ELEMENTOS DE ECUACIONES DIFERENCIALES

COMPACIDAD. CONVERGENCIA UNIFORME.

COMPACIDAD.

La **compacidad** es una propiedad fundamental en todo el Análisis Matemático. Vamos a definirla en espacios normados, aunque es una propiedad que supera este marco.

Definición 1. Sea $(X, || \ ||)$ un espacio normado. Un subconjunto $K \subset X$ se llama **compacto** si para toda sucesión $(x_k)_{k=1}^{\infty} \subset K$ se puede encontrar una subsucesión $(x_{k_j})_{j=1}^{\infty}$ convergente a un límite $x \in K$, es decir

$$\exists \lim_{j \to \infty} x_{k_j} = x \in K.$$

Ejemplos 1. • El Teorema de Bolzano-Weierstrass nos dice que los intervalos cerrados [a, b] de la recta real \mathbb{R} son compactos.

• Usando el ejemplo anterior, coordenada a coordenada, se ve que los hiper-rectángulos en \mathbb{R}^n

$$R = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n]$$

son compactos.

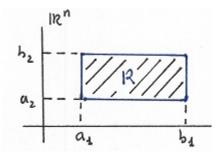


FIGURA 1. Rectángulo en \mathbb{R}^n .

Algunos hechos que hacen de los compactos esenciales en Análisis Matemático los da el siguiente Teorema.

Teorema 1. Sean $(X, || \ ||_X)$ y $(X, || \ ||_X)$ espacios normados. Sea $K \subset X$ un conjunto compacto. Si

$$T:X\to Y$$

2 C. RUIZ

es una aplicación (o operador) continuo, entonces

A: T sobre K está acotado.

B: Existe $\max\{ ||T(x)||_Y : x \in K \}$.

Demostración:

A: Supongamos que existe $x_k \in K$ tal que $||T(x_k)||_Y > k$ para todo $k \in \mathbb{N}$ (es decir suponemos que T no está acotado en K). Por ser K compacto existe $(x_{k_j})_{j=1}^{\infty}$ convergente a un límite $x \in K$. Por ser T continua

$$\lim_{j \to \infty} T(x_{k_j}) = T(x),$$

pero esto no es posible por ser la sucesión $(T(x_{k_j}))_j$ no acotada y por tanto no convergente. LLegamos a contradicción. Por tanto existe M > 0 tal que $||T(x)||_y \leq M$ para todo $x \in K$

B: Como $\{||T(x)||_y : x \in K\} \subset \mathbb{R}$ es un conjunto acotado existe su supremo

$$\alpha = \sup\{||T(x)||_y : x \in K\}.$$

Ahora para todo $k \in \mathbb{N}$, existe $x_k \in K$ tal que

$$\alpha - \frac{1}{k} \le T(x_k) \le \alpha.$$

Por ser K compacto existe $(x_{k_j})_{j=1}^{\infty}$ convergente a un límite $x \in K$. Por ser T continua $\lim_{j\to\infty} T(x_{k_j}) = T(x)$ y ahora es claro que $T(x) = \alpha$

Observación 1. El Teorema anterior, bien conocido para funciones continuas de una variable $f:[a,b] \to \mathbb{R}$ (con la misma demostración), es lo que se emplea para determinar que la norma $|| \quad ||_{\infty}$ sobre C[a,b] está bien definida.

Ejercicio 1. $(C([a,b],\mathbb{R}^n),||\ ||_{\infty})$ es un espacio normado, donde $C([a,b],\mathbb{R}^n)$ es el espacio de las trayectorias de \mathbb{R}^n definidas sobre el intevalo de la recta [a,b] o

$$C([a,b],\mathbb{R}^n) = \{f: [a,b] \to \mathbb{R}^n : f \text{ continua } \}$$

y donde

- \blacksquare Prueba que $C([a,b],\mathbb{R}^n)$ es un espacio vectorial
- Prueba que $||f||_{\infty}$ está bien definida (es decir que toda función continua sobre un intervalo cerrado alcanza su máximo).
- Prueba que $||f||_{\infty}$ es una norma (**Indicación:** si una función continua f verifica que existe $x_0 \in [a,b]$ tal que $f(x_0) \neq 0$, entonces prueba que $||f||_{\infty} > 0$).

En un curso de Cálculo Diferencial se ve el siguiente resultado.

