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A comment on these notes

These notes are based on a series of lectures that I delivered in July 2016 as a part of the
International Graduate Student Summer School: Quantum Correlations and Group C∗-Algebra
Theory at the University of Zhejiang in Hangzhou (China).

The aim of this course was to present an introduction to the use of operator spaces in the
field of quantum information theory. Since this course was expected to last no more than 30
hours, in order to give a self-contained and deep enough introduction, I saw myself forced to
select only one topic among many different possibilities. As a consequence of this, the course was
focused on the connections between quantum nonlocality, a major topic in quantum information
theory, and the theory of tensor norms of Banach/operator spaces. In particular, the course
was devoted to explaining why the theory of operator spaces is very suitable to study violations
of Bell inequalities.

The course was thought to be self-contained. To this end, all basic concepts and results that
are used (except for well known theorems, for which references are provided) are introduced in
detail. At the same time, one of the main goals of the course was to explain some of the recent
results in the field so that, at the end, the interested students were able to handle some of the
current techniques in the topic.

These notes faithfully follow the recent survey, written in a joint work with T. Vidick,

Survey on Nonlocal Games and Operator Space Theory, C. Palazuelos, T. Vidick. Jour-
nal of Mathematical Physics 57, 015220 (2016)(Special Issue: Operator Algebras and
Quantum Information Theory).

However, in the present notes fewer topics than in the previous survey are considered, with
the advantage that they are explained in complete detail.

In Chapter 1 the basic concepts of quantum nonlocality are introduced. Here, I give the
basic definitions about quantum nonlocality and also explain the connections between quan-
tum nonlocality and a famous theorem due to Grothendieck which links the topic of quantum
nonlocality with the theory of Banach spaces. In fact, I found it interesting to look at the topic
of quantum nonlocality from three different perspective: Physical point of view (or at least, the
original one considered by Bell), mathematical point of view (Banach spaces and tensor norms)
and computer science point of view (nonlocal games).

In Chapter 2 the general bipartite scenario of Bell functionals with many possible inputs and
outputs for Alice and Bob is considered. First, I introduce the setting in detail and explain the
motivation to consider tensor products to describe Bell functionals. Later, a brief introduction
about operator spaces is given, by explaining those concepts and results that I will need in
the rest of the notes. Finally, in the last part of Chapter 2 I explain the precise connections
between the classical and the quantum value of Bell functionals (or two-prover games) and
Banach spaces/operator spaces.

Chapter 3 is devoted to explaining how to use the connections shown in Chapter 2 between
nonlocality and operator spaces to study Bell inequality violations. First, I show how to obtain
upper bounds for such violations by using basic results on operator spaces. In addition, it
is shown how to construct examples of Bell functions with large violations. This is in hard
contrast with the results studied in Chapter 1 for correlation Bell functionals, for which Bell
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4 A COMMENT ON THESE NOTES

violations are uniformly upper bounded by Grothendieck’s constant. Although the construction
of Bell functionals with large violations is probably the most technical part of the course, the
section is (expected to be) self-contained. In the last part of Chapter 3 some other interesting
constructions leading to large Bell violations are briefly mentioned.

Finally, I would like to thank Professor Junde Wu for his invitation to this very nice summer
school and also for his hospitality, which definitely made our stay in Hangzhou memorable!



Capítulo 1

Introduction to Quantum nonlocality

Since the birth of quantum mechanics many scientists have questioned this theory. Indeed,
though quantum mechanics has been shown to be very useful to explain the behavior of matter
and energy on the atomic and subatomic level, some of the most important scientists of the
20th century were skeptic about it owing to its nondeterministic nature. The study of theories
based on hidden variable models is partially motivated by the attempt to avoid the intrinsic
uncertainty in Nature, assumed by quantum mechanics.

Quantum mechanics assumes that a physical system is completely described by an “object”
(vector state) which somehow contains all the information that we can obtain about the system.
The impossibility of obtaining a more accurate information about it does not depend on the
precision of our devices, but it is intrinsic in Nature. Contrary to this assumption, models based
on hidden variables propose that such a lack of knowledge about Nature is because our own
restrictions. These models assume that there exists a classical probability over the “states of the
world” to which we do not have a complete access and which models our uncertainly. However,
for one such fixed state, we are in a completely deterministic situation. Consequently, any action
on a physical system can be understood as a classical average over deterministic processes.

In 1935 Einstein, Podolsky and Rosen proposed an experiment [6] whose aim was to show
the incompleteness of quantum mechanics as a model of Nature. The possibility of using two
spatially separated particles to produce an immediate effect in one of them by just acting on the
other one (a consequence of quantum entanglement referred as "spooky action at a distance")
was considered impossible by the authors, as it violated the local realist view of causality.
It took almost 30 years to understand that the apparent dilemma presented in [6] could be
formulated in terms of assumptions which naturally lead to a refutable prediction. Bell showed
that the assumption of a local hidden variable model implies some inequalities on the set of
correlations obtained in a certain measurement scenario and that these inequalities are violated
by certain quantum correlations produced with an entangled state [2]. Those inequalities are
since then called Bell inequalities. Bell’s work led to different experimental verifications of a
such counterintuitive phenomenon [1, 8], which provide the strongest evidence that Nature
does not obey the laws of classical mechanics.

Though initially discovered in the context of foundations of quantum mechanics, violations
of Bell inequalities, commonly known as quantum nonlocality (because they show the existen-
ce of quantum correlation which cannot be explained by a local hidden variable model), are
nowadays a key point in a wide range of branches of quantum information science. In parti-
cular, nonlocal correlations provide advantages in communication complexity and information
theoretical protocols as well as in the security of quantum cryptography protocols.

1. Bell’s result: Correlations in EPR

We forget for a moment about quantum mechanics and we perform the following mental
experiment ([14, Section 2.6]). Charlie prepares two particles, in whatever way he wants, and
he sends one of these particles to Alice and the other to Bob. Upon receiving her particle, Alice
measures either property Q or property R of the particle, and assume that these measurements
can only take the two values ±1. We want to impose that Alice does not know in advance what
measurement she will choose to perform, so we can assume that after getting her particle, Alice
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6 1. INTRODUCTION TO QUANTUM NONLOCALITY

flips a coin to take her decision. Bob does the same with his particle, and let us call S, T to
the properties he measures, again with the possible outcomes ±1. In addition, we assume that
Alice and Bob can perform their measurements in a casually disconnected manner. That is,
sufficiently simultaneously and far apart that Alice’s measurement can not influence in Bob’s
measurement and vice versa. Let us also assume that Charlie can prepare similar pair of particles
once and again and we can repeat the experiment as many times as we want.

Let us consider the number

QS +RS +RT −QT = (Q+R)S + (R−Q)T.

From a local and deterministic point of view, it is clear that either (Q+R) or (R−Q) is 0
and

QS +RS +RT −QT = ±2.

Let us first assume that Nature can be explained by a Local Hidden Variable Model. The
locality hypothesis means exactly what we have just explained about the possibility of Alice and
Bob to perform their measurements in a casually disconnected manner. In particular, the special
relativity theory implies this hypothesis. Note that the randomness in Alice’s and Bob’s choice
of measurements is needed, since the fact that their measurements were a priori determined
would affect the locality. On the other hand, a hidden variable model is based on the hypothesis
of the existence of a hidden probability on the space of “all possible states of the world” and
such that each of these possible states is deterministic.

Going back to our experiment, call p(q, r, s, t) to the (hidden) probability that, for a given
preparation of the pair of particles, Q = q, R = r, etc. Then, it is trivial to calculate

|E(QS) + E(RS) + E(RT )− E(QT )| = |E(QS +RS +RT −QT )|

=
∣∣ ∑
q,r,s,t

p(q, r, s, t)(qs+ rs+ rt− qt)
∣∣ ≤ 2

∑
q,r,s,t

p(q, r, s, t) = 2.

This defines an inequality on the set of measurement correlations obtained in the previous
experiment,

|E(QS) + E(RS) + E(RT )− E(QT )| ≤ 2,(1.1)

which is known as CHSH-inequality.
Let us assume now that Nature is explained by quantum mechanics and assume that the

state formed by both particles is described by

|ϕ〉 =
|00〉+ |11〉√

2
.

The first qubit goes to Alice and the second to Bob. Alice then measures with the observables
Q = σz, R = σx and Bob measures with observables S = −σz−σx√

2
, T = σz−σx√

2
, where here we are

using the standard notation for the Pauli matrices :

σ0 = Id =

(
1 0
0 1

)
; σx =

(
0 1
1 0

)
;

σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
.

Then, easy calculations allow to obtain the following estimates.

〈QS〉 = − 1√
2
, 〈RS〉 = − 1√

2
, 〈RT 〉 = − 1√

2
, 〈QT 〉 =

1√
2
.

Hence,

(1.2) |〈QS〉+ 〈RS〉+ 〈RT 〉 − 〈QT 〉| = 2
√

2.



2. TSIRELSON’S THEOREM AND GROTHENDIECK’S THEOREM 7

Equation (1.1) and Equation (1.2) show that quantum mechanics can not be explained
by a local hidden variable model. That is, quantum mechanics predicts that we can obtain
certain correlations in the previous measurement-experiment which can not be explained by
a local hidden variable model. The very recent free-loophole experimental verification of this
phenomenon [8] can be consider as an irrefutable evidence of the nonlocality of Nature.

2. Tsirelson’s theorem and Grothendieck’s theorem

The previous Alice-Bob scenario can be naturally generalized to the case of more than two
measurements per site. In this case Alice can perform N different measurements A1 · · · , AN ,
each with possible outputs ±1 and similarly to Bob with measurements B1 · · · , BN .1 Let us
denote

γx,y = E[AxBy], for every x, y = 1, · · · , N.

Here, E[AxBy] denotes the expected value of the product of the outputs of Ax and By for every
x, y. γ := (γx,y)

N
x,y=1 is usually called correlation matrix.

The correlation matrices obtainable if we assumed a local hidden variable model of Nature
are those of the form

γx,y =

∫
Ω

Ax(ω)By(ω)dP(ω),(2.1)

where (Ω,P) is the hidden probability space and, fixed one of these states ω, Ax(ω) = +1 or −1
and similarly for By(ω), for every x, y. We call these matrices classical correlation matrices and
we denote by LN the set of classical correlation matrices of size N . Note that the elements
in LN are those matrices with entries E[AxBy] given by the expected value of the product
of the outcomes of the binary measurements Ax and By when we describe the corresponding
measurement procedure by using a local hidden variable model in the same way we did in
Section 1.

It is very easy to check that LN is the convex hull of the elements of the form (txsy)
N
x,y=1

with tx = ±1, sy = ±1 for every x, y = 1, · · · , N and these are precisely the extreme points of
the set:

LN = conv
{

(txsy)
N
x,y=1 : tx = ±1, sy = ±1 for every x, y = 1, · · · , N

}
.(2.2)

That is, LN is a polytope in RN2 with 22N vertices.
According to the postulates of quantum mechanics, in order to define the bipartite system

we are measuring on, we must specify a quantum state ρ ∈ S1(H⊗H)2. On the other hand, each
of Alice’s two outputs measurements Ax will be described by a POVM {Ex, Id−Ex}, where Ex
is a positive operator acting on H associated to the output 1 and Id−Ex is a positive operator
acting on H associated to the output −1. Similarly, we will have to consider the corresponding
POVMs to describe Bob’s measurements {Fy, Id−Fy} for every y. Then, if Alice and Bob
perform the measurements Ax and By respectively, we know that the corresponding table of
probabilities is given by

P (x, y) =


tr
(
(Ex ⊗ Fy)ρ

)
is the probability of outputs 1 and 1 respectively

tr
(
(Ex ⊗ (Id−Fy))ρ

)
is the probability of outputs 1 and -1 respectively

tr
(
((Id−Ex)⊗ Fy))ρ

)
is the probability of outputs -1 and 1 respectively

tr
(
((Id−Ex)⊗ (Id−Fy))ρ

)
is the probability of outputs -1 and -1 respectively.

1We assume the same number of measurements N for each of them to simply notation, but the case where
x = 1, · · · ,x, and y = 1, · · · ,y, is completely analogous.

2We assume that Alice’s and Bob’s systems are described by the same Hilbert space H just for simplicity.



8 1. INTRODUCTION TO QUANTUM NONLOCALITY

Then,

γx,y = E[AxBy] =
[
P (1, 1|x, y) + P (−1,−1|x, y)

]
−
[
P (−1, 1|x, y) + P (1,−1|x, y)

]
=tr

((
Ex ⊗ Fy + (Id−Ex)⊗ (Id−Fy)− Ex ⊗ (Id−Fy)− (Id−Ex)⊗ Fy

)
ρ
)

=tr
((

(Id−2Ex)⊗ (Id−2Fy)
)
ρ
)
.

Note that if we denote Ax = Id−2Ex, this is a self-adjoint operators acting on H verifying
‖Ax‖ ≤ 1 for every x. Here, for a given linear map T : H → H we denote

‖T‖ = sup
‖h‖=1

‖T (h)‖.

Reciprocally, every self-adjoint operator ‖Ax‖ ≤ 1 can be written as Id−2Ex, where Ex is
a positive operator smaller than the identity. We can reason in a similar way for By = Id−2Fy,
for every y. We say that γ := (γx,y)

N
x,y=1 is a quantum correlation matrix if there exit self-adjoint

operators A1, · · · , AN , B1, · · · , BN acting on a Hilbert space H3 with máxx,y{‖Ax‖, ‖By‖} ≤ 1
and a density operator ρ acting on H⊗H such that

γx,y = tr(Ax ⊗Byρ), for every x, y = 1, · · · , N.(2.3)

We denote by QN the set of quantum correlation matrices of order N .
It is well known that every density operator ρ acting on H can be purified. That is, there

exists a unit vector |ψ〉 in H ⊗ H (whose singular values are precisely the square root of the
singular values of ρ) such that

ρ = (IdH⊗trH)(|ψ〉〈ψ|).
It can be easily deduced from this fact that we can restrict to pure states ρ = |ψ〉〈ψ| in the

definition of a quantum correlation matrix (2.3). Note, however, that in this process we must
increase the dimension of the corresponding Hilbert space H⊗H.

It is easy to see that LN ⊆ QN . Indeed, to see this inclusion let us consider a general element
γ ∈ LN . Note that for a fixed N we can always assume that the integral in Equation (2.1) is
a finite sum since, according to (2.2), LN is a convex hull of a finite number of points. Let us
assume that our probability space is of size K. Then,

γx,y =
K∑
k=1

p(k)Ax(k)By(k),

where Ax(k) and By(k) are as explained before. Then, considering the K ×K matrices

Ax =


Ax(1) 0 · · · 0
0 Ax(2) · · · 0
...

...
...

0 0 · · · Ax(K)

 and By =


By(1) 0 · · · 0
0 By(2) · · · 0
...

...
...

0 0 · · · By(K)


and the K-dimensional state ρ =

∑K
k=1 p(k)|kk〉〈kk|, it is trivial to check that

tr(Ax ⊗Byρ) =
K∑
k=1

p(k)Ax(k)By(k) = γx,y(2.4)

for every x, y. Since Ax and By are clearly self-adjoint matrices with norm ≤ 1, the inclusion
LN ⊆ QN is proved.

As it is the case of LN , the set QN is also convex (although QN is not a polytope anymore
since it can be seen that it has infinitely many extreme points). In order to show the convexity

3In this definition we allow for infinite dimensional Hilbert spaces H. However, a direct consequence of
Theorem 2.2 below is that we can always assume that H has finite dimension.
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of this set, let us consider two elements γ, γ′ in QN and λ ∈ [0, 1]. Then, γx,y = tr(Ax ⊗ Byρ)
and γ′x,y = tr(A′x ⊗ B′yρ′) for every x, y = 1, · · · , N , where Ax, A′x, By, B′y, ρ and ρ′ are as in
(2.3) and we must show that λγ + (1− λ)γ′ ∈ QN . To this end, we define the elements

Ãx =

(
Ax 0
0 A′x

)
, B̃y =

(
By 0
0 B′y

)
and ρ̃ =


λρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 (1− λ)ρ

 .

Then, Ãi, B̃j are self-adjoint operators inM2N of norm lower than or equal to one, ρ̃ is a density
matrix in M4N2 and one can easily check that

tr(Ãi ⊗ B̃j ρ̃) = λtr(Ax ⊗Byρ) + (1− λ)tr(A′x ⊗B′yρ′) for every x, y = 1, · · ·N,

which finishes the proof.
In the previous proof we needed to increase the Hilbert space dimension of the corresponding

quantum correlation matrices. It is interesting to note that if we fix a given dimension d and
denote by QdN the set of quantum correlation matrices of orden N which can be written by
using Hilbert spaces H of dimension lower than or equal to d, then the set QdN is not convex in
general.

Since LN is a polytope, it is described by its facets. The inequalities which describe these
facets are usually called (correlation) Bell inequalities. Note that one of these inequalities will
be of the form

N∑
x,y=1

Mx,yγx,y ≤ C for every γ := (γx,y)
N
x,y=1 ∈ LN ,(2.5)

where M = (Mx,y)
N
x,y=1 are the (real) coefficients of the corresponding inequality and C is the

independent term. Actually, we have already studied one of these inequalities. Indeed, in the
case N = 2 we have defined the CHSH-inequality in Section 1 as the one given by

M =

(
1 1
1 −1

)
and C = 2.

It can be seen that in the case N = 2 this is the only Bell inequality up to certain symmetries.
As we showed before there exist certain quantum correlation matrices γ ∈ QN for which

N∑
x,y=1

Mx,yγx,y = 2
√

2.

In this case, we say that the correlation γ violates the corresponding correlation Bell inequality
or that we have a Bell inequality violation. By convexity, this is equivalent to say that we have
a proper content

LN  QN .

For every matrix M = (Mx,y)
N
x,y=1 of real numbers we can associate an inequality∣∣∣∣∣

N∑
x,y=1

Mx,yγx,y

∣∣∣∣∣ ≤ ω(M),(2.6)
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where

ω(M) := sup
{∣∣∣ N∑

x,y=1

Mx,yγx,y

∣∣∣ : (γx,y)
N
x,y=1 ∈ LN

}

= sup
{∣∣∣ N∑

x,y=1

Mx,ytxsy

∣∣∣ : tx = ±1, sy = ±1, for every x, y
}
.

Here, the last equality is straightforward from (2.2).
To be more precise, every matrix M = (Mx,y)

N
x,y=1 defines a functional M acting on the set

of correlation matrices by means of the dual action:

〈M,γ〉 =
N∑

x,y=1

Mx,yγx,y.

Hence, from now on we will call correlation Bell functional to any matrix M = (Mx,y)
N
x,y=1 of

real numbers 4 and the value ω(M) will be called classical value of M .
On the other hand, we will define the quantum value of M by

ω∗(M) := sup

{∣∣∣∣∣
N∑

x,y=1

Mx,yγx,y

∣∣∣∣∣ : (γx,y)
N
x,y=1 ∈ QN

}
.

The value

LV (M) :=
ω∗(M)

ω(M)

is usually called the largest violation of M .
The previously proved inclusion LN ⊆ QN means that ω∗(M) ≥ ω(M) or, equivalently,

LV (M) ≥ 1 for every correlation Bell functional M . Then, M gives rise to a Bell violation
whenever LV (M) > 1. As a particular example, we have seen that the CHSH-inequalityMCHSH

verifies

LV (MCHSH) ≥
√

2.

In fact, it is not very difficult to see that LV (MCHSH) =
√

2. This is a direct consequence
of the so called Tsirelson’s bound, which shows that

ω∗(MCHSH) ≤ 2
√

2.

Here, we present the original proof of Tsirelson [22].

Proposition 2.1. Let A1, A2, B1, B2 be self-adjoint operators of norm lower than or equal
to 1 such that [Ax, By] = 0 for every x, y = 1, 2. Then,

A1B1 + A1B2 + A2B1 − A2B2 ≤ 2
√

2 Id .

4The corresponding inequality defined by this functional (2.5) is not properly a correlation Bell inequality
since it does not necessarily describe a facet of LN . However, for the purpose of our study this is completely
irrelevant.
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Demostración. Let A1, A2, B1, B2 be as in the statement. Then,

A1B1 + A1B2 + A2B1 − A2B2 =
1√
2

(
A2

1 + A2
2 +B2

1 +B2
2

)
−
√

2− 1

8

(
(
√

2 + 1)(A1 −B1) + A2 −B2

)2

−
√

2− 1

8

(
(
√

2 + 1)(A1 −B2)− A2 −B1

)2

−
√

2− 1

8

(
(
√

2 + 1)(A2 −B1) + A1 +B2

)2

−
√

2− 1

8

(
(
√

2 + 1)(A2 +B2)− A1 −B1

)2

≤ 1√
2

(
A2

1 + A2
2 +B2

1 +B2
2

)
≤ 2
√

2 Id .

�

Given self-adjoint operators A1, A2, B1, B2 of norm lower than or equal to 1, by applying
the previous proposition to the operators A1 ⊗ Id, A2 ⊗ Id, Id⊗B1, Id⊗B2 and for every state
ρ we have

|tr(A1 ⊗B1ρ) + tr(A1 ⊗B2ρ) + tr(A2 ⊗B1ρ)− tr(A2 ⊗B2ρ)|

≤ ‖A1 ⊗B1 + A1 ⊗B2 + A2 ⊗B1 − A2 ⊗B2‖ ≤ 2
√

2.

