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1. Introduction

To the best of the authors’ knowledge, what one could call negligibility
theory in infinite-dimensional Banach spaces started in 1953 when Victor
L. Klee [22] proved that, ifX is either a non-reflexive Banach space or an
infinite-dimensional.? space ands is a compact subset of, there exists a
homeomorphism betweefiandX \ K which s the identity outside a neigh-
borhood ofK. Klee also proved that for those infinite-dimensional Banach
spaces X the unit sphere is homeomorphic to any of the closed hyperplanes
in X, and gave atopological classification of convex bodies in Hilbert spaces.
In 1966, C. Bessaga [2] proved that every infinite-dimensional Hilbert space
is C*° diffeomorphic to its unit sphere. He had previously used his so-called
non-complete norm technique to simplify those results of Klee's and to
generalize them to the class of all Banach spaces.

The real-analytic and smooth negligibility of compact sets in Banach
spaces was studied by the second-named author [13], who developed
Bessaga’s non-complete norm technigue in the smooth case and generalized
some of the results of [2]. He [13] showed that for every infinite-dimensional
Banach spac& having aC? non-complete norny, and for every compact
setK in X, the spaceX is C? diffeomorphic toX \ K. If, in addition,

X has an equivalenf’” smooth norm| - || then one can deduce that the
sphereS = {z € X | ||z|| = 1} is CP diffeomorphic to any of the hy-
perplanes inX. He also used his results on smooth negligibility to give a
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classification of smooth convex bodies in WCG Banach spaces (see [15]).
ConcerningC? smooth negligibility of compact sets, the largest class of
Banach spaces within which these results were known to be true was that of
all Banach spaces which can be linearly injected into seytg). It should

be remarked that there are examples of spaces@fittsmooth equivalent
norms which do not linearly embed into ary(I"). An example of such a
(nonseparable) Banach space is given in ([11], Ex. V1.8.8), and it may be
chosen to be&”(K) for a certain compact s€t’. So, when one wants to
generalize those results to every infinite-dimensional Banach space having
a C? smooth norm, one faces the following problem: Does every infinite-
dimensional Banach space withC& smooth equivalent norm admit@
smooth non-complete norm too? This intriguing question remains unsolved.

Without proving the existence of smooth non-complete norms, the first-
named author has recently shown [1] that every Banach speck- ||)
with a (not necessarily equivalerdty smooth normp is C? diffeomorphic to
X\ {0} and, moreover, that every hyperplatien X is C? diffeomorphicto
the spherdz € X | o(z) = 1}. Inthis paper, we strengthen tagymmetric
norm techniquef deleting points introduced in [1] so as to generalize some
results on smooth negligibility of compacta and subspaces to the class of all
Banach spaces having a (not necessarily equivadéhgmooth norm. We
also give a full smooth classification of the convex bodies of every Banach
space. In particular, we show that every smooth convex body containing no
linear subspaces in an infinite-dimensional Banach space is diffeomorphic
to a half-space.

These results enable us to enlarge the class of spaces for which some
other applications of negligibility are valid. At the end of the paper we
give a sample of such applications which includes Garay’s theorems [16,
17] concerning the existence of solutions to ordinary differential equations
and cross-sections of solution funnels in Banach spaces, as well as sharper
statements of Klee’s results [22] on periodic homeomorphisms without fixed
points.

2. Removing compact sets from a Banach space

In this section we will give a method of removing compacta smoothly from
an infinite-dimensional Banach space having a (not necessarily equivalent)
smooth norm. Let us state our main result.

