ANÁLISIS MATEMÁTICO BÁSICO.

CÁLCULO DE PRIMITIVAS. OTRAS TÉCNICAS.

El cálculo de una primitiva $\int f(x)dx$ consiste en transformarla usando: integración por partes, cambios de variables, manipulaciones algebraicas u otros "trucos" hasta llegar a una expresión que sea una primitiva elemental. Es decir una expresión que esté en la tabla de primitivas elementales.

Como ejemplos de otros "trucos" vamos a ver integrales donde aparecen las funciones trigonométricas e hiperbólicas. Para hacer estas primitivas tendremos que usar relaciones trigonométricas (ver Apéndice correspondiente) así como relaciones hiperbólicas (ver Apéndice Funciones Logaritmo y Exponencial).

Primitivas de Funciones Trigonométricas. Recordemos que:

- $\cos^2 x + \sin^2 x = 1$ y $\cos(\frac{\pi}{2} x) = \sin x$
- $\cos(x+y) = \cos x \cos y \sin x \sin y$ y $\cos 2x = \cos^2 x \sin^2 x$
- $\operatorname{sen}(x+y) = \cos x \operatorname{sen} y + \operatorname{sen} x \cos y$ y $\operatorname{sen} 2x = 2 \cos x \operatorname{sen} x$.

(más adelante en el Apéndice Funciones Trigonométricas probaremos todas estas propiedades).

Utilizando estas propiedades convenientemente se puede resolver primitivas en las que aparecen involucradas las funciones seno y coseno.

Ejemplo. 1.
$$\int \cos^2 x dx$$
.

Demostración: Observemos que

$$\cos 2x = \cos^2 x - \sin^2 x = \cos^2 x - (1 - \cos^2 x)$$

y despejando $\cos^2 x = \frac{\cos 2x + 1}{2}$. Así

$$\int \cos^2 x dx = \int \frac{\cos 2x + 1}{2} dx = \int \frac{1}{2} dx + \frac{1}{2} \int \cos 2x dx$$
$$= \frac{1}{2} x + \frac{1}{4} \sin 2x$$

2 C. RUIZ

En general las primitivas del tipo $\int \operatorname{sen}^n x \cos^m x dx$ con n y m pares se resuelven usando las fórmulas de reducción:

■ $\int \operatorname{sen}^{n} x dx = -\frac{1}{n} \operatorname{sen}^{n-1} x \cos x + \frac{n-1}{n} \int \operatorname{sen}^{n-2} x dx, \ n > 2 \text{ y par}$ (ver árticulo Integración por Partes).

■ $\int \cos^{n} x dx = \frac{1}{n} \cos^{n-1} x \operatorname{sen} x + \frac{n-1}{n} \int \cos^{n-2} x dx, \ n > 2 \text{ y par}$ (cionaisia)

$$\int \cos^n x dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x dx, \ n > 2 \text{ y par}$$
 (ejercicio).

Hasta llegar a una expresión con $\int \cos^2 x dx$ o $\int \sin^2 x dx$.

Demostración: Vamos a resolver el ejemplo concreto, el caso general se sigue de forma análoga.

$$\int \operatorname{sen}^3 x \cos^4 x dx = \int \operatorname{sen} x (1 - \cos^2 x) \cos^4 x dx =$$
$$= -\int -\operatorname{sen} x \cos^4 x dx + \int -\operatorname{sen} x \cos^6 x dx$$

podemos pensar en el cambio de variable $y = \cos x$, y lo que sale es

$$= -\frac{\cos^5 x}{5} + \frac{\cos^7 x}{7}$$

Ejercicio. 1.
$$\int \frac{dx}{1+\sin x}$$
.

Demostración:

$$\int \frac{1}{1+\sin x} \frac{1-\sin x}{1-\sin x} dx$$

$$= \int \frac{1-\sin x}{1-\sin^2 x} dx = \int \frac{1}{\cos^2 x} dx + \int \frac{-\sin x}{\cos^2 x} dx$$

estas integrales ya son inmediatas

$$= \tan x + \frac{1}{\cos x}$$

Ejemplo. 2.
$$\int \tan^2 x dx$$
.