This shows Tsireslon’s bound.
Surprisingly, the value LV (MCHSH) =

√
2 is not far from being optimal, even if we consider

matrices of order N as large as we want. This is a consequence of a deep theorem due to
Grothendieck in the context of functional analysis. Before explaining this point, we need to see
that the value ω∗(M) defined above can be expressed in a simpler way.

2.1. Tsirelson’s theorem. Tsirelson’s theorem tells us that, in the same way as the
classical value of a correlation Bell inequality ω(M) can be written as a “combinatorial quantity”,
the quantum value ω∗(M) can be understood as a “geometrical quantity”.

Theorem 2.2 (Tsirelson). Let γ = (γx,y)
N
x,y=1 be a matrix with real entries. Then, the

following statements are equivalent:
1. γ = (γx,y)

N
x,y=1 ∈ QN .

2. There exist norm one elements u1, · · · , uN , v1, · · · , vN in a real Hilbert KR space such
that

γx,y = 〈ux, vy〉 for every x, y = 1, · · ·N.
In particular,

ω∗(M) := sup

{∣∣∣∣∣
N∑

x,y=1

Mx,y〈ux, vy〉

∣∣∣∣∣
}
,

where the sup is taken over elements u1, · · · , uN , v1, · · · , vN in the unit sphere of a real Hilbert
space KR.

Note that, the dimension of the Hilbert space KR can always be assumed lower than or equal
to 2N by just considering the span of the vectors u1, · · · , uN , v1, · · · , vN . In fact, this dimension
can be taken lower than or equal to N + 1 by considering the projection of the vectors v’s to



12 1. INTRODUCTION TO QUANTUM NONLOCALITY

the span of the normalized vectors u1, · · · , uN and then adding an extra dimension to make the
new vectors ṽ’s unit.

In order to prove Theorem 2.2 we need to introduce the Canonical Anti-commutation Rela-
tions (CAR)-algebra: Given N ≥ 2, we consider a set of operators X1, · · · , XN , such that they
verify the following properties:

1. X∗i = Xi for every i = 1, · · · , N .
2. XiXj +XjXi = 2δi,j Id for every i, j = 1, · · · , N..
The proof of the existence of such operators is completely constructive. Indeed, we can

realize them as elements of
⊗

[N
2

] M2 = M
2[N2 ] by using tensor products of Pauli matrices. Here,

for every positive real number r, [r] denotes the least natural number z such that z ≤ r.
Let us first assume that N = 2k for some k. Then, we define the following operators in MN :

X1 = σx ⊗ Id⊗ · · · ⊗ Id⊗ Id, X2 = σy ⊗ Id⊗ · · · ⊗ Id⊗ Id
X3 = σz ⊗ σx ⊗ · · · ⊗ Id⊗ Id, X4 = σz ⊗ σy ⊗ · · · ⊗ Id⊗ Id

...
...

X2k−3 = σz ⊗ σz ⊗ · · · ⊗ σx ⊗ Id, X2k−2 = σz ⊗ σz ⊗ · · · ⊗ σy ⊗ Id
X2k−1 = σz ⊗ σz ⊗ · · · ⊗ σz ⊗ σx, X2k = σz ⊗ σz ⊗ · · · ⊗ σz ⊗ σy.

In the case N = 2k + 1, we add the element

X2k+1 = σz ⊗ σz ⊗ · · · ⊗ σz ⊗ σz.
Proving that the operators X1, · · · , XN verify the CAR-relations is straightforward. We

leave it as an exercise for the reader.

Proof of Theorem 2.2. In order to prove the implication 1. ⇒ 2., recall that we can
assume, without loss of generality, that the state ρ is pure (ρ = |ϕ〉〈ϕ|) so that

γx,y = 〈ϕ|Ax ⊗By|ϕ〉 for every x, y.(2.7)

Let us then define

|wx〉 = (Ax ⊗ IdH)|ϕ〉 ∈ H ⊗H and |zy〉 = (IdH ⊗By)|ϕ〉 ∈ H ⊗H
for every x, y = 1, · · · , N .

It is clear that these vectors are in the unit ball of H ⊗ H, Ball(H ⊗ H). However, they
could be complex vectors. The key point here is that we know that γx,y = 〈wx|zy〉 ∈ R for all
x, y. Indeed, this is due to the fact that Ax and By are self-adjoint operators in (2.7).

Hence, if we define

|w̃x〉 = Re(|wx〉)⊕ Im(|wx〉) and |z̃y〉 = Re(|zy〉)⊕ Im(|zy〉),
we obtain new real vectors with norm lower than or equal to one and such that

〈w̃x|z̃y〉 = Re (〈wx|zy〉) = γx,y for every x, y.

Finally, note that we can modify these vectors so that they have norm exactly one, by
replacing our Hilbert space from H to H ⊕ R⊕ R. Indeed, let us just define

ux = w̃x ⊕
√

1− ‖w̃x‖2 ⊕ 0 and vy = z̃y ⊕ 0⊕
√

1− ‖zy‖2

for every x, y = 1, · · · , N .
To show implication 2.⇒ 1., let M be the dimension of the real Hilbert space KR. Without

lost of generality we can assume that KR = (RM , 〈·, ·〉). Recall that u1, · · · , uN , v1, · · · , vN ∈ KR
are unit vectors. We have seen that we can realize the Clifford operators X1, · · · , XM (of order
M) as elements in M2n with n = [M

2
]. Let us consider the linear map

J : RM → CLM = span{X1, · · · , XM} ⊂M2n ,
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defined by

J

(
M∑
k=1

αkek

)
=

M∑
k=1

αkXk for every
M∑
k=1

αkek ∈ RM .

It can be deduced from the CAR-relations that J : RM → M2n defines a (not surjective)
isometry, when we consider in M2n the standard operator norm. Indeed, in order to show this
we write, for a given x =

∑M
k=1 αkek ∈ RM ,

‖J(x)‖M2n
= ‖J(x)J(x)∗‖

1
2
M2n

=

∥∥∥∥∥
(

M∑
k=1

αkXk

)(
M∑
k=1

αkXk

)∗∥∥∥∥∥
1
2

M2n

=

∥∥∥∥∥
M∑

k,k′=1

αkᾱk′XkX
∗
k′

∥∥∥∥∥
1
2

M2n

=

∥∥∥∥∥
M∑
k=1

|αk|2 IdM2n
+

M∑
k 6=k′

αkαk′XkXk′

∥∥∥∥∥
1
2

M2n

=

∥∥∥∥∥
M∑
k=1

|αk|2 IdM2n

∥∥∥∥∥
1
2

M2n

=

(
M∑
k=1

|αk|2
) 1

2

.

Here, we have used that
M∑
k 6=k′

αkαk′XkXk′ = 0,

which can be easily deduced from the CAR-relations.
The CAR-relations also imply that

1

2n
tr (J(x)J(y)) = 〈x, y〉 for every x, y ∈ RM ,

since for x =
∑M

k=1 αkek and y =
∑M

k=1 βkek in RM we have

1

2n
tr (J(x)J(y)) =

1

2n
tr

(
M∑

k,k′=1

αkβk′XkXk′

)
=

1

2n

M∑
k,k′=1

αkβk′tr (XkXk′) =
M∑
k=1

αkβk.

Here, we have used that tr(IdM2n
) = 2n and for every k 6= k′, we have tr(XkXk′) = 0.

If we consider now the state |ψ〉 = 1

2
n
2

∑2n

i=1 |ii〉 ∈ C2n ⊗2 C2n , it is easy to check that for
every A,B ∈M2n we have

1

2n
tr(ABtr) = tr(A⊗B|ψ〉〈ψ|) = 〈ψ|A⊗B|ψ〉.

Therefore, if we define the operators Ax = J(ux) ∈ M2n , By = J(vy) ∈ M2n for every x, y,
where the bar denotes the conjugate operator, we obtain a family of self-adjoint operators with
norm one, and such that

〈ψ|Ax ⊗By|ψ〉 =
1

2n
tr(AxB

tr
y ) =

1

2n
tr(J(ux)J(vy)

∗) = 〈x, y〉 = γx,y

for every x, y = 1, · · · , N , where in the last equality we have used that the operators J(vy) are
self-adjoint. This concludes the proof. �

Remark 2.3 (Maximally entangled states suffice in correaltions Bell inequalities). An im-
portant consequence of the proof of Theorem 2.2 is that, for a fixed N , every correlation matrix
γ ∈ QN can be written by using the maximally entangled state in dimension d = 2[N

2
]:

|ψ〉 =
1√
d

d∑
i=1

|ii〉 ∈ Cd ⊗ Cd.
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One can define the (commuting) quantum correlation matrices as those γ := (γx,y)
N
x,y=1 such

that there exist self-adjoint operators A1, · · · , AN , B1, · · · , BN acting on a Hilbert space H with
máxx,y=1,··· ,N{‖Ax‖, ‖By‖} ≤ 1 verifying [Ax, By] = 0 for every x, y = 1, · · · , N and a density
operator ρ acting on H such that

γx,y = tr(AxByρ), for every x, y = 1, · · · , N.(2.8)

One can easily deduce from the proof of Theorem 2.2 that this definition is equivalent to
the previous one. Indeed, if we add the item

1’. γ = (γx,y)
N
x,y=1 ∈ QcN

in the statement of Theorem 2.2, where QcN denotes the set of correlation matrices which can
be written as in (2.8) it is trivial to check that [1] implies [1’] and a modification of the proof
[1]→ [2] allows to show [1′]→ [2].

2.2. Grothendieck’s theorem. Theorem 2.2 allows us to bring Grothendieck’s funda-
mental theorem in the metric theory of tensor products [7] to the context of Bell inequalities.

Theorem 2.4 (Grothendieck’s inequality). There exits a positive universal constant KR
G

such that for every natural number N and for every matrix of real coefficients (Mx,y)
N
x,y=1 the

following inequality holds:

sup
{∣∣∣ N∑

x,y=1

Mx,y〈ux, vy〉
∣∣∣ : ‖ux‖, ‖vy‖ = 1 ∀x, y

}
≤ KR

G · sup
{∣∣∣ N∑

x,y=1

Mx,ytxsy

∣∣∣ : tx, sy = ±1 ∀x, y}.
Here, the first supremum is taken over families of vectors u1, · · · , uN , v1, · · · , vN in an arbitrary
real Hilbert space.

The constant KR
G, known as the (real) Grothendieck’s constant, verifies

1,67696... ≤ KR
G <

π

2 log((1 +
√

2)
= 1,7822139781...

Howevere, the exact value of this constant is still an open question.

Remark 2.5. There exists a complex version of Grothendieck’s inequality for complex ma-
trices. Then, the optimization in the left hand side is over unit vectors in a complex Hilbert
spaces and the optimization in the right hand side is over elements (tx)

N
x=1, (sy)

N
y=1 such that

|tx| ≤ 1 and |sy| ≤ 1 for every x, y = 1, · · · , N . The corresponding constant is denoted by KC
G.

Although the exact value of both constants real and complex are unknown, it is known that

KC
G < KR

G.

According to our previous description of the values ω(M) and ω∗(M), Theorem 2.4 can be
reformulated as follows.

Theorem 2.6. There exists a positive universal constant KR
G such that for every natural

number N and for every correlation Bell functional (Mx,y)
N
x,y=1 the following inequality holds:

ω∗(M) ≤ KR
G · ω(M) or, equivalently, LV (M) ≤ KR

G.

Hence, the basic example defined by the CHSH-inequality, which provides a Bell violation
LV (MCHSH) ≥

√
2, is “close to be optimal”.
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3. Banach space point of view

3.1. Basic definitions. We will start this section by fixing some notation. We recall that
a Banach space X is a normed space which is complete under that norm (that is, every Cauchy
sequence converges to an element of the space). In these notes, we will mostly consider finite
dimensional normed spaces and they are automatically complete. Here, will use notation X,
Y , Z, · · · to denote generic Banach spaces. We will use notation ‖ · ‖X for the norm on X and
Ball(X) for the closed unit ball of the normed space X. Given a vector space V we will use {ex}
to denote an arbitrary fixed orthonormal basis of V , identified as a “canonical basis” for V .

Notation `np will be used to denote the n-dimensional complex `p-space, and `np (R) will be
used in the real case. Unless specified otherwise, the space Cn will always be endowed with the
Hilbertian norm and identified with `n2 . The inner product between two elements x, y ∈ `n2 is
denoted by 〈x, y〉.

Given Banach spaces X, Y and Z, L(X, Y ) will be the set of linear maps from X to Y . We
will also write L(X) for L(X,X), and IdX ∈ L(X) for the identity map on X. B(X, Y ;Z) will
be the set of bilinear maps from X × Y to Z. If Z = C we also write B(X, Y ).

Given a linear map T : X → Y between Banach spaces, T is bounded if its norm is finite:

‖T‖ := sup{‖T (x)‖Y : ‖x‖X ≤ 1} <∞.

We will denote by L(X, Y ) the Banach space of bounded linear maps from X to Y , and write
B(X) for L(X,X). Similarly, B ∈ B(X, Y ;Z) is said bounded if

‖B‖ := sup{‖B(x, y)‖Z : ‖x‖X , ‖y‖Y ≤ 1} <∞,

and we will write B(X, Y ;Z) for the set of such maps. If X is a Banach space, we write
X? = L(X,K) and X∗ = L(X,K) for their algebraic and topological dual respectively, where
K will be always R or C.

The natural correspondence between liar maps, bilinear forms and tensor products will play
an important role in these notes. It is obtained through the identifications

L(X, Y ?) = B(X, Y ) = (X ⊗ Y )?.(3.1)

Here the first equality is obtained by identifying a linear map T : X → Y ?, with the bilinear form
BT : X×Y → K defined by BT (x, y) = 〈T (x), y〉 for every (x, y) ∈ X×Y and, reciprocally, any
bilinear form B : X×Y → K with the linear map TB : X → Y ? defined as 〈TB(x), y〉 = B(x, y).
For the second identification, given a bilinear form B : X × Y → C we associate the linear
form SB : X ⊗ Y → K defined by SB(x ⊗ y) = B(x, y) for every x, y and, reciprocally, for
every linear map S : X ⊗ Y → K we associate the bilinear form BS : X × Y → K defined as
BS(x, y) = S(x⊗ y) for every (x, y) ∈ X × Y .

In the particular case of RN ⊗ RN , we can identify this space with the space of N × N
matrices MN by the canonical identification

N∑
i,j=1

αi,jei ⊗ ej → (αi,j)
N
i,j=1,

and the identifications (3.1) can be equivalently explained by using matrices.
Another interesting identification is

X? ⊗ Y = F (X, Y )(3.2)

where F (X, Y ) denotes the linear maps from X to Y with finite rank. To understand this
identification, let us consider an element Q =

∑N
s,t=1 x

?
s ⊗ yt ∈ X? ⊗ Y . Then, we associate

the linear map TQ : X → Y defined by TQ(x) =
∑N

s,t=1〈x?s, x〉yt for every x ∈ X. Reciprocally,
if T ∈ F (X, Y ) has finite rank, then it can be written (using for instance the singular value
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decompostion) as T =
∑

s〈x?s, ·〉ys for certain elements x?s ∈ X? , ys ∈ Y . Then, we associate
the tensor QT =

∑
s x

?
s ⊗ ys ∈ X? ⊗ Y .

Hence, if X or Y is a finite dimensional spaces (so that F (X, Y ) = L(X, Y )) we naturally
obtain the identification

(X ⊗ Y )? = L(X, Y ∗) = X? ⊗ Y ?.(3.3)

3.2. Three tensor norms. The identifications (3.1) can be made isometric. Given two
Banach spaces X, Y , define the π-norm of z ∈ X ⊗ Y as

‖z‖X⊗πY = ı́nf

{
n∑
i=1

‖ui‖‖vi‖ : z =
n∑
i=1

ui ⊗ vi

}
,(3.4)

where the infimum runs over all representations z =
∑n

i=1 ui ⊗ vi. We will denote by X ⊗π Y
the completion of the space X ⊗ Y under the norm π.5

It is very simple to show that the π-norm on the tensor product X ⊗ Y is the Minkowski
functional of the set

Γ = conv (Ball(X)⊗ Ball(Y )) .

In other words, we can re-write the π-norm of z as

‖z‖X⊗πY = ı́nf

{
m∑
i=1

|λi| : z =
m∑
i=1

λifi ⊗ gi, fi ∈ Ball(X), gi ∈ Ball(Y )

}
.(3.5)

Indeed, it is clear that for every representation z =
∑n

i=1 ui ⊗ vi, we can write z =∑n
i=1 λi

ui
‖ui‖ ⊗

vi
‖vi‖ with λi = ‖ui‖‖vi‖ for every i, to conclude that the expression (3.5) is lower

than or equal to (3.4). On the other hand, for every representation of the form z =
∑n

i=1 λifi⊗gi
we can denote f̃i = λifi for every i to obtain a representation z =

∑n
i=1 f̃i ⊗ gi which leads to

lower bound (3.5) by (3.4).
With the expression (3.5) at hand it is very easy to show that the following identifications

are isometric (details are left to the reader):

L(X, Y ∗) = B(X, Y ) = (X ⊗π Y )∗.(3.6)

In addition the π-norm verifies de so called metric mapping property : For all Banach spaces
X, Y , Z, W and all linear maps T : X → Z and S : Y → W , the following estimate holds:

‖T ⊗ S : X ⊗π Y → Z ⊗π W‖ ≤ ‖T‖‖S‖.(3.7)

Here, the linear map T ⊗ S : X ⊗π Y → Z ⊗π W is defined by canonically extending (to
the completion space) the linear map T ⊗ S : X ⊗ Y → Z ⊗W defined by

(T ⊗ S)

(∑
i

ui ⊗ yi

)
=
∑
i

T (ui)⊗ S(yi).

Estimate (3.7) follows easily from the definition of the π-norm.
Given two Banach spaces X, Y , define the ε-norm of z ∈ X ⊗ Y as

‖z‖X⊗εY = sup
x∗∈Ball(X∗), y∗∈Ball(Y ∗)

∣∣〈z, x∗ ⊗ y∗〉∣∣.(3.8)

5We note that this space is usually denoted as X⊗̂πY but since these notes will mostly deal with finite
dimensional spaces (where no completion is required), we prefer using this notation.
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It is very easy to show that restricting the elements x∗ and y∗ to the set of extreme points
of the corresponding unit balls ext(Ball(X∗)) and ext(Ball(Y ∗)) respectively does not change
the definition of the norm. Moreover, it is also straightforward to check that

‖z‖X⊗εY = ‖Tz : X∗ → Y ‖ = sup
x∗∈Ball(X∗)

‖Tz(x∗)‖Y ,(3.9)

where for a given z =
∑

i xi⊗yi and a given x∗ ∈ Ball(X∗) we denote Tz(x∗) =
∑

i x
∗(xi)yi ∈ Y .

We will denote by X ⊗ε Y the completion of the space X ⊗ Y under the ε-norm. It follows
from (3.9) that the identification (3.2) becomes isometric in the form:

K(X, Y ) = X∗ ⊗ε Y,(3.10)

where K(X, Y ) denotes the compact linear maps from X to Y endowed with the operator norm.
In particular, if X or Y are finite dimensional spaces (so that K(X, Y ) = L(X, Y ) isometrically)
we naturally obtain the isometric identifications

(X ⊗π Y )∗ = X∗ ⊗ε Y ∗ and (X ⊗ε Y )∗ = X∗ ⊗π Y ∗(3.11)

It is again very easy to check that the ε-norm verifies the metric mapping property: For all
Banach spaces X, Y , Z, W and all linear maps T : X → Z and S : Y → W , the following
estimate holds:

‖T ⊗ S : X ⊗ε Y → Z ⊗εW‖ ≤ ‖T‖‖S‖.(3.12)

In addition, this norm verifies a very important property; namely, it is injective. This means
that if j1 : X → Z and j2 : Y → W are linear isometries (resp. linear isomorphisms), then

j1 ⊗ j2 : X ⊗ε Y → Z ⊗εW
is a linear isometry (resp. linear isomorphim).

