AVR PRÁCTICA-22

1.- Recordemos que $i^2=-1$; si $z=a+bi\in\mathbb{C}$, su conjugado es $\overline{z}=a-bi$ y se tiene que $z\overline{z}=|z|^2=a^2+b^2.$

1₁.- Resuelve la ecuación (3+2i)z + (7+i) = 0.

12.- Para $z \in \mathbb{C}$, con |z| = 1 y $z \neq 1$, prueba que $z + \frac{1}{z} \in \mathbb{R}$.

1₃.- Consideramos la sucesión $(z_n)_n = ((\frac{n+1}{n}, (\frac{n+1}{n})^{2n+1}))_n \subset \mathbb{C}$. Calcula lím $_{n\to\infty} z_n$.

2.- Teorema de Identidad: Sean $g, h : \mathbb{C} \to \mathbb{C}$ dos funciones derivables en todo \mathbb{C} . Supongamos que existe una recta y = rx + s de modo que g(rx + s) = h(rx + s) para todo $x \in \mathbb{R}$, entonces g(z) = h(z) para todo de $z \in \mathbb{C}$.

Sea $a \in \mathbb{R}$, usando el Teorema anterior, prueba que $e^{z+a} = e^z e^a$ para todo $z \in \mathbb{C}$.

3.- Sea $f:\mathbb{C}\to\mathbb{C},$ con f(z)=Ref(z)+Imf(z)i. Para $t\in[a,b]\subset\mathbb{R}$ se define la integral

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} Ref(t)dt + i \int_{a}^{b} Imf(t)dt.$$

Sea $g(t) = \cos t$ si $t \in [-\pi, \pi]$ y g(t) = 0en otro caso. Calcula

$$\int_{-\infty}^{\infty} g(t)e^{-it}dt.$$