Demostración: ¿Qué camino elegir para resolver una primitiva? Se necesita un poco de práctica y de pericia. En la primitiva que tenemos podemos pensar en un cambio de variable $u = \tan x$ y así $du = \tan^2 x + 1 dx$. Luego

$$\int \tan^2 x dx = \int \tan^2 x \frac{\tan^2 x + 1}{\tan^2 x + 1} dx = \int \frac{u^2}{u^2 + 1} du$$

esto es un integral racional

$$= \int \frac{u^2 + 1}{u^2 + 1} + \frac{-1}{1 + u^2} du = u - \arctan u = \tan x - x.$$

Aunque seguro que es más fácil el camino

$$\int \tan^2 x dx = \int (\tan^2 x + 1) - 1 dx = \tan x - x$$

Primitivas de funciones racionales en senos y cosenos. Vamos a considerar dos polinomios P(x,y) y Q(x,y) en dos variables y la siguiente primitiva

$$\int \frac{P(\cos x, \sin x)}{Q(\cos x, \sin x)} dx.$$

Por ejemplo

$$\int \frac{2 - \sin x}{2 + \cos x} dx.$$

El cambio de variable

$$u = \tan \frac{x}{2}$$

transforma este tipo de integrales en integrales de funciones racionales que integramos en el artículo anterior. Es un método "infalible" del que conviene no abusar, como veremos en algún ejemplo.

Proposición. 1. Si $u = \tan \frac{x}{2}$, entonces

$$sen x = \frac{2u}{1+u^2}$$
 y
 $cos x = \frac{1-u^2}{1+u^2};$

y

$$\frac{du}{dx} = \frac{1 + \tan^2 \frac{x}{2}}{2} = \frac{1 + u^2}{2}.$$

Demostración: Vamos a calcular sen(arctan u) y cos(arctan u).

Si llamamos $x = \arctan u$, entonces

$$u = \tan x = \frac{\sin x}{\cos x} = \frac{\sin x}{\sqrt{1 - \sin^2 x}}.$$

4 C. RUIZ

Llamamos $A = \operatorname{sen}(\arctan u)$. Luego tenemos que

$$u = \frac{A}{\sqrt{1 - A^2}}.$$

Despejando A respecto de u

$$u^{2}(1-A^{2}) = A^{2}$$
 \Leftrightarrow $u^{2} = (1+u^{2})A^{2},$

y así

$$A = \frac{u}{\sqrt{1 + u^2}}.$$

Es decir

$$\operatorname{sen}(\arctan u) = \frac{u}{\sqrt{1+u^2}}.$$

Usando un argumento similar, si $x = \arctan u$, entonces

$$u = \tan x = \frac{\sin x}{\cos x} = \frac{\sqrt{1 - \cos^2 x}}{\cos x}.$$

Llamamos $B = \cos x = \cos(\arctan u)$. Luego tenemos que

$$u = \frac{\sqrt{1 - B^2}}{B}.$$

Despejando B respecto de u

$$u^2 B^2 = 1 - B^2$$
 \Leftrightarrow $(1 + u^2) B^2 = 1$,

y así

$$B = \frac{1}{\sqrt{1 + u^2}}.$$

Es decir

$$\cos(\arctan u) = \frac{1}{\sqrt{1+u^2}}.$$

Ahora si $u = \tan \frac{x}{2}$, entonces

 $\operatorname{sen} x = \operatorname{sen}(2 \arctan u) = 2 \operatorname{sen}(\arctan u) \cos(\arctan u) =$

$$2\frac{u}{\sqrt{1+u^2}}\frac{1}{\sqrt{1+u^2}} = \frac{2u}{1+u^2};$$

у

$$\cos x = \cos(2\arctan u) = \cos^2(\arctan u) - \sin^2(\arctan u) =$$

$$\left(\frac{1}{\sqrt{1+u^2}}\right)^2 - \left(\frac{u}{\sqrt{1+u^2}}\right)^2 = \frac{1-u^2}{1+u^2}$$

Г

Ejercicio. 2.
$$\int \frac{2-\sin x}{2+\cos x} dx$$
.