In general a tensor norm α on the class BANACH of all Banach spaces6 assigns to each pair
(X, Y ) of Banach spaces X and Y a norm ‖ · ‖X⊗αY on the algebraic tensor product X ⊗ Y so
that X ⊗α Y is a Banach space and such that the following two conditions are satisfied:

1. α is reasonable: ε ≤ α ≤ π.
2. α satisfies the metric mapping property.
In particular, π and ε are (the extreme) tensor norms.
Given a tensor norm α, we define its dual tensor norm α∗ by defining, for every pair of finite

dimensional Banach spaces X, Y ,

‖u‖X⊗α∗Y = sup {|〈u, v〉| : ‖v‖X∗⊗αY ∗ ≤ 1} ,

where the dual action is the one used in the algebraic identification (X ⊗ Y )? = X? ⊗ Y ?.
Formally, we should define α∗ on every pair of not necessarily finite dimensional Banach

spaces. However, it suffices to define it on finite dimensional spaces and one can extend it to
the class BANACH in a canonical way. Note that we only use the definition of α on finite
dimensional Banach spaces to define α∗. In fact, the norms we are using: π-norm, ε-norm and
the ones defined below, are finitely generated (as well as all the so called usual tensor norms);
that is, they are determined by their restrictions to finite dimensional spaces (see [4, Section
12.4] for a formal definition).

Note that (3.11) expresses that the π-norm and the ε-norm are dual of each other.
Let us also mention that the π tensor norm and the ε tensor norm can be analogously

defined on the tensor product of k Banach spaces

X1 ⊗ · · · ⊗Xk.

6In general, a tensor norm is usually defined on the class NORM of normed spaces but it can also be defined
on subclasses, such as BANACH, and this will be enough of our purposes.
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It is easy to check that these norms are both associative and commutative. Moreover, all
previously completely isometric identifications also hold in the general context.

We will need to consider another tensor norm which is very important for the purpose of
these notes. Given two Banach spaces X, Y , define the γ2-tensor norm of z ∈ X ⊗ Y as

‖z‖X⊗γ2Y
= ı́nf

{
ω2 ((ux)i;X)ω2 ((yi)i;Y ) : z =

n∑
i=1

ui ⊗ vi
}
,(3.13)

where for a given sequence (zi)
n
i=1 ⊂ Z, we denote

ω2 ((zi)i;Z) = sup
z∗∈Ball(Z∗)

(
n∑
i=1

|z∗(zi)|2
) 1

2

.

The reader can easily check that, given a sequence (zi)
n
i=1 ⊂ Z, the quantity ω2 ((zi)i;Z)

coincides with the norm ‖T‖ of the linear map T : `n2 → Z defined by T (ei) = zi for every
i = 1, · · · , n.

One can check that γ2 defines indeed a tensor norm. Its dual norm will be denoted by γ∗2 .

3.3. Connections with quantum nonlocality. Tensor norms perfectly fit in the study
of quantum nonlocality. To see this, let us recall the notation `n1 (R), `n∞(R) and `n2 (R) for the
corresponding real spaces.

We start by relating the classical value of a correlation Bell functional with the ε-norm:

Proposition 3.1 (Classical value of a Bell inequality). Let M = (Mx,y)
N
x,y=1 be a matrix

with real entries and let us denote by M =
∑N

x,y=1Mx,yex ⊗ ey ∈ RN ⊗ RN the corresponding
tensor. Then,

ω(M) = ‖M‖`N1 (R)⊗ε`N1 (R).

Equivalently, we have

LN = B`N∞(R)⊗π`N∞(R).

Demostración. Given (Mx,y)
N
x,y=1 ∈ RN

2 the following equalities hold:

ω(M) = sup {|〈M,γ〉| : γ ∈ LN} = sup

{∣∣∣∣∣
N∑

x,y=1

Mx,ytxsy

∣∣∣∣∣ : tx = ±1, sy = ±1, for every i, j

}

= sup

{∣∣∣∣∣
N∑

x,y=1

Mx,y〈ex, t̂〉〈ey, ŝ〉

∣∣∣∣∣ : t̂, ŝ ∈ ext(Ball(`N∞(R)))

}
=

∥∥∥∥∥
N∑

x,y=1

Mx,yex ⊗ ey

∥∥∥∥∥
`N1 (R)⊗ε`N1 (R)

.

The second statement of the proposition is indeed equivalent to the first one by duality. In
fact, according to (2.2) and (3.5) a correlation matrix γ verifies

γ ∈ LN ⇔ ‖γ‖`N∞(R)⊗π`N∞(R) ≤ 1.

�

In order to study the quantum value of a correlation Bell inequality ω(M), we need to
analyze the γ2-norm on the space `N∞(R) ⊗ `N∞(R). The following lemma will be proved for
completeness, but the reader could skip it in a first reading of the notes and accept expression
(3.14) as the definition of the γ2-norm on `N∞(R)⊗ `N∞(R).

Lemma 3.2. Given an element τ ∈ RN ⊗ RN , we have that

(3.14) ‖τ‖`N∞(R)⊗γ2`
N
∞(R) = ı́nf

{
máx

1≤i,j≤N
‖ui‖2‖vj‖2 : τi,j = 〈ui, vj〉 for every i, j

}
,

where ui and vj are unit vectors in a real Hilbert space for every i, j = 1, · · · , N .
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Demostración. Let us first assume that ‖τ‖`N1 (R)⊗γ2`
N
1 (R) = d. By definition of this norm,

for every ε > 0 there exist sequences (xk)
r
k=1 and (yk)

r
k=1 in `N∞(R) such that τ =

∑r
k=1 xk ⊗ yk

and ω2

(
(xk)k; `

N
∞(R)

)
ω2

(
(yk)k; `

N
∞(R)

)
≤ d+ ε. Then,

τ =
r∑

k=1

(
N∑
i=1

xk(i)ei

)
⊗

(
N∑
j=1

yk(j)ej

)
=

N∑
i,j=1

(
r∑

k=1

xk(i)yk(j)

)
ei ⊗ ej.

Let us then define the real vectors ui = (xk(i))
r
k=1 and vj = (yk(j))

r
k=1 in Rr so that we have

τi,j = 〈ui, vj〉 for every i, j = 1, · · · , N.
We must show that máx1≤i,j≤N ‖ui‖2‖vj‖2 ≤ d+ ε. To this end, fix i and write

‖ui‖2 =

(
r∑

k=1

|ui(k)|2
)

=

(
r∑

k=1

|〈xk, ei〉|2
)
≤ sup

e∈Ball(`N1 (R))

(
r∑

k=1

|〈xk, e〉|2
)

= ω2

(
(xk)k; `

N
∞(R)

)
.

Here, we have used that (`N∞(R))∗ = `N1 (R) and that ext(Ball(`N1 (R))) = {±ei : i = 1, · · · , N}.
Applying the same argument to upper bound ‖vj‖2 by ω2

(
(yk)k; `

N
∞(R)

)
we can conclude

that
máx

1≤i,j≤N
‖ui‖2‖vj‖2 ≤ ω2

(
(xk)k; `

N
∞(R)

)
ω2

(
(yk)k; `

N
∞(R)

)
≤ d+ ε.

In order to prove the converse inequality, let us assume that τi,j = 〈ui, vj〉 for every i, j =
1, · · · , N , where ui and vj are vectors in Rr for a certain r verifying máx1≤i,j≤N ‖ui‖2‖vj‖2 ≤
d+ ε.

Then, we can write

τ =
N∑

i,j=1

τi,jei ⊗ ej =
N∑

i,j=1

(
r∑

k=1

ui(k)vj(k)

)
ei ⊗ ej =

r∑
k=1

(
N∑
i=1

ui(k)ei

)
⊗

(
N∑
j=1

vj(k)ej

)
.

By defining xk =
∑r

i=1 ui(k)ei and yk =
∑r

j=1 vj(k)ej for every k = 1, · · · , r, we trivially obtain

τ =
r∑

k=1

xk ⊗ yk.

In addition, we note that

ω2

(
(xk)k; `

N
∞(R)

)
= sup

e∈Ball(`N1 (R))

(
r∑

k=1

|〈xk, e〉|2
)

= máx
1≤i≤N

(
r∑

k=1

|〈xk, ei〉|2
)

= máx
1≤i≤N

(
r∑

k=1

|ui(k)|2
)

= máx
1≤i≤N

‖ui‖2.

Applying the same argument to upper bound ω2

(
(yk)k; `

N
∞(R)

)
by máx1≤j≤N ‖vj‖2 we con-

clude that
ω2

(
(xk)k; `

N
∞(R)

)
ω2

(
(yk)k; `

N
∞(R)

)
≤ máx

1≤i,j≤N
‖ui‖2‖vj‖2 ≤ d+ ε.

This finishes the proof. �

Another way of writing (3.14), buy using a matrix formulation, is

‖τ‖`N∞(R)⊗γ2`
N
∞(R) := ı́nf

{
‖X‖`K2 (R)→`N∞(R)‖Y ‖`N1 (R)→`K2 (R) : τ = XY

}
,

where, denoting by Ri(X) the ith row of a matrix X and by Cj(Y ) the jth column of a matrix
Y , we have

‖X‖`K2 (R)→`N∞(R) = máx
1≤i≤N

‖Ri(X)‖2 and ‖Y ‖`N1 (R)→`K2 (R) = máx
1≤j≤N

‖Cj(Y )‖2.
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With Lemma 3.2 at hand, it is very easy to connect the γ2-norm with the set of quantum
correlation matrices

Proposition 3.3. Let M = (Mx,y)
N
x,y=1 be a matrix with real entries and let us denote by

M =
∑N

x,y=1Mx,yex ⊗ ey ∈ RN ⊗ RN . Then,

ω∗(M) = ‖M‖`N1 (R)⊗γ∗2 `
N
1 (R).

Equivalently, we have

QN = Ball(`N∞(R)⊗γ2 `
N
∞(R)).

Demostración. According to Theorem 2.2 and Lemma 3.2 we trivially conclude that

QN ⊆ Ball(`N∞(R)⊗γ2 `
N
∞(R)).

Furthermore, according to Lemma 3.2, if ‖γ‖`N∞(R)⊗γ2`
N
∞(R) < 1 we know that there exist

vectors ux, vy in a certain space Rr such that

γx,y = 〈ux, vy〉 for every x, y = 1, · · · , N,

verifying máx1≤x,y≤N ‖ux‖‖vy‖ < 1. Without loose of generality we can assume that ‖ux‖ ≤ 1,
‖vy‖ ≤ 1 for every x, y. Indeed, this can be done by considering

u′x =
ux

máxx ‖ux‖
and v′y = máx

x
‖ux‖vy

for every x, y.
Now, by increasing the dimension r (to r + 1 is enough) we can obtain new vectors ũx and

ṽy so that ‖ũx‖ = ‖ṽy‖ = 1 and γx,y = 〈ũx, ṽy〉 for every x, y. Hence, we conclude that{
γ ∈ RN ⊗ RN : ‖γ‖`N∞⊗γ2`

N
∞
< 1
}
⊆ QN .

Using that QN is a closed (so compact) set, which can be easily deduced from the continuity
of the bilinear form

B : `N∞(`r2(R))× `N∞(`r2(R))→MN ,

defined as
B((ux)x, (vy)y) = (〈ux, vy〉)Nx,y=1,

we immediately conclude that

QN = Ball(`N∞(R)⊗γ2 `
N
∞(R)),

which proves the second assertion of the statement.
As a trivial consequence of this equality we obtain the desired description for ω∗(M):

ω∗(M) = sup {|〈M,γ〉| : γ ∈ QN} = sup
{
|〈M,γ〉| : γ ∈ Ball(`N∞(R)⊗γ2 `

N
∞(R))

}
= ‖M‖`N1 (R)⊗γ∗2 `

N
1 (R).

�

Finally, let us reformulate Grothedieck’s inequality in the language of tensor norms:

Theorem 3.4 (Grothendieck’s inequality). There exits a positive universal constant KR
G

such that for every natural number N and for every tensor τ ∈ RN⊗RN the following inequality
holds:

‖τ‖`N∞(R)⊗π`N∞(R) ≤ KR
G‖τ‖`N∞(R)⊗γ2`

N
∞(R).
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We see that Theorem 2.6 on the upper bound for the largest violation of correlation Bell
functionals can be recover from Theorem 3.4 by invoking Propositions 3.1 and Proposition 3.3.
From a geometrical point of view, Grothendieck’s inequality can be understood as the second
inclusion in:

LN ⊂ QN ⊂ KR
G LN , for every N.

4. Computer science point of view: XOR games

A two-player one-round game G = (X,Y,A,B, π, V ) is specified by finite sets X,Y,A,B,
a probability distribution π : X×Y→ [0, 1] and a payoff function V : A×B×X×Y→ [0, 1].7
These are games between two players, Alice and Bob, and a referee. A referee asks Alice a
question x ∈ X and asks Bob a question y ∈ y according to the distribution π. He receives
back an answer a ∈ A from Alice and an answer b ∈ B from Bob. Finally the referee declares
that the players win the game with probability precisely V (a, b, x, y); alternatively one may say
that the players are attributed a payoff V (a, b, x, y) for their answers. During the game Alice
and Bob are space-like separated: they are put so far away that information, which travels
at finite speed, cannot be exchanged between them until they produce the answers. That is,
they cannot communicate with each other as a part of their strategy. The value of the game
is the largest probability with which the players can win the game, where the probability is
taken over the referee’s choice of questions, the players’ strategy (to be defined below), and
the randomness in the referee’s final decision; alternatively the value can be interpreted as the
maximum expected payoff that can be achieved by the players.

XOR games are arguably the simplest and best understood class of two-player one-round
games that are interesting from the point of view of quantum nonlocality. Two-player XOR
games correspond to the restricted family of games for which the answer alphabets are binary,
A = B = {0, 1}, and the payoff function V (a, b, x, y) depends only on x, y, and the parity
of a and b. We further restrict our attention to functions that take the form V (a, b, x, y) =
1
2
(1+(−1)a⊕b⊕cxy) for some cxy ∈ {0, 1}. This corresponds to deterministic predicates such that

for every pair of questions there is a unique parity a ⊕ b that leads to a win for the players. 8

We will further restrict to the case where X = Y = {1, · · · , N}, but the general situation is
completely analogous.

In general, a strategy for the players is specified by an element P ∈ P(AB|XY) which
gives the probability that Alice and Bob answer a and b when they are asked questions x and
y respectively. Given one such strategy the value achieved by P in G can be expressed as

ω(G;P ) =
N∑

x,y=1

∑
a,b=0,1

π(x, y)V (a, b, x, y)P (a, b|x, y)

=
N∑

x,y=1

∑
a,b=0,1

π(x, y)
1 + (−1)a⊕b⊕cxy

2
P (a, b|x, y)

=
1

2
+

1

2

N∑
x,y=1

π(x, y)(−1)cxy [P (0, 0|x, y) + P (1, 1|x, y)− P (0, 1|x, y)− P (1, 0|x, y)] .

This last expression motivates the introduction of the bias β(G;P ) = 2ω(G;P )− 1 ∈ [−1, 1] of
an XOR game, a quantity that will prove more convenient to work with than the value of the

7Sometimes the function V is required to take values in {0, 1}. Our slightly more general definition can be
interpreted as allowing for randomized predicates.

8This additional restriction is not essential, and all results discussed in this section extend to general
V (a, b, x, y) = V (a⊕ b, x, y) ∈ [0, 1].
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game. Hence,

β(G;P ) =
N∑

x,y=1

π(x, y)(−1)cxy [P (0, 0|x, y) + P (1, 1|x, y)− P (0, 1|x, y)− P (1, 0|x, y)] .(4.1)

We see that in order to compute the bias of an XOR games (4.1) we only use the correlations
of the strategy P ∈ P(AB|XY). The classical bias of an XOR game is the largest value in
(4.1) when optimizing over all classical correlations (matrices) as in (2.1). That is, we denote

β(G) = sup
γ∈LN

∣∣∣∣∣
N∑

x,y=1

π(x, y)(−1)cxyγx,y

∣∣∣∣∣ = ‖G‖`N1 (R)⊗ε`N1 (R),

where we identify the game G with the tensor G =
∑N

x,y=1 π(x, y)(−1)cxyex ⊗ ey. This value
corresponds to the largest bias achievable by the players if they use a local and determinist
strategy implemented with the help of shared randomness.

Analogously, the quantum bias of an XOR game is the largest value in (4.1) when optimizing
over all quantum correlations (matrices) as in (2.3). That is,

β∗(G) = sup
γ∈QN

∣∣∣∣∣
N∑

x,y=1

π(x, y)(−1)cxyγx,y

∣∣∣∣∣ = ‖G‖`N1 (R)⊗γ∗2 `
N
1 (R)(4.2)

where G is as before.
The quantity β∗(G) corresponds to the largest bias of the game when the players are allowed

to perform a quantum strategy to play the game. That is, the probability of answering the pair
of outputs (a, b) when the players are asked questions x and y respectively is defined by the
application of some POVMs {Ea

x}a=0,1 for Alice and {F b
y}b=0,1 for Bob, on a shared quantum

state ρ.
We see that XOR games are particular examples of correlation Bell functional corrections.

More precisely, computing the classical and quantum bias of an XOR games can be seen as
the computation of the classical and the quantum value respectively of certain correlation
Bell functional. It is interesting to observe that the correspondence goes both ways. To any
tensor G ∈ `N1 (R)⊗ `N1 (R) with real coefficients that satisfies the mild normalization condition∑

x,y |Gx,y| = 1 we may associate an XOR game by defining π(x, y) = |Gxy| and (−1)cxy =

sign(Gxy). In particular any correlation Bell functional M can, up to normalization, be made
into an equivalent XOR game and in this setting there is no difference between the viewpoints
of Bell inequalities and of games.

To conclude this section we observe that the CHSH inequality can be written (by adding a
normalization factor 1/4) as

G = GCHSH =
∑

x,y=0,1

1

4
(−1)x∧yex ⊗ ey,

which can be read very easily in terms of an XOR game: Here, the inputs x ∈ {0, 1} and
y ∈ {0, 1} are uniformly distributed, and Alice and Bob win the game if their respective
outputs a ∈ {0, 1} and b ∈ {0, 1} satisfy a ⊕ b = x ∧ y; in other words, a must equal b unless
x = y = 1. According to the computations made in Section 1, we have that classical players
can achieve a bias of at most 1/2, while entangled players can achieve a bias of 1/

√
2.



Capítulo 2

Quantum nonlocality: The general case

5. Bell functionals and multiplayer games

5.1. Bell functionals. Bell functionals are linear forms acting on multipartite condi-
tional probability distributions. For clarity we focus on the bipartite case, but the framework
extends easily. Given finite sets X and A denote by P(A|X) the set

P(A|X) =
{
P =

(
P (a|x)

)
x,a
∈ Rax

+ : ∀x ∈ X,
∑
a∈A

P (a|x) = 1
}
.

In the case of bipartite conditional distributions we will use notation P(AB|XY) instead of
P(A×B|X×Y).

A Bell functional M is simply a linear form on Rabxy. Any such functional is specified by
a family of real coefficients M = (Ma,b

x,y)x,y;a,b ∈ RA×B×X×Y, and its action on P(AB|XY) is
given by

(5.1) P ∈ P(AB|XY) 7→ ω(M ;P ) := 〈M,P 〉 =
∑
x,y;a,b

Ma,b
x,yP (a, b|x, y) ∈ R.

We refer to x and y as the inputs of the game and to a and b as the outputs of the system
acted on by the Bell functional.

We recall that, motivated by the previous chapter, we can identify M with the tensor∑
x,y;a,b

Ma,b
x,yex ⊗ ea ⊗ ey ⊗ eb ∈ Rx ⊗ Ra ⊗ Ry ⊗ Rb.

In order to talk about Bell inequalities we must consider the subset of P(AB|XY) corres-
ponding to classical conditional distributions. Informally, classical distributions are those that
can be implemented locally with the help of shared randomness. Formally, they correspond to
the convex hull of product distributions (so they form a polytope),

PC(AB|XY) = Conv
{

(P (a|x)Q(b|y))x,y;a,b : P ∈ P(A|X), Q ∈ P(B|Y)
}
.(5.2)

It follows by definition that PC(AB|XY) is a convex and closed set (in fact, it is a polytope)
of Rxyab.

Bell inequalities are those inequalities which describe the facets of the set PC(AB|XY). As
in the case of correlation Bell inequalities, we will be actually interested in the study of the
classical value of a general Bell functional M :

(5.3) ω(M) := sup
P∈PC(AB|XY)

|ω(M ;P )|.

