ANÁLISIS MATEMÁTICO BÁSICO.

DEFINICIÓN DE DERIVADA.

Pensemos geométricamente. En primer lugar repasemos la fórmula de la recta que pasa por dos puntos. Si una recta pasa por los puntos $P_1 = (x_1, y_1)$ y $P_2 = (x_2, y_2)$,

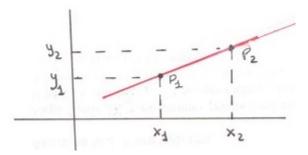


FIGURA 1. Recta que pasa por dos puntos.

su **pendiente** m es independiente de los dos puntos tomados:

$$m = \frac{y_2 - y_1}{x_2 - x_1},$$

(esto se debe a la proporcionalidad que hay entre triángulos semejantes, Teorema de Tales). Así la ecuación de la recta que pasa por los puntos P_1 y P_2 es:

$$y = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + y_1.$$

En segundo lugar, pensemos en la gráfica de una función f, un punto sobre su gráfica P y distintas rectas que pasan por P y se apoyan en otro de la gráfica. Ver el dibujo siguiente.

2 C. RUIZ

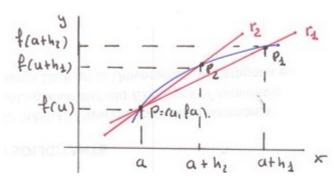


FIGURA 2. Cuerdas a un gráfica por un punto P.

Las rectas r_1 y r_2 tienen pendientes $\frac{f(a+h_1)-f(a)}{h_1}$ y $\frac{f(a+h_2)-f(a)}{h_2}$ respectivamente. Si a las rectas anteriores las empujamos el punto P_h hacia P (en el caso de que la gráfica sea continua eso se consigue haciendo h muy pequeño), ¿llegaremos a una posición límite de la recta de modo que sea la recta próxima de la que hablabamos en la introducción? La respuesta la dan las dos Definiciones siguientes y el Teorema de después.



FIGURA 3. Recta tangente por el punto P.

Definición. 1. Dada una función $f : \mathbb{R} \to \mathbb{R}$, y un punto $a \in Domf$ tal que existe r > 0 con $(a - r, a + r) \subset Domf$, se dice que f es **derivable** en el punto x = a si existe el límite

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a).$$

A dicho límite f'(a), si existe, le llamamos derivada de la función en el punto a. Se dice que la función f es derivable en $A \subset Domf$ si es derivable en cada punto de A. LLamamos función derivada de f a la función f' cuyos valores son las derivadas de f allí donde sea derivable.

Observación. 1. Si x está cerca de a, entonces x-a=h está cerca de cero y diceversa. Luego

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Ejemplos. 1. • Sea la función constante f(x) = k. Entonces f'(x) = 0 para todo $x \in \mathbb{R}$.

■ Sea la función identidad f(x) = x. Entonces f'(x) = 1 para todo $x \in \mathbb{R}$.

Demostración:

• Si f(x) = k, entonces para x = a

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}=\lim_{h\to 0}\frac{k-k}{h}=0.$$

• Si f(x) = x, entonces para x = a

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{a+h-a}{h} = \lim_{h \to 0} \frac{h}{h} = 1.$$

No todas las funciones son derivables, veamos un ejemplo.

Ejemplo. 1. La función valor absoluto no es derivable en x = 0.

Demostración: Como la función f(x) = |x| viene dada por dos fórmulas, según x sea positivo o no, tomando límites laterales

$$\lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0} \frac{h}{h} = 1,$$

у

$$\lim_{h \to 0^{-}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0} \frac{-h}{h} = -1.$$

Los límites laterales son distintos, luego el límite no esiste Usolviendo a nuestra imagen **geométrica**, podemos definir:

Definición. 2. Dada una función $f : \mathbb{R} \to \mathbb{R}$, y un punto $a \in Domf$ donde f es derivable, llamamos recta **tangente** a la gráfica de f por el punto (a, f(a)) a la recta

$$r(x) = f'(a)(x - a) + f(a).$$

Observación. 2. La recta tangente a la gráfica de una función por un punto es la recta que pasa por ese punto y cuya pendiente la da la derivada de la función en el punto.

4 C. RUIZ

Teorema. 1. Sean una función $f : \mathbb{R} \to \mathbb{R}$, y un punto $a \in Domf$ donde fes derivable. Sea la recta tangente por dicho punto r(x) = f'(a)(x-a) + f(a), entonces:

a: la recta r pasa por el punto (a, f(a));

b:
$$\lim_{x \to a} \frac{f(x) - r(x)}{x - a} = 0;$$

b: $\lim_{x \to a} \frac{f(x) - r(x)}{x - a} = 0;$ **c:** $\sin s(x) = b(x - a) + f(a)$ es otra recta que pasa por (a, f(a)) y verifica que $\lim_{x\to a} \frac{f(x)-s(x)}{x-a} = 0$, entonces necesariamente s=r.

