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Abstract

Starlike bodies are interesting in nonlinear analysis because they are strongly related to
polynomials and smooth bump functions, and their topological and geometrical properties are
therefore worth studying. In this note we consider the question as to what extent the known results
on topological classification of convex bodies can be generalized for the class of starlike bodies, and
we obtain two main results in this line, one which follows the traditional Bessaga—Klee scheme for
the classification of convex bodies (and which in this new setting happens to be valid only for starlike
bodies whose characteristic cones are convex), and another one which uses a new classification
scheme in terms of the homotopy type of the boundaries of the starlike bodies (and which holds
in full generality provided the Banach space is infinite-dimensional).
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A closed subsefi of a Banach spac¥ is said to be a starlike body if there exists a
pointxg in the interior ofA such that every ray emanating frogpmeetsd A, the boundary
of A, at most once. Up to a suitable translation, we can always assume (and we will do so)
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thatxg = 0 is the origin ofX. For a starlike body, we define the characteristic coneAf
as

ccA={xeX|rxeAforallr >0},

and the Minkowski functional oft as
1
nalx) = inf{)» > 0’ Xx € A}

for all x € X. It is easily seen that for every starlike bodyits Minkowski functional
4 is a continuous function which satisfigs (rx) = rua (x) for everyr > 0 andx € X,
and;*(0) = ccA. Moreover,A = {x € X | ua(x) <1}, anddA = {x € X | wa(x) = 1}.
Conversely, ifyr : X — [0, 0c0) is continuous and satisfieg(Ax) = Ay (x) for all A > 0,
thenAy = {x € X | ¥ (x) < 1} is a starlike body. More generally, for a continuous function
¥ X — [0, 00) such thaty, (A) = v (Ax), A > 0, isincreasing and s{ip, (A): A >0} > ¢

for everyx € X \ v ~1(0), the sety~1([0, ]) is a starlike body whose characteristic cone
is ¥ ~1(0).

A familiar important class of starlike bodies azenvex bodieghat is, starlike bodies
that are convex. For a convex bod¥, ccU is always a convex set, but in general the
characteristic cone of a starlike body is not convex.

We will say thatA is a C? smooth starlike body provided its Minkowski functional
ua is CP smooth on the seK \ ccA = X \ ugl(O). A starlike body A is said to
be Lipschitz provided its Minkowski functionak, is a Lipschitz function. Finally,
two (smooth) starlike bodied, B in a Banach spac& are relatively homeomorphic
(relatively diffeomorphic) whenever there is a self-homeomorphism (diffeomorphism)
g:X — X sothatg(A) = B. Itis clear that “being relatively homeomorphic” (respectively
diffeomorphic) endows the set of starlike bodies of a Banach space with an equivalence
relationship.

Starlike bodies often appear in nonlinear functional analysis as natural substitutes of
convex bodies or in connection with bump functions and with polynomials; more precisely,
for everyn-homogeneous polynomidt: X — R the set{x € X | P(x) <c¢}, ¢ >0, is
either a (real-analytic) starlike body or its complement is the interior of such a body (see
[4]). It is therefore reasonable to ask to what extent the geometrical properties of convex
bodies are shared with the more general class of starlike bodies. In [4] the question of
whether James’ theorem on the characterization of reflexivity (one of the deepest classical
results of functional analysis) is true for starlike bodies was answered in the negative. In [3]
it was shown that the boundary of a smooth Lipschitz bounded starlike body in an infinite-
dimensional Banach space is smoothly Lipschitz contractible; furthermore, the boundary
is a smooth Lipschitz retract of the body. Here, we deal with the question as to what extent
the known results on the topological classification of convex bodies can be generalized for
the class of starlike bodies.

It was Klee [18] that first gave a topological classification of the convex bodies of
a Hilbert space. This result was generalized for every Banach space with the help of
Bessaga’s non-complete norm technique (see the book by Bessaga and Pelczynski [8],
Chapters Il and V). To get a better insight in the history of the topological classification of
convex bodies the reader should have a look at the papers by Stocker [22], Corson and
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Klee [10], Bessaga and Klee [6,7], and Dobrowolski [13]. These results have recently
been sharpened to get a full classification of th& smooth convex bodies of every
Banach space [5]. In its most general form the result on a classification of (smooth) convex
bodies reads as follows (see [5]); here, as in the whole papen, 1,2, ..., oo, and “‘C°
diffeomorphic” means just “homeomorphic”.

