CÁLCULO

5. Aproximación de Funciones por Polinomios.

- 5.1. Calcula los polinomios de Taylor de grado 2 de las siguientes funciones centrados en los puntos que se indican.

- a) $f(x) = \cos x$, centrado en $a = \pi$. * b) $f(x) = \cosh x$, a = 0. c) $f(x) = \ln(x^2)$, a = 1. d) $f(x) = e^x$, a = 1. e) $f(x) = \frac{x}{1+x^2}$, a = 0. f) $f(x) = \frac{2x}{x+1}$, a = 0.
 - **5.2.** Determina el origen de las siguientes expresiones.
- a) $\cos x \simeq \frac{(x-\pi)^2}{2} 1$ si $x \simeq \pi$. * b) $\cosh x \simeq 1 + \frac{x^2}{2}$ si $|x| \simeq 0$.
- c) $\ln(x^2) \simeq 2(x-1) (x-1)^2$ si $x \simeq 1$. d) $e^x \simeq e(1 + (x-1) + \frac{(x-1)^2}{2})$ si $x \simeq 1$.
- e) $\frac{x}{1+x^2} \simeq x$ si $|x| \simeq 0$. f) $\frac{2x}{1+x} \simeq 2x 2x^2$ si $|x| \simeq 0$.
 - 5.3. Encuentra una estimación del error máximo que se puede cometer al tomar:
- 1) $\frac{(x-\pi)^2}{2} 1$ en lugar de $\cos x$ si $x \in [3, 1, 3, 2]$. * 2) $1 + \frac{x^2}{2}$ en lugar de $\cosh x$ si $x \in [-0, 2, 0, 2]$.
- 3) $2(x-1) (x-1)^2$ en lugar de $\ln(x^2)$ si $x \in [0,7,1,3]$.
- 4) $e(1 + (x 1) + \frac{(x-1)^2}{2})$ en lugar de e^x si $x \in [0, 8, 1, 2]$.
- 5) $e(1+(x-1)+\frac{(x-1)^2}{2})$ en lugar de e^x si $x \in [0,4,1,6]$.
- 5.4. Halla los polinomios de Taylor, del grado indicado y en el punto indicado, de las siguientes funciones:
- a) $f(x) = \cos x$, grado 3 en 0. b) $f(x) = \arctan x$, grado 3 en 0. c) $f(x) = x^5 + x^3 + x$, grado 4 en 0. d) $f(x) = \lg x$, grado 4 en 2.
- * 5.5. Un hilo pesado, bajo la acción de la gravedad, se comba formando la catenaria $y = a \cosh \frac{x}{a}$. Demuestra que, para valores pequeños de |x|, la forma que toma el hilo puede ser representada por la parábola $y = a + \frac{x^2}{2a}$
- 5.6. Calcula las series de Taylor de las funciones siguientes centradas en los puntos que se indican.
- a) $f(x) = e^x$, centrada en a = 1. b) $f(x) = (x 1)e^{x+1}$, a = 1. c) $f(x) = e^x(x 1)^5$, en a = 1. d) $f(x) = \cos x$, $a = \frac{\pi}{4}$. e) $f(x) = \sin x$,
- $\begin{array}{ll}
 a \pi \\
 * f) f(x) = \frac{\sin x}{(x \pi)}, & \text{en } a = \pi. & \text{g) } f(x) = e^{-x^2}, & a = 0. \\
 \text{h) } f(x) = \ln(1 + x^2), & a = 0. & * i) f(x) = \frac{1}{1 + x^4}, & a = 0.
 \end{array}$
- - **5.7.**a) Prueba la siguiente desigualdad:

$$|\sin x - (x - \frac{x^3}{6} + \frac{x^5}{120})| < \frac{1}{5040}$$
 para todo $|x| \le 1$.

- b) Encuentra n_0 tal que $|\cos x \sum_{k=0}^{n_0} \frac{x^{2n}}{(2n)!} (-1)^k| < \frac{1}{10^{-4}}$ para todo $x \in [0, \pi/2]$.
 - **5.8.** Calcula los siguientes números con un error inferior a 10^{-3} ;
- 2) e^{-1} . * 3) $\arctan \frac{1}{10}$. 1) sen 1. 4) $\ln 2$.
- * significa, problema propio del grupo.