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Abstract

Starlike bodies are interesting in nonlinear analysis because they are strongly rela
polynomials and smooth bump functions, and their topological and geometrical properti
therefore worth studying. In this note we consider the question as to what extent the known
on topological classification of convex bodies can be generalized for the class of starlike bodi
we obtain two main results in this line, one which follows the traditional Bessaga–Klee schem
the classification of convex bodies (and which in this new setting happens to be valid only for s
bodies whose characteristic cones are convex), and another one which uses a new clas
scheme in terms of the homotopy type of the boundaries of the starlike bodies (and which
in full generality provided the Banach space is infinite-dimensional).
 2003 Elsevier B.V. All rights reserved.
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A closed subsetA of a Banach spaceX is said to be a starlike body if there exists
pointx0 in the interior ofA such that every ray emanating fromx0 meets∂A, the boundary
of A, at most once. Up to a suitable translation, we can always assume (and we will
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thatx0 = 0 is the origin ofX. For a starlike bodyA, we define the characteristic cone ofA
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ccA= {x ∈X | rx ∈A for all r > 0},
and the Minkowski functional ofA as

µA(x)= inf

{
λ > 0

∣∣∣ 1

λ
x ∈A

}

for all x ∈ X. It is easily seen that for every starlike bodyA its Minkowski functional
µA is a continuous function which satisfiesµA(rx)= rµA(x) for everyr � 0 andx ∈X,
andµ−1

A (0)= ccA. Moreover,A= {x ∈X | µA(x)� 1}, and∂A= {x ∈X | µA(x)= 1}.
Conversely, ifψ :X→ [0,∞) is continuous and satisfiesψ(λx) = λψ(x) for all λ � 0,
thenAψ = {x ∈X |ψ(x)� 1} is a starlike body. More generally, for a continuous funct
ψ :X→ [0,∞) such thatψx(λ)=ψ(λx), λ > 0, is increasing and sup{ψx(λ): λ > 0}> ε
for everyx ∈X \ψ−1(0), the setψ−1([0, ε]) is a starlike body whose characteristic co
isψ−1(0).

A familiar important class of starlike bodies areconvex bodies, that is, starlike bodie
that are convex. For a convex bodyU , ccU is always a convex set, but in general t
characteristic cone of a starlike body is not convex.

We will say thatA is aCp smooth starlike body provided its Minkowski function
µA is Cp smooth on the setX \ ccA = X \ µ−1

A (0). A starlike bodyA is said to
be Lipschitz provided its Minkowski functionalµA is a Lipschitz function. Finally
two (smooth) starlike bodiesA, B in a Banach spaceX are relatively homeomorphi
(relatively diffeomorphic) whenever there is a self-homeomorphism (diffeomorph
g :X→X so thatg(A)= B. It is clear that “being relatively homeomorphic” (respectiv
diffeomorphic) endows the set of starlike bodies of a Banach space with an equiv
relationship.

Starlike bodies often appear in nonlinear functional analysis as natural substitu
convex bodies or in connection with bump functions and with polynomials; more prec
for everyn-homogeneous polynomialP :X → R the set{x ∈ X | P(x) � c}, c > 0, is
either a (real-analytic) starlike body or its complement is the interior of such a body
[4]). It is therefore reasonable to ask to what extent the geometrical properties of c
bodies are shared with the more general class of starlike bodies. In [4] the ques
whether James’ theorem on the characterization of reflexivity (one of the deepest cl
results of functional analysis) is true for starlike bodies was answered in the negative
it was shown that the boundary of a smooth Lipschitz bounded starlike body in an in
dimensional Banach space is smoothly Lipschitz contractible; furthermore, the bou
is a smooth Lipschitz retract of the body. Here, we deal with the question as to what
the known results on the topological classification of convex bodies can be generaliz
the class of starlike bodies.

It was Klee [18] that first gave a topological classification of the convex bodie
a Hilbert space. This result was generalized for every Banach space with the h
Bessaga’s non-complete norm technique (see the book by Bessaga and Pelczyn
Chapters III and V). To get a better insight in the history of the topological classificati
convex bodies the reader should have a look at the papers by Stocker [22], Cors
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Klee [10], Bessaga and Klee [6,7], and Dobrowolski [13]. These results have recently
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been sharpened to get a full classification of theCp smooth convex bodies of eve
Banach space [5]. In its most general form the result on a classification of (smooth) c
bodies reads as follows (see [5]); here, as in the whole paper,p = 0,1,2, . . . ,∞, and “C0

diffeomorphic” means just “homeomorphic”.

