FUNCIONES ELEMENTALES. LA EXPONENCIAL.

1.- Calcula la derivada de las funciones:

d)
$$f(x) = \text{sen}(x^{\text{sen}(x^{\text{sen}(x)})})$$
 e) $f(x) = (\ln x)^{\ln x}$ f) $f(x) = \lg_{(e^x)}(\text{sen } x)$

2.- Calcula los siguientes límites:

a)
$$\lim_{x\to 0} \frac{e^x - 1 - x - \frac{x^2}{2} - \frac{x^3}{6}}{x^3}$$
 b) $\lim_{x\to 0} \frac{\ln(1+x) - x - \frac{x^2}{2} - \frac{x^3}{6}}{x^3}$.

3.- Dibuja las gráficas de las funciones:

a)
$$e^{x+1}$$
 b) $e^{\sin x}$.

4.- Se consideran las funciones:

$$\operatorname{senh} x = \frac{e^x - e^{-x}}{2}$$
 seno hiperbólico y $\operatorname{cosh} x = \frac{e^x + e^{-x}}{2}$ coseno hiperbólico.

La tangente hiperbólica se define por $\tanh x = \frac{\sinh x}{\cosh x}$.

- a) Traza las gráficas de las tres funciones anteriores.
- **b)** Comprueba que:

1)
$$\tanh x = 1 - \frac{2}{e^{2x} + 1}$$
 2) $\cosh^2 x - \sinh^2 x = 1$ 3) $\tanh^2 x + \frac{1}{\cosh^2 x} = 1$

$$4) (\operatorname{senh} x)' = \operatorname{cosh} x$$

$$5) (\cosh x)' = \sinh x$$

4)
$$(\operatorname{senh} x)' = \cosh x$$
 5) $(\cosh x)' = \operatorname{senh} x$ 6) $(\tanh x)' = \frac{1}{\cosh^2 x}$.

7)
$$\operatorname{senh}(x+y) = \operatorname{senh} x \cosh y + \cosh x \operatorname{senh} y$$
 8) $\cosh(x+y) = \cosh x \cosh y + \sinh x \operatorname{sen} y$.

8)
$$\cosh(x+y) = \cosh x \cosh y +$$

c) Prueba que la función senh x admite una función inversa que está definida en toda la recta real y que la función $\cosh x$ admite una función inversa definida en $[1,\infty)$.

d) Comprueba que: 1)
$$\operatorname{senh}(\cosh^{-1}) = \sqrt{x^2 - 1}$$
 2) $(\operatorname{senh}^{-1})'(x) = \frac{1}{\sqrt{1 + x^2}}$ 3) $\operatorname{cosh}(\operatorname{senh}^{-1}) = \sqrt{x^2 + 1}$ 4) $(\operatorname{cosh}^{-1})'(x) = \frac{1}{\sqrt{x^2 - 1}} \operatorname{si} x > 1$.

- e) Halla una fórmula explícita de senh⁻¹ y de cosh⁻¹ (estas funciones suelen denominarse arqumento del seno hiperbólico y argumento del coseno hiperbólico). Indicación: ten en cuenta el Ejercicio 7.
 - **5.-** Estudia la continuidad y derivabilidad de la función f definida por:

$$f(x) = \frac{x \ln x}{x - 1}$$
 si $x > y$ $x \neq 1$,

$$f(1) = 1$$
 y $f(x) = 0$ si $x \le 0$.

6.- Se considera la función $f(x) = e^{-1/x^2}$ si $x \neq 0$ y f(0) = 0.

- a) Prueba f es derivable y calcula f' y f''.
- b) Demuestra por inducción sobre n que existe la derivada n-ésima de f en cero y que $f^{(n)}(0) = 0$.

7.- Prueba que:

a)
$$(\tanh^{-1})'(x) = \frac{1}{1-x^2}$$
, si $|x| < 1$.

b)
$$\tanh^{-1}(x) = \frac{1}{2} \ln(\frac{1+x}{1-x}).$$

c) Usando lo anterior calcula $\int_a^b \frac{dx}{1-x^2}$, para |a|, |b| < 1.

- 8.- Comprueba que $\frac{1}{1-x^2} = \frac{1}{2}(\frac{1}{1-x} + \frac{1}{1+x})$. Integra esta función en [a,b] y compara con el problema anterior.
 - 9.- Prueba que $\frac{e^x}{r^n} > \frac{e^n}{n^n}$ si x > n.
 - **10.-** ¿Por qué la función $\ln x$ es uniformemente continua en $[1, \infty)$ y no lo es en (0, 1]?
 - 11.- Calcula las soluciones de la ecuación:

$$e^{\frac{-1}{(1-x^2)^2}} = \frac{1}{4}.$$

- **12.-** Calcula f'(x), $x \neq 0$, para la función $f(x) = \ln |x|$.
- **13.-** Prueba que si f' = cf, para $c \in \mathbb{R}$ una constante, entonces $f(x) = Ke^{cx}$.
- **14.-** Comprueba que $\lim_{x\to\infty} (1+a/x)^x = e^a$ y que $\ln b = \lim_{x\to\infty} x(b^{1/x}-1)$.
- **15.-** Sean $x_1, x_2, x_n > 0$ y $p_1, p_2, ..., p_n > 0$ con $\sum_{i=1}^n p_i = 1$. a) Prueba que $x_1^{p_1} x_2^{p_2} x_n^{p_n} \le p_1 x_1 + p_2 x_2 + ... + p_n x_n$. b) Deduce que $\sqrt[n]{x_1 x_2 ... x_n} \le \frac{1}{n} (x_1 + x_2 + + x_n)$.

- 16.- Se considera una función dos veces derivable f sobre $\mathbb R$ de modo que f''-f=0 y f(0) = f'(0) = 0.
- a) Prueba que $f^2 (f')^2 = 0$.
- b) Prueba que si, $f(x) \neq 0$ para todo $x \in (a,b)$, entonces $f(c) = c^{-x}$ o $f(x) = ce^{x}$ para alguna constante c y para todo $x \in (a, b)$.
- c) Supongamos que existe x_0 de mod que $f(x_0) \neq 0$. Deduce que existe $a \in [0, x_0)$ de modo que $f(x) \neq 0 \text{ si } x \in (a, x_0) \text{ y } f(a) = 0.$
- d) Deduce de B) y c) que f = 0.
- 17.- Prueba que si f'' f = 0, entonces $f(x) = ae^x + be^{-x}$ para cierto valores $a, b \in \mathbb{R}$. Deduce que existen $A; B \in \mathbb{R}$ tales que $f(x) = A \cosh x + B \sinh x$.