Theorem 2.1. Let (X, || - ||) be an infinite-dimensional Banach space with
a (not necessarily equivalent)? smooth nornp. Then, for every compact
setK C X, there exists & diffeomorphismp betweenX and X \ K.
Moreover, for each opesrball B containingk’, we can additionally require
that ¢ be the identity outsid&.
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The proof of this result is quite long and technical. In what follows, we
state and prove a number of auxiliary results that we will use in the proof
of 2.1. We will show that a mapping(z) = = + p(f(z)), z € X \ K, for
certainf : X — [0, 00) with f~}(K) = 0andp : (0,00) — X, establishes
aCP? diffeomorphism betweeX \ K andX. The map) can be viewed as a
“small” perturbation of the identity map, and its bijectivity is obtained by an
application of Lemma 2.2, a simple fixed point fact whose proof is omitted.
In order that the perturbatiomo f be small,p and f must satisfy some
Lipschitzian-type conditions with respect to a certain assymetric distance
induced by arassymetric nornw. Such a norm is constructed in Lemma
2.3.Lemma 2.5 gives us arequired patlhich “avoids” compact sets; this,
in turn, will make K “disappear”. Lemma 2.6 provides us with a required
function f (=) which can be viewed as a smooth substitute for the asymmetric
w-distance function from: to K. The CP diffeomorphisn) is constructed
in such a way that it is the identity outside a certatball. Finally, in order
to obtain a required diffeomorphism we make use of Lemma 2.7, which
yields a radialC? diffeomorphism ofX sending ap-ball onto anw-ball.

This is the strategy of our proof of 2.1.

Lemma 2.2. LetF : (0,00) — [0, c0) be a continuous function such that,
foreverys > o > 0, F(3)— F(a) < 3(3—a) andlim sup,_,o+ F(t) > 0.
Then there exists a unique> 0 such thatF'(«) = a.

The following lemma shows that for every Banach space witfiPa
smooth norm there exists a functional which will act as a smooth non-
complete norm in its absence.

Lemma 2.3. Let(X, || - ||) be an infinite-dimensional Banach space having
a (not necessarily equivalent’ smooth nornp. Then there exists a con-
tinuous functional : X — [0, oo) which isC? smooth onX \ {0} and
satisfies the following conditions:
1. w(z +y) <w(x)+w(y) and, consequently(z) — w(y) < w(z —y),
for everyx,y € X,
. w(rz) = rw(x) for everyx € X andr > 0;
. w(z) =0ifand only ifz = 0;
cw(dopl ze) < > e, w(z) for every convergent seriés 2 | zx; and
. Foreverys > 0, there exists a sequence of linearly independent vectors
(yx) satisfying

O~ WN

1)
w(yk) < Y]

foreveryk € N, and with the property that for every compact etz X
there exists; € N such that

inf{w(z—Zyk) |n>mnp,ze K} >0
k=1
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Remark 2.4.The functionalv is not necessarily a norm; in general;x) #
w(—=x). However, for our purposes, we will refer tpas to an assymetric
non-complete norm.

Proof of lemma 2.3We will consider three cases.
Case I: The normp is complete and the spacéis non-reflexive.

The normp is continuous with respect - || (because it i©? smooth),

and complete. Hence, according to the open mapping thearésm C?
smooth equivalent norm i, and we can assume that= || - ||. SinceX is

not reflexive, according to James’s theorem [21], there exists a continuous
linear functionall’ : X — R such thafl’ does not attain its norm. We may
assumé|7T'|| = 1, so thatsup{7'(z) : ||z|| = 1} = 1, and yetl'(x) < ||z||

for everyx # 0. Let us definev : X — [0, 00) by

w(x) = ||zl = T(x).

Note thatv(xz) = 0ifand only if x = 0, w(z +vy) < w(z) +w(y) for every
z,y € X,andw(rz) = rw(z) foreachr > 0, althoughw is nota norminX
becausev(z) # w(—z) in general. The property(z + y) < w(z) + w(y)
impliesthatu(z)—w(y) < w(z—y),aswellaso(d> 72, zx) < > peq w(zk)
for every convergent seri€s ;- ; z;. Thenw satisfies properties 1-4, and
it only remains to check that satisfies property 5. For a givér> 0, since
sup{T'(x) : |z|]| = 1} = 1, there exists a sequeng@g,) such that|y,|| = 1
andw(yx) = |lykll — T(yx) < 15+ for everyk € N, that is w satisfies the
first part of property 5. Clearly, we may assume that the vectgrsare
linearly independent. We only have to check that for such a sequepce
the following condition is also satisfied: for every compactiset X there
existsng = no(K) € N such that