The second value associated to a Bell functional is its quantum value (or entangled value),
which corresponds to its supremum over the subset of P(AB|XY) consisting of those distribu-
tions that can be implemented locally using measurements on a bipartite quantum state:

PQ(AB|XY) =
{(
〈ψ|Aax ⊗Bb

y|ψ〉
)
x,y,a,b

: d ∈ N, |ψ〉 ∈ Ball(Cd ⊗ Cd), Aax, Bb
y ∈ Pos(Cd),∑

a

Aax =
∑
b

Bb
y = Id ∀(x, y) ∈ X×Y

}
.

23
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Here the constraints Aax ∈ Pos(Cd) and
∑

aA
a
x = Id for every x correspond to the general notion

of measurement called positive operator-valued measurement (POVM) in quantum information.
As we explained before, considering pure states in the previous definition is equivalent to
considering general density matrices. As in the case of correlation matrices, it is very easy
to see that PQ(AB|XY) is a convex set. Interestingly, it is not known whether it is closed.

With this definition of the set PQ(AB|XY), the entangled value of M is defined as

(5.4) ω∗(M) := sup
P∈PQ(AB|XY)

|ω(M ;P )|.

Since PC(AB|XY) ⊆ PQ(AB|XY), which can be easily proved as in (2.4), it is clear that
ω(M) ≤ ω∗(M) in general. A Bell inequality violation corresponds to the case when the inequa-
lity is strict: those elements M such that ω(M) < ω∗(M) serve as witnesses that the set of
quantum conditional distributions is strictly larger than the classical set.

5.1.1. Connection with correlation matrices. According to the definitions of PC(AB|XY)
and PQ(AB|XY), we can understand the setting of correlation Bell functionals studied in the
previous chapter as a particular case of the setting considered in this section. To be more precise,
let us consider the situation where A = B = {−1, 1} and X = Y = {1, · · · , N}, and compute
the correlations of a given conditional distributions P ∈ P(AB|XY). That is, for every x and
y we compute

γx,y = E[axby] = P (1, 1|x, y) + P (−1,−1|x, y)− P (1,−1|x, y)− P (−1, 1|x, y).

It is very easy to check that the set of correlation matrices (γx,y)
N
x,y=1 written of this form

coincides with the set of classical correlation matrices LN (2.1) if we restrict to P ∈ PC(AB|XY)
and coincides with the set of quantum correlation matrices QN (2.3) if we restrict to P ∈
PQ(AB|XY).

5.2. Two-prover one-round games. We have already introduced two-player one-round
games G = (X,Y,A,B, π, V ) in Section 4 of Chapter 1. We see that two-prover one-round
games are the sub-class of Bell functionals M such that all coefficients are of the form Ma,b

x,y =
π(x, y)V (x, y, a, b); in particular, they are all non-negative. Conversely, any Bell functional with
non-negative coefficients and verifying

∑
x,y;a,bM

a,b
x,y = 11 can be made into a game by setting

π(x, y) =
∑

a,bM
a,b
x,y and V (a, b, x, y) = Ma,b

x,y/π(x, y). For this reason we will sometimes refer to
games as “Bell functionals with non-negative coefficients”. Beyond a mere change of language
(inputs and outputs to the systems will be referred to as questions and answers to the players),
the fact that such functionals can be interpreted as games allows for fruitful connections with the
extensive literature on this topic developed in computer science and leads to many interesting
constructions.

We can extend the definitions of classical and quantum values given earlier for Bell functio-
nals to corresponding quantities for games. Precisely, given a game G we can define

ω(G) := sup
P∈PC(AB|XY)

∣∣∣ ∑
x,y;a,b

π(x, y)V (a, b, x, y)P (a, b|x, y)
∣∣∣,(5.5)

ω∗(G) := sup
P∈PQ(AB|XY)

∣∣∣ ∑
x,y;a,b

π(x, y)V (a, b, x, y)P (a, b|x, y)
∣∣∣.

The values in (5.5) are precisely the probability of winning the game G when the players are
allowed to use classical resources (so local strategies and shared randomness) in the first case
and quantum resources (so strategies using entangled states) in the second case. Note that the
absolute value is redundant in (5.5) since all coefficients are non-negative in the corresponding

1Note that this normalization condition is irrelevant if we want to study the quantity ω∗(M)/ω(M).
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sums. This is not the case when considering general Bell functionals (5.2), where the absolute
value plays an important role.

6. Operator spaces

We have seen in Chapter 1 that the classical and the quantum value of a correlation Bell
functional M can be exactly described by means of tensor norms (the ε-norm and the γ2-norm
respectively) on the tensor product `N1 (R) ⊗ `N1 (R). Instead of invoking Tsirelon’s theorem
(Theorem 2.2) to describe the quantum value of M by means of the γ2-norm, let us look again
at the definition of quantum correlation matrices (2.3) and ask: is there any natural norm to
describe the value

ω∗(M) = sup
A1,...,AN
B1,...,BN

ρ

∣∣∣∣∣
N∑

x,y=1

Mx,ytr (Ax ⊗Byρ)

∣∣∣∣∣ = sup
A1,...,AN
B1,...,BN

∥∥∥∥∥
N∑

x,y=1

Mx,yAx ⊗By

∥∥∥∥∥
B(H⊗H)

?(6.1)

Here, the first supremum runs over all Hilbert spaces H, all families of self-adjoint operators
A1, . . . , AN , B1, . . . , BN in B(H) of norm lower than or equal to one and all density matrices ρ in
B(H⊗H). The equality between the supremums follows from the fact that

∑N
x,y=1Mx,yAx⊗By

is a self-adjoint operator in B(H⊗H).
Colloquially, quantum mechanics is often thought of as a “non-commutative” extension of

classical mechanics, and it is perhaps not so surprising that the answer to the previous question
comes out of a non-commutative extension of Banach space theory, the theory of operator
spaces. Initiated in Ruan’s thesis (1988), operator space theory is a “quantized extension” of
Banach space theory, whose basic objects are no longer the elements of a Banach space X but
sequences of matricesMd(X), d ≥ 1, with entries in X. This very recent theory provides us with
the right tools: we will see that in operator space terminology (6.1) is precisely the minimal
norm of the tensor M , which plays the same role in the operator space category as the ε-norm
in the Banach space category.

One could still wonder why we should consider this new point of view if we already have a
nice description of the value ω∗(M) by means of the γ2-norm. A possible answer to this question
is that the previous description is only suitable in the particular case of bipartite correlation Bell
inequalities. As soon as we want to study the general context of Bell inequalities (including two-
prover one-round games) and the k- partite scenario with k ≥ 3, one “must” consider operator
spaces!

6.1. Basic definitions about operator spaces. We introduce all notions from operator
space theory needed to understand the results presented in these notes. For the reader interested
in a deeper treatment of the theory we refer to the standard books [5], [17] and [18].

An operator space X is a closed subspace of the space of all bounded operators on a complex
Hilbert space H. For any such subspace the operator norm on B(H) automatically induces a
sequence of matrix norms ‖ · ‖d on Md(X) via the inclusions

Md(X) ⊆Md(B(H)) ' B(H⊕d) = B(`d2 ⊗2 H).

That is, a matrix A with entries Aij ∈ X is regarded as a bounded operator on H⊕d through

A

(∑
j

xj ⊗ ej

)
=
∑
ij

Aij(xj)⊗ ei,

and equipped with the corresponding operator norm.
Ruan’s Theorem [20] characterizes those sequences of norms which can be obtained in

this way. It provides an alternative definition of an operator space as a complex vector space X
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equipped with a sequence of matrix norms (Md(X), ‖·‖d) satisfying the following two conditions
for every pair of integers (c, d):

(P1) ‖v ⊕ w‖c+d = máx{‖v‖c, ‖w‖d} for every v ∈Mc(X) and w ∈Md(X),
(P2) ‖αvβ‖d ≤ ‖α‖ ‖v‖d ‖β‖ for every α, β ∈Md and v ∈Md(X).

Let us state Ruan’s theorem in a precise form (see [18, Section 2.2] for the proof).

Theorem 6.1 (Ruan). Let X be a complex vector space. Let ‖ · ‖d be a sequence of norms
on the spaces Md(X) and let ‖ · ‖ be the corresponding norm on K0 ⊗X, where

K0 =
⋃
d≥1

Md.

The following assertions are equivalent:
1. The sequence of norms ‖ · ‖d verifies properties (P1) and (P2).
2. For a suitable Hilbert space H, there is a linear embedding J : X ↪→ B(H) such that for

any d, IdMd
⊗J is an isometry between (Md(X), ‖ · ‖d) and Md(J (X)) ⊂ B(`d2 ⊗2 H).

3. For a suitable Hilbert space H, there is a linear embedding J : X ↪→ B(H) such that
IdK0 ⊗J is an isometry between (K0 ⊗X, ‖ · ‖) and K0 ⊗min J (X) ⊂ B(`2 ⊗2 H).

4. For a suitable Hilbert space H, there is a linear embedding J : X ↪→ B(H) such that
IdK⊗J is an isometry between (K⊗X, ‖ · ‖) and K⊗min J (X) ⊂ B(`2⊗2H). Here, K
denotes the space of compact operators of `2 so that K̄0 = K.

A sequence of matrix norms satisfying both conditions, or alternatively an explicit inclusion
ofX into B(H), which automatically yields such a sequence, is called an operator space structure
(o.s.s.) on X.

A given Banach space X can be endowed with different o.s.s. Important examples are the
row and column o.s.s. on `N2 . The space `N2 can be viewed as a subspace RN of MN via the
map ei 7→ E1i = |1〉〈i|, i = 1, · · · , N , where we use the Dirac notation |i〉 = ei and 〈i| = e∗i
that is standard in quantum information theory. Thus each vector u ∈ `N2 is identified with the
matrix Au which has that vector as its first row and zero elsewhere; clearly ‖u‖2 = ‖Au‖ and
the embedding is norm-preserving. We can also use the map ei 7→ Ei1 = |i〉〈1|, i = 1, · · · , N ,
identifying `N2 with the subspace CN of MN of matrices that have all but their first column
set to zero. An element A ∈ Md(RN) is a d × d matrix whose each entry is an N × N matrix
that is 0 except in its first row. Alternatively, A can be seen as an N × N matrix whose first
row is made of d × d matrices A1, . . . , AN and all other entries are zero. The operator A acts
on Md(MN) 'MdN by block-wise matrix multiplication, and one immediately verifies that the
corresponding sequence of norms can be expressed as∥∥∥∥∥

N∑
i=1

Ai ⊗ ei

∥∥∥∥∥
Md(RN )

=

∥∥∥∥∥
N∑
i=1

AiA
∗
i

∥∥∥∥∥
1
2

Md

.(6.2)

Similarly, for Md(CN) we obtain∥∥∥∥∥
N∑
i=1

Ai ⊗ ei

∥∥∥∥∥
Md(CN )

=

∥∥∥∥∥
N∑
i=1

A∗iAi

∥∥∥∥∥
1
2

Md

.(6.3)

These two expressions make it clear that the two o.s.s. they define on `N2 can be very different;
consider for instance the norms of the element A =

∑N
i=1 |i〉〈1| ⊗ ei ∈MN(`N2 ).

It is easy to deduce from the previous definition that these structures do not depend on
the orthonormal basis (ei)

N
i=1 chosen. Indeed, let us assume that (fj)

N
j=1 is another orthonormal
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basis of `N2 . Let us write fj =
∑N

i=1 ai,jei for every j = 1, · · · , N and note that U = (ai,j)
N
i,j=1

is a unitary matrix. Then,∥∥∥∥∥
N∑
j=1

Aj ⊗ fj

∥∥∥∥∥
Md(RN )

=

∥∥∥∥∥
N∑
j=1

Aj ⊗

(
N∑
i=1

ai,jei

)∥∥∥∥∥ =

∥∥∥∥∥
N∑
i=1

(
N∑
j=1

ai,jAj

)
⊗ ei

∥∥∥∥∥
Md(RN )

(6.4)

=

∥∥∥∥∥
N∑
i=1

(
N∑
j=1

ai,jAj

)(
N∑
j=1

ai,jAj

)∗∥∥∥∥∥
Md

=

∥∥∥∥∥
N∑
i=1

N∑
j,j′=1

ai,j āi,j′AjA
∗
j′

∥∥∥∥∥
Md

=

∥∥∥∥∥
N∑

j,j′=1

(
N∑
i=1

U(i, j)U †(j′, i)

)
AjA

∗
j′

∥∥∥∥∥
Md

=

∥∥∥∥∥
N∑
i=1

AiA
∗
i

∥∥∥∥∥
Md

.

Certain Banach spaces have a natural o.s.s. This happens for the case of C∗-algebras which,
by the GNS representation, have a canonical inclusion in B(H) for a certain Hilbert space H
obtained from the GNS construction. A first canonical example is the space B(H) itself, for
which the natural inclusion is the identity. Note that when H = CN , B(CN) is identified with
MN and Md(MN) with MdN . A second example is `N∞ = (CN , ‖ · ‖∞), for which the natural
inclusion is given by the map ei 7→ Eii = |i〉〈i|, i = 1, · · · , N embedding an element of `N∞ as
the diagonal of an N -dimensional matrix. This inclusion yields the sequence of norms∥∥∥∥∥

N∑
i=1

Ai ⊗ ei

∥∥∥∥∥
Md(`N∞)

= sup {‖Ai‖Md
: i = 1, . . . , N} .(6.5)

Bounded linear maps are the natural morphisms in the category of Banach spaces in the
sense that two Banach spaces X, Y can be identified whenever there exists an isomorphism
T : X → Y such that ‖T‖‖T−1‖ = 1; in this case we say that X and Y are isometric. When
considering operator spaces the norm on linear operators should take into account the sequence
of matrix norms defined by the o.s.s. Given a linear map between operator spaces T : X → Y ,
let Td denote the linear map

Td : v = (vij) ∈Md(X) 7→ (IdMd
⊗T )(v) = (T (vij))i,j ∈Md(Y ).

The map T is said to be completely bounded if its completely bounded norm if finite:

‖T‖cb := sup
d∈N
‖Td‖ < ∞.

It is very easy to see that given two operator spaces X and Y , the space of completely
bounded maps from the first to the second becomes a Banach space when this space is endowed
with the cb-norm. Let us denote this space by

CB(X, Y ).

The definition of RN and CN joint with property (6.4) make the computation of the comple-
tely bounded norm of a linear map T : CN → RN particularly easy, in contrast to the general
case. Indeed, the following well-known lemma tells us how to compute such a norm.
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Lemma 6.2. Let T : `N2 → `N2 be a linear map. Then,

‖T : CN → RN‖cb =

(
N∑
i=1

|λi|2
) 1

2

= ‖T : RN → CN‖cb,(6.6)

where T =
∑N

i=1 λi|ei〉〈fi| is the Schmidt decomposition of T .

Demostración. We will only prove the first equality since the second one can be proved
analogously. By the comments above, we can assume that T =

∑N
i=1 λi|i〉〈i|.

Let us denote Ai = |1〉〈i| ∈ MN for every i = 1, · · · , N . Then, according to Equation (6.3)
we trivially have

∥∥∥∑N
i=1Ai ⊗ ei

∥∥∥
MN (CN )

= 1. Therefore,∥∥∥∥∥(idN ⊗ T )

(
N∑
i=1

Ai ⊗ ei

)∥∥∥∥∥
MN (RN )

=

∥∥∥∥∥
N∑
i=1

λiAi ⊗ ei

∥∥∥∥∥
MN (RN )

≤ ‖T‖cb.

Now, note that
∥∥∥∑N

i=1 λiAi ⊗ ei
∥∥∥
MN (RN )

=
(∑N

i=1 |λi|2
) 1

2 . Therefore, ‖T‖cb ≥
(∑N

i=1 |λi|2
) 1

2 .

To see the converse inequality, let us consider a sequence of matrices (Ai)
N
i=1 in Md such

that
∥∥∥∑N

i=1 Ai ⊗ ei
∥∥∥
Md(CN )

=
∥∥∥∑N

i=1A
∗
iAi

∥∥∥ 1
2

Md

≤ 1. Then,∥∥∥∥∥(idN ⊗ T )

(
N∑
i=1

Ai ⊗ ei

)∥∥∥∥∥
Md(RN )

=

∥∥∥∥∥
N∑
i=1

λiAi ⊗ ei

∥∥∥∥∥
Md(RN )

=

∥∥∥∥∥
N∑
i=1

|λi|2AiA∗i

∥∥∥∥∥
1
2

Md

≤

(
N∑
i=1

|λi|2
) 1

2

,

where we have used that ‖AiA∗i ‖ ≤ 1 for every i. �

Two operator spaces are said completely isometric whenever there exists an isomorphism
T : X → Y such that ‖T‖cb‖T−1‖cb = 1. The spaces RN and CN introduced earlier are isometric
Banach spaces: if id denotes the identity map,

‖id : RN → CN‖ = ‖id : CN → RN‖ = 1.

But they are not completely isometric. According to Lemma 6.2 we have that

‖id : RN → CN‖cb = ‖id : CN → RN‖cb =
√
N.

In fact, any isomorphism u : RN → CN verifies ‖u‖cb‖u−1‖cb ≥ N . Indeed, in this case

N = tr(idN) = tr(u ◦ u−1) ≤

(
N∑
i=1

|βi|2
) 1

2
(

N∑
i=1

|λi|2
) 1

2

= ‖u−1 : RN → CN‖cb‖u : CN → RN‖cb,

where we have used Cauchy-Schwarz inequality, the Schmidt decompositions u =
∑N

i=1 λi|ei〉〈fi|,
u−1 =

∑N
i=1 βi|ei〉〈fi| and Lemma 6.2 in the last equality.

We leave the proof of the following lemma, which can be easily obtained as a consequence
of (6.4), as an exercise for the reader.

Lemma 6.3. Let n and k be two natural numbers and let T : `n2 → `k2 be a linear map. Then,

‖T : Rn → Rk‖cb = ‖T : `n2 → `k2‖ = ‖T : Cn → Ck‖cb.
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For C∗-algebras A, B with unit a linear map T : A → B is completely positive if Td(x) =
(IdMd

⊗T )(x) is a positive element inMd(B) for every d and every positive element x ∈Md(A),
and it is unital if T (IdA) = IdB. Although every completely positive map is trivially positive, the
converse is not true. An easy counterexample can be given by the transpose map T : M2 →M2

defined as T (x) = xt for every x ∈ M2. Indeed, it is trivial that this map is positive; while if
we consider the positive element

A = |1〉〈1| ⊗ |1〉〈1|+ |1〉〈2| ⊗ |1〉〈2|+ |2〉〈1| ⊗ |2〉〈1|+ |2〉〈2| ⊗ |2〉〈2|

=


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


and apply IdM2 ⊗T , we obtain the non-positive element

(IdM2 ⊗T )(A) = |1〉〈1| ⊗ |1〉〈1|+ |1〉〈2| ⊗ |2〉〈1|+ |2〉〈1| ⊗ |1〉〈2|+ |2〉〈2| ⊗ |2〉〈2|

=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


However, if A is a commutative C∗-algebra (such as `N∞) it is straightforward to check that

positivity implies complete positivity. The following very standard lemma will be used often,
and we include a short proof.

Lemma 6.4. Let T : A → B be a completely positive and unital map between C∗-algebras.
Then

‖T‖ = ‖T‖cb = 1.

Demostración. The inequalities 1 ≤ ‖T‖ ≤ ‖T‖cb hold trivially for any unital map. To
show the converse inequalities, first recall that an element z in a unital C∗-algebra D verifies

‖z‖ ≤ 1 if and only if
(

IdD z
z∗ IdD

)
is a positive element in M2(D).(6.7)

This can be easily seen by considering the canonical inclusion of the C∗-algebra M2(D) in
M2(B(H)) = B(H ⊕ H). Now given an element x ∈ Md(A) such that ‖x‖ ≤ 1 we use the
positivity of (

IdMd(A) x
x∗ IdMd(A)

)
∈M2(Md(A))

and the fact that T is completely positive and unital to conclude that

T2d

(
IdMd(A) x
x∗ IdMd(A)

)
=

(
IdMd(B) Td(x)
Td(x)∗ IdMd(B)

)
is a positive element in M2(Md(B)). Using (6.7) again we conclude that ‖Td(x)‖ ≤ 1 for every
d, thus ‖T‖cb ≤ 1. �

The following remark will be very important to understand the connections between quan-
tum nonlocality and operator spaces.