Theorem 1. Let U be aC? convex body in a Banach spa&e

(@) If ccU is a linear subspace of finite codimensi(@ay X = ccU & Z, with Z finite-
dimensiond), thenU is CP? relatively diffeomorphic tacU + Bz, whereB; is an
Euclidean ball inZ.

(b) If ccU is notalinear subspace et U is a linear subspace such that the quotient space
X /ccU is infinite-dimensional, thedl is C? relatively diffeomorphic to a closed half-
space(thatis, {x € X | x*(x) > 0}, for somex* € X*).

Our aim in this paper is to discuss to what extent this result can be generalized for
(smooth) starlike bodies. The following example shows that part (b) of Theorem 1 is not
true for starlike bodies whose characteristic cones are not convex sets.

Example 2. Let A = {(x, y) € R% |xy| < 1}. It is plain thatA is a starlike body in the
planeR?, and its characteristic cone is the pair of lines defined by the equatien0.
Then A cannot be relatively diffeomorphic (not even relatively homeomorphic) to a half-
plane ofR2. Indeedp A is not connected, while the boundary of a closed half-plane (that is
to say, a line) is always connected. Similar examples show that for evety there exists

a starlike bodyA, in the planeR? such thatd A, has exactlyn connected components.
HenceA, is not relatively homeomorphic td,, wheneven # m.

However, it seems natural to think that every two (smooth) starlike bodies with the same
characteristic cone should be diffeomorphic. This is indeed true and it is a fact that, though
elementary, will help us to unravel the tangle of starlike bodies and get a first generalization
of Theorem 1. Let us state and prove this fact.

Proposition 3. Let X be a Banach space, and lat, A> beCP smooth starlike bodies such
thatccA1 = ccAz. Then there exists @” diffeomorphisng : X — X such thatg(A1) =
A2, g(0A1) = A2, and g(0) = 0. Moreover,g(x) = n(x)x, wheren: X — [0, co), and
henceg preserves the rays emanating from the origin.

Proof. First of all let us see that the statement is true if we make the additional assumption
that A1 C A. So, let us suppose that and B are starlike bodies such that the origin is

an interior point of bothA and B, ccA = ccB, and A C B (so thatupg(x) < ua(x) for
everyx, whereu andup are the Minkowski functionals of and B, respectively), and

see that there exists@” diffeomorphismg: X — X such thatg(A) = B, g(0) =0, and
g(0A)=0B.
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Let A(+) be a non-decreasing real function of clas¥® defined fors > 0, such that
A(t)=0forr<1/2andir(r) =1forr > 1. Let
pa(x)
ug(x)

forx ¢ ccA, andg(x) = x wheneve g (x) = 0. Itis clear thag is aC? smooth mapping.
Lety ¢ ccA be an arbitrary vector of and put

g(x) = [A(MA(x)) +1—A(MA(X))]X

na(y)
wa(y)

for + > 0. Note thatG,(z) is strictly increasing and satisfies limg+ G,(t) = 0, and
lim; 00 Gy (t) = 0o. This implies that for every € X \ ccA a numbert(y) > 0 such
that G, (¢ (y)) = 1 is uniquely determined, which means tigais a one-to-one mapping
from X \ ccA onto X \ ccA, with g=1(y) =1(y)y. Itis also clear thag fixes all the points
in ccA, so thatg is a bijection fromX onto X. Let us defined : (X \ ccA) x (0,00) —> R

by

Gy(t) = [/\(IMA(y)) +1- A(tm(y))}t

na(y)
wa(y)

Taking into account thatg(x) < ua(x) andi is non-decreasing, one can easily check
that%—f(y, t) > 1> 0. Then, using the implicit function theorem we obtain that ¢ (y)
is aCP smooth function orX \ ccA, and therefore so ig~. On the other hand, from the
definition above it is clear that the mgpestricts to the identity on a neighbourhood of the
coneccA, and hence botg andg~! areC? smooth on the whole oX. Thus,g is aC?
diffeomorphism fromX onto X, and it is obvious thag transforms the bodyt = {x € X |
uax)<llontoB ={x € X | up(x) <1}, and its boundargA = {x € X | ua(x) = 1}
ontodB ={xe X |uplkx)=1}.