Teorema 2. Un conjunto $K \subset \mathbb{R}^n$ es compacto si y solo si es cerrado y acotado.

Este resultado que es muy útil en \mathbb{R}^n sin embargo no se puede extender a espacios normados de dimensión (como espacios vectoriales) infinita (dim $X=\infty$). Así en ($C[a,b],||\ ||_{\infty}$) la caracterización de compacidad es mucho más restrictiva y se conoce con el nombre de Teorema de Ascoli-Arzela (ver Análisis Funcional).

Ejemplo 1. Se considera $(f_k(x) = x^k)_k \subset (C[0,1], || ||_{\infty})$. Este es un conjunto cerrado y acotado en C[0,1] que no es compacto.

Demostración: Por un lado $||x^k||_{\infty} \leq 1$, luego es un conjuto acotado. Ahora, es cerrado ya que una sucesión $g_j(x) = x^{k_j}$ es convergente (en norma $|| \quad ||_{\infty}$) si y solo si k_j es convergente (lo que sigue justifica esta afirmación). Ahora, no es compacto por que $(x^k)_k$ o cualquier subsucesión suya no converge uniformemente a ninguna función continua (ver Observación 3 más adelante)

CONVERGENCIA UNIFORME.

Las definiciones de **convergencia puntual y uniforme** de una **sucesión de funciones** suelen darse en un curso de Análisis Matemático de una variable.

Definición 2. Sea $f_k : [a,b] \subset \mathbb{R} \to \mathbb{R}^n$, $k \in \mathbb{N}$, una sucesión de funciones. Sea $f : [a,b] \to \mathbb{R}^n$.

A: Se dice que la sucesión de funciones $(f_k)_k$ converge puntualmente a la función f si para cada $x \in [a, b]$

$$\lim_{k \to \infty} f_k(x) = f(x).$$

B: Se dice que la sucesión de funciones $(f_k)_k$ converge uniformemente a la función f en [a,b] si

para todo $\epsilon > 0$ existe k_0 de modo que, para todo $k \ge k_0$ se tiene que $||f(x) - f_k(x)||_{\infty} < \epsilon$, para todo $x \in [a, b]$.

- Observación 2. La convergencia uniforme siempre implica la convergencia puntual (**Ejercicio**). El recíproco no es cierto (**Ejercicio**).
 - Decir que $(f_k)_k$ converge uniformemente a f en [a,b] es lo mismo que decir que $(f_k)_k$ es una sucesión convergente a f en la norma del conjuto de funciones $|| ||_{\infty}$ (Aunque se denotan

4 C. RUIZ

igual, no confundir al norma $|| \quad ||_{\infty}$ sobre \mathbb{R}^n y la norma $|| \quad ||_{\infty}$ sobre $C([a,b],\mathbb{R}^n)$.

En un primer curso de Análisis Matemático se suele probar lo siguiente.

Teorema 3. Sea $f_k : [a, b] \subset \mathbb{R} \to \mathbb{R}^n$, $k \in \mathbb{N}$, una sucesión de funciones que converge uniformente a una función f.

- A: Si cada f_k es continua en [a,b], entonces f es continua en [a,b] (la continuidad se conserva por la convergencia uniforme)
- B: Si cada f_k es integrable en [a,b] (entendendos que cada coordenada de f_k es integrable en [a,b]), entonces f es integrable en [a,b] y además

$$\lim_{k\to\infty}\int_a^b f_k(x)dx=\int_a^b f(x)dx,$$

$$donde\ \int_a^b f(x)dx=\left(\int_a^b f_1(x)dx,\int_a^b f_2(x)dx,....,\int_a^b f_n(x)dx\right)\in \mathbb{R}^n$$

Observación 3. Las funciones $x^k \in C[0,1]$, son continuas y convergen puntualmente a una función no continua (Ejercicio). Por ello no pueden converger uniformemente sobre [0,1]. Además, esto prueba que $(x^k)_k \subset (C[0,1],||\ ||_{\infty})$ no puede ser un conjunto compacto.

El Teorema anterior es esencial en las pruebas de los Teoremas de Existencia de soluciones de Ecuaciones Diferenciales.

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO Y MATEMÁTICA APLICADA, FA-CULTAD DE MATEMÁTICAS, UNIVERSIDAD COMPLUTENSE, 28040 MADRID, SPAIN E-mail address: Cesar Ruiz@mat.ucm.es