ANÁLISIS MATEMÁTICO BÁSICO.

LAS FUNCIONES TRIGONOMÉTRICAS.

La función $f(x) = \sqrt{1-x^2}$ es continua en el intervalo [-1,1]. Su gráfica como vimos es la semicircunferencia de radio uno y centro el origen de coordenadas.

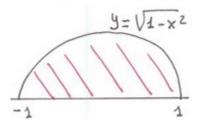


FIGURA 1. Círculo unidad.

Por ello la siguiente definición tiene sentido.

Definición. 1. Llamamos número π (pi) al valor de la integral

$$\pi = 2 \int_{-1}^{1} \sqrt{1 - x^2} dx.$$

Además la circunferencia de radio uno nos ayuda a dar la definición de ángulo entre vectores; medido este ángulo en radianes. Dado un vector $\overrightarrow{v} = (v_1, v_2) \in \mathbb{R}^2$ su distancia al origen (0, 0) la medimos por

$$||\overrightarrow{v}|| = \sqrt{\langle \overrightarrow{v}, \overrightarrow{v} \rangle} = \sqrt{v_1^2 + v_2^2}.$$

Así el vector

$$\frac{\overrightarrow{v}}{||\overrightarrow{v}||} = \left(\frac{v_1}{\sqrt{v_1^2 + v_2^2}}, \frac{v_1}{\sqrt{v_1^2 + v_2^2}}\right) \in \operatorname{Graf} f,$$

es decir, cae sobre la circunferencia de radio 1. Con esto podemos dar la siguiente definición.

Definición. 2. Dados dos vectores \overrightarrow{v} , $\overrightarrow{u} \in \mathbb{R}^2$ llamamos ángulo entre ambos a la longitud del arco de circunferencia entre $\frac{\overrightarrow{v}}{||\overrightarrow{v}||}$ y $\frac{\overrightarrow{u}}{||\overrightarrow{v}||}$: θ .

Por simplicidad no entramos en el problema de la orientación del ángulo.

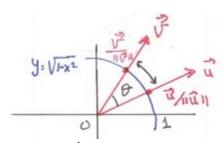


FIGURA 2. Ángulo entre dos vectores.

Dado un ángulo θ , si llevamos esta longitud desde el punto (1,0) a lo largo de la gráfica de f llegaremos a un punto $(x, \sqrt{1-x^2})$ de esta gráfica. La forma geométrica de definir el coseno y el seno del ángulo es

$$\cos \theta = x$$
 y $\sin \theta = \sqrt{1 - x^2}$.

(Ver Apéndice preliminar sobre Trigonometría). Ahora, disponiendo de la integral, vamos a dar una definición más precisa de estas funciones.

En el artículo sobre Longitudes, Áreas y Volúmenes vimos lo siguiente.

Ejercicio. 1. Consideramos la semicircunferncia de radio la unidad $f(x) = \sqrt{1-x^2}$. Fijamos un punto sobre la gráfica $(x,y) = (x,\sqrt{1-x^2})$. Este punto determina un sector circular. Lo que vamos a probar es que el área del sector circular es la mitad que la longitud del arco del sector: θ .

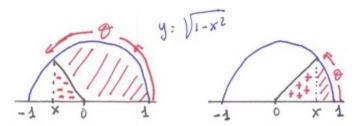


Figura 3. Sector circular.

Demostración: Sea A(x) el área del sector circular determinado por los puntos: (0,0), (1,0) y $(x,\sqrt{1-x^2})$. Así

$$A(x) = \int_{x}^{1} \sqrt{1 - s^{2}} ds + \frac{x\sqrt{1 - x^{2}}}{2}.$$

El segundo sumando es el área de un triángulo que suma si x>0 y que resta en otro caso.

Sea $\theta(x)$ la longitud del arco del sector de arriba. Así aplicando la fórmula de la longitud de una gráfica (ver artículo anterior)

$$\theta(x) = \int_x^1 \frac{1}{\sqrt{1 - s^2}} ds$$

(según hemos visto al calcular al longitud de la semicircunferencia en el artículo Longitudes, Áreas y Volúmenes).

Lo que queremos probar es que

$$2A(x) = \theta(x)$$
 para todo $x \in [-1, 1]$.

Consideramos la función $H(x) = 2A(x) - \theta(x)$. Es claro que H(1) = 0. Y que es continua en [-1,1] (ejercicio).

Por otra parte, usando el Teorema Fudamental del Cálculo

$$H'(x) = 2A'(x) - \theta'(x)$$

$$= -2\sqrt{1 - x^2} + \sqrt{1 - x^2} - \frac{x^2}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1 - x^2}}$$

$$= -\sqrt{1 - x^2} + \frac{1 - x^2}{\sqrt{1 - x^2}} = 0.$$

Como su derivada es nula, H es constante. Además H(0) = 0, así vemos que es una función nula

Este resultado nos pone en relación el ángulo θ con la x que por geometría sabemos que se corresponde con su coseno.

