AMPLIACIÓN DE MATEMÁTICAS

EXTENSIONES DE CUERPOS.

Dado un cuerpo \mathbb{F} , nos interesa a veces encontrar un cuerpo más grande \mathbb{K} , de modo que el primero sea subcuerpo del segundo y que en \mathbb{K} podamos encontrar algo que no es posible encontrar en \mathbb{F} . Por ejemplo raíces de un polinomio.

Aquí vamos a estudiar en abstracto las **extensiones de cuerpos**, aunque la que más nos interesa ya la hemos visto con el Teorema de Kronecker.

Definición 1. Sea \mathbb{F} un cuerpo y \mathbb{K} una extensión del primer cuerpo.

- **a:** Un elemento $a \in \mathbb{K}$ se llama **algebraico**, con respecto al subcuerpo \mathbb{F} , si existe un polinomio $f \in \mathbb{F}[x]$ de modo que a es raíz de f, $(\overline{f}(a) = 0)$.
- **b:** Los elemento de \mathbb{K} que **no** son algebraicos se llaman **transcendentes**.
- c: Una extensión de cuerpo \mathbb{K} con respecto al cuerpo \mathbb{F} se dice que es una **extensión algebraica** si todos los elementos de \mathbb{K} son algebraicos.
- **d:** Una extensión de cuerpo \mathbb{K} de \mathbb{F} se llama transcendente si al menos un elemento de \mathbb{K} es transcendente.
- e: Se llama grado de la extensión a la dimensión del espacio vectorial \mathbb{K} respecto del cuerpo \mathbb{F} . (Notación: $[\mathbb{K} : \mathbb{F}] = \dim \mathbb{K}$).
- **f**: Se dice que una extensión de cuerpo es **finita** si $[\mathbb{K} : \mathbb{F}] = \dim \mathbb{K} < \infty$.

Ejemplo 1. $\mathbb{Q} \subset \mathbb{R}$ es una extensión de cuerpo transcendente.

Demostración: En \mathbb{R} hay muchos más elementos que en \mathbb{Q} ,

$$CardQ = CardN < CardR$$

2 C. RUIZ

Ahora

$$\begin{array}{c} \operatorname{Card}\{r\in\mathbb{R}\ :\ r\ \text{raı́z}\ \text{de un polinomio de}\ \mathbb{Q}[x]\ \} \\ = \operatorname{Card}\bigcup_{n=1}^{\infty}\{r\in\mathbb{R}\ :\ r\ \text{raı́z}\ \text{de un polinomio de grado}\ n\ \text{de}\ \mathbb{Q}[x]\ \} \\ = \operatorname{Card}\mathbb{N} < \operatorname{Card}\mathbb{R}. \end{array}$$

Luego en \mathbb{R} hay muchos elementos que son transcendentes \square

Observación 1. Es fácil ver que $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ es algebraico ya que es raíz del polinomio $x^2 - 2 \in \mathbb{Q}[x]$. Sin embargo, ver que un elemento concreto de \mathbb{R} es transcendente (por ejemplo $\pi \in \mathbb{R}$) es bastante difícil.

Ejemplo 2. $\mathbb{R} \subset \mathbb{C}$ es una extensión algebraica y finita.

Demostración: Para todo $a + bi \in \mathbb{C}$, se tiene que

$$(x - (a+bi))(x - (a-bi)) = x^2 - 2ax + a^2 + b^2 \in \mathbb{R}[x].$$

Así vemos que todos los elementos de \mathbb{C} son algebraicos con respecto a \mathbb{R} . Además, es claro que $\{1,i\}$ forman una base de \mathbb{C} como espacio vectorial sobre \mathbb{R} . Luego $[\mathbb{C}:\mathbb{R}]=\dim\mathbb{C}=2$

Ejemplo 3. $\mathbb{Q} \subset \mathbb{Q}[\sqrt{2}]$ es una extensión algebraica y finita.

Demostración: Para todo $a + b\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$, se tiene que

$$(x - (a + b\sqrt{2}))(x - (a - b\sqrt{2})) = x^2 - 2ax + a^2 - 2b^2 \in \mathbb{Q}[x].$$

Así vemos que todos los elementos de $\mathbb{Q}[\sqrt{2}]$ son algebraicos con respecto a \mathbb{Q} . Además, es claro que $\{1, \sqrt{2}\}$ forman una base de $\mathbb{Q}[\sqrt{2}]$ como espacio vectorial sobre \mathbb{Q} . Luego $[\mathbb{Q}[\sqrt{2}]:\mathbb{Q}] = \dim \mathbb{Q}[\sqrt{2}] = 2$