Theorem 1. LetU be aCp convex body in a Banach spaceX.

(a) If ccU is a linear subspace of finite codimension(sayX = ccU ⊕ Z, with Z finite-
dimensional), thenU is Cp relatively diffeomorphic toccU + BZ , whereBZ is an
Euclidean ball inZ.

(b) If ccU is not a linear subspace orccU is a linear subspace such that the quotient sp
X/ccU is infinite-dimensional, thenU isCp relatively diffeomorphic to a closed hal
space(that is,{x ∈X | x∗(x)� 0}, for somex∗ ∈X∗).

Our aim in this paper is to discuss to what extent this result can be generaliz
(smooth) starlike bodies. The following example shows that part (b) of Theorem 1
true for starlike bodies whose characteristic cones are not convex sets.

Example 2. Let A = {(x, y) ∈ R
2: |xy| � 1}. It is plain thatA is a starlike body in the

planeR
2, and its characteristic cone is the pair of lines defined by the equationxy = 0.

ThenA cannot be relatively diffeomorphic (not even relatively homeomorphic) to a
plane ofR2. Indeed,∂A is not connected, while the boundary of a closed half-plane (th
to say, a line) is always connected. Similar examples show that for everyn ∈ N there exists
a starlike bodyAn in the planeR

2 such that∂An has exactlyn connected component
HenceAn is not relatively homeomorphic toAm whenevern �=m.

However, it seems natural to think that every two (smooth) starlike bodies with the
characteristic cone should be diffeomorphic. This is indeed true and it is a fact that, t
elementary, will help us to unravel the tangle of starlike bodies and get a first generali
of Theorem 1. Let us state and prove this fact.

Proposition 3. LetX be a Banach space, and letA1,A2 beCp smooth starlike bodies suc
that ccA1 = ccA2. Then there exists aCp diffeomorphismg :X→X such thatg(A1) =
A2, g(∂A1) = ∂A2, andg(0) = 0. Moreover,g(x) = η(x)x, whereη :X → [0,∞), and
henceg preserves the rays emanating from the origin.

Proof. First of all let us see that the statement is true if we make the additional assum
thatA1 ⊆ A2. So, let us suppose thatA andB are starlike bodies such that the origin
an interior point of bothA andB, ccA = ccB, andA ⊆ B (so thatµB(x) � µA(x) for
everyx, whereµA andµB are the Minkowski functionals ofA andB, respectively), and
see that there exists aCp diffeomorphismg :X→ X such thatg(A)= B, g(0) = 0, and
g(∂A)= ∂B.
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Let λ(t) be a non-decreasing real function of classC∞ defined fort > 0, such that
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λ(t)= 0 for t � 1/2 andλ(t)= 1 for t � 1. Let

g(x)=
[
λ
(
µA(x)

)µA(x)
µB(x)

+ 1− λ(µA(x))
]
x

for x /∈ ccA, andg(x)= x wheneverµB(x)= 0. It is clear thatg is aCp smooth mapping
Let y /∈ ccA be an arbitrary vector ofX and put

Gy(t)=
[
λ
(
tµA(y)

)µA(y)
µB(y)

+ 1− λ(tµA(y))
]
t

for t > 0. Note thatGy(t) is strictly increasing and satisfies limt→0+Gy(t) = 0, and
limt→∞Gy(t) = ∞. This implies that for everyy ∈ X \ ccA a numbert (y) > 0 such
thatGy(t (y)) = 1 is uniquely determined, which means thatg is a one-to-one mappin
fromX \ ccA ontoX \ ccA, with g−1(y)= t (y)y. It is also clear thatg fixes all the points
in ccA, so thatg is a bijection fromX ontoX. Let us defineΦ : (X \ ccA)× (0,∞)→ R

by

Φ(y, t)=
[
λ
(
tµA(y)

)µA(y)
µB(y)

+ 1− λ(tµA(y))
]
t .

Taking into account thatµB(x) � µA(x) andλ is non-decreasing, one can easily che
that ∂Φ

∂t
(y, t)� 1> 0. Then, using the implicit function theorem we obtain thaty → t (y)

is aCp smooth function onX \ ccA, and therefore so isg−1. On the other hand, from th
definition above it is clear that the mapg restricts to the identity on a neighbourhood of t
coneccA, and hence bothg andg−1 areCp smooth on the whole ofX. Thus,g is aCp

diffeomorphism fromX ontoX, and it is obvious thatg transforms the bodyA= {x ∈X |
µA(x)� 1} ontoB = {x ∈ X | µB(x) � 1}, and its boundary∂A= {x ∈ X | µA(x) = 1}
onto∂B = {x ∈X | µB(x)= 1}.

