Bases en un Espacio Vectorial.

Definición 1. (Sistema de Generadores) Un sistemas de vectores $\{v_1, v_2,, v_n\} \subset V$ de un espacio vectorial V se dice que es un Sistema de Generadores de V si para todo $u \in V$ este es una combianción lineal finita de elementos del sistema $\{v_1, v_2,, v_n\}$

Ejemplos 1. • $\{e_k\}_{k=1}^n \subset \mathbb{R}^n$ es un sistema de generadores de \mathbb{R}^n , como vimos en la lección anterior.

■ Sea $P[x] = \{a_m x^m + ... + a_1 x + a_0 : a_m, ..., a_1, a_0 \in \mathbb{R}, m \in \mathbb{N} \}$ el conjunto de los polinomios con coeficientes reales. La suma de polinomios y el producto por escalares hacen de P[x] un espacio vectorial. El sistema

$$\{x^m\}_{m=0}^{\infty}$$

es un sistema de generadores de P[x].

Demostración: Sea $Q(x) = a_m x^m + ... + a_1 x + a_0$ un polinomio de grado m de P[x]. Claramente Q es combinación lineal de

$$\{1, x, x^2, ..., x^m\} \subset \{x^m\}_{m=0}^{\infty} \quad \Box$$

Un espacio vectorial puede tener un sistema de generadores finito o infinito. Aquí nos vamos a concentrar en los espacios vectoriales con sistemas de generadores finitos.

Definición 2. Un espacio vectorial V se dice que es de dimensión finita si tiene al menos un sistema de genradores finito.

Definición 3. Un sistema de generadores de un espacio vectorial V se dice que es una **Base** si los vectores del sistema son linealmente independientes.

Ejemplos 2. • $\{e_k\}_{k=0}^n \subset \mathbb{R}^n$ es una base de \mathbb{R}^n , como vimos en la lección anterior. A esta base se le llama Base Canónica.

• Sea $e_{k,r} \in M_{n \times m}(\mathbb{R})$ definida por

$$e_{k,r} = (a_{i,j})$$
 donde $a_{i,j} = \begin{cases} 1 & si & i = k, j = r \\ 0 & en \ otro \ caso \end{cases}$.

El sistema $\{e_{k,r}\}_{k=1,...,n;j=1,...,m}$ es un base del espacio vectorial de las matrices $M_{n\times m}(\mathbb{R})$.

1

Ejercicio 1. Se consideran los vectores $u_1 = (1,0,2), u_2 = (1,2,0)$ y $u_3 = (3,3,1)$ de \mathbb{R}^3 . ¿Forman estos tres vectores una base de \mathbb{R}^3 ?

Demostración: En primer lugar vamos a ver si son linealmente independientes o no. Escribimos

$$0 = xu_1 + yu_2 + zu_3$$

es decir

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + y \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + z \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix}.$$

Igualando coordenadas, tenemos el sistema lineal

Este sistema lo resolvemos por Gauss, haciendo $E_3 - 2E_1$

y ahora si $E_3 + E_2$

Este sistema triangular tiene una única solución

$$x = y = z = 0,$$

de lo cuál deducimos que nuestros tres vectores son linealmente independientes.

Veamos ahora si forma un sistema de generadores. Tomamos un vestor cualquiera

$$u = (a, b, c) \in \mathbb{R}^3$$
.

Queremos ver si u se puede poner como combinación lineal de nuestros tres vectores, es decir si existen $x, y, z \in \mathbb{R}$ de modo que

$$u = xu_1 + yu_2 + zu_3$$

es decir si

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + y \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + z \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix}.$$

Igualando coordenadas, tenemos el sistema lineal

Este sistema, como antes, lo resolvemos por Gauss. Haciendo $E_3 - 2E_1$

y ahora si $E_3 + E_2$

$$x + y + 3z = a$$

 $2y + 3z = b$
 $-2z = -2a + b$

Este sistema triangular tiene una única solución, $z=\frac{2a-b}{2},...$ etc Luego u se puede escribir como una combianción lineal de los vectores u_1,u_2 y u_3 . Luego forman un sistema de genereradores.

Como $\{u_1, u_2, u_3\}$ son un sistema de generadores de \mathbb{R}^3 y los tres vectores son linealmente independientes, podemos concluir que el sistema forma una Base \square

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO Y MATEMÁTICA APLICADA, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD COMPLUTENSE, 28040 MADRID, SPAIN E-mail address: Cesar Ruiz@mat.ucm.es