Remark 6.5. Given a POVM {Ea} the linear map T : `K∞ →Md, T : ea 7→ Ea is completely
positive and unital, thus by Lemma 6.4 ‖T‖cb = 1; conversely any completely positive and unital
map T : `K∞ →Md defines a POVM.



30 2. QUANTUM NONLOCALITY: THE GENERAL CASE

Completely bounded maps can be understood as a generalization of completely positive
maps. In particular, some fundamental theorems for completely positive maps generalize to
the setting of completely bounded maps. The following factorization/extension theorem for
completely bounded maps is a generalization of Stinespring theorem (see [18, Theorem 1.6]
and the references therein for the proof).

Theorem 6.6. Let X and Y be operator spaces given by the embeddings J1 : X ↪→ B(H1)
and J2 : Y ↪→ B(H2) respectivelly. Given a completely bounded map T : X → Y , there exist
a Hilbert space Ĥ, a ∗-homomorphism π : B(H1) → B(Ĥ) and operators V1 : H2 → Ĥ,
V2 : Ĥ → H2 such that ‖V1‖‖V2‖ = ‖T‖cb and

J2(T (x)) = V2π(J1(x))V1 for every x ∈ X.

As an immediate consequence of the previous theorem we obtain the following version of the
Hahn-Banach theorem for operator spaces: For every operator space X with J : X ↪→ B(H)

and every completely bounded map T : X → B(Ĥ), there exists a completely bounded map
T̃ : B(H)→ B(Ĥ) which extends the map T (that is, T̃ ◦J = T ) and such that ‖T̃‖cb = ‖T‖cb.

One can also prove (see for instance [17, Proposition 8.1]) that for every linear map T :
X → Md it holds that ‖T‖cb = ‖Td‖, so in this case the completely bounded norm is attained
by considering amplifications up to dimension d.

Given an operator space X it is possible to define an o.s.s. on X∗, the dual space of X. The
norms on Md(X

∗) are specified through the natural identification with the space of linear maps
from X to Md, according to which to an element z =

∑
iAi ⊗ x∗i ∈ Md(X

∗) is associated the
map

T z : x ∈ X 7→
∑
i

x∗i (x)Ai ∈Md.

This leads to the sequence of norms

‖z‖Md(X∗) = ‖T z : X →Md‖cb, d ≥ 1.(6.8)

We encourage the reader to check the (completely isometric) identifications C∗N = RN and
R∗N = CN .

Duality allows us to introduce a natural o.s.s. on the spaces `N1 , dual space of `N∞. From (6.5)
and (6.8) one immediately obtains that2∥∥∥∥∥

N∑
i=1

Ai ⊗ ei

∥∥∥∥∥
Md(`N1 )

= sup

∥∥∥∥∥
N∑
i=1

Ai ⊗Bi

∥∥∥∥∥
Md2

,(6.9)

where the supremum runs over all families of operators {Bi}i in Md such that supi ‖Bi‖ ≤ 1.
Note that, by convexity, the supremum in (6.9) can be restricted to families of unitaries {Ui}i
in Md.

6.2. Tensor norms in the operator spaces category. As in the case of linear maps,
working with bilinear maps on operator spaces requires the introduction of a norm on such
maps which captures the o.s.s. Given a bilinear form on operator spaces B : X × Y → C, for
every d define a bilinear operator

Bd = B ⊗ IdMd
⊗ IdMd

: Md(X)×Md(Y )→Md2

2Note that here the o.s.s. is defined without explicitly specifying an embedding of `N1 in some B(H). Although
Ruan’s theorem assures that such an embedding must exist that leads to the sequence of norms (6.9), finding
that embedding explicitly can be a difficult problem. In particular, for `n1 the simplest embedding is based on
the universal C∗-algebra associated to the free group with n generators C∗(Fn).



6. OPERATOR SPACES 31

by B(a⊗x, b⊗y) = B(x, y)a⊗b for every a, b ∈Md, x ∈ X, y ∈ Y . We say that B is completely
bounded if its completely bounded norm is finite:

‖B‖cb := sup
d
‖Bd‖ <∞.

Given two operator spacesX, Y the space of completely bounded bilinear formsB : X×Y →
C becomes a Banach spaces when it is inherit with the norm ‖ · ‖cb. We will denote this space
by Bilcb(X, Y ). It is not difficult to see that the previous definition makes the identity (3.1) an
isometry when we consider completely bounded norms:

CB(X, Y ∗) = Bilcb(X, Y ).

This is the equivalent identification to (3.6) in the category of operator spaces.
As in the case of Banach spaces, there exists a tensor norm (in the category of operator

spaces) such that the identification (3.1) becomes isometric when we consider the ‖ · ‖cb-norms.
Given z ∈ X ⊗ Y we define its projective tensor norm as

‖z‖X⊗̂Y := ı́nf
{
‖α‖HS‖x‖Ml(X)‖y‖Mm(Y )‖β‖HS

}
,

where the infimum runs over all possible factorization of the form

z = α · (x⊗ y) · β =
∑

1≤i,j≤l
1≤p,q≤m

αi,pxi,j ⊗ yp,qβj,q.

We denote by X ⊗ ̂Y the completion of X ⊗ Y under the previous norm. It is now an
exercise to verify that the identification

(6.10) CB(X, Y ∗) = Bilcb(X, Y ) = (X ⊗̂Y )∗

is indeed isometric.
More generally, one can define an operator space structure on X ⊗̂Y by considering the

following sequence of norms in Md(X ⊗ Y ):

‖z‖Md(X⊗̂Y ) := ı́nf
{
‖α‖Md,lm

‖x‖Ml(X)‖y‖Mm(Y )‖β‖Mlm,d

}
,

where the infimum runs over all possible factorization of the form

zr,s = α · (x⊗ y) · β =
∑

1≤i,j≤l
1≤p,q≤m

αr,ipxi,j ⊗ yp,qβjq,s for every 1 ≤ r, s ≤ d.

The identification Bilcb(X, Y ) = CB(X, Y ∗) = (X ⊗̂Y )∗ allows to define operator space
structures on CB(X, Y ∗) and Bilcb(X, Y ) so that these spaces are, by definition, completely
isometric.

As in the Banach space setting, it can be shown that the projective tensor norm verifies the
metric mapping property (in the category of operator spaces): For all operator spaces X, Y , Z,
W and all linear maps T : X → Z and S : Y → W , the following estimate holds:

‖T ⊗ S : X ⊗̂Y → X ⊗̂Y ‖cb ≤ ‖T‖cb‖S‖cb.(6.11)

Let us now introduce the analogous norm to the ε-norm in the category of operator spaces.
Given any z ∈ X ⊗ Y , let us define the minimal tensor norm (or min-norm) of z ∈ X ⊗ Y by

‖z‖X⊗minY = ‖(J1 ⊗ J2)(z)‖B(H1⊗H2) ,

where J1 : X ↪→ B(H1) and J2 : Y ↪→ B(H2) are embeddings defining the operator space
structure of X and Y respectively. Here, we are using the algebraic inclusion B(H1)⊗B(H2) ⊂
B(H1 ⊗2H2). We will denote by X ⊗min Y the completion of X ⊗ Y under the minimal norm.

Notice that with this definition at hand, it is clear that Md ⊗min X = Md(X) for every d
and, in particular, Md ⊗minMd = Md2 .
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The Banach space X⊗minY has a natural operator spaces structure given by the embedding

J1 ⊗ J2 : X ⊗ Y ↪→ B(H1 ⊗2 H2).

As in the Banach space setting, it can be shown that the minimal tensor norm verifies the
metric mapping property in the category of operator spaces: For all operator spaces X, Y , Z,
W and all linear maps T : X → Z and S : Y → W , the following estimate holds:

‖T ⊗ S : X ⊗min Y → Z ⊗minW‖cb ≤ ‖T‖cb‖S‖cb.(6.12)

This estimate can be easily shown by using Theorem 6.6. Indeed, this theorem allows to
reduce the proof of (6.12) to the case where all the operator spaces are of the form B(H). The
proof of this case follows by definition of the minimal norm.

In addition, an easy consequence of its definition is that the minimal norm, analogously to
the ε-norm in the category of Banach spaces, is injective in the category of operator spaces;
that is, if J1 : X → Z and J2 : Y → W are complete isometries (resp. complete isomorphisms),
then

J1 ⊗ J2 : X ⊗min Y → Z ⊗minW
is a complete isometry (resp. complete isomorphim).

In fact, there is an alternative way to define the minimal norm which stresses the idea that
considering finite dimensional Hilbert spaces suffices to compute it. Given two operator spaces
X and Y , define the ‖ · ‖α-norm of z ∈ X ⊗ Y as ‖z‖α = supd ‖z‖X⊗mindY , where

‖z‖X⊗mindY = sup
T∈L(X,Md),S∈L(Y,Md): ‖T‖cb,‖S‖cb≤1

∥∥(T ⊗ S)(z)
∥∥
Md2

.(6.13)

Lemma 6.7. Given any z ∈ X ⊗ Y , the following identity holds:

‖z‖X⊗minY = ‖z‖α.

Demostración. Let us assume that J1 : X → B(H1) and J2 : Y → B(H2) are embeddings
defining the operator spaces structures ofX and Y respectively. In order to simplify notation, let
us identify the element z =

∑N
i=1 xi⊗yi ∈ X⊗Y with th element (J1⊗J2)(z) =

∑N
i=1 J1(xi)⊗

J2(yi) ∈ B(H1)⊗ B(H2). By definition we have that

‖z‖min = sup{|〈zs, t〉|}

where this supremum runs over all elements in the unit ball s, t ∈ H1⊗2H2. By density, we can
restrict the supremum to elements in the algebraic tensor productH1⊗H2. Then, it is clear that
for some finite dimensional subspecies Hn ⊂ H1 and H′n ⊂ H2 we have s, t ∈ Hn⊗H′n. We can
identify the spaces Hn and H′n with `n2 and so, B(Hn) and B(H′n) withMn. Let u : B(H1)→Mn

be the mapping taking x to PHnx|Hn . Let An be the collection of all such mappings with Hn

arbitrary n-dimensional and Bn the corresponding set for H2. Then, we have that

‖z‖α = sup
{∣∣∣〈( N∑

i=1

xi ⊗ yi
)
s, t
〉∣∣∣} = sup

{∣∣∣〈( N∑
i=1

u(xi)⊗ v(yi)
)
s, t
〉∣∣∣}

≤ sup
n∈N,u∈An,v∈Bn

∥∥∥ N∑
i=1

u(ai)⊗ v(bi)
∥∥∥
Mn2

.

This shows that
‖z‖X⊗minY ≤ ‖z‖α.

In order to prove the converse inequality let us consider maps u : X →Mn and v : Y →Mn

whose completely bounded norm are lower than or equal to one. According to Theorem 6.6 we
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can find some extensions ũ : B(H1) → Mn and ṽ : B(H2) → Mn of u and v respectively such
that ‖u‖cb = ‖ũ‖cb and ‖v‖cb = ‖ṽ‖cb. Then, we easily deduce that

‖(u⊗ v)(z)‖Mn2 = ‖(ũ⊗ ṽ) ((J1 ⊗ J2)(z))‖Mn2
≤ ‖ũ‖cb‖ṽ‖cb‖(J1 ⊗ J2)(z)‖B(H1⊗2H2)

≤ ‖(J1 ⊗ J2)(z)‖B(H1⊗2H2) = ‖z‖min,

where in the first inequality we have used the metric mapping property of the minimal norm
(6.12).

Since this happens for every n we obtain the desired inequality. �

Following the analogy with the Banach space setting, it is easy to check that if X and Y are
finite dimensional operator spaces, we have the following (completely) isometric identification

X∗ ⊗min Y = CB(X, Y ).(6.14)

In addition, this immediately implies that, for finite dimensional operator spaces, the iden-
tifications

(X ⊗̂Y )∗ = X∗ ⊗min Y ∗ and (X ⊗min Y )∗ = X∗ ⊗̂Y ∗(6.15)

also hold (completely isometrically).
The following simple lemma will be used very often in these notes.

Lemma 6.8. Let X be any operator spaces. Then, for ever natural number N we have
isometric identifications:

`N∞(X) = `N∞ ⊗ε X = `N∞ ⊗min X.(6.16)

Here, `N∞(X) is the algebraic space CN ⊗X joint with the norm∥∥∥∥∥
N∑
i=1

ei ⊗ xi

∥∥∥∥∥ = sup
i=1,··· ,N

‖xi‖X .

Demostración. The first identification follows easily from the definition of the ε- norm.
Indeed, according to (3.9), for a given element z =

∑N
i=1 ei ⊗ xi ∈ `N∞ ⊗X we have∥∥∥∥∥

N∑
i=1

ei ⊗ xi

∥∥∥∥∥
`N∞⊗εX

= sup
e∗∈Ball((`N∞)∗)

∥∥∥∥∥
N∑
i=1

e∗(ei)xi

∥∥∥∥∥
X

= sup
e∗∈Ball(`N1 )

∥∥∥∥∥
N∑
i=1

e∗(i)xi

∥∥∥∥∥
X

= sup
i=1,··· ,N

‖xi‖X ,

where here we denote by e∗(i) the i-th coefficient of the vector e∗ and the last equality follows
easily from the definition of the 1-norm.

To show the identification `N∞(X) = `N∞ ⊗min X note that by the very definition of the
min-norm we have, for a given element z =

∑N
i=1 ei ⊗ xi ∈ `N∞ ⊗X,∥∥∥∥∥

N∑
i=1

ei ⊗ xi

∥∥∥∥∥
`N∞⊗minX

=

∥∥∥∥∥
N∑
i=1

|i〉〈i| ⊗ J (xi)

∥∥∥∥∥
MN⊗minB(H)

=

∥∥∥∥∥
N∑
i=1

|i〉〈i| ⊗ J (xi)

∥∥∥∥∥
B(`N2 (H))

= sup
i=1,··· ,N

‖J (xi)‖B(H) = sup
i=1,··· ,N

‖xi‖X .

Here, the first two equalities are by definition of the minimal norm, the third one follows from
the fact that the element

∑N
i=1 |i〉〈i| ⊗ J (xi) is diagonal in the first component, and the last

one is trivial from the fact that J is an isometry. �
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The dual formulation of the previous lemma says that for every operator space X and any
natural number N we have isometric identifications:

`N1 (X) = `N1 ⊗π X = `N1 ⊗̂X,(6.17)

where `N1 (X) is the algebraic space CN ⊗X joint with the norm∥∥∥∥∥
N∑
i=1

ei ⊗ xi

∥∥∥∥∥ =
N∑
i=1

‖xi‖X .

Let us also mention that the projective and the minimal tensor norms can be analogously
defined on the tensor product of k operator spaces

X1 ⊗ · · · ⊗Xk.

It is easy to check that the norms are associative and commutative. Moreover, all previously
completely isometric identifications also hold in the general context.

6.2.1. Coming back to quantum nonlocality. Before finishing this section, let us explain
why operator spaces are relevant in the context of quantum nonlocality, even in the correlation
case. LetM = (Mx,y)

N
x,y=1 be a matrix with real entries and let us denoteM =

∑N
x,y=1Mx,yex⊗

ey ∈ RN ⊗ RN .3 In the first chapter, we consider the γ2-norm in order to define the quantum
value of M when it is regarded as a correlation Bell functional. Let us, instead, consider the
minimal norm.

‖M‖`N1 (C)⊗min`N1 (C) = sup
d;Ux,Vy∈Ball(Md(C))

∥∥∥∥∥
N∑

x,y=1

Mxy Ux ⊗ Vy

∥∥∥∥∥ .(6.18)

Note that the only difference with the value ω∗(G) is that in (6.1) the supremum is taken over
all self-adjoints operators Ax and By, while in (6.18) we consider unitary matrices. Nevertheless
taking advantage of the unrestricted dimension d the mapping

A→
(

0 A
A∗ 0

)
shows that restricting the supremum in (6.18) to Hermitian operators leaves it unchanged.
Then, we conclude that for a given correlation Bell functional we have

ω∗(M) = ‖M‖`N1 (C)⊗min`N1 (C).

7. Description of two-player games with operator spaces

Given a game G = (X,Y,A,B, π, V ), a classical strategy for the players is described by an
element P ∈ PC(AB|XY), defined in (5.2) as the convex hull of the set of product strategies
P(A|X) × P(B|X). In order to simplify notation we will assume that X = Y = {1, · · · , N}
and A = B = {1, · · · , K}. However, the analysis of the general case can be done completely
analogously. According to our simplification, we will simply write PC(K|N) and PQ(K|N) to
denote PC(AB|XY) and PQ(AB|XY) respectively.

The normalization condition supx
∑

a |P (a|x)| ≤ 1 suggests that the space `N∞(`K1 ) should
play a role here, where this space is defined as CNK equipped with the norm

(7.1) ‖(R(x, a))x,a‖∞,1 = sup
x=1,··· ,N

K∑
a=1

|R(x, a)|.

3In order to use operator spaces, we must realize our element in the complex space, so we can always
understand M as an element in CN ⊗ CN .



7. DESCRIPTION OF TWO-PLAYER GAMES WITH OPERATOR SPACES 35

In fact, regarding Proposition 3.1 and Proposition 3.3, in order to describe the classical and
the quantum value of a game G the natural space to work with is the dual space (`N∞(`K1 ))∗ =
`N1 (`K∞) = (CNK , ‖ · ‖1,∞), where∥∥(R(x, a))x,a

∥∥
1,∞ =

N∑
x=1

sup
a=1,··· ,K

|R(x, a)|.

Let us consider the tensor

G =

N,K∑
x,y;a,b=1

Ga,b
x,y(ex ⊗ ea)⊗ (ey ⊗ eb) ∈ `N1 (`K∞)⊗ `N1 (`K∞),

where Ga,b
x,y = π(x, y)V (a, b, x, y) for every x, y, a, b. 4

Then, according to the definition of the ε-norm (3.8) we have

(7.2) ‖G‖`N1 (`K∞)⊗ε`N1 (`K∞) = sup
{∣∣∣ ∑

x,y;a,b

Ga,b
x,yP (x, a)Q(y, b)

∣∣∣ : ‖P‖`N∞(`K1 ), ‖Q‖`N∞(`K1 ) ≤ 1
}
.

While (7.1) and (7.2) make it clear that ω(G) ≤ ‖G‖`N1 (`K∞)⊗ε`N1 (`K∞), since the space `N∞(`K1 )
allows for elements with complex coefficients there could a priori be cases where the inequality
is strict. As will be seen in Section 8 this can indeed happen for general Bell functionals M ;
however for the case of a game G both quantities coincide.

Lemma 7.1. Given a two-player game G,

(7.3) ω(G) = ‖G‖`N1 (`N∞)⊗ε`N1 (`K∞).

Demostración. We only need to prove that ‖G‖`N1 (`K∞)⊗ε`N1 (`K∞) ≤ ω(G). To see this, for
any P,Q such that ‖P‖`N∞(`K1 ), ‖Q‖`N∞(`K1 ) ≤ 1 write∣∣∣ ∑

x,y;a,b

Ga,b
x,yP (x, a)Q(y, b)

∣∣∣ ≤ ∑
x,y;a,b

Ga,b
x,y|P (x, a)||Q(y, b)| ≤ ω(G),

where the first inequality follows from the triangle inequality and the non-negativity of G and
the last inequality follows from ‖|P |‖`N∞(`K1 ), ‖|Q|‖`N∞(`K1 ) ≤ 1 and the fact that |P |, |Q| as well
as G have non-negative coefficients. �

Let us also mention that according to the correspondence (3.6) and (3.11) between bilinear
forms and tensor products, the classical value of a game G can be equivalently written as

ω(G) = ‖G : `N∞(`K1 )× `N∞(`K1 )→ C‖
where G is the bilinear form defined by

(7.4) G(P,Q) =
∑
x,y;a,b

Ga,b
x,yP (x, a)Q(y, b).

We proceed to analyze entangled strategies for the players, i.e. the set PQ(AB|XY), and
their relation to the minimal norm of G ∈ `N1 (`K∞)⊗`N1 (`K∞). Towards this end we need to define
an o.s.s. on `N∞(`K1 ). Using the o.s.s. on `K1 introduced in (6.9), together with the natural o.s.s.
on `N∞, one can verify that the sequence of norms∥∥∥∑

x,a

T ax ⊗ (ex ⊗ ea)
∥∥∥
Md(`N∞(`K1 ))

= sup
x

∥∥∥∑
a

T ax ⊗ ea
∥∥∥
Md(`K1 )

, d ≥ 1,(7.5)

defines a suitable o.s.s. on `N∞(`K1 ). Moreover, a corresponding o.s.s. can be placed on `N1 (`K∞) =
(`N∞(`K1 ))∗ using duality.