Now let us consider the general case. LetA= {x ∈ X | µA1(x)+ µA2(x)� 1}, which
is aCp smooth starlike body satisfyingccA= ccAj andA⊆ Aj , for j = 1,2. From the
first part of the proof we know that there exist self-diffeomorphisms ofX, g1 andg2, such
that gj (A) = Aj andgj (∂A) = ∂Aj , j = 1,2. Then, if we putg = g2 ◦ g−1

1 , we get a
self-diffeomorphism ofX transformingA1 ontoA2 and∂A1 onto∂A2. ✷

As said above, one cannot dream of extending part (b) of Theorem 1 to the cl
general starlike bodies. The complexity of the characteristic cones of (unbounded) s
bodies really makes a difference that forces us to devise a new classification s
suitable for all starlike bodies, whatever their characteristic cones may be. If one
to stick to the Bessaga–Klee classification scheme then the best result one can a
that Theorem 1 still holds for the class of starlike bodies whose characteristic con
convexsets.

We will next state and prove such a result, but first we will need to establish
following proposition, which might be of independent interest (beyond the classific
problem) in the theory of smoothness in Banach spaces, and which tells us tha
proper closed convex coneC in a separable Banach space can regarded both a
characteristic cone of someC∞ smooth convex body and as the set of zeros of aC∞
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smooth convex function. We say that a nonempty subsetC of a Banach spaceX is a
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cone(respectively, a cone over a setK ⊂ S, whereS is the unit sphere ofX) provided
[0,∞)C = C (respectively,C = [0,∞)K). The coneC is proper ifC �=X.

Proposition 4. For every closed convex setC in a separable Banach spaceX there exists
a C∞ smooth convex functionf :X→ [0,∞) so thatf−1(0)= C. Moreover, whenC is
a cone,U = f−1([0,1]) is aC∞ smooth convex body inX so thatccU = C.

Proof. We may obviously assume that∅ �= C �=X. It is well known that, as a consequen
of the Hahn–Banach theorem, every such closed convex setC is the intersection of the
half-spaces ofX which containC, that is,

C =
⋂
i∈I
Hi,

where theHi can be assumed to be of the formHi = {x ∈ X: x∗
i (x) � αi} for some

x∗
i ∈X∗ with ‖x∗

i ‖ = 1, andαi ∈ R. Then we have thatX \C = ⋃
i∈I (X \Hi), and since

the complementsX \Hi are open andX \ C is a Lindelöf space, there exists a counta
subcovering

X \C =
∞⋃
n=1

(X \Hn),

where theHn = {x ∈X: x∗
n(x)� αn} form a subsequence of the family(Hi)i∈I . Therefore,

we can writeC as a countable intersection of closed half-spaces,

C =
∞⋂
n=1

{
x ∈X: x∗

n(x)� αn
}
. (1)

Now, let θ :R → [0,∞) be aC∞ smoothconvexfunction so thatθ(t)= 0 for t � 0, and
θ(t) > 0 whenevert > 0; we can even demand thatθ(t) be an affine function of slope
for t � 1, sayθ(t) = t + b for t � 1, where−1< b < 0. It is easy to construct such
functionθ by integrating twice a suitableC∞ smooth nonnegative function whose supp
is precisely the interval[0,1]. Define thenθn :R → [0,∞) by

θn(t)= θ(t − αn);
clearly θn is aC∞ smooth convex function so thatθn vanishes precisely on the interv
(−∞, αn], andθn restricts to an affine function on[αn+ 1,∞), namelyθn(t)= t −αn+ b
for t � αn + 1.

Let us define our functionf :X→ [0,∞) by

f (x)=
∞∑
n=1

θn(x
∗
n(x))

(1+ |αn|)2n
for all x ∈X. It is clear thatf is a convex function. Let us see thatf is well defined and
C∞ smooth. We can writef as a function series,f (x)= ∑∞

n=1fn(x), where

fn(x)= θn(x
∗
n(x))

(1+ |αn|)2n .
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In order to see thatf is C∞ smooth it is enough to check that the series of derivatives
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∑∞
n=1f

(j)
n (x) converges uniformly on each ballB(0,R), with R > 1, for all j =

0,1,2, . . . . Since the derivatives of the functionθ are all bounded andθn is a mere
translation ofθ , there are constantsMj > 0 so that‖θ(j)n ‖∞ = ‖θ(j)‖∞ = Mj for all
j = 1,2, . . . , while for j = 0 we have