Now let us consider the general case. Uet {x € X | pa, (x) + pa,(x) < 1}, which
is aC? smooth starlike body satisfyingeA = ccA; andA C A, for j =1, 2. From the
first part of the proof we know that there exist self-diffeomorphism¥ p§; andg,, such
thatg;(A) = A; andg;(dA) = dA;, j = 1,2. Then, if we putg = g2 0 g; *, We get a
self-diffeomorphism ofX transformingAd1 onto A andoA; ontodA,. O

20,0 = [eua0) 22D 4 15 ea) |

As said above, one cannot dream of extending part (b) of Theorem 1 to the class of
general starlike bodies. The complexity of the characteristic cones of (unbounded) starlike
bodies really makes a difference that forces us to devise a new classification scheme
suitable for all starlike bodies, whatever their characteristic cones may be. If one wants
to stick to the Bessaga—Klee classification scheme then the best result one can aim at is
that Theorem 1 still holds for the class of starlike bodies whose characteristic cones are
convexsets.

We will next state and prove such a result, but first we will need to establish the
following proposition, which might be of independent interest (beyond the classification
problem) in the theory of smoothness in Banach spaces, and which tells us that every
proper closed convex con€ in a separable Banach space can regarded both as the
characteristic cone of som&> smooth convex body and as the set of zeros @f°a
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smooth convex function. We say that a nonempty suldsetf a Banach spacg is a
cone(respectively, a cone over a sEtC S, whereS is the unit sphere oX) provided
[0, 00)C = C (respectivelyC = [0, c0)K). The coneC is proper ifC # X.

Proposition 4. For every closed convex s€tin a separable Banach spacéthere exists
a C* smooth convex functiofi: X — [0, co) so that f~1(0) = C. Moreover, wherC is
aconeU = f~1([0, 1]) is aC*> smooth convex body ik so thatccU = C.

Proof. We may obviously assume thatt C # X. Itis well known that, as a consequence
of the Hahn—Banach theorem, every such closed conve& setthe intersection of the
half-spaces ok which containC, that is,

C=()H.
iel
where theH; can be assumed to be of the forl) = {x € X: x/(x) < «;} for some
x* e X* with |lx}|| =1, ande; € R. Then we have thaX \ C =J,,(X \ H;), and since
the complementX \ H; are open and \ C is a Lindelof space, there exists a countable
subcovering

x\C=Jx\ Hy,
n=1

where theH,, = {x € X: x(x) < «,} form a subsequence of the fam(l§f; ); ;. Therefore,
we can writeC as a countable intersection of closed half-spaces,

o0
sz{xeX: x:(x)éoen}. 1)
n=1
Now, letd :R — [0, o0) be aC*> smoothconvexfunction so that)(r) =0 forr < 0, and
0(t) > 0 whenever > 0; we can even demand that:) be an affine function of slope 1
fort > 1, sayf() =t + b fort > 1, where—1 < b < 0. It is easy to construct such a
functioné by integrating twice a suitablé> smooth nonnegative function whose support
is precisely the intervdlD, 1]. Define therg, : R — [0, co) by
On(t) =0(t — an);
clearly 6, is aC* smooth convex function so thé} vanishes precisely on the interval
(—o00, a,], ande, restricts to an affine function di,, + 1, co), namelyd, (t) =t —a, + b
fort>a, + 1.
Let us define our functiorf : X — [0, co) by

[e.0]

2 a )
1= 2 1+ len)2"

for all x € X. Itis clear thatf is a convex function. Let us see thatis well defined and
C* smooth. We can writ¢’ as a function seriesf;(x) = Y v ; fu(x), Where

O (xy (X))

