PROPIEDADES DE LOS NÚMEROS REALES.

- 1.- Prueba que no existe $r \in \mathbb{Q}$ de modo que $r^2 = 3$.
- 2.- Sea $n \in \mathbb{N}$ con una descomposición en factores primos dada por

$$n = p_1^{s_1} p_2^{s_2} p_k^{s_k}$$

donde para algún $i \in \{1, 2, ..., k\}$ s_i es impar. Prueba que **no** existe $r \in \mathbb{Q}$ de modo que $r^2 = n$.

- **3.-** Dados dos números $x,y\in\mathbb{Q}$ tales que $\sqrt{x}+\sqrt{y}\in\mathbb{Q}$, prueba que $\sqrt{x},\sqrt{y}\in\mathbb{Q}$.
- **4.-**Sea $p \in \mathbb{Q}$, $p \neq 0$ y sea $x \in \mathbb{R} \setminus \mathbb{Q}$. Prueba que p + x y px son irracionales, es decir que pertenecen a $\mathbb{R} \setminus \mathbb{Q}$.
- **5.-** Comprueba que $\sqrt{2} \sqrt{3}$ es irracional y que $1 \sqrt[3]{2 + \sqrt{5}}$ es algebraico. **6.-** Comprueba que las propiedades de la suma de $\mathbb R$ implica las siguientes propiedades :
- a) Si x + y = x + z, entonces y = z.
- **b)** Si x + y = x, entonces y = 0.
- c) Si x + y = 0, entonces x = -y.
- **d**) -(-x) = x.
 - 7.- Comprueba que las propiedades del producto de $\mathbb R$ implica las siguientes propiedades :
- a) Si $x \neq 0$ y xy = xz, entonces y = z.
- **b)** Si $x \neq 0$ y xy = x, entonces y = 1.
- c) Si $x \neq 0$ y xy = 1, entonces y = 1/x.
- d) Si $x \neq 0$, entonces x = 1/(1/x).
- 8.- De las propiedades de cuerpo de \mathbb{R} comprueba que se deducen las siguientes propiedades para cualesquiera $x,y,z\in\mathbb{R}$:
 - a) 0x = 0; b) Si $x \neq 0$ y $y \neq 0$, entonces $xy \neq 0$.
- c) -(x)y = -(xy) = x(-y); d) (-x)(-y) = xy.
 - 9.- Usando que $\mathbb R$ es un cuerpo ordenado, coprueba que se verifican las siguientes propiedades:
- a) Si x > 0, entonces -x < 0 y viceversa.
- **b)** Si x > 0 e y < z, entonces xy < xz.
- c) Si x < 0 e y < z, entonces xy > xz.
- d) Si $x \neq 0$, entonces $x^2 > 0$. En particular 1 > 0.
- e) Si 0 < x < y, entonces 0 < 1/y < 1/x.

- 10.- Observa que las propiedades que se demuestran en los problemas 4,5,6 y 7 se verifican en todo cuerpo ordenado; en particular en \mathbb{Q} .
- 11.- Sea $A \subset \mathbb{R}$ un conjunto acotado inferiormente. Prueba que existe inf A (Indicación: considerar B el conjunto de cotas inferiores de A).
- **12.-** Si $a \le b$ y para todo $\epsilon > 0$ se verifica que $a \le b \le a + \epsilon$, prueba que a = b. Del mismo modo prueba que si para todo $\epsilon > 0$ se verifica que $b \epsilon \le a \le b$, entonces a = b.
- 13.- Sea A un subconjunto de \mathbb{R} y sea α una cota superior de A. Comprueba que si $\alpha \in A$, entonces $\alpha = \sup A$.
 - 14.- Si A y B son dos subconjuntos acotados de \mathbb{R} , prueba que

$$\sup A \cup B = \max \{ \sup A, \sup B \} \qquad \text{y} \qquad \inf A \cup B = \min \{ \inf A, \inf B \}.$$

- **15.-**Sea A un subsconjuto no vacío de \mathbb{R} y se $\alpha \in \mathbb{R}$. Prueba que α es cota superior de A si y solo si se verifica que si $t \in \mathbb{R}$ y $t\alpha$ entonces $t \notin A$.
- **16.-** Sea A un subconjunto no vacío y acotado de \mathbb{R} . Sea $A_0 \subset A$ con $A \neq \emptyset$. Prueba que A_0 está acotado y que

$$\inf A \leq \inf A_0 \leq \sup A_0 \leq \sup A$$
.

17.- Sean $A, b \subset \mathbb{R}$ dos conjuntos no vacíos y sea $\alpha \in \mathbb{R}$. Se definen los siguientes subconjuntos de \mathbb{R} :

$$A + B = \{ x \in \mathbb{R} : x = a + b \quad \text{donde} \quad a \in A \text{ y } b \in B \}$$

У

$$\alpha A = \{ x \in \mathbb{R} : x = \alpha a \quad \text{donde} \quad a \in A \}.$$

Prueba que:

- a) $\sup(A+B) = \sup A + \sup B$ b) $\inf(A+B) = \inf A + \inf B$.
- c) inf $\alpha A = \alpha$ inf A y sup $\alpha A = \alpha$ sup A, si $\alpha > 0$.
- d) ínf $\alpha A = \alpha \sup A$ y $\sup \alpha A = \alpha$ ínf A, si $\alpha < 0$.
- **18.-** Sea $A \subset \mathbb{R}$, con $0 \in A$, y sea $B \subset \mathbb{R}$, B conjunto acotado. ¿Cuál de las siguientes afirmaciones **no** es cierta en ningún caso?
 - a) $\sup(A+B) \le \sup A + \sup B$ b) $\sup B \le \sup A$.
 - c) $\sup(A+B) < \sup B$ d) No existe el supremo de A.
 - **19.-** Sea $p \in \mathbb{Q}$, $p \neq 0$ y sea $x \in \mathbb{R} \setminus \mathbb{Q}$. Prueba que p + x y px son irracionales.
 - **20.-** Encuéntrese los números reales x tales que:

a)
$$4 - x < 3 - 2x$$
 b) $x^2 < 3x + 4$ c) $\frac{1}{x} + \frac{1}{1 - x} > 0$.

- **21.-** Demuestra que para cualquier x < 0 se verifica que $-x \frac{1}{x} \ge 2$.
- **22.-** Sea $A = \{ x \in \mathbb{R} : -3 \le |x| 5 \le 1 \}$. El sup A es :
- a) 6 b) 3 c) no existe d) 5
 - 23.- encuentra y representa sobre la recta real los número x que verifican:

a)
$$|x^2 - 1| \le 3$$
 b) $|x - 1| > |x + 1|$.