0 � θn(t)= θ(t − αn)� max
{
θ(1), t − αn + b}

for all t ∈ R. By using these bounds, and bearing in mind that‖x∗
n‖ = 1, we can estimate

for ‖x‖ �R,

∣∣fn(x)∣∣ =
∣∣∣∣ θn(x

∗
n(x))

(1+ |αn|)2n
∣∣∣∣ � θ(1)+R + |αn| + |b|

(1+ |αn|)2n := δ(0)n ,

and since
∑∞
n=1 δ

(0)
n <∞, it follows that

∑∞
n=1fn(x) converges uniformly on the ba

B(0,R). Forj � 1 it is easily seen that thej -linear mapf (j)n (x) ∈ Ljs (X; .2) is given by

f
(j)
n (x)= θ

(j)
n (x

∗
n(x))

(1+ |αn|)2n
j︷ ︸︸ ︷

x∗
n ⊗ · · · ⊗ x∗

n .

Then, by taking into account that‖x∗
n ⊗ · · · ⊗ x∗

n‖ � 1 = ‖x∗
n‖, and‖θ(j)n ‖∞ =Mj , we get

that

∥∥f (j)n (x)
∥∥ � MjR

(1+ |αn|)2n := δ(j)n

whenever‖x‖ � R and, since
∑∞
n=1 δ

(j)
n < ∞, this ensures that

∑∞
n=1f

(j)
n converges

uniformly on bounded sets, for allj ∈ N. Therefore,f is of classC∞.
The fact thatf−1(0) = C follows immediately from equality(1) above and from the

definitions of the functionsθn andf .
On the other hand, every convex differentiable nonnegative function which van

precisely on a setC cannot have a zero derivative outsideC; therefore our functionf
satisfiesf ′(x) �= 0 for all x ∈X \C.

Finally, whenC is a cone, by bearing in mind the special construction of our func
f it is not difficult to see thatU = f−1([0,1]) is aC∞ smooth convex body inX so that
ccU = C. Indeed, ifC is a cone, we may assume that theαi are all positive numbers. The
for eachx ∈ X \ C there exists somen such thatx∗

n(x) > αn. Now, by lettingt go to∞
we can makex∗

n(tx) increase to∞, which, by the choice of the functionθn, means tha
θn(x

∗
n(tx))/(1+|αn|)2n, thenth term of the series definingf (tx), gets as large as we wis

so that the ray determined byx cannot be in the bodyU = f−1[0,1]), that is,x ∈X \ ccU .
This shows thatccU ⊆ C; the other inclusion is obvious.✷

Now we have arrived at the following generalization of Theorem 1.

Theorem 5. LetA be aCp starlike body in a separable Banach spaceX. Assume thatccA
is a convex subset ofX.
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(a) If ccA is a linear subspace of finite codimension(sayX = ccA⊕ Z, with Z finite-
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dimensional), thenA is Cp relatively diffeomorphic toccA + BZ , whereBZ is an
Euclidean ball inZ.

(b) If ccA is either not a linear subspace or elseccA is a linear subspace such that th
quotient spaceX/ccA is infinite-dimensional, thenA is Cp relatively diffeomorphic
to a closed half-space.

Moreover, in the casep = 0 this is true for all Banach spacesX.

Proof. To obtain (a) it is enough to apply Proposition 3 forA1 =A andA2 = ccA+BZ .
To obtain (b), writeC = ccA, which is a closed convex cone ofX. By Proposition 4

there exists aC∞ smooth convex bodyU so thatccU = C = ccA. Then, by Proposition 3
the starlike bodiesU andA areCp relatively difeomorphic. On the other hand, by t
assumption,ccU = C is either not a linear subspace or else is a linear subspace suc
dim(X/C)= ∞. Now, part (b) of Theorem 1 tells us thatU isCp relatively diffeomorphic
to a closed half-space, and hence so isA.

Finally, in the casep = 0, it is easy to see that, for every closed convex coneC ⊂X, the
setU = C +B, whereB is the unit ball ofX, is a closed convex body so thatC = ccU .
Hence, the above argument applies.✷

In particular, for an infinite-dimensional separable Banach spaceX, the boundary o
every smooth bounded starlike bodyA⊂X isCp diffeomorphic to a hyperplane. We no
apply the above result to get smooth negligibility of starlike bodies.

Corollary 6. LetX be a separable Banach space, and letA be aCp smooth starlike body
such that its characteristic cone is a linear subspace of infinite codimension inX. Then
there exists aCp diffeomorphism fromX ontoX \A.