n

inf{w(z — Zyk) |n>ng,z€ K} >0.
k=1

So, letK be a compact set, lé/ > 0, and takeR > 0 such thaf|z|| < R
for everyz € K. SinceT(yx) — 1 ask — oo, we can findng € N such
thatd "}, T'(yx) > M + R for everyn > ny. Then we have

wiz=Y g =Mz =Yl =TG=> ) > -T(z—Y_ u)
k=1 k=1 k=1

=T +TO _we) = =l +TO wr) = —llzll + > T(we)
k=1 k=1 k=1
> _R+M+R=M
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whenevem > ng, z € K. This proves that

n
inf{w(Z—ZkanZno,zEK} > M > 0.
k=1

Case II: The nornp is non-complete.

Definew = p. As p is aCP smooth norm, it is clear that satisfies
conditions 1-4. Let us see thaglso satisfies condition 5. Since the nasm
is non-complete, for every > 0 we can find a sequen¢gy.) in X such that
w(yg) < ﬁ for eachk, and a poing in the completion of X, w), denoted
by (X,w), such thag ¢ X, andlim,, . &(§ — 37—, yx) = 0. So the first
part of property 5 is satisfied. Moreover itis clear that the sequ@ngean
be chosen in such a way th@g, | £ = 1,2, ...} is a linearly independent
set of vectors. It only remains to check that for such a sequ@pge” X
and for every compact séf C X there exist3y € N such that

inf{w(z — Zyk) |n>mnp,ze K} >0.
k=1

Let K be acompactset ¢, | -||). Itisclearthato(z—_,_, yx) converges
tow(z — ¢) uniformly onz € K C (X, ). SinceK C (X, &) is compact,
w(z — g) is bounded away from zero for all€ K. Consequently, we get
our estimate.

Case Ill: The nornp is complete and the spacg s reflexive.

This case can be reduced to the previous one by showing that every
infinite-dimensional reflexive space has a non-compl&esmooth norm
w. Indeed, for every reflexive spac€ there exists a linear injectios :

X — ¢o(I") for some (infinite) sel” (see, e.g., [11], chapter VI, p. 246). It
is also well known that for an infinite sét, the space(I") is cp-saturated,
that is, every infinite-dimensional closed subspace(6f") has a closed
subspace which is isomorphicdg This clearly implies that, (") contains
no closed infinite-dimensional reflexive subspaces. Theref¢) is not

a closed subspace of(I"). On the other hand, the spaegI’) has an
equivalent”">° smooth norny ([11], chapter V, theorem 1.5). Then we can
define aC*>® smooth normw in X by w(z) = g(J(x)), and the normv
happens to be non-complete because the subsp@ce is not closed in
¢o(I"). This concludes the proof of lemma 2.3.

Using the properties of the functionalwe can constructdeleting path
as follows.
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Lemma 2.5. Let (X, || - ||) be a Banach space, and letbe a functional
satisfying conditions 1, 2, and 5 of lemma 2.3. Then, for e¥exy0, there
exists aC'> pathp = p;s : (0,00) — X such that

L w(p(e) —p(B)) < 5(B —a)if B> a > 0;

2. For every compact sét C X there existgy > 0 such that
inf{w(z —p(t)) |0 <t <tp,z€ K} >0;
3. p(t) = 0ifand only ift > 0.

Proof. For a giveny > 0, choose a sequencgy,) satisfying condition 5 of
lemma 2.3, and pick a non-increasiag® function : [0,00) — [0, 1]
suchthaty = 1in[0,4/2],v = 0in [4, 00), andsup{|y/(¢)| : t € [0,00)} <
4/6. Then define a path: (0,00) — X by

[e.e]
= 12y
k=1

It is clear thatp is a well-definedC> path. If 3 > o then~(2¥1a) —
v(2¥=13) > 0 because is non-increasing, and als@2*—'a) — v(2~173)
§_§_|2’“—1a — 2k=1p becauseup{|+/(¢)| | ¢ € [0,00)} < 4/d. Taking
this into account and using the propertiesudisted in lemma 2.3, we may
estimate as follows

w(p(er) — kf; 2" ) =y (27" 8))uw)

< kﬁj (2 1a) = 121 8)) )

= i( (2" ) — (271 8))w(yr)

<Z 2T — 261 Blu(y) fjwl LUV
&

giﬂfﬂilm ol =150

for every3 > «. Hence, the first condition is fulfilled.