4The only property of G that we will use in these notes is that the coefficients Ga,bx,y are non-negative.
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According to the expression (6.13) for the minimal tensor norm, we conclude that

‖G‖`N1 (`K∞)⊗min`N1 (`K∞) = sup
d∈N,{Tax },{Sby}

∥∥∥∥∥∑
x,y;a,b

Ga,b
x,y T

a
x ⊗ Sby

∥∥∥∥∥
Md2

(7.6)

Here, the supremum is taken over all d ∈ N and T ax , Sby ∈Md such that

máx
{∥∥∥T : `N1 (`K∞)→Md

∥∥∥
cb
,
∥∥∥S : `N1 (`K∞)→Md

∥∥∥
cb

}
≤ 1,

where the lineal map T (resp. S) is defined by T (ex⊗ea) = T ax for every x, a (resp. S(ey⊗eb) = Sby
for every y, b). Note that, by definition of the operator space `N1 (`K∞) as the dual operator space
of `N∞(`K1 ), the previous “max-condition” is equivalent to

máx
{∥∥∥∑

x,a

T ax ⊗ (ex ⊗ ea)
∥∥∥
Md(`N∞(`K1 ))

,
∥∥∥∑

y,b

Sby ⊗ (ey ⊗ eb)
∥∥∥
Md(`N∞(`K1 ))

}
≤ 1.

As for the case of the classical value it turns out that the entangled value of a two-player
game equals the minimal tensor norm of the corresponding tensor. We will see in Section 8 that
the corresponding result is false for general Bell functionals.

Lemma 7.2. Given a two-player game G,

(7.7) ω∗(G) = ‖G‖`N1 (`K∞)⊗min`N1 (`K∞).

Demostración. Given a family of POVMs {Ea
x}a in Md, for every x = 1, · · · , N we have∥∥∥∑

x,a

Ea
x ⊗ (ex ⊗ ea)

∥∥∥
Md(`N∞(`K1 ))

= 1.

According to (7.5) this follows from the fact that for every x, ‖
∑

aE
a
x ⊗ ea‖Md(`K1 ) = 1. Indeed,

since the map Tx : `K∞ → Md defined by Tx(ea) = Ea
x for every a is completely positive and

unital, by Lemma 6.4 ‖Tx‖cb = 1. Proceeding similarly with Bob’s POVM, we deduce from (7.6)
that

ω∗(G) ≤ ‖G‖`N1 (`K∞)⊗min`N1 (`K∞).

It remains to show the converse inequality. According to (7.6), given ε > 0 there exist an
integer d, elements T ax , Sby ∈Md satisfying∥∥∥∑

x,a

T ax ⊗ (ex ⊗ ea)
∥∥∥
Md(`N∞(`K1 ))

≤ 1,
∥∥∥∑

y,b

Sby ⊗ (ey ⊗ eb)
∥∥∥
Md(`N∞(`K1 ))

≤ 1,

and unit vectors |u〉, |v〉 in Cd2 such that

〈u|
∑
x,y;a,b

Ga,b
x,yT

a
x ⊗ Sby|v〉 > ‖G‖`N1 (`K∞)⊗min`N1 (`K∞) − ε.

By definition of the o.s.s. on `1 via duality (6.8), the condition∥∥∥∑
x,a

T ax ⊗ (ex ⊗ ea)
∥∥∥
Md(`N∞(`K1 ))

= sup
x

∥∥∥∑
a

T ax ⊗ ea
∥∥∥
Md(`K1 )

≤ 1

is equivalent to

‖Tx : `K∞ →Md‖cb ≤ 1 for every x,(7.8)

where Tx(ea) = T ax for every a. The same bound applies to the operators Sby.
The main obstacle to conclude the proof is that the elements T ax , Sby are not necessarily

positive, or even Hermitian. In order to recover a proper quantum strategy we appeal to the
following.
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Theorem 7.3. Let A be a C∗-algebra with unit and let T : A→ B(H) be completely bounded.
Then there exist completely positive maps ψi : A → B(H), with ‖ψi‖cb = ‖T‖cb for i = 1, 2,
such that the map Ψ : A→M2(B(H)) given by

Ψ(a) =

(
ψ1(a) T (a)
T ∗(a) ψ2(a)

)
, a ∈ A

is completely positive. Moreover, if ‖T‖cb ≤ 1, then we may take ψ1 and ψ2 unital.

Theorem 7.3 is a direct consequence of [17, Theorem 8.3], where the same statement is
proved with the map Ψ replaced by the map η : M2(A)→M2(B(H)) given by

η

((
a b
c d

))
=

(
ψ1(a) T (b)
T ∗(c) ψ2(d)

)
.

The complete positivity of η implies that the map Ψ defined in Theorem 7.3 is completely
positive. In fact, it is an equivalence [17, Exercise 8.9]. (While in the moreover case η is unital,
so ‖η‖cb = 1, in general one can only obtain ‖Ψ‖cb ≤ 2.)

In our setting we take A = `K∞. Since this is a commutative C∗-algebra, a map T : `K∞ →
B(H) is completely positive if and only if it is positive; that is, T (a) ∈ B(H) is a positive
element for every positive element a ∈ `K∞. For every x, applying Theorem 7.3 to the map
Tx : `K∞ → Md defined in (7.8), we find completely positive and unital maps ψix : `K∞ → Md,
i = 1, 2 such that the map Ψx : `K∞ →M2(Md) defined by

Ψx(a) =

(
ψ1
x(a) Tx(a)

T ∗x (a) ψ2
x(a)

)
, a ∈ `K∞

is completely positive. Similarly, for every y we define Sy : `K∞ → Md and find completely
positive and unital maps ϕiy : `K∞ →Md, i = 1, 2 and Φy : `K∞ →M2(Md). Since these maps are
positive, the element

Γ =
∑
x,y;a,b

Ga,b
x,yΨx(ea)⊗ Φy(eb) ∈M2(Md)⊗M2(Md)

is positive. Consider the unit vectors ũ = (u, 0, 0, 0) ∈ C4d2 and ṽ = (0, 0, 0, v) ∈ C4d2 ; we have∣∣∣〈u| ∑
x,y;a,b

Ga,b
x,yT

a
x ⊗ Sby|v〉

∣∣∣ = |〈ũ|Γ|ṽ〉| ≤ |〈ũ|Γ|ũ〉|
1
2 |〈ṽ|Γ|ṽ〉|

1
2

=
∣∣∣〈u| ∑

x,y;a,b

Ga,b
x,yψ

1
x(ea)⊗ ϕ1

y(eb)|u〉
∣∣∣ 1

2
∣∣∣〈v| ∑

x,y;a,b

Ga,b
x,yψ

2
x(ea)⊗ ϕ2

y(eb)|v〉
∣∣∣ 1

2 ≤ ω∗(G).

Here, the first inequality follows from the Cauchy-Schwarz inequality and the second inequality
follows from the fact that the corresponding maps are completely positive and unital. �

Analogously to the classical case, the correspondences (6.10) and (6.15) allow us to write
the quantum value of a game G as

ω∗(G) = ‖G : `N∞(`K1 )× `N∞(`K1 )→ C‖cb,
where G is the corresponding bilinear form defined as in (7.4).

8. Bell functionals with signed coefficients

It is sometimes interesting to consider arbitrary Bell functionalsM = {Ma,b
x,y}x,y;a,b, that may

not directly correspond to games because of the presence of signed coefficients. As we have said
before, the sets PC(K|N) are PQ(K|N) are convex and, so, their adherence (we do not know
if the second set is closed) can be completely described by the hyperplanes supporting them.
This means that, if our aim is to study the sets PC(K|N) are PQ(K|N), we must consider all
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possible hyperplanes (Bell functionals) and studying only those with non-negative coefficients
is not enough. Interestingly, this additional freedom leads to phenomena with no equivalent in
games. We will comment something about this point below.

The reason to introduce an absolute value in the definitions (5.3) and (5.4) of ω and ω∗

respectively is precisely the possibility of considering signed coefficients. Indeed, while this
absolute value is superfluous in the case of games in general it is needed for the quantity
ω∗(M)/ω(M) to be meaningful: without it this quantity could be made to take any value in
[−∞,∞] simply by shifting the coefficients Ma,b

x,y → Ma,b
x,y + c. The presence of the absolute

value in the definition allows one to show that the ratio ω∗(M)/ω(M) can always be obtained
as the ratio between the quantum and classical biases. Let us explain this point in more detail.
Let M be a Bell functional given by some real arbitrary coefficients Ma,b

x,y for x, y = 1, · · · , N ;
a, b = 1, · · · , K. Then, we can define an element G as

Ga,b
x,y =

1

2N2
+

1

2N2L
Ma,b

x,y, for every x, y, a, b;

where L = máxx,y,a,b |Ma,b
x,y|. It is very easy to check that G has non-negative coefficients with

values in [0, 1] (so it corresponds to a two-player game) and it verifies that
β∗(G)

β(G)
=
ω∗(M)

ω(M)
,

where β(G) (resp. β∗(G)) is the classical (resp. quantum) bias of the game G defined as

β(G) = sup
{∣∣∣2〈G,P 〉−1

∣∣∣ : P ∈ PC(K|N)
}

and β∗(G) = sup
{∣∣∣2〈G,P 〉−1

∣∣∣ : P ∈ PQ(K|N)
}
.

Unfortunately the use of signed coefficients makes the geometry of the problem more com-
plicated. In particular, the correspondence between the classical and entangled values of a game
and the ε and minimal norms of the associated tensor described in Section 7 no longer holds. As
a simple example, consider {Ma,b

x,y}2
x,y;a,b=1 such that Ma,b

1,1 = 1 = −Ma,b
2,2 for every a, b ∈ {1, 2}

and Ma,b
x,y = 0 otherwise. Then, clearly ω(M) = ω∗(M) = 0, but since M 6= 0 it must be that∥∥∥∥∥∑

x,y,a,b

Ma,b
x,y(ex ⊗ ea)⊗ (ey ⊗ eb)

∥∥∥∥∥
`N1 (`K∞)⊗ε`N1 (`K∞)

6= 0.

By considering a small perturbation of M it is possible to construct functionals M̃ such that
ω(M̃) 6= 0 but the quotient ‖M̃‖`N1 (`K∞)⊗ε`N1 (`K∞)/ω(M̃) is arbitrarily large; the same effect can be
obtained for ω∗(M) with the minimal norm.

There are two different ways to circumvent this problem. The first, considered in [11],
consists in a slight modification of the definition of the classical and entangled values ω(M)
and ω∗(M). Intuitively, since payoffs may be negative it is natural to allow the players to
avoid “losing” by giving them the possibility to refuse to provide an answer, or alternatively,
to provide a “dummy” answer on which the payoff is always null. This leads to a notion of
“incomplete” strategies which, aside from being mathematically convenient, is also natural to
consider in the setting of Bell inequalities, for instance as a way to measure detector inefficiencies
in experiments.5

Formally, a family of incomplete conditional distributions is specified by a vector PA =
(PA(a|x))x,a ∈ RNK of non-negative reals such that

∑
a PA(a|x) ≤ 1 for every x. Define ωinc(M)

as in (5.3) where the supremum is extended to the convex hull of products of incomplete
conditional distributions for each player. An analogous extension can be considered for the
entangled bias, leading to a value ω∗inc(M) obtained by taking a supremum over all distributions
that can be obtained from a bipartite quantum state |ψ〉 ∈ Ball(Cd⊗Cd) and families of positive

5We refer to [11, Section 5] for more on this.
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operators {Ea
x}a and {F b

y}b inMd verifying
∑

aE
a
x ≤ Id and

∑
b F

b
y ≤ Id. Note that in general it

will always be the case that ω(M) ≤ ωinc(M) and ω∗(M) ≤ ω∗inc(M), and the example given at
the beginning of the section can be used to show that the new quantities can be arbitrarily larger
than the previous ones. The following lemma shows that considering incomplete distributions
allows us to restore a connection with operator spaces, albeit only up to constant multiplicative
factors.

Lemma 8.1. Let M be a Bell functional and write M =
∑

x,y;a,bM
a,b
x,y(ex ⊗ ea)⊗ (ey ⊗ eb) ∈

RNK ⊗ RNK the associated tensor. Then

ωinc(M) ≤ ‖M‖`N1 (`K∞(R))⊗ε`N1 (`K∞(R)) ≤ 4ωinc(M), and
ω∗inc(M) ≤ ‖M‖`N1 (`K∞)⊗min`N1 (`K∞) ≤ 4ω∗inc(M).

Here, in the first inequality the norm of M is taken over real spaces, while in the second the
spaces are complex.

The first estimate in Lemma 8.1 is not hard to obtain (see [11, Proposition 4]), and readily
extends to complex spaces with a factor of 16 instead of 4. The second estimate is proved in
[11, Theorem 6] with a constant 16. The constant 4 stated in the theorem can be obtained by
using the map Ψ introduced in Theorem 7.3 and the fact that ‖Ψ‖cb ≤ 2.

Lemma 8.1 provides us with a method to translate constructions in operator space theory
to Bell functionals for which the ratio of the entangled and classical values is large. Indeed, the
correspondence established in the lemma implies that if M is a tensor such that ‖M‖min/‖M‖ε
is large the associated functionalM will be such that ω∗inc(M)/ωinc(M) is correspondingly large
(up to the loss of a factor 4). Increasing the number of possible outputs by 1, we may then add
a “dummy” output for which the payoff is always zero. This results in a functional M̃ for which
ω(M̃) = ωinc(M) and ω∗(M̃) = ω∗inc(M), so that any large violation for the incomplete values
of M translates to a large violation for the values of M̃ . Let us be more precise by stating a
precise result.

Proposition 8.2. [11, Corollary 4] Let M be a Bell functional and M =
∑

x,y;a,bM
a,b
x,y(ex⊗

ea)⊗ (ey ⊗ eb) ∈ RNK ⊗ RNK the associated tensor. Let us assume that

‖M‖`N1 (`K∞)⊗min`N1 (`K∞)

‖M‖`N1 (`K∞(R))⊗ε`N1 (`K∞(R))

≥ α.

Then, the Bell functional M̃ = (M̃a,b
x,y)x,y;a,b, where x, y = 1, · · · , N and a, b = 1, · · · , K + 1,

obtained by adding extra zeros to the element M , verifies

ω∗(M̃)

ω(M̃)
≥ Cα,

where C is a universal constant which can be taken equal to 1/4.

Demostración. According to Lemma 8.1 we have that

ω∗inc(M)

ωinc(M)
≥ Cα.

Then, the result follows by simply noting that ωinc(M) = ω(M̃) and ω∗inc(M) = ω∗(M̃). �

Unfortunately the lemma is not sufficient to obtain bounds in the other direction, upper
bounds on the ratio ω∗(M)/ω(M): as shown by the example described earlier, the values ‖M‖ε
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and ω(M), and ‖M‖min and ω∗(M), are in general incomparable. In order to obtain such upper
bounds a more sophisticated approach was introduced in [10]. Consider the space

NK(K|N) =
{
{R(a|x)}N,Kx,a=1 ∈ KNK :

K∑
a=1

R(a|x) =
K∑
a=1

R(a|x′) ∀x, x′ = 1, · · · , N
}
,

where K = R or K = C. This space is introduced to play the role of `N∞(`K1 ) above, while allowing
a finer description of classical strategies. In particular, note that dimK(NK(K|N)) = NK−N+1,
while dim(`N∞(`K1 )) = NK. The space NR(K|N) (resp. NC(K|N)) can be endowed with a norm
(resp. o.s.s.) such that the following holds.

Lemma 8.3 ([10]). Let M be a Bell functional and M =
∑

x,y;a,bM
a,b
x,y(ex ⊗ ea) ⊗ (ey ⊗ eb)

the associated tensor, viewed as an element of NK(K|N)∗ ⊗NK(K|N)∗. Then,

ω(M) = ‖M‖NR(K|N)∗⊗εNR(K|N)∗ and ω∗(M) = ‖M‖NC(K|N)∗⊗mı́nNC(K|N)∗ .

Lemma 8.3 shows that it is possible to describe a Banach space and an o.s.s. on it that
precisely capture the classical and entangled values of arbitrary Bell functionals. Unfortunately
there is a price to pay, which is that the relatively well-behaved space `N1 (`K∞) is replaced by a
more complex object, NK(K|N)∗. We refer to [10, Section 5] for more details on the structure
of these spaces and their use in placing upper bounds on the ratio ω∗(M)/ω(M).



Capítulo 3

Large violations of Bell inequalities

In the previous two chapters we related the classical and entangled values of two-player
games and Bell functionals to the ε-norm and the min-norm of the associated tensor respectively.
This correspondence allows the application of tools developed for the study of these norms in
operator space theory to quantify the ratio ω∗/ω, a quantity that can be interpreted as a measure
of the nonlocality of quantum mechanics. For the case of two-player XOR games it was shown
in Section 2 of Chapter 1 that this ratio is always bounded by a constant independent of the
size of the game. As we will see in the present chapter chapter, the situation is different when
we consider general two-player games. In Section 9 we discuss upper bounds on the ratio ω∗/ω
that depend on the number of questions or answers in the game. We also analyze upper bounds
as a function of the dimension of the Hilbert space used in the entangled strategy performed
by Alice and Bob. In Section 10 we describe examples of games that come close to saturating
these bounds, leading to violations that scale as the square root of the number of questions and
answers. Finally, Section 11 is devoting to explain some other interesting constructions leading
to large Bell violations.

9. Upper bounds on the ratio ω∗/ω in two-player games

As we mentioned previously, the results discussed in Section 7 and Section 8 can be analo-
gously stated and proved in the general case where G = (X,Y,A,B, π, V ) (without assuming
the same number of inputs and outputs for Alice and Bob). In particular, given one such game
we will have (see Lemma 7.1 and Lemma 7.2)

ω(G) = ‖G‖`x1(`a∞)⊗ε`y1(`b∞) and ω∗(G) = ‖G‖`x1(`a∞)⊗min`y1(`b∞),(9.1)

where G is regarded as

G =
∑
x,y;a,b

Ga,b
x,y(ex ⊗ ea)⊗ (ey ⊗ eb) ∈ Rx ⊗ Ra ⊗ Ry ⊗ Rb.

Considering here this general context is interesting because it will allow us to study the
dependence of the upper bounds on the quantity ω∗/ω as a function of the parameters x,
y,a,b.

We will add another important parameter to our study. For any Bell functional M and
integer d define

(9.2) ω∗d(M) = sup
∣∣∣ ∑
x,y;a,b

Mab
xy 〈ψ|Aax ⊗Bb

y|ψ〉
∣∣∣,

where the supremum is taken over all k ≤ d, |ψ〉 ∈ Ball(Ck⊗Ck) and families of POVM {Aax}a
and {Bb

y}b in Mk. Clearly (ω∗d(M))d forms an increasing sequence that converges to ω∗(M) as
d→∞. The quantity

(9.3) sup
M

ω∗d(M)

ω(M)

thus asks for the largest violation of a Bell functional achievable by states of Schmidt rank at
most d.

41
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The following result provides upper bounds for the ratio ω∗/ω as a function of the three
parameters: inputs, outputs and Schmidt rank of the entangled state. Its proof is a good example
of the application of estimates from the theory of operator spaces to bounds on the entangled
and classical values of a multiplayer game.

Proposition 9.1. The following inequalities hold for any two-player game G and any d ≥ 1.
1. ω∗(G) ≤ mı́n{x,y}ω(G),
2. ω∗(G) ≤ KC

G

√
abω(G), where KC

G is the complex Grothendieck’s constant.
3. ω∗d(G) ≤ dω(G).

Demostración. The proof of each item is based on a different way of bounding the norm
of the identity map

(9.4) id⊗ id : `x1(`a∞)⊗ε `y1(`b∞)→ `x1(`a∞)⊗mı́n `
y
1(`b∞).