Proof. According to Theorem 5, there exists aCp self-diffeomorphism ofX mappingA
onto a closed half-space. ThereforeX \A isCp diffeomorphic to an open half-space. Sin
an open half-space is obviouslyC∞ diffeomorphic to the whole space, we may conclu
thatX \A andX areCp diffeomorphic. ✷

As said above, examples like 2 show that the classification scheme used in The
is useless when one wants to cover such cases as those of starlike bodies with no
characteristic cones. Let us have a closer look at those examples. In the case of the
An whose construction is hinted in Example 2, and whose boundary hasn connected
components, one could wonder whether every starlike body inR

k whose boundary ha
exactlyn connected components must be relatively homeomorphic toAn.

More generally, it is natural to ask whether for every couple of starlike bodiesA andB
in a Banach spaceX with homeomorphic boundaries∂A and∂B it happens thatA andB
are relatively homeomorphic.

Surprisingly enough, the answers to these questions are all negative in the
dimensional setting, as we will show later on (see Examples 16, 17 and 18 below).
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However, in infinite dimensions things turn out less complicated, topologically
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speaking. The following theorem answers the above question in the affirmative, pro
a full classification of starlike bodies in terms of the homotopy type of their boundar
infinite-dimensional Banach spaces.

Theorem 7. LetX be an infinite-dimensional Banach space and letA,B be starlike bodies
in X, with boundaries∂A and∂B. The following statements are equivalent:

(1) ∂A has the same homotopy type as∂B;
(2) ∂A and∂B are homeomorphic;
(3) A andB are relatively homeomorphic.

Proof. Clearly,(3)⇒ (2)⇒ (1). In order to show that(1)⇒ (3), we shall make use o
the theory ofZ-sets in infinite-dimensional topology (see [8], for instance). To begin w
notice that a starlike body is an infinite-dimensional manifold, which is a space lo
homeomorphic to a fixed infinite-dimensional Hilbert space, and is contractible. In
topologically, it is just the Hilbert space, since every two homotopically equivalent infi
dimensional Hilbert manifolds are topologically equivalent (see [8, p. 316]). The boun
∂A of a starlike bodyA is always aZ-set in the body, since it is closed and it fulfills t
standard definition. Recall that a closed subsetC ⊂ A is said to be aZ-set inA provided
every continuous functionf : In →A (whereIn is the unit cube inRn) can be uniformly
approximated by continuous functionsgk : In → A so thatgk(In) ⊆ A \ C, that is, the
images of the approximationsgk avoid the setC.

Given a starlike bodyA in X and a continuous functionf : In → A, the composition
with a radial push provides a required approximation whose image avoids the bou
C = ∂A. Indeed, the sequence of functionsfk defined by

fk(x)=
(

1− 1

k

)
f (x)

converges tof in the spaceC(In,A) with the sup norm and, sincef (x) ∈ A (that is,
µA(f (x))� 1) for all x ∈ In, and

µA
(
fk(x)

) =
(

1− 1

k

)
µA

(
f (x)

)
�

(
1− 1

k

)
< 1,

it is clear thatfk(In)⊆A \ ∂A. Hence∂A is aZ-set inA.
A similar argument (takingfk(x)= (1 + 1/k)f (x) instead), shows that∂A is aZ-set

in X \ int(A) (which is also an infinite-dimensional manifold).
So, given two starlike bodiesA andB in X, we know that∂A is aZ-set in bothA

andX \ int(A), and∂B is aZ-set inB and inX \ int(B). Now, we can make use of th
so-calledZ-set extension homeomorphism theorem [2], which tells us that a homeo
phism between twoZ-sets can be extended to a homeomorphism between the in
dimensional manifolds with respect to which those sets areZ-sets.

Since∂A and∂B are homotopically equivalent, the above mentioned result that e
two such infinite-dimensional manifolds are topologically equivalent tells us that∂A and
∂B are, in fact, homeomorphic. Letf : ∂A → ∂B be a homeomorphism. Then, takin



D. Azagra, T. Dobrowolski / Topology and its Applications 132 (2003) 221–234 229

into account that∂A and ∂B areZ-sets inA andB, respectively, theZ-set extension
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homeomorphism theorem tells us that there exists a homeomorphismF :A→B so thatF
restricts tof on∂A. On the other hand, since∂A and∂B are alsoZ-sets inX \ int(A) and
X \ int(B) respectively, using again the extension theorem, there exists a homeomo
G :X \ int(A)→X \ int(B) so thatG also restricts tof on ∂A. Therefore,

H(x)=
{
F(x) if x ∈A,
G(x) if x ∈X \A

is a self-homeomorphism ofX so thatH(A)= B (andf restricts tof on∂A). ✷
In the case of the Hilbert space we can improve Theorem 7 by extending it to thC∞

smooth category.