I = a2
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In order to see thaf is C* smooth it is enough to check that the series of derivatives
> f,fj)(x) converges uniformly on each baB(0, R), with R > 1, for all j =
0,1,2,.... Since the derivatives of the functioh are all bounded and, is a mere
translation ofé, there are constant®/; > 0 so that||9,§”||oO =10V l00 = M; for all
j=1,2,..., while for j =0 we have

0<0,(1) =0(t —ay) <MaX{0(1), 1 — a, + b}

for all r € R. By using these bounds, and bearing in mind th&t| = 1, we can estimate,
for ||l <R,

On (x;(x))

0D+ R+l + 16l _ o)
L+ )2 "

~ L

] = T+l

and since}"°, 5{? < oo, it follows that 2%, £, (x) converges uniformly on the ball
B(0, R). For j > 1itis easily seen that thelinear mapf (x) € £ (X: ¢,) is given by

. J
07 ()~ pye)

)
n X)= S —————— X,
Ja ) A+ |ag)2

Then, by taking into account thiit* ® - - - ® x| < 1= ||x*[, and|6," |0 = M, we get
that

MiR s

) < —
”fn (x)” X A+ [an)2" ‘= 0p

whenever||x| < R and, since} %, 5 < oo, this ensures tha}">°, £\’ converges
uniformly on bounded sets, for ajle N. Therefore f is of classC*°.

The fact thatf ~1(0) = C follows immediately from equality1) above and from the
definitions of the functiong, and f.

On the other hand, every convex differentiable nonnegative function which vanishes
precisely on a se€ cannot have a zero derivative outside therefore our functionf
satisfiesf’(x) #0forallx € X \ C.

Finally, whenC is a cone, by bearing in mind the special construction of our function
f itis not difficult to see that/ = f~1([0, 1]) is aC> smooth convex body iX so that
ccU = C.Indeed, ifC is a cone, we may assume that theare all positive numbers. Then,
for eachx € X \ C there exists some such thaty;(x) > «,. Now, by lettings go to co
we can makex(zx) increase taxo, which, by the choice of the functiof),, means that
On (x5 (tx))/(L+ o, )27, thenth term of the series defining(zx), gets as large as we wish,
so that the ray determined ycannot be in the body = £ 1[0, 1]), thatis,x € X \ ccU.

This shows thatcU C C; the other inclusion is obvious.O

Now we have arrived at the following generalization of Theorem 1.

Theorem 5. Let A be aC? starlike body in a separable Banach spac¢eAssume thatc A
is a convex subset of.
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(@) If ccA is a linear subspace of finite codimensisay X = ccA & Z, with Z finite-
dimensiond), then A is C? relatively diffeomorphic tacA + Bz, where Bz is an
Euclidean ball inZ.

(b) If ccA is either not a linear subspace or elgeA is a linear subspace such that the
guotient spaceX/ccA is infinite-dimensional, thed is C? relatively diffeomorphic
to a closed half-space.

Moreover, in the casp = 0 this is true for all Banach spaces.

Proof. To obtain (a) it is enough to apply Proposition 3 fof = A and A2 = ccA + By.

To obtain (b), writeC = ccA, which is a closed convex cone af. By Proposition 4
there exists &@°° smooth convex bod¥ so thatccU = C = ccA. Then, by Proposition 3
the starlike bodied/ and A are C? relatively difeomorphic. On the other hand, by the
assumptiongcU = C is either not a linear subspace or else is a linear subspace such that
dim(X/C) = oo. Now, part (b) of Theorem 1 tells us thétis C? relatively diffeomorphic
to a closed half-space, and hence sd is

Finally, in the case = 0, it is easy to see that, for every closed convex adnre X, the
setU = C + B, whereB is the unit ball ofX, is a closed convex body so th@t= ccU.
Hence, the above argument appliess

In particular, for an infinite-dimensional separable Banach spacthe boundary of
every smooth bounded starlike bodyc X is C? diffeomorphic to a hyperplane. We now
apply the above result to get smooth negligibility of starlike bodies.

Corollary 6. Let X be a separable Banach space, andAetbe aC? smooth starlike body
such that its characteristic cone is a linear subspace of infinite codimensi&@n Fhen
there exists &' ? diffeomorphism fronX onto X \ A.