Let us see thap also satisfies the second condition. For a compact set
K C X, condition 5 of lemma 2.3 provides us with numbers> 0,
my € Nsuchthatw(z — > ;_, yx) > 2nforalln > m; andz € K. Since
w(yr) < 6/4F foreveryk, we canfindny € Nsothafy 2 | w(ys) <

> gt 1 4,5% < 1. Letng = max{mi, mo}, and putty = §/2"°. Then,
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taking into account that(Qk—lt) = 1wheneve < t < tgandl < k <
ng, we have

w(z=p(t) =w(z = > ¥ )y)
k=1
=w((z — Z Yk) — (Z (2 yr — Z Yi)]
Z—Zyk ) —w(y (@ ltyk_zyk

k=1

no 00
:w(z—Zyk)—w Z Y(2F ) y)
= k=ng+1

o

(2 — Zyk > @ w ()
k=no+1
ng 00

wz=> u)— Y. ww) >WZ*ZZUI€ Z w(Yk)
k=1 k=no+1 k=ma+1
>2n—n=n>0

for every0 < t < tgandz € K. In particular,
inf{w(z —p(t)) |0 <t <tg,z€ K} >n>0.

So condition 2 of 2.5 is satisfied as well.
Finally, it is easily seen that the fact th@, | £ = 1,2, ...} is alinearly
independent set of vectors ensures fi{at = 0 if and only if ¢ > 4.

The last thing we will need in order to prove theorem 2.1 is to associate
each compact sét’ C X with a functionf : X — [0, co) such thatf is
CP smooth onX \ K, it satisfiesf~1(0) = K, andf(z) — f(y) < w(z —v)
for everyz,y € X. The existence of such functions is ensured by the
following lemma, which should be compared with Proposition VIII.3.8 of
[11]. It should be noted that cannot in general be chosen to®é on the
whole spaceX, as a recent paper by Pafék [20] shows. Indeed, according
to Corollary 9 of [20], for an uncountabl€ there is naC? smooth function
f : co(I') — [0,00) with f=1(0) = 0 (thoughco(I") admits aC*>
norm). The idea of our proof of 2.6 is an adaptation of that of the proof of
Lemma 1.1 of [13], where the case of a genuine narmas treated, and
the corresponding was called aC? Whitney function forK (with respect
tow).
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Lemma 2.6. Letw : X — [0, 00) be a continuous functional satisfying
properties 1-3 of lemma 2.3, and such thats C” smooth onX \ {0}.
Let K be a compact subset &f. For z € X, write di (x) = inf{w(z —

y) | y € K}. Then, for eacte > 0 there exists a continuous function
f=fs: X — [0, 00) such that

. fisCP smooth onX \ K;

f(@) = fly) S w(z —y) foreveryr,y € X;

FH0) = K;

inf{f(z) | dx(xz) > n} > 0 for everyn > 0;

. fisconstantonthe st € X | dx(z) > €}.

GEESENES

Proof of lemma 2.6

First of all let us see that the functiafy is continuous and satisfies
di (0) = K, anddg (z) — d (y) < w(x — y) for everyz,y € X. Indeed,
for everyy € X and for everye > 0 there existsy. € K such that
dx(y) +& > w(y —ye). Then

di(z) —dg(y) =inf{w(x —2) | z € K} —inf{w(y — 2) | z € K}
Sw@—y) —wly—y)te<wllz—y) - (Y -yl +e
=w(r —y)+e,