Using (7.3) and (7.7) any such bound immediately implies the same bound on the ratio ω∗/ω.
For the first item, assume without loss of generality that x ≤ y. The identity map (9.4) can

be decomposed as a sequence

(9.5) `x1(`a∞)⊗ε `y1(`b∞)→ `xa
∞ ⊗ε `y1(`b∞)→ `xa

∞ ⊗min `y1(`b∞)→ `x1(`a∞)⊗min `y1(`b∞),

where all arrows correspond to the identity. It follows directly from the definition of the ε and
the min norms that the first and the third arrow in (9.5) have norm 1 and x respectively. In
addition, according to Lemma 6.8, the second arrow has norm 1, so that the desired result
is proved by composing the three norm estimates. Motivated by this decomposition, we give
a self-contained proof relating the quantum and classical values. Start with the third arrow
in (9.5). Given a family of POVMs {Ea

x}a, x ∈ X, for Alice, { 1
xE

a
x}x,a can be interpreted as a

single POVM with xa outcomes. Thus,

ω∗(G) ≤ x sup
∣∣∣ ∑
x,y;a,b

Ga,b
x,y 〈ψ|Ex,a ⊗ F a

y |ψ〉
∣∣∣,

where the supremum is taken over all families of POVMs {F b
y}b for Bob, a single POVM

{Ex,a}x,a for Alice with xa outputs, and all bipartite states |ψ〉. Now that Alice is performing
a single measurement, she may as well apply it before the game starts and her strategy can be
assumed to be classical probabilistic. Thus,

ω∗(G) ≤ x sup
∣∣∣ ∑
x,y;a,b

Ga,b
x,y P (x, a)Q(b|y)

∣∣∣,(9.6)

where the supremum is taken over all P ∈ PC(AX) and Q ∈ PC(B|Y). This corresponds to
the second arrow in (9.5). Finally, the fact that the first map in (9.5) has norm 1 corresponds,
in this setting, to the observation that the distribution P can be transformed into an element
P̃ ∈ PC(A|X) such that P̃ (a|x) ≥ P (x, a) for every x, a. Since G has positive coefficients this
can only increase the value. Thus the supremum on the right-hand side of (9.6) is at most ω(G),
completing the proof of the first item in the proposition.

The proof of the second item makes use of the Fourier transform

FN : CN → CN , FN : ej 7→
N∑
k=1

e
2πijk
N ek ∀j ∈ {1, . . . , N}.

Note that the inverse of this map is

F−1
N : CN → CN , F−1

N : ej 7→
1

N

N∑
k=1

e−
2πijk
N ek ∀j ∈ {1, . . . , N}.
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Then, the identity map (9.4) can be decomposed as

(9.7) `x1(`a∞)⊗ε `y1(`b∞)→ `xa
1 ⊗ε `yb

1 → `xa
1 ⊗min `yb

1 → `x1(`a∞)⊗min `y1(`b∞),

where the first arrow is (idx ⊗ Fa) ⊗ (idy ⊗ Fb), the second is the identity, and the third
arrow is (idx ⊗ F−1

a ) ⊗ (idy ⊗ F−1
b ). Here, it is not hard to verify that the norm of the first

and the third maps are (ab)3/2 and 1
ab respectively. Indeed, this follows from the estimates

‖FN : `N∞ → `N1 ‖ ≤ N3/2, ‖F−1
N : `N1 → `N∞‖ ≤ N−1, equations (6.16), (6.17) and the metric

mapping property of the ε-norm (3.12) and the π-norm (3.7). At the same time, Grothendieck’s
theorem can be used to show that the second map in (9.7) has norm at most KC

G. Composing
the three estimates proves the second item. As for the first item, we give a self-contained proof
directly relating the classical and entangled values. Start with the third arrow in (9.7). Given
a family of POVMs {Ea

x}a, x ∈ X, for Alice, the (not necessarily self-adjoint) operators

Ax,k =
∑
a∈A

e−
2πiak

a Ea
x

verify that ‖Ax,k‖ ≤ 1 for every x ∈ X, k ∈ A. To see this, for any unit vectors |u〉, |v〉 write∣∣〈u|Ax,k|v〉∣∣ =
∣∣∣∑

a

e−
2πiak

a 〈u|Ea
x|v〉

∣∣∣
≤
∑
a

∣∣〈u|Ea
x|v〉

∣∣
≤
(∑

a

〈u|Ea
x|u〉

)1/2(∑
a

〈v|Ea
x|v〉

)1/2

= 1,

where the second inequality uses Ea
x ≥ 0 and the Cauchy-Schwarz inequality, and the last

follows from
∑

aE
a
x = Id. The same transformation can be applied to obtain operators By,k′

from Bob’s POVM, thus

ω∗(G) ≤ 1

ab
sup

∣∣∣ ∑
x,y;k,k′

(∑
a,b

Ga,b
x,ye

2πiak
a e

2πibk′
b

)
〈ψ|Ax,k ⊗By,k′ |ψ〉

∣∣∣,
where the supremum on the right-hand side is taken over all d, states |ψ〉 ∈ Ball(Cd ⊗Cd) and
Ax,k, By,k′ ∈Md of norm at most 1. For the next step, interpret the coefficients(∑

a,b

Ga,b
x,y e

2πiak
a e

2πibk′
b

)
x,k;y,k′

as a complex xa× yb matrix and apply Grothendieck’s inequality (see Remark 2.5) to obtain

(9.8) ω∗(G) ≤ 1

ab
KC
G sup

∣∣∣ ∑
x,y;k,k′

(∑
a,b

Ga,b
x,y e

2πiak
a e

2πibk′
b

)
tx,ksy,k′

∣∣∣,
where the supremum is taken over all (tx,k) ∈ `xa

∞ and (sy,k′) ∈ `yb
∞ of norm at most 1. This gives

the second arrow in (9.7). To obtain the first, observe that the expression appearing inside the
supremum on the right-hand side of (9.8) may be rewritten as∣∣∣ ∑

x,y;a,b

Ga,b
x,y

(∑
k

e
2πiak

a tx,k

)(∑
k′

e
2πibk′

b sy,k′
)∣∣∣.

For any family of complex numbers (tx,k)x,k such that supx∈X,k∈a |tx,k| ≤ 1 it follows from
Parseval’s identity and the Cauchy-Schwarz inequality that the complex numbers P (x, a) =∑

k exp(2πiak/a)tx,k, x ∈ X, a ∈ A satisfy
∑

a |P (x, a)| ≤ a3/2 for every x ∈ X. Using that
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the coefficients Ga,b
x,y are positive, the supremum in (9.8) is at most (ab)

3
2ω(G), concluding the

proof of the second item in the proposition.
In order to prove the third item, consider families of POVMs {Ea

x}x,a, {F b
y}y,b inMd for Alice

and Bob respectively and a pure state |ψ〉 ∈ Ball(Cd ⊗ Cd). Absorbing local unitaries in the
POVM elements, write the Schmidt decomposition as |ψ〉 =

∑d
i=1 λi|ii〉, with

∑d
i=1 |λi|2 = 1.

Thus ∑
x,y;a,b

Ga,b
x,y〈ψ|Ea

x ⊗ F b
y |ψ〉 =

d∑
i,j=1

λiλj
∑
x,y;a,b

Ga,b
x,y〈i|Ea

x|j〉〈i|F b
y |j〉

≤ dmáx
i,j

∣∣∣ ∑
x,y;a,b

Ga,b
x,y〈i|Ea

x|j〉〈i|F b
y |j〉

∣∣∣,(9.9)

where for the inequality we used that |
∑n

i,j=1 λiλj| = |
∑d

i=1 λi|2 ≤ d since
∑d

i=1 |λi|2 = 1. For
fixed i, j and any x ∈ X we have∑

a

|〈i|Ea
x|j〉| ≤

∑
a

|〈i|Ea
x|i〉|

1
2 |〈j|Ea

x|j〉|
1
2 ≤

(∑
a

|〈i|Ea
x|i〉|

) 1
2
(∑

a

|〈j|Ea
x|j〉|

) 1
2 ≤ 1,

where the first two inequalities follow from the Cauchy-Schwarz inequality and the positivity
of Ea

x, and the last uses
∑

aE
a
x = Id. The same bound applies to Bob’s POVM, hence for fixed

i, j, using that G has non-negative coefficients∣∣∣ ∑
x,y;a,b

Ga,b
x,y〈i|Ea

x|j〉〈i|F b
y |j〉

∣∣∣ ≤ ∑
x,y;a,b

Ga,b
x,y|〈i|Ea

x|j〉||〈i|F b
y |j〉| ≤ ω(G).

Together with (9.9) this proves the desired estimate. �

The bounds stated in Proposition 9.1 can be extended in several ways. First, the same esti-
mates as stated in the proposition apply to the quantities ‖M‖ε and ‖M‖min, for an arbitrary
tensor M ∈ `x1(`a∞) ⊗ `y1(`b∞), instead of ω(G) and ω∗(G) respectively. The proof of Propo-
sition 9.1 goes through the complex spaces `x1(`a∞) ⊗ `y1(`b∞), thus using Lemma 8.1 and the
comments that follow it similar bounds can be derived that relate the quantities ωinc(M) and
ω∗inc(M) for arbitrary Bell functionals M . Bounds (slightly weakened by a constant factor) can
then be obtained for the values ω(M) and ω∗(M) by using Lemma 8.3 and the fact that the
space NK(K|N)∗ is “very similar” to the space `N1 (`K−1

∞ ); we refer to [10, Section 5] for details
on this last point.

Second, we note that the proof of the first item in the proposition can be slightly modified
to show that for any game G it holds that ω∗(G) ≤ mı́n{a,b}ω(G). The key point to show this
is that ∥∥id⊗ id : `xa

1 ⊗ε `y1(`b∞)→ `xa
1 ⊗mı́n `

y
1(`b∞)

∥∥
+

= 1,

where ‖ ·‖+ denotes the norm of a map when it is restricted to positive elements. Note that this
bound is always stronger than the one provided in the second item in the proposition. However,
as discussed above the latter also applies to general Bell functionals, while the above bound is
no longer true. Indeed, in [16] the authors show the existence of a family of Bell functionals
(Mn) with a = 2, b = n, x = y = 2n such that ω∗(Mn)/ω(Mn) ≥ C

√
n/ log2 n, where C is a

universal constant.
Third, a slight modification in the proof of the third item of Proposition 9.1 allows to prove

that ω∗d(M) ≤ 2dω(M) for every Bell functional M .
Let us finally mention that, although the previous bounds are essentially optimal in terms of

the asymptotic behavior in the number of outputs and in the dimensions d (we do not know if
Proposition 9.1 is optimal as a function of the number of inputs), following a different approach
one can improve some of the constants. In [13] the author shows the upper bound ω∗d(M) ≤ (2d−
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1)ω(M) which slightly improves the estimate mentioned in the previous paragraph (although
it does not improve the third item in Proposition 9.1 for games).

10. Lower bounds on the largest violations in two-player games

In this section we will provide an example of a family of tensors Hn ∈ `n1 (`n∞)⊗ `n1 (`n∞) for
which

‖Hn‖`n1 (`n∞)⊗min`n1 (`n∞)

‖Hn‖`n1 (`n∞)⊗ε`n1 (`n∞)

≥ C

√
n

log n
,(10.1)

where here C is a universal constant. Moreover, we will show that the dimension required
to lower bound the minimal norm in (10.1) is d = n. According to Proposition 8.2 we can
immediately obtain a Bell functional JPn from Hn with n inputs and n + 1 outputs verifying
that

ω∗n(JPn)

ω(JPn)
≥ C

√
n

log n
.

This is therefore an example of a Bell functional for which the upper bounds shown in
Proposition 9.1 (which, according to the comments below the proposition, also work for general
Bell functionals) are only quadratically far for all the parameters of the problem (inputs, outputs
and Schmidt rank of the entangled state) at the same time. We must note, however, that our Bell
functional JPn has signed coefficients, so the values ω(JPn) and ω∗n(JPn) cannot be understood
as the classical and the quantum value of a game respectively, but they should be understood as
the classical bias and the quantum bias of a certain two-prover game (see Section 8). In Section
11 we will comment some other examples of Bell functionals leading to large Bell violations,
some of them having non-negative coefficients.

We will first prove (10.1) by using a purely mathematical point of view and, afterward, we
will look at our example in a more detailed way to provide a more explicit description of the
corresponding game.

Description of the tensors Hn. Let us start by considering the linear map Tn : `n2 → `n1 (`n∞)
given by

Tn : ek →
1

n
√

log n

n∑
x,a=1

gkx,aex ⊗ ea,

where (gkx,a)
n
k,x,a=1 is a family of independent and normalized real Gaussian random variables.

Our family of tensors will be given by the elements

Hn(x, y, a, b) := (Tn ⊗ Tn)

(
n∑
k=1

ek ⊗ ek

)
=

1

n2 log n

n∑
x,y,a,b=1

(
n∑
k=1

gkx,ag
k
y,b

)
(ex ⊗ ea)⊗ (ey ⊗ eb)

(10.2)

in `n1 (`n∞)⊗ `n1 (`n∞). Note that this tensor is given by the coefficients

Ma,b
x,y =

1

n2 log n

n∑
k=1

gkx,ag
k
y,b for every x, y, a, b = 1, · · · , n.

It is clear that, since Hn is defined by means of random variables, it has random coef-
ficients. We will prove that with probability strictly greater than 0, this coefficients verify
equation (10.1). In fact, one can actually prove that this happens with probability tending to
one exponential fast when n tends to infinity.
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Upper bound for the ε-norm of Hn. Chevet’s inequality [21, Theorem 43.1] provides good
upper bounds for the average of the ε-tensor norm of random elements.

Theorem 10.1 (Chevet’s inequality). There exists a universal constant K such that for
every pair of Banach spaces X, Y , every sequences of elements (xi)i and (yj)j in X and Y res-
pectively, and every sequence (gi,j)i,j of independent and normalized Gaussian random variables,
we have

E
∥∥∥∑

i,j

gi,jxi ⊗ yj
∥∥∥
X⊗εY

≤ Kω2((xi)i;X)E
∥∥∥∑

j

gjyj

∥∥∥
Y

+Kω2((yi)i;Y )E
∥∥∥∑

i

gixi

∥∥∥
X
.

Here, ω2((xi)i;X) and ω2((yi)i;Y ) denote the ω2-norm already introduced in the definition of
the γ2-norm (3.13).

The constant K can be taken 1 for real Banach spaces and 4 for complex Banach spaces.

Our strategy to upper bound the value ‖Hn‖`n1 (`n∞)⊗ε`n1 (`n∞) will consist in upper bounding
the norm of the map Tn and then applying the metric mapping property for the ε-norm.

Lemma 10.2. Let n be a natural number and let (gki,j)
n
i,j,k=1 be a family of independent and

normalized real gaussian variables and Gn be the linear map defined by

Gn(ek) =
n∑

i,j=1

gki,jei ⊗ ej for every k = 1, · · · , n.

Then,

E‖Gn : `n2 → `n2 (`n∞)‖ ≤ C1

√
n log n,

where C1 > 0 is a universal constant. In particular, E‖Gn : `n2 → `n1 (`n∞)‖ ≤ C1n
√

log n.

Demostración. According to the identification (3.10) we have that

‖Gn : `n2 → `n2 (`n∞)‖ =
∥∥∥ n∑
k,i,j=1

gki,jek ⊗ (ei ⊗ ej)
∥∥∥
`n2⊗ε`n2 (`n∞)

.

Chevet’s inequality implies then that

E ‖Gn : `n2 → `n2 (`n∞)‖ ≤ ω2((ei)i; `
n
2 ) E

∥∥∥ n∑
i,j=1

gi,jei ⊗ ej
∥∥∥
`n2 (`n∞)

+ ω2((ei ⊗ ej)i,j; `n2 (`n∞)) E
∥∥∥ n∑
i=1

giei

∥∥∥
`n2

.

It is very easy to see that ω2((ei)i; `
n
2 ) = 1 and E ‖

∑n
i=1 giei‖`n2 ≤

√
n. Also, the estimate

ω2((ei ⊗ ej)i,j; `n2 (`n∞)) = 1 follows easily from the (equivalent) fact that

‖id⊗ id : `n2 (`n2 )→ `n2 (`n∞)‖ ≤ 1.

Hence, it suffices to show

E
∥∥∥ n∑
i,j=1

gi,jei ⊗ ej
∥∥∥
`n2 (`n∞)

≤ C ′1
√
n log n

for some constant C ′1. To this end, we use the well-known estimate E‖
∑n

i=1 giei‖`n∞ ≤ C ′′1
√

log n
(see e.g. [21, Page 15]) to conlude

E
∥∥∥ n∑
i,j=1

gi,jei ⊗ ej
∥∥∥
`n2 (`n∞)

≤
√
nE
∥∥∥ n∑
i,j=1

gi,jei ⊗ ej
∥∥∥
`n∞(`n∞)

≤ C ′′1
√
n
√

log n2 ≤ C ′1
√
n
√

log n .
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The second assertion follows trivially from

‖id⊗ id : `n2 (`n∞)→ `n1 (`n∞)‖ ≤
√
n.

�

By taking into account the coefficients in the definitions of the maps Tn and Gn, Lemma
10.2 implies that

E‖Tn : `n2 → `n1 (`n∞)‖ ≤ C1.

In addition, using Markov inequality we have that

P
(
‖Tn : `n2 → `n1 (`n∞)‖ > 3E‖Tn : `n2 → `n1 (`n∞)‖

)
≤ 1

3
.

That is, for C̃1 := 3C1 we have

P
(
‖Tn : `n2 → `n1 (`n∞)‖ ≤ C̃1

)
≥ 2

3
.(10.3)

A direct consequence of the bounds for the norm of Tn is that, with probability larger than
2/3, we have

‖Hn‖`n1 (`n∞)⊗ε`n1 (`n∞) =

∥∥∥∥∥(Tn ⊗ Tn)

(
n∑
k=1

ek ⊗ ek

)∥∥∥∥∥
`n1 (`n∞)⊗ε`n1 (`n∞)

(10.4)

≤ ‖Tn : `n2 → `n1 (`n∞)‖2

∥∥∥∥∥
n∑
k=1

ek ⊗ ek

∥∥∥∥∥
`n2⊗ε`n2

≤ C̃2
1 ,

where in the first inequality we have used the metric mapping property of the ε-norm and in
the last inequality we have used the previous estimate on the norm of Tn and∥∥∥ n∑

k=1

ek ⊗ ek
∥∥∥
`n2⊗ε`n2

= 1,

which can be easily deduced by identifying the element
∑n

k=1 ek ⊗ ek with the identity map on
`n2 .

Lower bound the min-norm of Hn. In order to lower bound the minimal norm of the element
Hn, we need a couple of lemmas.

Lemma 10.3. Let (gki,j)
n
i,j,k=1 be a family of independent and normalized real gaussian va-

riables and let G∗n be the linear map defined by

G∗n(ei ⊗ ej) =
n∑
k=1

gki,jek for every i, j = 1, · · · , n.

Then,

E‖G∗n : `n1 (`n2 )→ `n2‖ ≤ C2

√
n,

where C2 is a universal constant. In particular, E‖G∗n : `n1 (`n∞)→ `n2‖ ≤ C2n.

Demostración. According to the identification (3.10) we have that

‖G∗n : `n1 (`n2 )→ `n2‖ =

∥∥∥∥∥
n∑

i,j,k=1

gki,j(ei ⊗ ej)⊗ ek

∥∥∥∥∥
`n∞(`n2 )⊗ε`n2

.
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Chevet’s inequality implies then that

E ‖G∗n : `n1 (`n2 )→ `n2‖ ≤ ω2((ei ⊗ ej)i,j; `n∞(`n2 ))E
∥∥∥ n∑
i=1

giei

∥∥∥
`n2

+ ω2((ei)i; `
n
2 )E

∥∥∥ n∑
i,j=1

gi,jei ⊗ ej
∥∥∥
`n∞(`n2 )

.

Using the simple estimates mentioned in the proof of the previous lemma, it suffices to see
that ω2((ei ⊗ ej)i,j; `n∞(`n2 )) ≤ 1 and E‖

∑n
i,j=1 gi,jei ⊗ ej‖`n∞(`n2 ) ≤ C ′2

√
n. Indeed, for the first

one just note that ‖id⊗ id : `n2 (`n2 )→ `n∞(`n2 )‖ ≤ 1. The other inequality

E
∥∥∥ n∑
i,j=1

gi,jei ⊗ ej
∥∥∥
`n∞(`n2 )

= E
∥∥∥ n∑
i,j=1

gi,jei ⊗ ej
∥∥∥
`n∞⊗ε`n2

≤ C ′′2
√
n

follows easily from a further application of Chevet’s inequality.
For the last assertion note that

‖id⊗ id : `n1 (`n∞)→ `n1 (`n2 )‖ ≤
√
n.

�

The following lemma is a consequence of (the complex version of) Grothendieck’s theorem.

Lemma 10.4. For every natural numbers N,K, n ∈ N and every operator T : `N1 (`K∞)→ `n2 ,∥∥T : `N1 (`K∞)→ Rn

∥∥
cb
≤ KC

G‖T‖.

In fact, this result can be obtained from a weaker version of Grothendieck’s inequality;
the so called little Grothendieck theorem, leading to a slightly better (and know!) constant. In
order not to add new results, we will use here the complex version of Grothendieck’s inequality,
already introduced in Remark 2.5.

