Wr,R),gR,(WI,R)’QWI,(WI,R),QR- s
(Vls Vr)nsz] 5 [(Vla Vl‘)ﬂer] >
[(P,R),gr]; [(P,R),gr]

These minimal cycles yield us the following extra relations amongst the generators:

gs,9c,9vigcm 9w, gp, = —1 | grgp,grgp, = 1
gs,9¢,9v.9ch, 9w, 9p, =1

gvigw,gs, = —1 gc,gpgc, =1
gs,9w,qv, = —1 gcn9rgcn, = —1
(95, = —1 (gm)* =—1
(9prgs,gp)* = —1 (9rgw,9r)* = —1
(g9s,)? = -1 (gw,? = -1
(grgs,gp)* = —1 (grgw,gr)* = —1
(gr,)Y =-I (gp)* = —1

(gv, ) =—1 (gr)* = —1I

Finally, we still have to consider cycles that can be obtained by merging minimal
cycles with the same initial edge. There are six pairs of such “mergeable” cycles:
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_(S17P)5gsl 5 _(Slap)ng’(Srap)vgsr,(ShP):gPJ;
(Sr,P).gs,| s |(SrsP),gp, (S1,P),gs;,(S1,P), gp

>

=(W19R)agW1:| > =(W17R)79Rs(WhR)agWr>(WraR)»gR] 5
(Wr,R),gw,|,  [(WrsR), gr, (Wi, R), gw,, (Wi, R), gr] ;
(ASYANASBYAE

[(P.R),gr] [(P,R), gr]

Two elements in the same row can be merged to produce new cycles and henceforth
we obtain new relations.

(9s,9r9s,9p)" = —I | (gm,grgw,gr)* = —1
(9s,9rgs,9p)* = —I | (gw,grgw,gr)* = =1
(grgr, ) = -1 (grgr)* = -1

Longer cycles are possible, but it is clear from the relations obtained so far that the
relations obtained from these are a consequence of the former.

To state a presentation it is convenient to introduce an extra generator J which
corresponds with the element —/. To simplify notation we will write a generator gg
simply as S. Hence we have obtained a presentation with fifteen (including J) and 27
relations (including J? = 1 and J central).

Replacing S;, S, and Ch, by their respective inverses, the relations take a nicer
form. It is this presentation that is stated in the following theorem.

Theorem 4.4. Let R=7 {@} The group SLi(H(R)) has the presentation defined

by the generators
J,P,R,C;,C, S, S, Vi, Viy Wi, Wy, Chy, Ch,, Dy, D,
and the relations
P=R=C=C=8=8=V=V=W=W
=Ch} =Ch’=D}=D>=,
S;CVi,ChW,D; = S,C,V,Ch,W,D, = PD,RD; = V;W;S; = S, W, V,
= C.PC; = Ch,RCh; =1,

(S;PS,P)* = (W,RW,R)* = (V;V,)> = (PR*=J and J*=1.

Of course, some of the defining generators are redundant. For example, one can
eliminate V7, Dy, V.., D,, P and R. So the group SL,(H(R)) can be generated by nine
elements.
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5. The orthogonal group

Let K be a number field, R its maximal order, H(K) = (%) the classical
quaternion algebra over K and t(y) is the orthogonal 3 x 3-matrix (with respect to
the norm 7 (1) and the standard basis 7,7, k of the imaginary part Hy(K) of H(K))
associated to the isometry 1, : Ho(K)—Ho(K) with 7,(x) = yxp~L.

A well-known Theorem of Cartan—Dieudonné says that the sequence

15K > H(K)" 5 SO3(K) -1

is exact. If we restrict ourselves to R[1/2] and we denote by Pic,(R[1/2]) the
subgroup of the class group Pic(R[1/2]) formed by the elements of order two, we
obtain the following sequence:

15 R[1/2]" > H(R[1/2])* = SO3(R[1/2]) = Pica(R[1/2]),

also known to be exact (see for example [6, 7.2.20]).
If R is a unique factorization domain, then Picy(R[1/2]) is trivial, and hence we
have the exact sequence

1-R[1/2]" > H(R[1/2])" = SO3(R[1/2]) ~1 (8)
and, by further restriction to R,
1-R* > H(R)" 5 SO;3(R),

where, as a consequence of a general theorem on arithmetic groups (see for example
[14]), the image t(H(R)") of H(R)" under t is a subgroup of finite index in SO3(R).

