ANÁLISIS MATEMÁTICO BÁSICO.

LA FUNCIÓN f VISTA A TRAVÉS DE f' Y f''.

Dada una **función** $f: \mathbb{R} \to \mathbb{R}$ derivable, podemos considerar su función **derivada** $f': \mathbb{R} \to \mathbb{R}$. Esta función a su vez puede ser derivable, y tendremos su derivada $(f')': \mathbb{R} \to \mathbb{R}$, que escribimos por f'' y llamamos **derivada segunda** de la función f.

El estudio de f' y f'' nos da información sobre f, como vamos a ver.

Ejemplo. 1. Si
$$f(x) = x^3 + x + 1$$
, entonces $f'(x) = 3x^2 + 1$ y $f''(x) = 6x$.

Observación. 1. Si un fenómeno físico viene dado por una función f(t), donde t representa el tiempo, entonces f' es la velocidad del proceso y f'' es la aceleración del mismo.

Estudio del crecimiento de una función.

Una característica importante de las funciones es su **crecimiento**. En concreto:

Definición. 1. Sea $f : \mathbb{R} \to \mathbb{R}$ una función.

a: Se dice que f es **monótona creciente** si para todo $x, y \in Domf$ de modo que x < y, se tiene que

$$f(x) \le f(y)$$
.

b: Se dice que f es **monótona decreciente** si para todo $x, y \in Domf$ de modo que x < y, se tiene que

$$f(x) \ge f(y)$$
.

2 C. RUIZ

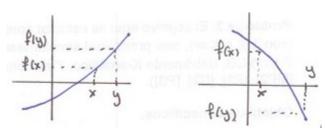


FIGURA 1. Funciones monótonas.

Una función no tiene por que tener un crecimiento único. Es decir, en parte de su dominio puede crecer y en parte decrecer. Esto se puede descubrir mirando el signo de su derivada si es una función derivable.

Teorema. 1. Sea $f:[a,b] \to \mathbb{R}$ una función continua en [a,b] y derivable en (a,b).

a: • $Si \ f'(c) > 0$, para todo $c \in (a,b)$, entonces f es **creciente** en [a,b].

• Si f es creciente en [a,b], entonces $f'(c) \ge 0$ para todo $c \in (a,b)$.

b: • Si f'(c) < 0, para todo $c \in (a,b)$, entonces f es **decreciente** en [a,b].

■ Si f es decreciente en [a,b], entonces $f'(c) \leq 0$ para todo $c \in (a,b)$.

Demostración: Dejamos **b)** como ejercicio, se hace de la misma manera que la parte **a).**

Sean x < y elementos de [a, b]. Por el Teorema de Valor Medio existe $c \in (x, y)$ de modo que

$$f(y) - f(x) = f'(c)(y - x) > 0.$$

La desigualdad se tiene ya que por hipótesis f'(c) > 0. Luego, despejando, $f(y) \ge f(x)$.

Por otro lado sea $c \in (a, b)$. Si f es creciente, entonces mirando signos

para
$$x > c$$
, $\frac{f(x) - f(c)}{x - c} \ge 0$.

para
$$x < c$$
, $\frac{f(x) - f(c)}{x - c} \ge 0$.

Por tanto

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \ge 0$$

Ejemplo. 2. Consideramos la función $f(x) = \frac{1}{x}$. Derivando $f'(x) = \frac{-1}{x^2} < 0$, para todo $x \in \mathbb{R} \setminus \{0\}$. Luego, aplicando el Teorema anterior, la función es decreciente en la semirecta $(-\infty,0)$ y en la semirecta $(0,\infty)$. Observemos que la discontinuidad en el punto x = 0 nos impide afirmar lo mismo en todo el dominio de la función $\mathbb{R} \setminus \{0\}$.

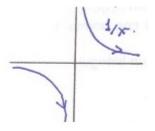


FIGURA 2. Función monótona decreciente.

Teorema. 2. Sea $f:(a,b) \to \mathbb{R}$ una función derivable. Si para $x_1, x_2 \in (a,b)$ existe λ con

$$f'(x_1) < \lambda < f'(x_2),$$

entonces existe $x_0 \in (a,b)$ de modo que $f'(x_0) = \lambda$.

Demostración: Sea $g: [x_1, x_2] \to \mathbb{R}$ $x \to g(x) = f(x) - \lambda x$. Así $g'(x) = f'(x) - \lambda$. Si suponemos $f'(x) \neq \lambda$ para todo $x \in (a, b)$, entonces $g'(x) \neq 0$ para todo $x \in (a, b)$. Por un corolario del Teorema del Valor Medio, g tiene que ser inyectiva. Por ser g inyectiva y continua, necesariamente g tiene que ser monótona. Ahora

- si es estrictamente creciente, se tiene que g'(x) > 0, pero $g'(x_1) = f'(x_1) \lambda < 0$;
- si es estrictamente decreciente, se tiene que g'(x) < 0, pero $g'(x_2) = f'(x_2) \lambda > 0$.

En cualquier caso llegamos a contradición. Luego se tiene el resultado \Box El resultado anterior nos dice que una derivada no puede tener discontinuidades de salto.

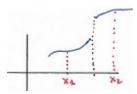


FIGURA 3. No es la gráfica de una derivada

4 C. RUIZ

Claro que puede haber derivadas que no sean continuas.

Ejemplo. 3. Se considera la función

$$f(x) = \begin{cases} x^2 \sin 1/x & si \quad x \neq 0 \\ 0 & si \quad x = 0. \end{cases}$$

Esta función es continua y derivable. Pero su derivada no es continua.

Demostración: Por un lado $|x^2 \sin 1/x| \le |x|$. Lo que prueba que f es continua en cero.

Por otro lado, por definición de derivada,

$$f'(0) = \lim_{x \to 0} \frac{x^2 \sin 1/x}{x} = 0.$$

Ahora f' no es continua en cero ya que no existe el siguiente límite

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} 2x \operatorname{sen} 1/x - \cos 1/x \qquad \Box$$

Referencias

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD COMPLUTENSE, 28040 MADRID, SPAIN

E-mail address: Cesar_Ruiz@mat.ucm.es