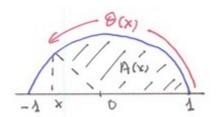


FIGURA 4. Relación entre ángulo y coordenadas.

Definición. 3. Se define la función B(x) = 2A(x) para $x \in [-1, 1]$

Observación. 1. Por el resultado anterior

$$B(x) = 2A(x) = \theta(x).$$

Luego lo que estamos diciendo es que nuestra función B va a ser la inversa de la función coseno.

Gráfica de B. B(x) = 2A(x) para $x \in [-1, 1]$. Así de los cálculos anteriores:

- B(x) > 0
- $\blacksquare \ B'(x) = \frac{-1}{\sqrt{1-x^2}}$ para todo $x \in (-1,1).$ Luego B es decreciente.
- $B(-1) = 2A(x) = \pi$, por la definición de este número dada al principio del artículo.
- $B(0) = 2A(x) = \frac{\pi}{2}$, por la definición de π y la simetría de la función A (Ejerccio: hacer el cálculo)
- B(1) = 2A(1) = 0.
- Calculando su derivada segunda

$$B''(x) = \frac{-2x}{(1-x^2)^{\frac{3}{2}}} \begin{cases} > 0, & \text{si } x < 0 \\ < 0, & \text{si } x > 0 \end{cases}$$

Luego es convexa en [-1,0] y concava en el resto. La gráfica de B es

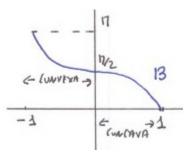


FIGURA 5. Gráfica de B.

B es una función decreciente y por tanto inyectiva. Tiene sentido, por tanto, la siguiente definición.

Definición. 4. a: $Si \theta \in [0, \pi]$, $\cos \theta$ es el único $x \in [-1, 1]$ con $B(x) = \theta$. (Es decir, $\cos \theta = B^{-1}(\theta)$). b: $Si \theta \in [0, \pi]$, $\sin \theta = \sqrt{1 - \cos^2 \theta}$.

Observación. 2. De la definición anterior se tiene que

- Para todo $\theta \in [0, \pi]$ se tiene que $\cos^2 \theta + \sin^2 \theta = 1$.
- Como B es continua y derivable con $B'(x) \neq 0$, se sigue que su inversa $\cos x$ es continua y derivable con

$$\cos' \theta = \frac{1}{B'(\cos \theta)} = -\sqrt{1 - \cos^2 \theta} = -\sin \theta,$$

donde hemos usado el Teorema de la Función Inversa y la definición del sen θ .

lacksquare Por ser $\cos \theta$ continua y derivable, lo mismo le ocurre al $\sin \theta$ y derivando

$$\operatorname{sen}' \theta = \frac{1}{2\sqrt{1-\cos^2 \theta}}(-2\cos \theta(-\sin \theta)) = \cos \theta.$$

■ Es fácil ver que en $\theta = 0$ y π las funciones seno y coseno son continuas y derivables con $\cos'(0) = \cos' \pi = 0$ y $\sin'(0) = 1$ y $\sin' \pi = -1$

Lo que acabamos de ver son las propiedades usuales del coseno y del seno (incluidas las reglas de derivación que dejamos pendientes de prueba en su momento).

¿Cómo se definen las funciones seno y coseno en toda la recta?

Definición. 5. a:
$$Si \ \theta \in [\pi, 2\pi], \ se \ define \ \cos \theta = \cos(2\pi - \theta)$$

b: $Si \ \theta = 2\pi k + \theta' \ con \ k \in \mathbb{Z} \ y \ \theta' \in [0, 2\pi], \ se \ define \ \cos \theta = \cos \theta'$

Así con un poco de trabajo y teniendo en cuenta la gráfica de la función B nos sale que

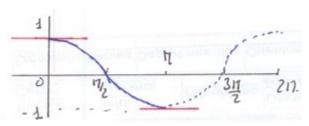


FIGURA 6. Gráfica del coseno.

Definición. 6. a:
$$Si \ \theta \in [\pi, 2\pi]$$
, $se \ define \ sen \ \theta = -sen(2\pi - \theta)$
b: $Si \ \theta = 2\pi k + \theta' \ con \ k \in \mathbb{Z} \ y \ \theta' \in [0, 2\pi]$, $se \ define \ sen \ \theta = sen \ \theta'$

Así con un poco de trabajo y teniendo en cuenta la gráfica de la función B nos sale que

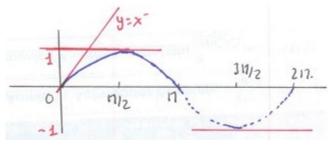


FIGURA 7. Gráfica del seno.