Theorem 8. LetA, B beC∞ smooth starlike bodies in the separable Hilbert space, w
boundaries∂A and∂B. The following statements are equivalent:

(1) ∂A has the same homotopy type as∂B;
(2) ∂A and∂B are homeomorphic;
(3) A andB areC∞ relatively diffeomorphic.

Proof. By Theorem 7 we already know that(1) and(2) are equivalent and, furthermor
that either of these statements implies that the bodiesA andB are relatively homeomor
phic. We only need to show that in this caseA andB are in factC∞ relatively diffeomor-
phic.

To this end, let us first observe that the bodiesA andB and their boundaries∂A and∂B
are paralelizable manifolds, that is, their tangent space, which is always our Hilbert
.2, has a contractible general linear group. In what follows, wheneverM is a boundary or a
finite union of boundaries of starlike bodies, the symbolTM stands for the tangent bundl
Since all of those manifolds are paralelizable,TM is always trivial.

Now we are in a position to apply a result of Elworthy’s which reads as follows (see
Theorem 24]).

SupposeM andX are paralelizableC∞ manifolds modelled on the Hilbert space, a
f0, f1 :M →X are closedC∞ embeddings. Assume that

(1) f0 andf1 are homotopic, and
(2) f0 andf1 are tangentially homotopic.

Then there exists aC∞ isotopyΦ :R × X → R × X so thatΦ(1, f0(x)) = f1(x) and
Φ(0, x)= x.

This result will give us what we want. Indeed, considerM = ∂A∪ ∂(1
2A), where1

2A=
{x ∈ X: µA(x) � 1/2}, X = .2, let f0 be the identity onM and letf1 : ∂A ∪ ∂(1

2A)→
∂B ∪ ∂(1

2B) be a diffeomorphism sending∂A onto ∂B, and ∂(1
2A) onto ∂(1

2B). The
existence off1 is guaranteed by the fact that the boundaries of those starlike bodies
homotopically equivalent, and from the classic result that two homotopic Hilbert man
are alwaysC∞ diffeomorphic [9,14,20].
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Obviously, (1) is satisfied for suchf0 andf1. So, if we only check (2), thenΦ1 will
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be aC∞ self-diffeomorphism of.2 such thatΦ1 ◦ f0 = f1. Sincef0 is the identity, we
haveΦ1(x)= f1(x) for everyx ∈M, and thereforeΦ1 takes∂A onto∂B, and∂(1

2A) onto
∂(1

2B). This in turn implies thatΦ1 takes the starlike bodyA ontoB and henceA and
B areC∞ relatively diffeomorphic. Indeed, if one point ofA is sent to a point outsideB
then the whole interior ofA is sent outsideB: suppose that, for some pointsx, y ∈ A, x
is sent outsideB andy is sent insideB; since the interior ofA is path connected there
an arc joiningx andy in the interior ofA, and this arc must be sent byΦ1 to another arc
in X which connects the pointsΦ1(x) ∈X \B andΦ1(y) ∈ B; such arc must intersect th
boundary ofB, but this is impossible because if it did a point in the interior ofA would be
sent into the boundary ofB and thereforeφ1 would not be injective. Since there are ma
points insideA which are sent insideB (for instance, any of the points of∂(1

2A)), we can
be certain thatΦ1 takesA ontoB.

So, in order to conclude the proof we only need to check (2). Letf : [0,1] ×M →
X be the homotopy joiningf0 and f1. The condition (2) calls to find a bundle ma
α : [0,1] × TM → f ∗(T X) which is a homotopy betweenTf0 and Tf1; here theTfi
are the induced maps on the tangent bundles. In our case, these bundles are al
Moreover,Tf0 is just the identity, andTf1 is a closed embedding ontoB × .2. So suchα
does exist. ✷

The starlike bodies of a Banach spaceX are, in some sense, in one-to-one corresp
dence with the closed subsetsK (respectively the open subsetsU ) of the unit sphereS
of X. LetA be a starlike body inX. Let r :X \ {0} → S be the radial retraction. Clearl
S(A) = r(ccA \ {0}) is a closed subset ofS such thatccA= [0,∞)S(A), the cone ove
S(A), while r(∂A)= S \ S(A) is an open subset ofS. As it is easily seen below, a close
subsetK of S gives rise to a starlike body whose characteristic cone is the cone overK.

