AMPLIACIÓN DE MATEMÁTICAS

SERIES DE FOURIER ABSTRACTAS

Una señal,

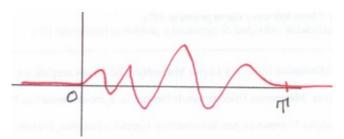


FIGURA 1. Registro experimental.

empieza a manifestarse en el algún momento que podemos llamar 0 y tendrá una duración de T. Este número T no tiene por que ser 2π . Una señal,

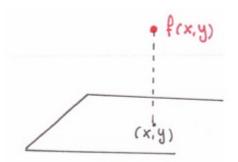


FIGURA 2. Registro experimental.

no tiene que estar definida solo sobre la recta real \mathbb{R} . Pensemos que a cada punto del plano $(x,y) \in \mathbb{R}^2$, le podemos asociar un tono de gris entre 0 y 1 $(f(x,y) \in [0,1])$, lo que permitiría registrar una imagen.

2 C. RUIZ

Una señal, no cabe solo representarla como una combinación líneal de sen nx y $\cos nx$, $n \in \mathbb{N}$. Podríamos usar otras familias de funciones organales.

Ejemplo 1. Una función $f: \mathbb{R} \to \mathbb{C}$

cabría representarla como

$$f \sim \sum_{n \in \mathbb{Z}} a_n e^{int}$$

(serie de Fourier compleja).

En lo que sigue, veremos como calcular series de Fourier sobre **otras** familias ortogonales. Veremos como trabajar con funciones definidas en otros intervalos diferentes a $[-\pi, \pi]$. Solo al final, a título informativo, indicaremos como descomponer señales de funciones de varias variables.

COEFICIENTES DE FOURIER ABSTRACTOS

Consideremos una sucesión de funciones $(\phi_m)_{m\in\mathbb{N}}$ definidas sobre un intervalo $[a,b], \quad \phi_n: [a,b] \to \mathbb{K}$ donde $\mathbb{K} = \mathbb{R}$ ó \mathbb{C} . Supongamos que la familia es **ortogonal** y que una función f se puede escribir como $f(x) = \sum_{n=1}^{\infty} a_n \phi_n(x) dx$ con convergencia uniforme.

1. En el caso de que $\mathbb{K} = \mathbb{R}$.

Veamos que forma tienen los coeficientes a_n .

$$\int_{a}^{b} f(x)\phi_{m}(x)dx = \sum_{n=1}^{\infty} \int_{a}^{b} a_{n}\phi_{n}\phi_{m}(x)dx$$
$$= a_{m} \int_{a}^{b} \phi_{m}^{2}(x)dx$$

y así, despejando

$$a_m = \frac{\int_a^b f(x)\phi_m(x)dx}{\int_a^b \phi_m^2(x)dx}$$
 para todo $m \in \mathbb{N}$.

2. En el caso de que $\mathbb{K} = \mathbb{C}$

$$\int_{a}^{b} f(x)\overline{\phi_{m}(x)}dx = \sum_{n=1}^{\infty} \int_{a}^{b} a_{n}\phi_{n}\overline{\phi_{m}(x)}dx$$
$$= a_{m} \int_{a}^{b} |\phi_{m}|^{2}(x)dx$$

y así, despejando

$$a_m = \frac{\int_a^b f(x)\overline{\phi_m(x)}dx}{\int_a^b |\phi_m|^2(x)dx}$$
 para todo $m \in \mathbb{N}$.

Lo anterior nos permite dar la definición abstracta de **serie de Fou**rier.

Definición 1. A los números $(a_m)_{m\in\mathbb{N}}$ se les llama coeficientes de Fourier de la función f con respecto a la familia ortogonal $(\phi_m)_{m\in\mathbb{N}}$ sobre el intervalo [a,b]. A la serie de funciones

$$\sum_{m=1}^{\infty} a_m \phi_m(x)$$

se la conoce como **serie de Fourier** de la función f con respecto a la familia ortogonal $(\phi_m)_{m\in\mathbb{N}}$ sobre el intervalo [a,b].

REFERENCIAS

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD COMPLUTENSE, 28040 MADRID, SPAIN

E-mail address: Cesar_Ruiz@mat.ucm.es