AMPLIACIÓN DE MATEMÁTICAS

LEMA DE BEZOUT. TEOREMA DE FACTORIZACIÓN ÚNICA.

Teorema 1. (Lema de Bezout). Sean dos polinomios $P, Q \in \mathbb{F}[x]$ y $d \in m.c.d.(P,Q)$, entonces existe otros dos polinomios $u, v \in \mathbb{F}[x]$ de modo que

$$d(x) = u(x)P(x) + v(x)Q(x).$$

Observación 1. Este Lema prueba, además, que el máximo común divisor de dos polinomios es **no** vacío.

 $\boldsymbol{Demostraci\'on:}$ Se procede de forma análoga a como lo hicimos en $\mathbb Z.$ Sea

$$A = \{ grad.h \in \mathbb{N} : h(x) = k_1(x)P(x) + k_2(x)Q(x) \neq 0 \text{ donde } k_1, k_2 \in \mathbb{F}[x] \}.$$

Como grad.P y grad.Q están en A, éste es no vacío, y por tanto existen

$$\min A = m \qquad \text{y} \qquad u,v \in \mathbb{F}[x] \qquad \text{con} \qquad m = \operatorname{grad}.(u(x)P(x) + v(x)Q(x)).$$

Sea d'(x) = u(x)P(x) + v(x)Q(x). Veamos ahora que d' divide a todo polinonio de la forma $k_1(x)P(x) + k_2(x)Q(x)$. Si no fuese así,

$$k_1(x)P(x) + k_2(x)Q(x) = q(x)d'(x) + r(x)$$

con grad.r < grad.d y $r \neq 0$. De lo que se deduce que

$$r(x) = k_1(x)P(x) + k_2(x)Q(x) - q(x)d'(x)$$

$$= (k_1(x) - q(x)u(x))P(x) + (k_2(x) - q(x)v(x))Q(x).$$

Lo que contradice que m sea el mínimo del conjunto A.

Ahora podemos decir que d'|P y que d'|Q. Si otro polinomio h divide a P y Q entonces

$$h|uP + vQ = d'$$

y por tanto $grad.h \leq grad.d'$. Lo que prueba que $d' \in m.c.d.(P,Q)$ La última parte de la demostración la dá el siguiente corolario. 2 C. RUIZ

Corolario 1. Si $d, d' \in m.c.d.(P, Q)$, entonces existe $c \in \mathbb{F}^*$ de modo que d = cd'.

 $\boldsymbol{Demostraci\'on:}$ Tanto dcomo d' dividen a P y Q y son de grado máximo, por lo tanto

$$grad.d = grad.d'$$

Por otro lado, d' = uP + vQ, por tanto d|d', es decir d' = qd. Como d y d' tienen el mismo grado, necesariamente $q \in \mathbb{F} \square$

Observación 2. Existe un único $d \in m.c.d.(P,Q)$ mónico.

Corolario 2. Sean $P, Q, H \in \mathbb{F}[x]$, de modo que P es un polinomio irreducible y tal que P|QH. Entonces o bien P|Q o bien P|H.

Demostración: Si P divide a Q hemos terminado. Si no, como P es irreducible se tiene que $1 \in m.c.d.(P,Q)$ y por el Lema de Bezout

$$1 = u(x)P(x) + v(x)Q(x) \qquad \Rightarrow \qquad H(x) = u(x)P(x)H(x) + v(x)Q(x)H(x).$$

Como P divide a QH, se sigue que P divide a $H \square$

La propiedad que sigue, que ya probamos en \mathbb{Z} (ver el capítulo sobre **Ideales Maximales**), es esencial para probar la existencia de **cuerpos de descomposición** de polinomios (que veremos en el próximo tema).

Corolario 3. Sea \mathbb{F} un cuerpo y sea $P \in \mathbb{F}[x]$.

A: $\mathbb{F}[x]$ es un dominio de ideales principales.

B: (P), el ideal generado por el polinomio P, es un **ideal maximal** si y solo si P es **irreducible**.

Demostración:

A: Sea $I \subseteq \mathbb{F}[x]$ un ideal. Tomemos $P,Q \in I$. Por el Lema de Bezout existe

$$m.c.d.(P,Q) = d(x) = u(x)P(x) + v(x)Q(x),$$

que podemos tomar mónico. Además por ser Iideal, $d \in I.$

- Si d = 1, entonces $I = \mathbb{F}[x]$.
- Si grad.d > 0, entonces $d\mathbb{F}[x] \subseteq I$. Sea

$$n = \min\{grad.d \in \mathbb{N} \setminus \{0\} : d\mathbb{F}[x] \subseteq I \}$$

Veamos que si $d'\mathbb{F}[x] \subseteq I$ y grad.d' = n, entonces necesariamente I = (d') y así es un ideal principal. Sea $P \in I$. Tenemos que P(x) = q(x)d'(x) + r(x) con grad.r < grad.d'

- Si r = 0, entonces $P \in d'\mathbb{F}[x] = (d')$.
- Si $r \neq 0$, entonces $r = P qd' \in I$ y así $r\mathbb{F}[x] \subseteq I$. Esto es contradictorio con la definición de n.

