Elem. de E.D.O. PRÁCTICA-9

Nombre y apellidos.....

1.- Dadas $y_1, y_2, ..., y_{n-1}$ funciones n-1-veces derivables sobre el intervalo (a,b) (notación: se escribe $y_i \in C^{n-1}[a,b]$ para i=1,2,...,n) llamamos Wroskiano de las mismas a la función:

$$W(x) = W[y_1, y_2, ..., y_n](x) = \begin{vmatrix} y_1(x) & y_2(x) & \cdots & y_n(x) \\ y'_1(x) & y'_2(x) & \cdots & y'_n(x) \\ \vdots & & & \vdots \\ y_1^{n-1}(x) & y_2^{n-1}(x) & \cdots & y_n^{n-1}(x) \end{vmatrix}.$$

Prueba que si $y_i \in C^{n-1}[a, b]$, para i = 1, 2, ..., n, son linealmente dependientes (como vectores del espacio vectorial $C^{n-1}[a, b]$), entonces $W \equiv 0$ es la función constantemente igual a cero.

 1_2 .- Sean y_1 e y_2 dos soluciones linealmente indenpendientes de la E.D.0. lineal homogénea:

$$y''(x) + p_1(x)y'(x) + p_2(x)y(x) = 0,$$

con coeficientes p_1 y p_2 continuos sobre (a, b). Prueba que $W[y_1, y_2](x) \neq 0$ para todo $x \in (a, b)$. (Indicación: usa el Teorema de Existencia y Unicidad).

2.- Encuentra la solución general de la E.D.O.: $x^2y'' - xy' - 3y = 5x^4$, sabiendo que $y_1(x) = \frac{1}{x}$ es una solución de la ecuación homogénea asociada. (Indicación: haz el cambio de variable $y(x) = y_1(x)z(x)$ y llega a una E.D.O. lineal de primer orden).