Proof. According to Theorem 5, there exist€d self-diffeomorphism ofX mappingA
onto a closed half-space. Therefdfg A is C? diffeomorphic to an open half-space. Since
an open half-space is obvioudly® diffeomorphic to the whole space, we may conclude
thatX \ A andX areC? diffeomorphic. O

As said above, examples like 2 show that the classification scheme used in Theorem 5
is useless when one wants to cover such cases as those of starlike bodies with nonconvex
characteristic cones. Let us have a closer look at those examples. In the case of the bodies
A, whose construction is hinted in Example 2, and whose boundary: kasnected
components, one could wonder whether every starlike bodg*invhose boundary has
exactlyn connected components must be relatively homeomorphig to

More generally, it is natural to ask whether for every couple of starlike botlixsd B
in a Banach spac¥ with homeomorphic boundari@sA anda B it happens tha# and B
are relatively homeomorphic.

Surprisingly enough, the answers to these questions are all negative in the finite-
dimensional setting, as we will show later on (see Examples 16, 17 and 18 below).
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However, in infinite dimensions things turn out less complicated, topologically
speaking. The following theorem answers the above question in the affirmative, providing
a full classification of starlike bodies in terms of the homotopy type of their boundaries in
infinite-dimensional Banach spaces.

Theorem 7. Let X be an infinite-dimensional Banach space anddeB be starlike bodies
in X, with boundarie®$ A anda B. The following statements are equivalent

(1) 2A has the same homotopy typeds;
(2) 0A andd B are homeomorphic
(3) A and B are relatively homeomorphic.

Proof. Clearly, (3) = (2) = (1). In order to show thafl) = (3), we shall make use of
the theory ofZ-sets in infinite-dimensional topology (see [8], for instance). To begin with,
notice that a starlike body is an infinite-dimensional manifold, which is a space locally
homeomorphic to a fixed infinite-dimensional Hilbert space, and is contractible. In fact,
topologically, it is just the Hilbert space, since every two homotopically equivalent infinite-
dimensional Hilbert manifolds are topologically equivalent (see [8, p. 316]). The boundary
dA of a starlike bodyA is always aZ-set in the body, since it is closed and it fulfills the
standard definition. Recall that a closed sult3et A is said to be &-setinA provided
every continuous functiotf : I — A (wherel” is the unit cube ilR") can be uniformly
approximated by continuous functiogs: I" — A so thatg;(I") C A\ C, that is, the
images of the approximationg avoid the seC.

Given a starlike body in X and a continuous functioyi: I" — A, the composition
with a radial push provides a required approximation whose image avoids the boundary
C = 0A. Indeed, the sequence of functiofisdefined by

fi) = (1— %) £0)

converges tof in the spaceC (1", A) with the sup norm and, sincg(x) € A (that is,
na(fx)) <l)forallxel”, and

() = (1= Dualroo) < (1- 1) <1

itis clear thatf; (I") C A\ 0A. Henced A isaZ-setinA.

A similar argument (taking (x) = (14 1/k) f (x) instead), shows thatA is a Z-set
in X \ int(A) (which is also an infinite-dimensional manifold).

So, given two starlike bodiega and B in X, we know thatd A is a Z-set in bothA
andX \ int(A), anddB is aZ-setinB and inX \ int(B). Now, we can make use of the
so-calledZ-set extension homeomorphism theorem [2], which tells us that a homeomor-
phism between twdZ-sets can be extended to a homeomorphism between the infinite-
dimensional manifolds with respect to which those setvasets.

Sinced A andd B are homotopically equivalent, the above mentioned result that every
two such infinite-dimensional manifolds are topologically equivalent tells ussthand
dB are, in fact, homeomorphic. Let:9A — 9B be a homeomorphism. Then, taking
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into account thabA and 0B are Z-sets inA and B, respectively, theZ-set extension
homeomorphism theorem tells us that there exists a homeomorpghign- B so thatF
restricts tof ond A. On the other hand, siné andd B are alsaZ-sets inX \ int(A) and

X \ int(B) respectively, using again the extension theorem, there exists a homeomorphism
G:X \int(A) — X \ int(B) so thatG also restricts tgf ondA. Therefore,

F(x) ifxeA,

Gix) ifxeX\A

is a self-homeomorphism df so thatH (A) = B (and f restricts tof ondA). O

H(x):{

In the case of the Hilbert space we can improve Theorem 7 by extending it @’the
smooth category.