Todo lo cuál prueba que $I = d'\mathbb{F}[x]$, y por tanto es un ideal principal.

- **B:** Si d|P, y 0 < grad.d < grad.P, entonces $(P) \subsetneq (d)$. Así el ideal generado por P, (P), no es maximal.
 - Si (P) es un ideal **no** maximal de $\mathbb{F}[x]$, entonces existe otro ideal (d), por \mathbf{A} este nuevo ideal es necesariamente principal, de modo que $P\mathbb{F}[x] = (P) \subsetneq (d) = d\mathbb{F}[x]$ y con $d\mathbb{F}[x] \subsetneq \mathbb{F}[x]$. Por lo tanto d|P, con 0 < grad.d < grad.P (en otro caso o bien $(d) = \mathbb{F}[x]$ o bien (d) = (P) que sabemos que no ocurre). Por tanto P no es irreducible \square .

Ejemplo 1. $\mathbb{Z}[x]$ **no** es un dominio de ideales de principales. Esto es así ya que como \mathbb{Z} no es un cuerpo, no tenemos ni el Teorema del Resto ni el Lema de Bezout que serían las herramientas para probarlo.

Veamos un ejemplo concreto. Sea

$$I = \{ f \in \mathbb{Z}[x] : \overline{f}(0) \in 3\mathbb{Z} \}.$$

Es muy fácil ver que I es un ideal en $\mathbb{Z}[x]$. Tampoco es difícil convencerse de que I=(3,x). Luego **no** es un ideal principal \square

Teorema 2. (de Factorización Única). Sea \mathbb{F} un cuerpo. Para cada $P \in \mathbb{F}[x]$ existe una única representación (salvo el orden) de la forma

$$P(x) = rP_1(x)P_2(x).....P_k(x),$$

donde $r \in \mathbb{F}$, $y P_j \in \mathbb{F}[x]$ es un polinomio mónico irreducible sobre \mathbb{F} para j = 1, 2, ..., k,

Demostración: Por inducción sobre el grado de P.

• Si grad.P = 1, entonces

$$P(x) = rx + b = r(x + \frac{b}{r})$$

donde $(x + \frac{b}{r})$ es mónico e irreducible (por ser de grado 1).

4 C. RUIZ

- Si grad.P < n, admitimos como hipótesis de inducción que P se descompone en producto de polinomios irreducibles.
- Si grad.P = n, o bien P es irreducible y no hay nada que probar (salvo sacar factor común el coeficiente de x^n), o bien existe $Q \in \mathbb{F}[x]$ con $1 \leq grad.Q < n$ de modo que

$$Q|P \qquad \Leftrightarrow \qquad P(x) = Q(x)q(x),$$

con $1 \leq grad.q < n$. Ahora se aplica la hipótesis de inducción a $Q \neq q$.

Por último veamos la unicidad. Si

$$P(x) = rP_1(x)P_2(x)...P_k(x) = sQ_1(x)Q_2(x)...Q_{k'}(x),$$

se tiene que $P_1|P$ y por tanto $P_1|Q_j$ para algún j. De la irreducibilidad de Q_j y de que es mónico, se tiene que $P_1 = Q_j$.

Ahora tenemos que

$$rP_2(x)...P_k(x) = sQ_1(x)Q_2(x)..Q_{i-1}Q_{i+1}...Q_{k'}(x).$$

Repitiendo el proceso anterior con P_2 luego con P_3etc llegamos a ver que todos los P_i son como los Q_j , que k=k' y por último nos queda que r=s \square

Observación 3. El teorema nos dice que existe la factorización de todo polinomio, pero no como conseguirla.

Existen algoritmos para descomponer $P \in \mathbb{F}[x]$, para \mathbb{F} un cuerpo finito, como el algoritmo de Berlekamp (pero esto ya es propio de un curso de Criptografía).

Como en el caso de \mathbb{Z} , el costo computacional de factorizar $P \in \mathbb{F}[x]$ hace que los polinomios sobre cuerpos finitos sean útiles en Critografía.

Referencias

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD COMPLUTENSE, 28040 MADRID, SPAIN

E-mail address: Cesar_Ruiz@mat.ucm.es