Observación. 3. Con las definiciones anteriores se extienden las funciones seno y coseno a todo \mathbb{R} . Además

- es evidente que las funciones seno y coseno, así definidas, son funciones 2π-periódicas;
- con paciencia, se prueba de forma evidente que las funciones seno y cosenos son continuas y derivables con $\cos' \theta = -\sin \theta$ y $\sin' \theta = \cos \theta$:
- de las definiciones de arriba es evidente que

$$\cos^2 \theta + \sin^2 \theta = 1, \quad para \ todo \quad \theta \in \mathbb{R};$$

$$\cos(-\theta) = \cos \theta;$$

$$\sin(-\theta) = -\sin \theta.$$

Otra propiedades del seno y del coseno muy utilizadas son las siguientes. En este caso su prueba es un poco más sofisticada.

Teorema. 1. Para todo $x, y \in \mathbb{R}$ se tiene que

$$\operatorname{sen}(x+y) = \operatorname{sen} x \cos y + \cos x \operatorname{sen} y$$

y

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

La demostración necesita de dos resultados previos.

Lema. 1. Si f es una función de modo que existe f'' en todo \mathbb{R} , f'' + f = 0 y f(0) = f'(0) = 0, entonce f es la función nula.

Demostración:

$$0 = f'' + f = f'f'' + f'f = \frac{1}{2}(f'^2 + f^2)',$$

por lo tanto la función $f'^2 + f^2$ es constente y como f(0) = f'(0) = 0, llegamos a que f' = f = 0 \square

Lema. 2. Si f es una función de modo que existe f'' en todo \mathbb{R} , f'' + f = 0, f(0) = a y f'(0) = b, entonce

$$f(x) = b \operatorname{sen} x + a \cos x.$$

En particular, si f(0) = 0 y f'(0) = 1, entonces $f(x) = \sin x$. En particular, si f(0) = 1 y f'(0) = 0, entonces $f(x) = \cos x$.

Demostración: Sean

$$g(x) = f(x) - b \sin x - a \cos x$$

así

$$g'(x) = f'(x) - b\cos x + a\sin x$$

у

$$g''(x) = f''(x) + b \sin x + a \cos x.$$

Luego g + g'' = 0 con g(0) = f(0) - a = g'(0) = f'(0) - b = 0. Así por el Lema anterior g = 0, lo que prueba el enunciado \Box

Demostración: (del Teorema).

• Sea $y \in \mathbb{R}$ fijo y $f(x) = \operatorname{sen}(x+y)$, entonces

$$f'(x) = \cos(x+y)$$

у

$$f''(x) = -\sin(x+y).$$

Así f'' + f = 0 con $f(0) = \sin y$ y $f'(0) = \cos y$, luego el Lema anterior nos dice que

$$f(x) = \sin y \cos x + \cos y \sin x.$$

• Sea $y \in \mathbb{R}$ fijo y $f(x) = \cos(x+y)$, entonces

$$f'(x) = -\sin(x+y)$$

У

$$f''(x) = -\cos(x+y).$$

Así f'' + f = 0 con $f(0) = \cos y$ y $f'(0) = -\sin y$, luego el Lema anterior nos dice que

$$f(x) = \cos y \cos x - \sin y \sin x$$

Otras funciones trigonométrica. Definidas el seno y el coseno se pueden definir otras funciones a partie de ellas.

secante
$$\sec x = \frac{1}{\cos x}$$

у

tangente
$$\tan x = \frac{\sin x}{\cos x}$$

siempre que $x \neq k\pi + \frac{\pi}{2}$ para todo $k \in \mathbb{Z}$.

cosecante
$$\csc x = \frac{1}{\sec x}$$

У

cotangente
$$\cot x = \frac{\cos x}{\sin x}$$

siempre que $x \neq k\pi$ para todo $k \in \mathbb{Z}$.

$$arcoseno$$
 $arcsin x = sen^{-1} x$

у

$$arcocoseno$$
 $arc cos x = cos^{-1} x = B(x)$

siempre que $x \in [-1, 1]$.

arcotangente
$$\arctan x = \tan^{-1} x$$

para $x \in \mathbb{R}$.

Las propiedades de estas funciones: derivadas, gráficas...etc se deducen de las del seno y cosenos usandos los resultados que ya conocemos. Por ejemplo, la gráfica de la función tangente es

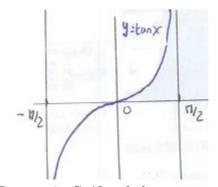


FIGURA 8. Gráfica de la tangente.

o de su inversa la arcotangente

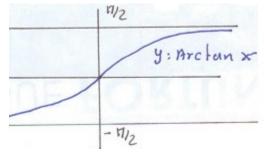


FIGURA 9. Gráfica de la función arcotangente.

Referencias

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD COMPLUTENSE, 28040 MADRID, SPAIN

 $Email\ address \hbox{: } {\tt Cesar_Ruiz@mat.ucm.es}$