Theorem 8. Let A, B be C* smooth starlike bodies in the separable Hilbert space, with
boundarie) A andd B. The following statements are equivatent

(1) aA has the same homotopy typeds;
(2) 0A andd B are homeomorphic
(3) A andB are C* relatively diffeomorphic.

Proof. By Theorem 7 we already know thét) and(2) are equivalent and, furthermore,
that either of these statements implies that the bodiesid B are relatively homeomor-
phic. We only need to show that in this casend B are in factC* relatively diffeomor-
phic.

To this end, let us first observe that the bodieand B and their boundarie®A andd B
are paralelizable manifolds, that is, their tangent space, which is always our Hilbert space
£2, has a contractible general linear group. In what follows, when&viesra boundary or a
finite union of boundaries of starlike bodies, the symbaf stands for the tangent bundle.
Since all of those manifolds are paralelizalilé/ is always trivial.

Now we are in a position to apply a result of Elworthy’s which reads as follows (see [15,
Theorem 24]).

SupposeV and X are paralelizabl€* manifolds modelled on the Hilbert space, and
fo, f1: M — X are closed”*° embeddings. Assume that

(1) fo and f1 are homotopic, and
(2) fo and f1 are tangentially homotopic.

Then there exists & isotopy @ :R x X — R x X so that® (1, fo(x)) = f1(x) and
@0, x)=x.

This result will give us what we want. Indeed, considee= 0A U a(%A), Where%A =
{x e X: ua(x) <1/2}, X = €2, let fp be the identity oM and let f1:9A U 8(%A) —
9B U 3(3B) be a diffeomorphism sendingA onto 9B, and d(3A) onto d(3B). The
existence off; is guaranteed by the fact that the boundaries of those starlike bodies are all
homotopically equivalent, and from the classic result that two homotopic Hilbert manifolds
are alwaysC* diffeomorphic [9,14,20].
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Obviously, (1) is satisfied for sucly and f1. So, if we only check (2), thew1 will
be aC* self-diffeomorphism o> such that®1 o fo = f1. Since fp is the identity, we
have®(x) = f1(x) for everyx € M, and therefore; takesd A ontod B, anda(%A) onto
a(%B). This in turn implies thatp; takes the starlike body onto B and henceA and
B are C*™ relatively diffeomorphic. Indeed, if one point df is sent to a point outsidB
then the whole interior oft is sent outsideB: suppose that, for some pointsy € A, x
is sent outsideB andy is sent insideB; since the interior ofd is path connected there is
an arc joiningx andy in the interior ofA, and this arc must be sent Iy to another arc
in X which connects the pointB1(x) € X \ B and®1(y) € B; such arc must intersect the
boundary ofB, but this is impossible because if it did a point in the interioAofiould be
sent into the boundary @# and thereforep1 would not be injective. Since there are many
points insideA which are sent insid® (for instance, any of the points Gi%A)), we can
be certain thatb; takesA onto B.

So, in order to conclude the proof we only need to check (2). 40, 1] x M —
X be the homotopy joiningfp and f1. The condition (2) calls to find a bundle map
@:[0,1] x TM — f*(T X) which is a homotopy betweeTify and T f1; here theT f;
are the induced maps on the tangent bundles. In our case, these bundles are all trivial.
Moreover,T fy is just the identity, and" f1 is a closed embedding on® x £2. So suchx
does exist. O

The starlike bodies of a Banach spacere, in some sense, in one-to-one correspon-
dence with the closed subseks (respectively the open subsdiq of the unit spheres
of X. Let A be a starlike body irX. Letr: X \ {0} — S be the radial retraction. Clearly,
S(A) =r(ccA\ {0}) is a closed subset df such thatccA = [0, 00)S(A), the cone over
S(A), whiler(dA) = S\ S(A) is an open subset ¢f. As it is easily seen below, a closed
subsetk of S gives rise to a starlike body whose characteristic cone is the con&over

Proposition 9. Let K be a closed subset ¢f, there exists a starlike body = Ax such
that S(A) = K. If X is separable and”” smooth, then we may require that the botlis
C? smooth as well.

