FUNCIONES ELEMENTALES. SENO Y COSENO.

1.- Deriva las siguientes funciones:

a)
$$f(x) = \arctan(\tan(x)\arctan(x))$$

a)
$$f(x) = \arctan(\tan(x)\arctan(x))$$
 b) $f(x) = \arcsin(\frac{1}{\sqrt{1+x^2}})$

2.- Calcula los límites que se indican:

a)
$$\lim_{x \to 0} \frac{\cos x - 1 + (x^2/2)}{x^4}$$
 b) $\lim_{x \to 0} (\frac{1}{x} - \frac{1}{\sin x})$

$$b) \lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$$

3.- Dada la función $f(x) = \frac{\sin x}{x}$, con f(0) = 0, calcula si es posible f'(0) y f''(0).

4.- Halla, si existen,
$$\lim_{x\to\infty} x \operatorname{sen}(1/x)$$
 y $\lim_{x\to 0} \frac{\int_0^{x^2} \cos(t^{1/2}) dt}{\operatorname{sen}^2 x}$.

5.- Determina, si existen,
$$\lim_{x\to\infty} \frac{\sin x}{x}$$
 y $\lim_{x\to\infty} \sin x$.

6.- Dibuja las gráficas de las siguientes funciones:

a)
$$f(x) = \sin^2 x$$

a)
$$f(x) = \sin^2 x$$
 b) $f(x) = \sin(x/2)$

c)
$$f(x) = \sin x^2$$
.

$$d) f(x) = \tan x - x$$

e)
$$f(x) = \sin x - x$$

d)
$$f(x) = \tan x - x$$
 e) $f(x) = \sin x - x$ f) $f(x) =\begin{cases} (\sin x)/x, & x \neq 0 \\ x, & x = 0 \end{cases}$.

7.- Demostra que cos(x + y) = cos x cos y - sen x sen y.

8.- Deduce las fórmulas de sen 2x, $\cos 2x$, $\sin 3x$ y $\cos 3x$ en términos de sen x y $\cos x$. Prueba que $sen(x + \pi/2) = cos x$.

9.- a) Expresar sen 2x y \cos^2x en función de $\cos2x$.

b) Deduce de a) que
$$\cos x/2 = \sqrt{\frac{1+\cos x}{2}}$$
 y que $\sin x/2 = \sqrt{\frac{1-\cos x}{2}}$.

y que sen
$$x/2 = \sqrt{\frac{1-\cos x}{2}}$$
.

10.- Prueba que para todo par de números A y B existen a y b tales que $A \operatorname{sen}(x+B) =$ $a \operatorname{sen} x + b \operatorname{cos} x$.

11.- Prueba que si x, y, x + y no son de la forma $k\pi + \pi/2, k \in \mathbb{Z}$, se tiene que $\tan(x+y) = \pi/2$ $\tan x + \tan y$

 $1 - \tan x \tan y$

12.- Escribe sen(arctan x) y cos(arctan x) de manera que no aparezcan funciones trigonométricas.

13.- Comprueba que si
$$\tan x/2 = u$$
, entonces sen $x = \frac{2u}{1+u^2}$ y $\cos x = \frac{1-u^2}{1+u^2}$.

14.- a) Demuestra que $|\sin x - \sin y| \le |x - y|$.

b) Prueba que si $x \neq y$, entonces $|\sin x - \sin y| < |x - y|$.

15.- Traza las gráficas de las funciones trigonométricas:

b) $\tan x$

c) $\csc x$

d) $\cot x$

(cotangente).

16.- a) Prueba que para $0 < x < \pi/4$ se tiene que

$$\frac{\sin x}{2} < \frac{x}{2} < \frac{\sin x}{2\cos x}.$$

b) Deduce que $\cos x < \frac{\sin x}{r} < 1$ y que $\lim_{x\to 0} \frac{\sin x}{r} = 1$.