Proposición 1. Sea \mathbb{F} un cuerpo y sea $f \in \mathbb{F}[x]$ un polinomio de grado k. Entonces el anillo cociente

$$\mathbb{F}[x]/f = \{ a_0 + a_1[x] + ... + a_{k-1}[x]^{k-1} : a_0, a_1, ..., a_{k-1} \in \mathbb{F} \}$$

es un espacio vectorial k-dimensional sobre el cuerpo \mathbb{F} con base las potencias de la clase de la x

$$\{1, [x], [x]^2, ..., [x]^{k-1}\}.$$

Demostracción: Vimos que $\mathbb{F}[x]/f$ esta formado por las clases de los posibles restos de dividir por f en $\mathbb{F}[x]$. Es decir todos los polinomios en $\mathbb{F}[x]$ de grado menor o igual que k-1, es decir

$$a_0 + a_1 x + \dots + a_{k-1} x^{k-1}$$

donde $a_0, a_1, \dots, a_{k-1} \in \mathbb{F}$ (los coeficientes se pueden repetir y algunos pueden ser 0). Por tanto

$$\mathbb{F}[x]/f = \{ [a_0 + a_1 x + \dots + a_{k-1} x^{k-1}] : a_0, a_1, \dots, a_{k-1} \in \mathbb{F} \}$$

$$= \{ a_0 + a_1[x] + \dots + a_{k-1}[x]^{k-1} : a_0, a_1, \dots, a_{k-1} \in \mathbb{F} \}.$$

El conjunto anterior es como el espacio vectorial de vectores

$$\mathbb{F}^k = \{(a_0, a_1, ..., a_{k-1}) : a_0, a_1, ..., a_{k-1} \in \mathbb{F} \}$$

con la suma de vectores y el producto de un escalar por un vector habituales. Por tanto $\mathbb{F}[x]/f$ es un espacio vectorial sobre el cuerpo \mathbb{F} . Una base está formada, por lo visto arriba, por

$$\{ [1], [x], [x]^2, \dots, [x]^{k-1} \}.$$

El que son independientes es sencillo de ver; si existe $a_0, a_1, ..., a_{k-1} \in \mathbb{F}$, no todos nulos, de modo que

$$[0] = \sum_{j=0}^{k-1} a_j [x]^j = [\sum_{j=0}^{k-1} a_j x^j],$$

entonces $f|(\sum_{j=0}^{k-1} a_j x^j)$ y como $grad.(\sum_{j=0}^{k-1} a_j x^j) = k-1 < grad.f$, se tiene que $\sum_{j=0}^{k-1} a_j x^j = 0$.

Como el cardinal de la base es k, la dimensión del espacio vectorial es k ($[\mathbb{F}[x]/f:\mathbb{F}]=k$) \square

Proposición 2. Toda extensión finita \mathbb{K} de un cuerpo \mathbb{F} es algebraica.

Demostracción: Sea $\alpha \in \mathbb{K}$. Consideramos la aplicación

$$T_{\alpha}: \mathbb{F}[x] \to \mathbb{K}$$

 $f \to T_{\alpha}(f) = \overline{f}(\alpha).$

 T_{α} es una aplicación lineal entre dos espacios vectoriales sobre el cuerpo \mathbb{F} . La dimensión de $\mathbb{F}[x]$ es infinita, mientras que la dimensión de \mathbb{K} es finita por hipótesis. Por tanto la aplicación T_{α} no puede ser inyectiva (si lo fuese la dimensión de $\mathbb{F}[x]$ sería menor o igual que la de \mathbb{K}) y por tanto el núcleo de la aplicación $kerT_{\alpha} \neq \{0\}$. Así existe $f \in kerT_{\alpha} \subset \mathbb{F}[x]$ con $f \neq 0$ de modo que $\overline{f}(\alpha) = 0$. Lo cuál prueba que α es un elemento algebraico \square

Teorema 1. Sea \mathbb{F} un cuerpo y sea $f \in \mathbb{F}[x]$ un polinomio **irreducible** de grado k. Entonces $\mathbb{F}[x]/f$ es una extensión del cuerpo \mathbb{F} algebraica y finita, con $[\mathbb{F}[x]/f : \mathbb{F}] = k$.

4 C. RUIZ

Demostracción: Por ser el polinomio f irreducible, ya vimos (Teoría de Anillos; Teorema de Kronecker) que el anillo cociente $\mathbb{F}[x]/f$ es un cuerpo. Además la inclusión

$$\begin{array}{cccc} i & : & \mathbb{F} & \to & \mathbb{F}[x]/f \\ & r & \to & i(r) & = & [r] \end{array}$$

hace que \mathbb{F} sea un subcuerpo de $\mathbb{F}[x]/f$. La Proposición primera nos dice que esta extensión es finita $([\mathbb{F}[x]/f : \mathbb{F}] = k)$ y por tanto la segunda Proposición nos dice que también es algebraica \square

Ejemplo 4. Consideramos el polinomio $f(x) = x^3 + x + 1 \in \mathbb{Z}_2[x]$.