Proof. Take any continuous functioh: S — [0, 1] with A=1(0) = K. Define y(x) =
lxlIACx/llx]) for x # 0 and ¢(0) = 0. We see thaty: X — [0,00) is a positively
homogeneous continuous function with~1(0) = [0, c0)K. It is enough to setA =
¥v~1([0, 1)). In the smooth case, iX is C? smooth, there exists a boundéd@ smooth
starlike body whose characteristic cong@. Let 1 stand for the Minkowski functional
of this body. Using the fact thax admitsC? smooth partitions of unity, one can find
a continuous function : X — [0, 1] which is C? smooth offA~1(0) = [0, co)K . Define
Y(x) = u(x)A(x/u(x)) for x £ 0 andy(0) = 0. Clearly,y : X — [0, 00) is a positively
homogeneous continuous function whichti& smooth offyy~1(0) = [0, co) K. SetA =
y1(0,1]). D

Remark 10. The smooth assertion holds true if one replaces the separability assumption
by the existence of 7 smooth partitions of unity.
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In the proof of Proposition 9, instead of using the functionalWwe could have used
a weak Hilbertian nornw on the separable spacé, that is, a continuous norm of
the formw(x) = || T (x)|| that is determined by an injective continuous linear operator
T:X — £». In such a casey is real-analytic offo—1(0). If K is a compact subset o,
thenKp = ([0, 0)K) N S,,, wheresS,, is the unitw-sphere, is also compact. Hen@&,Ko)
is compact irgz and, by [12], there exists a continuous functiars,, — [0, 1] that is real-
analytic offA=1(0) = Ko. Lettingy(x) = w (x)A(x /w(x)) for x # 0 andy(0) = 0, the set
A =¥ ~1([0, 1]) is a real-analytic starlike body witlc A = [0, c0)K . As a consequence,
we have:

Remark 11. In a separable Banach space, for every starlike bbdsth a locally compact
characteristic conecA, there exists a real-analytic starlike body with ccAg = ccA.

We do not know whether this last statement holds for an arbitrary starlike Body
However, if ccA is weakly closed, then we can find a weak Hilbertian nasnso that
ccA is w-closed. We can then construct a continuous functiof, — [0, 1] that isC*
off A=1(0) = ccA N S,,. Since the characteristic cone of a weakly closed starlike body is
weakly closed, we have the following:

Remark 12. For a starlike bodyA in a separable Banach space, which is closed in the
weak topology, there exists@™® starlike bodyAg with ccA = cc Ayp.

According to Lemma 3, for a fixed closed gétc S, all (smooth) starlike bodies of the
form Ak are relatively (diffeormorphic) homeomorphic. In the infinite-dimensional setting
we also have:

Corollary 13. For two closed setsK1, Ko € S in an infinite-dimensional Banach
spaceX, the starlike bodiesAg, and Ak, are relatively homeomorphic if and only if
the complementS$\ K1 andS \ K2 have the same homotopy type.

Proof. Thisis a consequence of Theorem 7 because the boundagy @ homeomorphic
toS\K;,i=1,2. O

We do not know what necessary and sufficient conditionskfgri = 1, 2, one has to
impose in order their complements $hhave the same homotopy type.Kfis a Z-set in
S (e.g.,K is compact), then the complement &Kfis homeomorphic t&; hence, in such
a caseAy is relatively homeomorphic to the unit ball. K1 is a one-point set anfl, is
a small closed ball intersected with) then K4 is a Z-set, whileK> is not aZ-set, but
the complements ok, and K2 have the same homotopy type (they are contractible), and
thereforeAg, and Ak, are relatively homeomorphic (with the unit ball). The following
example shows that the contractibility &h and K> does not suffice to obtain the same
homotopy type of their complements.

Example 14. Let K1 C S be a one point set ankl, = S N Xg, whereXg is a codimension
1 vector subspace of. Then,K; and K> are contractible, but the complement & is
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disconnected, while the complementkof is contractible (even homeomorphicxg. We
see thatAg, is relatively homeomorphic to the unit ball i, while ccAg, = Xg and,
consequentlyAk, is relatively homeomorphic t&g x [—1, 1], which, in turn, (having
disconnected boundary iXip x R) is not homomorphic to the unit ball iK.