Proposition 9. LetK be a closed subset ofS, there exists a starlike bodyA = AK such
thatS(A)=K. If X is separable andCp smooth, then we may require that the bodyA is
Cp smooth as well.

Proof. Take any continuous functionλ :S → [0,1] with λ−1(0) = K. Defineψ(x) =
‖x‖λ(x/‖x‖) for x �= 0 andψ(0) = 0. We see thatψ :X → [0,∞) is a positively
homogeneous continuous function withψ−1(0) = [0,∞)K. It is enough to setA =
ψ−1([0,1]). In the smooth case, ifX is Cp smooth, there exists a boundedCp smooth
starlike body whose characteristic cone is{0}. Let µ stand for the Minkowski functiona
of this body. Using the fact thatX admitsCp smooth partitions of unity, one can fin
a continuous functionλ :X→ [0,1] which isCp smooth offλ−1(0)= [0,∞)K. Define
ψ(x) = µ(x)λ(x/µ(x)) for x �= 0 andψ(0) = 0. Clearly,ψ :X→ [0,∞) is a positively
homogeneous continuous function which isCp smooth offψ−1(0) = [0,∞)K. SetA=
ψ−1([0,1]). ✷
Remark 10. The smooth assertion holds true if one replaces the separability assum
by the existence ofCp smooth partitions of unity.
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In the proof of Proposition 9, instead of using the functionalµ, we could have used
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a weak Hilbertian normω on the separable spaceX, that is, a continuous norm o
the formω(x) = ‖T (x)‖ that is determined by an injective continuous linear oper
T :X→ .2. In such a case,ω is real-analytic offω−1(0). If K is a compact subset ofS,
thenK0 = ([0,∞)K)∩ Sω, whereSω is the unitω-sphere, is also compact. Hence,T (K0)

is compact in.2 and, by [12], there exists a continuous functionλ :Sω → [0,1] that is real-
analytic offλ−1(0)=K0. Lettingψ(x)= ω(x)λ(x/ω(x)) for x �= 0 andψ(0)= 0, the set
A= ψ−1([0,1]) is a real-analytic starlike body withccA= [0,∞)K. As a consequence
we have:

Remark 11. In a separable Banach space, for every starlike bodyA with a locally compact
characteristic coneccA, there exists a real-analytic starlike bodyA0 with ccA0 = ccA.

We do not know whether this last statement holds for an arbitrary starlike bodA.
However, if ccA is weakly closed, then we can find a weak Hilbertian normω so that
ccA is ω-closed. We can then construct a continuous functionλ :Sω → [0,1] that isC∞
off λ−1(0)= ccA ∩ Sω. Since the characteristic cone of a weakly closed starlike bo
weakly closed, we have the following:

Remark 12. For a starlike bodyA in a separable Banach space, which is closed in
weak topology, there exists aC∞ starlike bodyA0 with ccA= ccA0.

According to Lemma 3, for a fixed closed setK ⊂ S, all (smooth) starlike bodies of th
formAK are relatively (diffeormorphic) homeomorphic. In the infinite-dimensional se
we also have:

Corollary 13. For two closed setsK1,K2 ⊂ S in an infinite-dimensional Banac
spaceX, the starlike bodiesAK1 and AK2 are relatively homeomorphic if and only
the complementsS \K1 andS \K2 have the same homotopy type.

Proof. This is a consequence of Theorem 7 because the boundary ofAKi is homeomorphic
to S \Ki, i = 1,2. ✷

We do not know what necessary and sufficient conditions forKi , i = 1,2, one has to
impose in order their complements inS have the same homotopy type. IfK is aZ-set in
S (e.g.,K is compact), then the complement ofK is homeomorphic toS; hence, in such
a caseAK is relatively homeomorphic to the unit ball. IfK1 is a one-point set andK2 is
a small closed ball intersected withS, thenK1 is aZ-set, whileK2 is not aZ-set, but
the complements ofK1 andK2 have the same homotopy type (they are contractible),
thereforeAK1 andAK2 are relatively homeomorphic (with the unit ball). The followi
example shows that the contractibility ofK1 andK2 does not suffice to obtain the sam
homotopy type of their complements.