An element x = ryg + r1i + roj + r3ke H(R) is said to be reduced if n(x)#0 and the
ideal of R generated by the elements rg,r;,r; and r3 is R. From the Theorem of
Cartan—-Dieudonné we deduce that if R is a unique factorization domain, then every
element in SO3(R) is of the form 7(x) for some reduced element x of H(R). For this
reason, it is useful to know which reduced elements x verify that t(x) e SO3(R).

In the following two lemmas we use that if P is a prime ideal of R containing the
prime integer p and both the ramification degree and the residual degree of P over p
are 1, then the embedding of Z in R induces an isomorphism Z/p"Z~R/P"R for
every positive integer n. In particular, if p = 2, then either xe P or x> — 1e P? for
every xe R.

Lemma 5.1. Assume that 2 splits completely in R and let x be a reduced element of
H(R). Then t(x)eSO3(R) if and only if 4en(x)R.
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Proof. Write x = x¢ + x1i + x2/ + x3k with x;€ R. Then

where
2,220 _ _
Xg+x7—x3—x5  2(xox3 — X1X2) 2(xpx2 — axx3)
M, = (my) = 2(xox3 +x1x2) X3 —xF4+x3—x3  2(xox1 + bxax3)

—2(xox2 +axix3)  —2(xox1 — bxax3) x3—x? —x3 +x3
Assume now that 7(x) e SO3(R), that is, suppose each m;; € Rn(x). It is not difficult
to see that this implies that 4x;x;€ Rn(x) for all i#j. Moreover,

n(x) +my + my + mzz = 4xé
n(x) +my —my —mzz = 4x%
n(x) —myy + my —mszz = 4x§
n(x) —my —my +mz3 = 4x§

and hence 4x?en(x)R for all i. Since R=Y Rx;, R= > Rxix; and then
4en(x)R. This proves one implication of the lemma.

To prove the converse, assume 4en(x)R. Let py, ..., p; be the prime ideals of R
containing n(x). So n(x)R = p\'---p)* for some r; = 0, 1,2. We need to prove that all
my, €n(x)R or equivalently m,, ep;’ for every i. Let p = p; and r = r;. So we have to
prove that every m,, € p”R. If r = 0 then this is obvious. If » = 1, then since 2€p, it is
clear that m,, ep for usv, and my, = n(x) — 2(x> + x%)ep (for some /,v/). If r = 2,
then, since x is reduced, x, — 1 €p for at least one u and from the fact that x% +
x} 4+ x3 + x3€p® one deduces that x, — lep for all u (recall that R/p?R~7/47).
Hence, 2(x2 + x?)ep? for all u#v and (x,x, — x,x,)€p?. It follows that m,, €p* as
wanted. O

In order to compare t(H(R)") with t(H(R[1/2])") we consider the algebra of the
Hurwitz quaternions over R, that is

. . K
Hu(R) = {xo —|—x11+2xz] + X5 |x;eR and Xx; —xje2R}.

Note that if xe Hu(R) then n(y)e R. Hence, it is clear that ye H(R)" if and only if
n(y) e R*.

We denote by vp the discrete valuation associated to a prime ideal P of R, and by
Rp, the discrete valuation ring associated to vp. Note that if 2¢ P, then H(Rp) =
Hu(Rp) and if P is a divisor of 2R with ramification index 1, then an element
X =X+ x1i + x3f + x3k belongs to H(Rp) if and only if vp(x,)=0 for every
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re{0,1,2,3}, and xeHu(Rp)\H(Rp) if and only if vp(x,)=—1 for every
re{0,1,2,3}.

Lemma 5.2. Let p be a prime ideal in R such that both its ramification and residual
degree over 2 are one. Assume ve Hu(R) is such that n(v) = p. Then xe Hu(R)v if and

only if n(x)eRp.

