ÁLGEBRA LINEAL

Diferentes Tipos de Matrices.

Definición 1. (Transposición). Dada una matriz $A = (a_{i,j}) \in M_{n \times m}$, se llama **matriz transpuesta** de A a la matriz

$$A^T = (b_{i,i}) \in M_{m \times n}$$

donde

$$b_{i,i} = \frac{a_{j,i}}{a_{j,i}}$$
 para todo $j = 1, 2, ..., \frac{m}{n}, i = 1, 2, ..., \frac{n}{n}$.

Ejemplos 1.

$$A = \begin{pmatrix} 1 & 1 & 0 \\ \pi & 2 & 7 \\ 3 & 1 & 0 \end{pmatrix}; \qquad A^T = \begin{pmatrix} 1 & \pi & 3 \\ 1 & 2 & 1 \\ 0 & 7 & 0 \end{pmatrix}.$$

$$A = \begin{pmatrix} 3 & 4 & 7 \\ 0 & 1 & 8 \end{pmatrix}; A^T = \begin{pmatrix} 3 & 0 \\ 4 & 1 \\ 7 & 8 \end{pmatrix}.$$

La transposición tiene algunas propiedades.

Proposición 1. Para cualquier elección de matrices $A, B \in M_{n \times m}$, $C \in M_{m \times \tilde{n}} \ y \ \lambda \in \mathbb{R} \ se \ verifica \ que:$

- a) $(A^T)^T = A$.
- b) $(A + B)^T = A^T + B^T$.
- c) $(\lambda A)^T = \lambda A^T$
- d) $(AC)^T = C^T A^T$

Demostración: Las partes a), b) y c) quedan como sencillos ejercicios.

d) Sean
$$A = (a_{i,j})$$
 $i = 1, 2, ..., n$ y $C = (c_{j,k})$ $j = 1, 2, ..., m$ $k = 1, 2, ..., \tilde{n}$

d) Sean
$$A = (a_{i,j})$$
 $i = 1, 2, ..., n$ $j = 1, 2, ..., m$ $j = 1, 2, ..., m$

$$A.C = (b_{i,k})$$
 $i = 1, 2, ..., \frac{n}{n}$ $k = 1, 2, ..., \tilde{n}$

C. RUIZ

donde

2

$$b_{i,k} = \sum_{j=i}^{m} a_{i,j} c_{j,k} = \sum_{j=1}^{m} e_{k,j} d_{j,i}.$$

Así
$$(AC)^T = (f_{k,i}) = (b_{i,k}) = C^T A^T$$

Definición 2. A) Una matriz cuadrada A se llama **simétrica** si $A^T = A$.

- B) Una matriz cuadrada A se llama **antisimétrica** si $A^T = -A$.
- C) Una matriz cuadrada A se llama **ortogonal** si $AA^T = I$, es decir si

$$A^{-1} = A^T.$$

D) Una matriz cuadrada A se llama **regular** si existe A^{-1} .

Observación 1. Veremos mas adelante que el qué $A \in M_n$ sea regular es equivalente a que el rango de A sea n o también a que su determinate $|A| \neq 0$.

Ejemplos 2. $\bullet \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 3 \\ 2 & 3 & 0 \end{pmatrix} es una matriz simétrica.$

- $\bullet \begin{pmatrix}
 0 & -1 & -2 \\
 1 & 0 & -3 \\
 2 & 3 & 0
 \end{pmatrix} es una matriz antisimétrica.$

Demostración:
$$AA^{T} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 ya que $\cos^{2} \theta + \sin^{2} \theta = 1$

Considerando la matriz A del último ejemplo y $x=\left(\begin{array}{c}x_1\\x_2\end{array}\right)\in\mathbb{R}^2,$ entonces el producto

$$Ax = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \cos \theta - x_2 \sin \theta \\ x_1 \sin \theta + x_2 \cos \theta \end{pmatrix} = (x_1 + x_2 i)(\cos \theta + i \sin \theta)$$

donde el último producto es un producto de números complejos. Con lo que sabemos de complejos, el producto de la matriz A con x lo que hace es girar un ángulo θ (en el sentido contrario a las agujas del reloj) el vector del plano x.

Respecto de las nuevas definiciones tenemos las siguientes propiedades.

Proposición 2. Sea A una matriz cuadrada, entonces

a)

$$A + A^T$$

es una matriz simétrica.

b)

$$A - A^T$$

es una matriz antisimétrica.

c) A se puede escribir como suma de una matriz simétrica y otra antisimétrica.

Demostración: Sean $A = (a_{i,j})$ y $A^T = (b_{i,j}) = (a_{j,i})$.

a) Sea $A + A^T = (c_{i,j})$, donde

$$c_{i,j} = a_{i,j} + b_{i,j} = a_{i,j} + \frac{\mathbf{a}_{j,i}}{\mathbf{a}_{j,i}} =$$

$$a_{j,i} + a_{i,j} = a_{j,i} + b_{j,i} = c_{j,i}$$
.

Luego la matriz $A + A^T$ es simétrica.

b) Sea $A - A^{T} = (c_{i,j})$, donde

$$c_{i,j} = a_{i,j} - b_{i,j} = a_{i,j} - \frac{\mathbf{a}_{j,i}}{\mathbf{a}_{j,i}} =$$

$$-(a_{j,i} - a_{i,j}) = -(a_{j,i} - b_{j,i}) = -c_{j,i}.$$

Luego la matriz $A + A^T$ es antisimétrica.

c) Se deja como ejercicio

Proposición 3. Sean A y B matrices cuadradas regulares, entonces

- a) La inversa de A, que sabemos que existe, es única.
- b) $(A^1)^{-1} = A$.
- c) $(AB)^{-1} = B^{-1}A^{-1}$
- d) $(A^T)^{-1} = (A^{-1})^T$

Demostración: a) y c) ya las probamos. b) es muy fácil (ejercicio).

d) Observemos que

$$(AA^{-1})^T = I^T = I.$$

De las propopiedades de la transposición junto con lo anterior se sigue que

$$(AA^{-1})^T = (A^{-1})^T A^T = I,$$

luego de aquí se deduce que

$$(A^T)^{-1} = (A^{-1})^T$$

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO Y MATEMÁTICA APLICADA, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD COMPLUTENSE, 28040 MADRID, SPAIN *Email address*: Cesar_Ruiz@mat.ucm.es