AVR PRÁCTICA-15

Nombre y apellidos.....

1.- a) ξ Existe $\int_0^1 \cos \frac{1}{x} dx$?

b) Sea f(x) = -x si $x \in [-1,1)$. Sea g(x) = f(x - (2k+2)) si $x \in [2k+1,2k+3)$, para k = 0,1,2,3... ¿Existe $\int_1^\infty \frac{g(x)}{\ln(1+x)} dx$?

2.- Estudia la convergencia de las series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^3}$ y $\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n}$.

- 3.- Para cada x > 0 se define $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$.
- .- Prueba que $\int_0^1 e^{-t} t^{x-1} dt$ y $\int_1^\infty e^{-t} t^{x-1} dt$ son finitas.

- .- Usando la Relga de Integración por Partes, prueba que $\Gamma(x+1)=x\Gamma(x).$
- .- Calcula $\Gamma(1)$ y deduce que $\Gamma(n)=(n-1)!$ (Esta función se conoce con el nombre de función gamma de Euler).
- .- Con la sustitución $u=t^x$, deduce que:

$$\Gamma(x) = \frac{1}{x} \int_0^\infty e^{-u^{1/x}} du$$
 y $\Gamma(1/2) = 2 \int_0^\infty e^{-u^2} du$.