Demostración: Claramente r(a) = f'(a)(a-a) + f(a) = f(a). Por otro lado

$$\lim_{x \to a} \frac{f(x) - r(x)}{x - a} = \lim_{x \to a} \frac{f(x) - f'(a)(x - a) - f(a)}{x - a}$$

usando la definición de derivada

$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} - f'(a) = f'(a) - f'(a) = 0.$$

Por otro lado si s(x) = b(x - a) + f(a), una recta que pasa por el punto (a, f(a)) y tal que $\lim_{x\to a} \frac{f(x)-s(x)}{x-a} = 0$, entonces

$$0 = \lim_{x \to a} \frac{f(x) - s(x)}{x - a} = \lim_{x \to a} \frac{f(x) - r(x) + r(x) - s(x)}{x - a}$$

sustituyendo r y s por sus respectivas fórmulas

$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} - f'(a) + (f'(a) - b) = f'(a) - b.$$

Por tanto 0 = f'(a) - b y se tiene que b = f'(a)

Observación. 3. La diferencia x - a tiende a cero cuando x se acerca al valor a. El límite $\lim_{x\to a} \frac{f(x)-r(x)}{x-a}=0$ dice que los valores de la recta r se acercan a f(x) más rapidamente que lo hace x al valor a.

El Teorema anterior dice que de las rectas que pasan por (a, f(a)), la recta tangente es la que más se aproxima a los valores de la función cuando x está cerca del valor a. Es lo que llamabamos la recta próxima en la introducción.

En ciertas situaciones, en ciertos cálculos, dada una función y = f(x) se puede sutituir los valores de y por

$$y \simeq f'(a)(x-a) + f(a)$$
 si $x \simeq a$.

Ejemplo. 2. Vamos a calcular la recta tangente a la gráfica de la función $f(x) = x^3$ por el punto (1,1).

5

Demostración:

El punto (1,1) pertenece claramente a la gráfica de la función. Tenemos que calcular f'(1). Como $f'(x) = 3x^2$ (ver la sección siguiente sobre Cálculo de Derivadas), tenemos que f'(1) = 3 y así la recta tangente es

$$r(x) = 3(x - 1) + 1$$

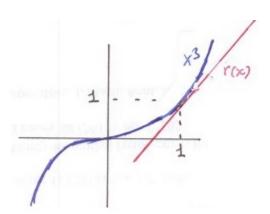


FIGURA 4. Recta tangente a la gráfica de $y = x^3$.

Ejercicio. 1. Sea $f:(a,b)\to\mathbb{R}$ una función para la cuál existe una constante M>5 de modo que

$$\frac{1}{M} \le \frac{f(x) - f(y)}{x - y} \le M \qquad para \ todo \qquad x, y \in (a, b).$$

Si $c \in (a, b)$, entonces la recta tangente a la gráfica de f por el punto (c, f(c))no puede ser:

a)
$$y = x + f(c) - c$$
 b) $y = \frac{M^2 + 1}{2M}(x - c) + f(c)$

c)
$$y = -\frac{M}{3}(c-x) + f(c)$$
 d) $y = -\frac{M}{4}x + f(c) + \frac{Mc}{4}$.

Demostración: Como M > 5 se sigue que $\frac{1}{5} > \frac{1}{M}$. Así por la propiedades de los límites $\frac{1}{M} \le f'(c) \le M$. Por otra lado la recta tangente en (c, f(c)) es de la forma r(x) = f'(c) = f'(c)(x - c) + f(c).

- a: En este caso f'(c) = 1, lo cuál es compatible con nuestras hipótesis.
- **b:** En este caso $f(c) = \frac{M^2+1}{2M} \ge \frac{M^2}{2M} = \frac{1}{2} > \frac{1}{5}$. Además $M > \frac{M^2+1}{2M}$, lo cuál es compatible con nuestras hipótesis.
- c: En este caso $f'(c) = \frac{M}{3}$, lo cuál es compatible con nuestras hipótesis.
- **d:** En este caso $f'(c) = -\frac{M}{4} < 0$, lo cuál **no** es compatible con nuestras hipótesis

6 C. RUIZ

Referencias

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD COMPLUTENSE, 28040 MADRID, SPAIN

 $E\text{-}mail\ address{:}\ \texttt{Cesar_Ruiz@mat.ucm.es}$