Demostración: El cambio de variable $u = \tan \frac{x}{2}$ nos lleva a

$$\int \frac{2 - \sin x}{2 + \cos x} dx = \int \frac{2 - \frac{2u}{1 + u^2}}{2 + \frac{1 - u^2}{1 + u^2}} \frac{2}{1 + u^2} du =$$

$$2\int \frac{\frac{2+2u^2-2u}{1+u^2}}{2+2u^2+1-u^2} du = 2\int \frac{2u^2-2u+2}{(1+u^2)(3+u^2)} du.$$

Esto ya es una primitiva de una función racional, la cuál podemos resolver

Ejercicio. 3. $\int \frac{1}{1-\sin^2 x} dx$

Demostración: Esta primitiva es inmediata

$$\int \frac{1}{1 - \sin^2 x} dx = \int \frac{1}{\cos^2 x} dx = \tan x.$$

Ahora, podemos pensar que con el cambio de variable $u=\tan\frac{x}{2}$ seguro que podemos resolverla. Tendríamos

$$\int \frac{1}{1 - \sin^2 x} dx = \int \frac{1}{1 - (\frac{2u}{1 + u^2})^2} \frac{2}{1 + u^2} du =$$

$$2\int \frac{1+u^2}{(1+u^2)^2 - 4u^2} du = 2\int \frac{1+u^2}{(u^2-1)^2} du.$$

La cuál podemos resolver, pero nos llevará un poco más de tiempo

Primitivas donde aparecen funciones hiperbólicas. Recordemos que:

- $-\cosh^2 x \sinh^2 x = 1$
- $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y \quad \text{y} \quad \cosh 2x = \cosh^2 x + \sinh^2 x$
- $\operatorname{senh}(x+y) = \cosh x \operatorname{senh} y + \operatorname{senh} x \cosh y$ y $\operatorname{senh} 2x = 2 \cosh x \operatorname{senh} x$.

(ver Apéndice Funciones Logaritmo y Exponencial).

Ejemplo. 3. $\int \cosh^2 x dx$.

Demostración: Observemos que

$$\cosh 2x = \cos^2 x + \sin^2 x = \cos^2 x + (\cos^2 x - 1)$$

y despejando $\cosh^2 x = \frac{\cosh 2x + 1}{2}$. Así

$$\int \cosh^2 x dx = \int \frac{\cosh 2x + 1}{2} dx = \int \frac{1}{2} dx + \frac{1}{2} \int \cosh 2x dx$$
$$= \frac{1}{2} x + \frac{1}{4} \operatorname{senh} 2x$$

6 C. RUIZ

Ejemplo. 4.
$$\int \frac{dx}{\sqrt{x^2-2}}$$
.

Demostración: Si pensamos en el cambio de variable $x = \sqrt{2} \cosh u$ y así $dx = \sqrt{2} \sinh u du$, tendremos que

$$\int \frac{dx}{\sqrt{x^2 - 2}} = \int \frac{\sqrt{2} \sinh u du}{\sqrt{2 \cosh^2 u - 2}}$$
$$= \int \frac{\sinh u}{\sinh u} du = u = \operatorname{arccosh}(\frac{x}{\sqrt{2}})$$

Otras primitivas. Aunque encontrar primitivas no es una tarea fácil, tampoco hay que tener miedo a ciertas expresiones. Si las miramos con detalle podemos ver métodos sencillos de integración.

Ejemplo. 5.
$$\int \frac{dx}{\sqrt{\sqrt{x}+1}}$$
.

Demostración: No sabemos que hacer con esta expresión. Podemos poner $y=\sqrt{\sqrt{x}+1}$, despejando $x=(y^2-1)^2$ y derivando en $y,\,dx=4y(y^2-1)dy$. Así

$$\int \frac{dx}{\sqrt{\sqrt{x}+1}} = \int \frac{4y(y^2-1)dy}{y} = \int 4y^2 - 4dy$$
$$= \frac{4}{3}y^3 - 4y = \frac{4}{3}(\sqrt{\sqrt{x}+1})^3) - 4\sqrt{\sqrt{x}+1}$$

Ejemplo. 6. $\int (\sin x \int_0^x \sin t dt) dx$.

Demostración: A primera vista, impresiona esta primitiva. Si nos fijamos en la función $\int_0^x \sin t dt$, el Teorema Fundamental del Cálculo nos dice que su derivada es sen x, luego el cambio de variable $u = \int_0^x \sin t dt$ nos da

$$\int (\sin x \int_0^x \sin t dt) dx = \int u du$$
$$= \frac{u^2}{2} = \frac{1}{2} (\int_0^x \sin t dt)^2$$

Referencias

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD COMPLUTENSE, 28040 MADRID, SPAIN

E-mail address: Cesar_Ruiz@mat.ucm.es