Proof. One implication is obvious. For the converse, assume that n(x)e Rp. Let
w=xv"! = x8/p = wy + wii + wyj + w3k. We have to prove that weHu(R). For
every prime ideal Q in R different from pR we have that we Hu(Ryp). Thus, it is
sufficient to show that weHu(R,r). Let m, = —v,(w,). Since xfeHu(R), either
m,<1 for every r or m, = 2 for every r. Let m = max{m, | | <r<4} and write w, =

p},;’,‘,, = ,,,, with x, € R. Since n(w) e R we obtain that

xg + x7 x5+ x3ep™R

If m<0, then we H(R,z) and we are done. Thus we assume that m>1 and hence
x,¢pR for some re{0,1,2,3} and

xg +x7 + x5 +x3€p’R

Using the isomorphism Z/4Z ~ R/p*R, we deduce that x> — 1ep*R for every r and
hence m = m, for every r. Next, using the isomorphism Z /87~ R/p3R one deduces
that x3 + x7 + x3 4+ x3 — 4e Rp® and therefore m = 1. We conclude that we Hu(R,g)
as desired. O

Assume that R is a unique factorization domain and 2 splits completely in R. Thus
2 = py---pu, a product of non associate primes. Assume that for every i=1,...,n
there is a reduced element ;€ H(R) such that n(r;) = p;. If xe H(R[1/2])", then there
are integers oy, ...,o, such that y=p ™ ...p *xeH(R). Using Lemma 5.2 we
deduce that there is an element xe Hu(R)" and integers f, ..., , such that y =

xnf ! nf” . Hence

H(R[1/2])" = {xn/f‘ ---nﬁ"pf‘ —-pin | xeHu(R), a1, ... 0, B, oovy PEZ}

Moreover, by Lemma 5.1, t(%;)eSO3;(R) and so t(H(R [ /2])")=SOs3(R). This
implies in particular that H(R) is normalized by H(R[1/2])"

From now on we consider again our example R = Z[w], with @ = %j Note Ris a
unique factorization domain and 2 = w@, where w and @& = 1’\2/’_7 are non-
associated primes of R. Further, n(w + i) = —@ and n(® + i) = —w, so that both
t(w + i) and t(d + i) belong to SO3(R). Another element in SO3(R) is t(3(1 +i+
j +k)). In the next proposition we show that these elements are enough to generate
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SO3(R)/t(H(R)"), and a presentation of this quotient group is given. From this and
Theorem 4.4, a presentation of SO3(R) follows.

Proposition 5.3. Ler R = Z[@] and let x =t(w+i)H(R)", y = t(& + i)H(R)",
u=1(3(14+i+j+k)H(R)" and v=x"'ux. Then the following conditions are
satisfied:

1. H(R[1/2))" = {x(w +i)"(® +i)"0w'&* | xe Hu(R)",n,m, r,se Z},

2. H(R)" and Hu(R)" are normal subgroups of H(R[1/2])",

3. SO3(R)/t(Hu(R)") is generated by the classes of t(w + i) and t(® + i) and is
isomorphic to the Klein group Z%;

4. Hu(R)*/H(R) = t(Hu(R)")/t(H(R)*) ~Z3,

5. SO3(R)/1(H(R)") = {x,y,uy = {u,v)>a{x,y» :Z%le% and the action of

{x,y> on {u,v) is given by u* =v, v° =u, W =v> and v’ = 1’

Proof. Statements 1 and 2 and the fact that SO3(R)/t(Hu(R)") is generated by the
classes of t(w+i) and t(@® + i), are consequences of the arguments before the
proposition. To prove that SOs(R)/t(Hu(R)")~73, it suffices to verify that
[w+i,d+i=1and (o+i)/d and (& + i)*/w are units of H(R). This proves
statement 3.

It is easy to verify that u,ve Hu(R)*, uvu"'v"'e H(R)", v’ = —1 and v’ = —1. It
follows that (t(u),7(v)>/{1,—1}~7Z3. A direct verification shows that the nine
elements so obtained form coset representatives for H(R)" in Hu(R)" and statements
4 and 5 readily follow. [
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