Demostración. According to Lemma 6.8, given an operator T : `N1 (`K∞)→ `n2 , we have

‖T‖ = sup
i
‖Ti‖ and ‖T‖cb = sup

i
‖Ti‖cb

where Ti is the associated operator Ti : `K∞ → `n2 defined by Ti(ej) = T (ei ⊗ ej) for every
j = 1, · · · , K and i = 1, .., N . Hence, it suffices to show that for every operator T : `K∞ → `n2 we
have ∥∥T : `K∞ → Rn

∥∥
cb
≤ KC

G

∥∥T : `K∞ → `n2
∥∥ .

Let us use notation T (ei) =
∑n

j=1 Ti,jej for every i = 1, · · · , n, and let us consider an
arbitrary element

∑N
i=1Ai ⊗ ei in the uni ball of Md ⊗min `N∞. That is, the operators Ai verify

supi=1,··· ,n ‖Ai‖Md
≤ 1. Then, we will have

(IdMd
⊗T )

(
N∑
i=1

Ai ⊗ ei

)
=

n∑
j=1

(
N∑
i=1

Ti,jAi

)
⊗ ej.
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According to the definition of Rn (6.2) we have∥∥∥∥∥(IdMd
⊗T )

(
N∑
i=1

Ai ⊗ ei

)∥∥∥∥∥
Md(Rn)

=

∥∥∥∥∥
n∑
j=1

(
N∑
i=1

Ti,jAi

)(
N∑
i=1

Ti,jAi

)∗∥∥∥∥∥
1
2

Md

=

∥∥∥∥∥
n∑
j=1

N∑
i,i′=1

Ti,jT̄i′,jAiA
∗
i′

∥∥∥∥∥
1
2

Md

= sup
|ψ〉∈Ball(`d2)

(
N∑

i,i′=1

(
n∑
j=1

Ti,jT̄i′,j

)
〈ψ|AiA∗i′ |ψ〉

) 1
2

.

Now, if we call ui = A∗i |ψ〉 for every i = 1, · · · , N , they are clearly (possibly complex)
vectors in the unit ball of `d2. Hence, we can apply Grothendieck’s inequality to conclude that∥∥∥∥∥(IdMd

⊗T )

(
N∑
i=1

Ai ⊗ ei

)∥∥∥∥∥
Md(Rn)

≤ KC
G sup
α,β∈Ball(`N∞)

(
N∑

i,i′=1

(
n∑
j=1

Ti,jT̄i′,j

)
αiβi′

) 1
2

.

Finally, note that for a fixed α = (αi)
N
i=1 ∈ Ball(`N∞),

T

(
N∑
i=1

αiei

)
=

n∑
j=1

(
N∑
i=1

αiTi,j

)
ej := |xα〉 ∈ `n2

verifies
‖|xα〉‖`n2 ≤ ‖T‖,

and a similar estimate hold for every β and the analogous vectors |xβ〉
Hence, we can finish the proof by applying Cauchy Schwartz’s inequality:∥∥∥∥∥(IdMd

⊗T )

(
N∑
i=1

Ai ⊗ ei

)∥∥∥∥∥
Md(Rn)

≤ KC
G sup
α,β∈Ball(`N∞)

(〈xα|xβ〉)
1
2 ≤ KC

G‖T‖.

�

Lemma 10.3 and Lemma 2.4 imply that E‖G∗n : `n1 (`n∞) → Rn‖cb ≤ KC
GC2n. As before, one

can invoke Markov’s inequality to conclude that for C̃2 := 3KGC2 we have

P
(
‖G∗n : `n1 (`n∞)→ Rn‖cb ≤ C̃2n

)
≥ 2/3.(10.5)

In particular the probability that both estimates (10.3) and (10.5) happen is larger than
1/3. Let us consider some numbers (gki,j(ω))ni,j,k=1 for which both estimates are verified. In order
to understand the lower bound for the minimal norm, let us assume for a moment that

1

n2
G∗nGn = Id`n2 .(10.6)

We will prove estimate (10.1) by assuming this (in general false) fact and later we will
explain how the proof can be modified to obtain our result.

According to our definition of Hn in (10.2) and the metric mapping property for the minimal
norm (6.12)

‖(G∗n ⊗G∗n)(Hn)‖Rn⊗minRn ≤ ‖G∗n : `n1 (`n∞)→ Rn‖2
cb‖Hn‖`n1 (`n∞)⊗min`n1 (`n∞)(10.7)

≤ (C̃2)2n2‖Hn‖`n1 (`n∞)⊗min`n1 (`n∞).
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Now, according to (10.5) and (10.6),

1

n2
‖(G∗n ⊗G∗n)(Hn)‖Rn⊗minRn =

1

n2

∥∥∥∥∥(G∗n ⊗G∗n) (Tn ⊗ Tn)

(
n∑
k=1

ek ⊗ ek

)∥∥∥∥∥
Rn⊗minRn

(10.8)

=
1

log n

∥∥∥∥∥ 1

n4
(G∗n ⊗G∗n) (Gn ⊗Gn)

(
n∑
k=1

ek ⊗ ek

)∥∥∥∥∥
Rn⊗minRn

=
1

log n

∥∥∥∥∥
n∑
k=1

ek ⊗ ek

∥∥∥∥∥
Rn⊗minRn

=

√
n

log n
.

We immediately deduce from (10.7) and (10.8) that

‖Hn‖`n1 (`n∞)⊗min`n1 (`n∞) ≥
1

(C̃2)2

√
n

log n
.

This estimate, joint with the upper bound (10.4), leads to the desired result.

Slight modification of Hn. The following lemma says that the operator 1
n2G

∗
nGn in (10.6)

is invertible on a large subspace with high probability. This will allow to modify our proof to
avoid the use of (10.6).

Lemma 10.5. There exists a constant δ ∈ (0, 1/2) with the following property: Given natural
numbers n ≤ m and a family of independent and normalized real Gaussian random variables
(gij)

n,m
i,j=1, consider the operator Ḡ : `n2 → `m2 defined by

Ḡ(ei) =
1√
m

m∑
j=1

gi,jej for every i = 1, · · · , n.

Then, “with high probability” there exist operators v1 : `δn2 → `n2 and v2 : `n2 → `δn2 such that
‖v1‖‖v2‖ ≤ 2 and v2 Ḡ

∗Ḡ v1 = Id`δn2 . Here, with high probability means that it happens with
probability tending to one exponentially fast as n and m tend to infinity.

Demostración. It is very well known (and it can be deduced from Chevet’s inequality)
that

E‖Ḡ‖`n2⊗ε`m2 ≤ k1
1√
m

(
√
n+
√
m) ≤ k′1(10.9)

for certain universal constant k1. It is also very easy to check that

E‖Ḡ‖`n2⊗2`m2
= E‖Ḡ‖`nm2

≥ k2

√
n,(10.10)

for a certain constant k2 > 1/
√

2.
Moreover, an easy application of Levi’s lemma for gaussian random variables (see for instan-

ce [12, Chapter 1]) allows us to conclude that the probability that estimates (10.9) and (10.10)
hold converges to 1 exponentially fast when n and m tend to infinity. Let us fix some numbers
(gi,j(ω))n,mi,j=1 for which both estimates (10.9) and (10.10) are verified. Let us define δ =

k2
2

2(k′1)2

and let us denote by si(Ḡ) the i-th singular value of Ḡ. Then,

k2
2n ≤

n∑
i=1

si(Ḡ)2 ≤ s1(Ḡ)2([δn]− 1) + s[δn](Ḡ)2n,
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where here [x] denotes the smallest entire number z such that x ≤ z. Using that [δn]− 1 ≤ δn,
we conclude that

k2
2n ≤ (k′1)2δn+ s[δn](Ḡ)2n,

We trivially deduce that

s[δn](Ḡ)2 ≥ k2
2 − δ(k′1)2 =

k2
2

2
≥ 1

4
.

By definition of singular values, the fact that s[δn](Ḡ) ≥ 1/2 implies that we can invert the
operator Ḡ∗Ḡ on a subspace of dimension δn. That is, we can define operators v1 : `δn2 → `n2
and v2 : `n2 → `δn2 as in the statement of the lemma. �

According to the previous lemma when we consider the particular case m = n2, there must
exist a choice of numbers (gki,j(ω))ni,j,k=1 such that they verify estimates (10.3), (10.5) and the
property given by Lemma 10.5. Let us assume that ‖v1‖ ≤ 2 and ‖v2‖ ≤ 1. Then, we can follow
a similar argument to the one above for Hn, by slightly replacing the maps Tn and G∗n. Let us
be more precise: We will consider T̃n = Tn ◦ v1 : `δn2 → `n1 (`n∞) so that our final tensor is

H̃n :=
(
T̃n ⊗ T̃n

)( δn∑
k=1

ek ⊗ ek

)
∈ `n1 (`n∞)⊗ `n1 (`n∞).

It is clear that, since ‖T̃n : `n2 → `n1 (`n∞)‖ ≤ 2‖Tn : `n2 → `n1 (`n∞)‖, the same calculations
done before lead us to

‖H̃n‖`n1 (`n∞)⊗ε`n1 (`n∞) ≤ 4C̃2
1 := C̄1,(10.11)

At the same time, if we define G̃∗n := v2 ◦ G∗n : `n1 (`n∞) → `δn2 , we will have, by the same
calculations as before, that

‖G̃∗n : v2 ◦G∗n : `n1 (`n∞)→ Rδn‖cb ≤ C̃2n.

This last estimate can be then used to lower bound the min-norm of H̃n exactly in the same
way we lower bounded the min-norm of Hn above. Indeed, note that

1

n
G̃∗n ◦ T̃n =

1

n2 log n
v2 ◦G∗n ◦Gn ◦ v1 =

1

log n
Id`δn2 .

Then, one obtains

‖H̃n‖`n1 (`n∞)⊗min`n1 (`n∞) ≥
1

n2(C̃2)2
‖(G̃∗n ⊗ G̃∗n)(H̃n)‖Rn⊗minRδn

=
1

(C̃2)2 log n

∥∥∥∥∥
δn∑
k=1

ek ⊗ ek

∥∥∥∥∥
Rn⊗minRδn

=

√
δ

(C̃2)2

√
n

log n
.

Some simplifications. The aim of Section 10 was to explain how, motivated by ideas from
Banach spaces theory and operator space theory, one can find a Bell functional with a high
quotient ω∗(M)/ω(M). It turns out that, once the object is identified, some parts of the proof
can be simplified.

It is not difficult to see that we can in fact consider the element Hn, so that we do not need
to modify it to get a new tensor H̃n. Indeed, our upper bound for the ε-norm holds, as we have
proved for that element. At the same time, if one analyzes the estimate (10.5) carefully, one
can define a very explicit quantum strategy in dimension n+ 1 which gives a good lower bound
for the min-norm of Hn. Indeed, let us define {Ea

x}a in Mn+1 given by

Ea
x = |uax〉〈uax|,
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where

(10.12) |uax〉 =
1

K
√
n

(1, g1
x,a, · · · , gnx,a) for every x, a = 1, · · · , n,

where K is a universal constant. In fact, this constant can be chosen so that the operators
{Ea

x}a verify
∑N

a=1E
a
x ≤ Id for every x. In addition, if we consider the state

(10.13) |ψ〉 =
1√
2

(
|11〉+

1√
n

n+1∑
i=2

|ii〉
)
∈ Ball

(
Cn+1 ⊗ Cn+1

)
,

the estimate (10.8) can be adapted to show that

(10.14)
n∑

x,y,a,b=1

Hn(x, y, a, b)〈ψ|Ea
x ⊗ Eb

y|ψ〉 ≥ K2

√
n

log n
.

The state (10.13) is very different from a maximally entangled state, and it is not known
whether the latter can be used to obtain a bound similar to (10.14).

Interpretation of the Bell functional JPn as a game. As we explained in Section 8,
Bell functionals M with large quotients ω∗(M)/ω(M) are associated to games G with large
quotients β∗(G)/β(G), where β(G) = 2ω(G)− 1 and β(G)∗ = 2ω(G)∗ − 1 denote the classical
and entangled biases respectively. We end this section by giving an interpretation of JPn as a
two-player game RN due to Regev [19], verifying

β∗(RN)

β(RN)
≥ C

√
n

log n
.

In fact, Regev suggested the use of independent coefficients gi,x,a and gj,y,b in the construction of
JPn which leads, in particular, to some slight improvements in the estimates presented above.

In the game RN , each player is sent a uniformly random x, y ∈ {1, . . . , n} respectively. Each
player must return an answer a, b ∈ {1, . . . , n+1}. If any of the players returns the answer n+1
their payoff is 1/2. Otherwise, the payoff obtained from answers a, b on questions x, y is defined
to be 1

2
+δ〈uax, uby〉, where the vectors uax and vby are defined from independent standard Gaussian

random variables as in (10.12) and δ is a suitable factor chosen so that δ〈uax, uby〉 ∈ [−1/2, 1/2]
with high probability. It is then straightforward to verify that both the classical and entangled
biases of the game RN are linearly related to the classical and entangled values of the Bell
functional JPn.

11. Some comments about different games

We will finish these notes by mentioning several constructions which complement in different
senses the results we have studied in this course. Explaining these results in detail would make
these notes too long. We will provide references where details can be found.

11.1. The role of maximally entangled states. One of the open questions implicitly
posed in [10] is to study whether the maximally entangled state (in any dimension) can be used
to obtain an estimate of the form

ω∗n(JPn)

ω(JPn)
≥ C

√
n

log n
.(11.1)
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Furthermore, it is not known if a maximally entangled state can be used to obtain any Bell
violation by using the functional JPn. However, in [10, Section 4] the authors gave an example
of a (family of) Bell functional J̃P n such that it verifies (11.1) and it has the extra property

ω∗max(J̃P n) ≤ C,(11.2)

where ω∗max(J̃P n) denotes the largest value of the Bell functional J̃P n acting on any quantum
conditional distributions constructed with a maximally entangled state. In particular, this result
implies the existence of quantum conditional distributions which cannot be obtained by using
a maximally entangled state.

It is interesting to note that any Bell functional M verifying both properties (11.1) and
(11.2) must have signed coefficients due to [10, Theorem 10] (see comments at the beginning
of Section 8).

11.2. Khot-Visnoi game. In [3] the authors analyze a (family of) two-player game (so
it has, in particular, non-negative coefficients) which shows that the bounds provided by the
second and third items in Proposition 9.1 are essentially optimal. The game was originally
introduced by Khot and Vishnoi to obtain the first integrality gap between the classical value
of a unique game and the value returned by its “basic semidefinite relaxation”. The game, known
as the Khot-Vishnoi game KVn, has 2n/n questions and n answers per player. In [3] it is shown
that for every n,1

(11.3)
ω∗n(KV n)

ω(KV n)
≥ C

n

log2 n
,

where C is a universal constant.
Estimate (11.3) follows from the bounds

ω(KV n) ≤ C1
1

n
and ω∗n(KV n) ≥ C2

1

log2 n
,

where the second one can be proved by using a maximally entangled state of dimension n. We
refer to the paper [3] for more details.

A drawback of the Khot-Vishnoi game is that it requires exponentially many questions per
player, so that the violation (11.3) is very far from the upper bound provided by item 1. in
Proposition 9.1.

11.3. Reducing the number of inputs in Khot-Visnoi game. A natural question
raised from item 1. in Proposition 9.1 and the number of questions required in the Khot-Visnoi
game is: Does there exist a (family of) Bell functional Mn with n inputs per system such that
ω∗(Mn)
ω(Mn)

is Ω(n)?
Although this question is still unknown, in [9] the authors introduced a method to reduce

the number of inputs in (some) Bell functionals while preserving the quotient ω∗(M)/ω(M).
Then, the author applied that procedure to the Khot-Visnoi game to obtain a new (family of)
Bell functional KV red

n (with possible signed coefficients) with ' n8 inputs and n outputs per
player an such that

(11.4)
ω∗n(KV red

n )

ω(KV red
n )

≥ C
n

log2 n
,

1In fact, the family of Khot-Visnoi games is parametrized by an integer ` and we should denote n = 2`.
See [3] for details.
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Although this result is still far from the best upper bound O(n) shown in item 1. in Proposi-
tion 9.1, (11.4) shows that the use of exponentially many inputs is not needed to obtain (almost)
optimal estimates in the rest of the parameters, as it could be guessed from the example in [3].

11.4. Large bell violations with binary inputs in one party. In [16] the author
defined an asymmetric version of the Khot-Visnoi game KV Asym

n with x = 2n/n, y = 2,
a = b = n and proved that it verifies:

ω∗n(KV Asym
n )

ω(KV Asym
n )

≥ C

√
n

log2 n
.

This example is very extreme in the following sense: According to item 1. in Proposition 9.1
applied to general Bell functionals (see comments below the proof of the proposition), for any
Bell functional M with binary inputs, x = 2, y = 2, the quantity ω∗(M)

ω(M)
is uniformly upper

bounded by a constant, independently of the number of outputs a and b of Alice and Bob
respectively. Hence, the setting considered in [16] is the simplest one where one can find large
Bell violations. In addition, one can also prove that large Bell violations in this restricted setting
cannot occur for Bell functionals with non-negative coefficients (see [16] for details). This is
the reason why the asymmetric version KV Asym

n of the Khot-Visnoi game KVn cannot preserve
the positivity of the latter.



Bibliografía

[1] A. Aspect, P. Grangier, G. Roger, Experimental Tests of Realistic Local Theories via Bell’s Theorem, Phys.
Rev. Lett. 47, 460 (1981).

[2] J. S. Bell, On the Einstein-Poldolsky-Rosen paradox, Physics, 1, 195 (1964).
[3] H. Buhrman, O. Regev, G. Scarpa, R. de Wolf, Near-optimal and explicit Bell inequality violations, Theory

Comput., 8:623-645 (2012).
[4] A. Defant, K. Floret, Tensor Norms and Operator Ideals, North-Holland, (1993).
[5] E. G. Effros, Z. J. Ruan, Operator spaces, volume 23 of London Mathematical Society Monographs. New

Series, The Clarendon Press, Oxford University Press, New York, 2000.
[6] A. Einstein, B. Podolsky, N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Consi-

dered Complete?, Phys. Rev. 47, 777 (1935).
[7] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques (French), Bol. Soc.

Mat. Sao Paulo 8, 1-79 (1953).
[8] B. Hensen, H. Bernien, AE. Dréau, A. Reiserer, et al. Experimental loophole-free violation of a Bell inequality

using entangled electron spins separated by 1.3 km. Nature 526 (7575), 682-686 (2015).
[9] M. Junge, T. Oikhberg, C. Palazuelos, Reducing the number of inputs in nonlocal games. Submitted.

Available in: arXiv:1603.02581.
[10] M. Junge, C. Palazuelos, Large violation of Bell inequalities with low entanglement, Comm. Math. Phys.

306 (3) 695-746 (2011).
[11] M. Junge, C. Palazuelos, D. Pérez-García, I. Villanueva, M. M. Wolf, Unbounded violations of bipartite Bell

inequalities via operator space theory, Comm. Math. Phys., 300(3):715-739 (2010).
[12] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer-Verlag (1991).
[13] E. R. Loubenets, On the existence of a local quasi hidden variable (LqHV) model for each N-

qudit state and the maximal quantum violation of Bell inequalities, Int. J. Quantum Inform. DOI:
http://dx.doi.org/10.1142/S0219749916400104.

[14] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University
Press, New York, (2000).

[15] C. Palazuelos, T. Vidick, Survey on Nonlocal Games and Operator Space Theory, J. Math. Phys. 57, 015220
(2016) (Special Issue: Operator Algebras and Quantum Information Theory).

[16] C. Palazuelos, Z. Yin. Large bipartite Bell violations with dichotomic measurements, Phys. Rev. A,
92:052313, 2015.

[17] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics,
vol. 78, Cambridge University Press, Cambridge, (2002).

[18] G. Pisier, Introduction to operator space theory, volume 294 of London Mathematical Society Lecture Note
Series, Cambridge University Press, Cambridge, 2003.

[19] O. Regev, Bell violations through independent bases games, Quantum Inf. Comput., 12(1-2): 9-20, (2012).
[20] Z.-J. Ruan, Subspaces of C∗-algebras, J. Funct. Anal., 76(1), 217-230, (1988).
[21] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite Dimensional Operator Ideals, Pitman Mo-

nographs and Surveys in Pure and Applied Mathematics 38, Longman Scientific and Technical, (1989).
[22] B. S. Tsirelson, Quantum generalizations of Bell’s inequality, Lett. Math. Phys. 4, 93-100 (1980).
[23] B. S. Tsirelson, Some results and problems on quantum Bell-type inequalities, Hadronic J. Supp. 8(4),

329-345 (1993).

55