Example 14. LetK1 ⊂ S be a one point set andK2 = S ∩X0, whereX0 is a codimension
1 vector subspace ofX. Then,K1 andK2 are contractible, but the complement ofK2 is
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disconnected, while the complement ofK1 is contractible (even homeomorphic toX). We
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see thatAK1 is relatively homeomorphic to the unit ball inX, while ccAK2 = X0 and,
consequently,AK2 is relatively homeomorphic toX0 × [−1,1], which, in turn, (having
disconnected boundary inX0 × R) is not homomorphic to the unit ball inX.

Since, for aZσ -setZ (that is,Z is a countable union ofZ-sets) inS, the spacesS \ Z
andS are homeomorphic, one can hope that ifK1 andK2 have the same homotopy typ
moduloZσ -set, then the complements ofKi, i = 1,2, have the same homotopy type. (Tw
closed setsP1,P2 are meant to have the same homotopy type moduloZσ -set if there are
closed setsP ′

i ⊂ Pi, i = 1,2, such thatP ′
i , i = 1,2, have the same homotopy type a

bothP1 \ P ′
1 andP2 \ P ′

2 areZσ -sets.) This, however, is not the case because the seK1
andK2 of Example 14 have the same homotopy type moduloZσ -set.

The finite-dimensional case

Below we provide several examples showing that Corollary 13 and Theorem 7 c
be extended in any reasonable way for a finite-dimensional spaceX.

Example 15. LetS = S1 andB be the unit sphere and the unit ball inX = R
2, respectively.

Consider two compactaK1 andK2 in S; K1 is a copy of an infinite convergent sequen
space andK2 is a copy of the Cantor set. Then, the bodiesAK1 andAK2 (having their
boundaries homeomorphic) are not homeomorphic.

To see this it suffices to notice that eachAKi is homeomorphic toB \Ki . It is then clear
that any nonisolated point ofK1 has a basis of neighborhoods (inAK1) that can be chose
to be topologically different from any neighborhood of any point ofK2. We can obviously
make those starlike bodies to be real-analytic, so an improvement in smothness is
help.

In higher dimensions, one can provide more regular examples.

Example 16. Let S = S2 be the unit sphere inX = R
3. ConsiderC1 = U1 ∪ U2 ∪ U3,

whereU1 = {(x, y, z) ∈ S | |z|< 1/8},U2 = {(x, y, z) ∈ S | |z−1|< 1/8}, andU3 = −U2,
andC2 = U1 ∪ U2 ∪ U ′

3, whereU ′
3 = {(x, y, z) ∈ S | |z − 1/2| < 1/8, y > 0}. Letting

Ki = S \ Ci , i = 1,2, we see that the boundaries of the starlike bodiesAKi (being
homeomorphic toCi ) are homeomorphic. However, there is no homeomorphism ofAK1

ontoAK2.

In R
4, we have the following.

Example 17. Let S = S3 be the unit sphere inX = R
4. LetK be the (doubled) Fox-Artin

arc in S, that is,K is a topological arc whose complement is a contractible 3-man
which is not homeomorphic toR3, see [21, p. 68]. Then, for a starlike bodyA=AK , ccA
is a cone over an arc, therefore, it is contractible. Moreover,AK is not homeomorphic to
half-space inR4 though both bodies have contractible boundaries.
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In general, for everyn � 4, the sphereS = Sn−1 in X = R
n contains an open
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contractible(n − 1)-manifoldU that is not homeomorphic toRn−1. In casen = 4, one
can takeU to be the so-called Whitehead manifoldW in S3. Actually, in each dimensio
n � 3, there are uncountably many topologically distinct contractiblen-manifolds; the
construction is due to McMillan [19] forn = 3, Glaser [16] forn = 4, and Curtis and
Kwun [11] for n� 5. The complementS3 \W is a continuum that is not contractible. F
n > 4, one can always pickU so thatSn−1 \U is a contractible(n− 1)-manifold. To see
this, letM be a contractible(n− 1)-manifold with non-simply connected boundary; t
existence ofM is due to N.H.A. Newman forn > 5 (see [17]), and due to B. Mazur an
V. Poenaru forn= 5. Gluing together two copies ofM along their boundaries we obta
the double spaceN , which is a topological copy ofSn−1 (cf. [1, p. 2, items (4) and (9)])
The complement of one copy ofM inN is just the interior of the other copy, which yields
requested manifoldU . SinceU is not simply connected at infinity,U is not homeomorphic
to R

n−1; moreover, the manifoldU , being the interior of a contractible manifold, is itse
contractible.

Example 18. Write K = S \ U . Any starlike bodyAK in R
n, n > 4, has bothccAK and

∂AK contractible. However,AK is not homeomorphic to a half-space.
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