Since, for aZ,-setZ (that is, Z is a countable union af-sets) inS, the spaces§ \ Z
and S are homeomorphic, one can hope thakif and K> have the same homotopy type
moduloZ, -set, then the complements&f, i = 1, 2, have the same homotopy type. (Two
closed sets”;, P> are meant to have the same homotopy type modyleet if there are
closed sets?’ C P;, i = 1,2, such thatP/, i = 1,2, have the same homotopy type and
both Py \ Pi and Py \ Pé are Z,-sets.) This, however, is not the case because thekgets
and K> of Example 14 have the same homotopy type modleset.

Thefinite-dimensional case

Below we provide several examples showing that Corollary 13 and Theorem 7 cannot
be extended in any reasonable way for a finite-dimensional space

Example15. Let § = ST and B be the unit sphere and the unit ballin= R?, respectively.
Consider two compact&1 andK» in S; K1 is a copy of an infinite convergent sequence
space and?> is a copy of the Cantor set. Then, the bodieg, and Ak, (having their
boundaries homeomorphic) are not homeomorphic.

To see this it suffices to notice that ea¢k, is homeomorphictd® \ K;. Itis then clear
that any nonisolated point &1 has a basis of neighborhoods @rx,) that can be chosen
to be topologically different from any neighborhood of any poinkef We can obviously
make those starlike bodies to be real-analytic, so an improvement in smothness is not any
help.
In higher dimensions, one can provide more regular examples.

Example 16. Let S = $2 be the unit sphere iX = R3. ConsiderC; = Uy U Us U Us,
whereUy ={(x,y,2) € S| |zl <1/8},Uz2={(x,y,2) € S| |z—1| < 1/8},andUsz = —U>,
andC2 = U1 U Uz U U3, whereUz = {(x,y,z) € S | |z — 1/2| < 1/8, y > 0}. Letting
K;i =8\ C;, i =1,2, we see that the boundaries of the starlike bodigs (being
homeomorphic taC;) are homeomorphic. However, there is no homeomorphiseiqf
onto Ag,.

In R4, we have the following.

Example 17. Let S = $° be the unit sphere i =R*. Let K be the (doubled) Fox-Artin
arc in S, that is, K is a topological arc whose complement is a contractible 3-manifold
which is not homeomorphic t&3, see [21, p. 68]. Then, for a starlike body= Ax, ccA

is a cone over an arc, therefore, it is contractible. Morea¥grjs not homeomorphic to a
half-space ifR* though both bodies have contractible boundaries.
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In general, for everyn > 4, the sphereS = $"~! in X = R” contains an open
contractible(n — 1)-manifold U that is not homeomorphic t&”"~1. In casen = 4, one
can takel to be the so-called Whitehead manifdldin $2. Actually, in each dimension
n > 3, there are uncountably many topologically distinct contractiblaanifolds; the
construction is due to McMillan [19] forn = 3, Glaser [16] forn = 4, and Curtis and
Kwun [11] for n > 5. The complemens® \ W is a continuum that is not contractible. For
n > 4, one can always pick so thats”—1\ U is a contractiblgn — 1)-manifold. To see
this, let M be a contractiblén — 1)-manifold with non-simply connected boundary; the
existence ofM is due to N.H.A. Newman for > 5 (see [17]), and due to B. Mazur and
V. Poenaru fom = 5. Gluing together two copies @ff along their boundaries we obtain
the double spac#/, which is a topological copy a$”~1 (cf. [1, p. 2, items (4) and (9)]).
The complement of one copy 81 in N is just the interior of the other copy, which yields a
requested manifol@ . SincelU is not simply connected at infinity] is not homeomorphic
to R”~1: moreover, the manifold/, being the interior of a contractible manifold, is itself
contractible.

Example 18. Write K = S\ U. Any starlike bodyAk in R", n > 4, has bothccAg and
d Ak contractible. However ¢ is not homeomorphic to a half-space.
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