El anillo cociente que genera este polinomio es

$$\mathbb{Z}_2[x]/(x^3+x+1) = \{a+b[x]+c[x^2] : a,b,c \in \mathbb{Z}_2 \}$$
$$= \{0,1,[x],1+[x],[x]^2,1+[x]^2,[x]+[x]^2,1+[x]+[x]^2 \}$$

Estamos ante un espacio vectorial sobre \mathbb{Z}_2 de dimensión 3, ya que una base está formada por

$$\{1, [x], [x]^2\}.$$

Además en este caso como, el polinomio f es de grado 3 y $\overline{f(0)} = 1$ y $\overline{f}(1) = 1$ (no tiene raíces en \mathbb{Z}_2), el polinomo es irreducible y $\mathbb{Z}_2[x]/(x^3+x+1)$ es una extensión del cuerpo \mathbb{Z}_2 , algebraica y finita \square

Ejemplo 5. Consideramos el polinomio $f(x) = x^2 + 1 \in \mathbb{Z}_3[x]$.

Este polinomio de grado dos no tiene raíces en \mathbb{Z}_3 (¡comprobad!). Por tanto el anillo cociente que genera es también una extensión del cuerpo \mathbb{Z}_3 , de modo que

$$\mathbb{Z}_3[x]/(x^2+1) = \{a+b[x] : a,b \in \mathbb{Z}_3 \}$$

= $\{0,1,2,[x],2[x],1+[x],1+2[x],2+[x],2+2[x]\}$

Ejemplo 6. Consideramos el polinomio $f(x) = x^2 + 1 \in \mathbb{R}[x]$.

Este polinomio de grado dos no tiene raíces en \mathbb{R} . Por tanto el anillo cociente que genera es también una extensión del cuerpo \mathbb{R} , de modo que

$$\mathbb{R}[x]/(x^2+1) = \{a+b[x] : a, b \in \mathbb{R} \}.$$

Es una extensión finita y por tanto algebraica de \mathbb{R} . Observemos que en este caso la extensión **no** es un conjunto finito. Además como la clase

de la x es una raíz del polinomio (es decir $1 + [x]^2 = 0$) identificando [x] con el número imaginario i tenemos que $\mathbb{R}[x]/(x^2+1)$ es como \mathbb{C} \square

Ejemplo 7. Consideramos el polinomio $f(x) = x^3 + x + 1$.

■ Visto como un polinomio de $\mathbb{Z}_3[x]$, él no es irreducible ya que $\overline{f}(1) = 0$. Por tanto, $\mathbb{Z}_3[x]/f$ no es un cuerpo. Esto no impide que la clase de la x tenga un inverso en $\mathbb{Z}_3[x]/f$. Veámoslo. Como $x \nmid x^3 + x + 1$, se tiene que

$$m.c.d.(x, x^3 + x + 1) = 1$$

así por el Lema de Bezout, existen $v, u \in \mathbb{Z}_3[x]$ de modo que

$$1 = v(x)x + u(x)(x^3 + x + 1).$$

En las operaciones en congruencias de $\mathbb{Z}_3[x]/f$, $u(x)(x^3+x+1)=0$, por tanto v es el inverso de x en $\mathbb{Z}_3[x]/f$. En concreto,

$$x^{3} + x + 1 = 0$$
 \Rightarrow $x(x^{2} + 1) = -1 = 2$

Luego $x(2x^2 + 2) = 1$ y así se tiene que $[x]^{-1} = [2x^2 + 2]$.

Por otro lado, $x-1|x^3+x+1$, en concreto

$$(x-1)(x^2+x+2) = x^3+x+1 = 0,$$

luego [x-1] es un divisor de cero en $\mathbb{Z}_3[x]/f$ y por tanto no puede tener inverso respecto del producto (en congruencias).

■ Visto como un polinomio de $\mathbb{Z}_5[x]$, él es irreducible ya que es de grado 3 y además $\overline{f}(a) \neq 0$, para todo $a \in \mathbb{Z}_5$ (¡comprobad!). Por tanto $\mathbb{Z}_5[x]/f$ es un cuerpo y todo elemento en él, no nulo, tiene inverso. Así $[x-1] \in \mathbb{Z}_5[x]/f$ tiene inverso. ¿Cómo lo calculamos? Como $m.c.d.(x-1,x^3+x+1)=1$, el Lema de Bezout y el algoritmo de Euclides nos permiten calcular el inverso \square

Referencias

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD COMPLUTENSE, 28040 MADRID, SPAIN

E-mail address: Cesar_Ruiz@mat.ucm.es