SERIES DE FUNCIONES.

1.- Estudia la convergencia puntual y uniforme de las siguientes series de funciones $\sum_n f_n(x)$ en los intervalos que se indican:

a)
$$f_n(x) = \frac{1}{n^2 + x^2}$$
, en \mathbb{R}

b)
$$f_n(x) = \frac{1}{n^2 x^2}$$
, en $\mathbb{R} \setminus \{0\}$

a)
$$f_n(x) = \frac{1}{n^2 + x^2}$$
, en \mathbb{R} b) $f_n(x) = \frac{1}{n^2 x^2}$, en $\mathbb{R} \setminus \{0\}$ c) $f_n(x) = \frac{x}{n^2}$, en $[-M, M]$

d)
$$f_n(x) = \frac{1}{1+x^n}$$
, en $(1, \infty)$

d)
$$f_n(x) = \frac{1}{1+x^n}$$
, en $(1, \infty)$ e) $f_n(x) = \frac{x^n}{1+x^n}$, en $[0, a]$ con $a < 1$; también en $[0, 1]$.

2.- ¿Cuál de las siguientes series de funciones converge uniformemente en el intervalo [50, 72]?

$$a) \sum_{n=1}^{\infty} \frac{x^n + 1}{n^2}$$

a)
$$\sum_{n=1}^{\infty} \frac{x^n + 1}{n^2}$$
 b) $\sum_{n=1}^{\infty} \frac{nx - 1}{2 + \sin n}$ c) $\sum_{n=1}^{\infty} \frac{x^n}{2^n}$ d) $\sum_{n=1}^{\infty} \frac{x + n}{n!}$

c)
$$\sum_{n=1}^{\infty} \frac{x^n}{2^n}$$

$$d) \sum_{n=1}^{\infty} \frac{x+n}{n!}$$

3.- Se considera
$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2 x + 1}$$
.

- a) Halla el dominio de convergencia absoluta de la serie.
- b) ¿En que intervalo hay convergencia uniforme?¿Donde no hay convergencia uniforme? ¿Donde es f continua?

4.- Estudiar la convergencia puntual, absoluta y uniforme de las series:

a)
$$\sum_{n=1}^{\infty} \frac{2^n}{n!} \operatorname{sen} nx$$

a)
$$\sum_{n=1}^{\infty} \frac{2^n}{n!} \operatorname{sen} nx$$
 b) $\sum_{n=1}^{\infty} \frac{3^n}{n!} (1 + \cos^2 x)$.

5.- Comprueba que la función $f(x) = \sum_{n=0}^{\infty} \frac{\sin nx}{n^3}$, para $x \in \mathbb{R}$, tiene derivada continua.

6.- Escribe en forma de serie las siguientes integrales:

$$\int_{1}^{a} \frac{\sin t}{t} dt \qquad y \qquad \int_{1}^{a} \frac{e^{-x^{2}}}{x} dx$$

7.- Estudia si la función $f(x) = \frac{\sin nx}{n^3}$, para $x \neq 0$ y f(0) =1, es desarrollable en serie de potencias en x.

8.- Encontra los intervalos de convergencia de las siguientes series de potencias. Determinar la convergencia en los extremos.

a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

b)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

c)
$$\sum_{n=1}^{\infty} x^n$$

a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$
 b) $\sum_{n=1}^{\infty} \frac{x^n}{n}$ c) $\sum_{n=1}^{\infty} x^n$ d) $\sum_{n=1}^{\infty} 2^n x^{n!}$

e)
$$\sum_{n=1}^{\infty} \frac{n}{2^n} x^n$$

e)
$$\sum_{n=1}^{\infty} \frac{n}{2^n} x^n$$
 f) $\frac{x}{2} + \frac{x^2}{3} + \frac{x^3}{2^2} + \frac{x^4}{3^2} + \frac{x^5}{2^3} + \frac{x^6}{3^3} + \dots$ g) $\sum_{n=1}^{\infty} \frac{n^2}{2^n} x^n$.

g)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n} x^n$$

9.- Calcula el radio de convergencia de la serie $\sum_{n=1}^{\infty} a_n x^n$, en los siguinetes casos:

a)
$$a_n = 1/n^n$$

b)
$$a_n = n^n / n!$$

a)
$$a_n = 1/n^n$$
 b) $a_n = n^n/n!$ bc $a_n = 1/n^{n/2}$

d) $a_n = 1$ si n es un cuadrado de un número natural y $a_n = 0$ en otro caso.

e) Si $a_n = 1$ cuando n = m! para $m \in \mathbb{N}$ y a = 0 en otro caso.

f) Si
$$a_{2n+1}=\frac{1\cdot 3\cdot 5\cdot\cdot (2n-1)}{1\cdot 2\cdot 4\cdot\cdot 2n}$$
 y $a_{2n}=0,$ para $n\geq 1.$

10.- Sean las series de funciones:

$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}, \qquad \sum_{n=1}^{\infty} \frac{x^n}{n} \qquad y \qquad \sum_{n=1}^{\infty} x^2.$$

Comprueba que la primera serie converge en [-1,1]; que la tercera no converge en ningún punto de $[-1,1] \setminus \{0\}$ y que para la segunda hay al menos un punto de [-1,1] en la que la serie no es convergente

11.- Se considera la serie de potencias $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{4^n (n!)^2}$. Comprueba que su radio de convergencia es infinito. Si se denota por f la función suma, comprueba que

$$xf''(x) + f'(x) + xf(x) = 0$$
 para todo $x \in \mathbb{R}$.

- 12.- Calcula la derivada décima de la función $f(x) = x^6 e^x$ en x = 0.
- 13.- Dada la serie de potencias $\sum_{n=0}^{\infty} a_n x^n$ de modo que existen α y β de modo que

$$a_n + \alpha a_{n-1} + \beta a_{n-2} = 0$$
 para cada $n \ge 2$:

- a) Demuestra que esta serie tiene radio de convergencia no nulo.
- b) Demuestra que si x es un número real en el que la serie es convergente, la suma de la serie, S(x), verifica que:

$$(1 + \alpha x + \beta x^2)S(x) = a_0 + (\alpha a_0 + a_1)x.$$

- **14.-** Demuesta que $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2$.
- 15.- Determina los radios de convergencia y las funciones suma de las siguientes series de potencias:

a)
$$\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$
 b) $\sum_{n=1}^{\infty} \frac{(-1)^n 2nx^{2n+1}}{(2n+1)!}$ c) $\sum_{n=1}^{\infty} (n^3+1)x^{n-1}$.

16.- ¿Cuál de las siguientes funciones **no** es continua en x = 2?

a)
$$f(x) = \int_0^x \sqrt{1 + \sin^2 t} dt$$
 b) $f(x) = \sum_{n=1}^\infty \frac{x^{n-1}}{n!}$

b)
$$f(x) = \int_0^x \frac{1}{\sqrt{|t-2|}} dt$$
 d) $f(x) = \sum_{n=1}^\infty \frac{(3-x)^n}{n}$.

17.-Representar la gráfica de la función $f(x) = \sum_{n=1}^{\infty} \frac{nx^{2n}}{(2n)!}$.