so that we obtaidy (x) — di (y) < w(x — y) by lettinge go to zero. Since
w(z) < 2||z|| for everyz, this inequality implies thailx () — dx (y) <
2||z — y|| for everyz,y € X and hencddx (x) — dx(y)| < 2|z — yl|
for everyz,y € X, that is,dk is Lipschitz and therefore continuous. The
same argument shows thats Lipschitz if only it satisfies condition 2. On
the other hand, iflx (x) = 0 then there exists a sequengg) C K such
thatlim,, w(x — y,) = 0. SinceK is compact we may assume that,)
convergestosomge K. By the continuity ofv, we have that (z—y) = 0,
which implies thatr = y € K. This, together with the obvious fact that
dr () = 0 for everyz € K, implies thatd.' (0) = K.

Now let us define the set$, = {x € X | dx(x) < 1/n} for eachn €
N. These are open sets satisfyliig,; C U, foreachn,and",~, U, = K.
Next, for everyz € X and everyr > 0, we define theasymmetrico-ball
A(z,7) by

Alz,r)={ze€ X |w(z —x) <r}.

It should be noted that the sdi%, arew-open that is, for everyx € U,
there exists, > 0 such thatA(z,r,) C U,. Indeed, ifx € U,, choose
r=1_—dg(x)>0.1fw(z—z) <rthendg(z) — dx(z) <w(z — ) <
r=1_dg(z),sothatix(z) < 1/n. This means that(z, r) is contained
inU,.

So, foreactn € Nandeach € K choose” > Osuchthat” < - and

A(z,ry) € Up. Since, for eactn we haveK C |J i A(z,77), the sets
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A(z,r) are open, andS is compact, there exi&t;? eK,j=1,...k(n),

so that
k(n)

Kc|JA@]

7=1

J’ J)

wherer stands forr”

Next let us see that for evewyball A(xg,r) there exists &? function
g : X — [0,1] such thatA(zg,r) = g~1(0), g = 1 outsideA(zo, 2r),
andg(z) — g(y) < Mw(x — y) for someM > 0. Leth : R — R be
a non-decreasing’> function such thab=1(0) = (—oc,r] andh = 1
on [2r,00). Let M = sup{|h/(t)| : t € R}. Defineg : X — [0, 00)
by g(y) = h(w(y — z0)) for everyy € X. Itis clear thatA(xo,r) =
g~1(0) andg = 1 outsideA(zg, 2r). If w(y — z¢) — w(z — z0) > 0 then
9(y) = h(w(y—x0)) > h(w(z—z0)) = g(x) becausé is non-decreasing,
and theng(z) — g(y) < Mw(z — y) trivially holds. If, on the contrary,
w(r —x0) —w(y — z0) > 0 then, taking into account thak' (¢)| < M, we
get

9(x) — g(y) = h(w(z — x0)) — h(w(y — o))
< Mw(z — z9) —w(y — x0)| = M(w(x — 20) — w(y — x0))
< Mw(x —y).

In either case we obtai(z) — g(y) < Mw(x — y) for everyz,y € X.
So, for eachu-ball A(:Uj,rj) let us pick aC? functiong, ;) : X —

[0,1] such thatd(z}, r}) = g(w)(o), 9(n,j) = 1 outsideA(z7,2r7), and

In) () = Ing)(y) < My, jw(z —y) for everyz,y € X and some
M,y > 1. Let us note that the product of two non-negative bounded
functions satisfying an inequality like(z) — g(y) < Mw(z — y) also
satisfies such an inequality (perhaps with a differ&ht> 0). Indeed, if
g1(z) — g1(y) < Myw(z — y) andga(z) — g2(y) < Mow(z — y) then

91(z)g2(z) — 91(y)g2(y) =
—91( )g2(z )—91( )92(y) + 91(7)92(y) — 91(y)92(y)
= g1(z)[g92(z) — 92(y)] + 92(y )[ 1(z) — 1(y)]
<gi(z )M2W(l’— y) + g2(y) Miw(z — y)
< (lg1llco M2 + || g2[|cc M1 )w(z — y),

where ||gi|l.c = sup{|gi(z)| : z € X}. Now, for eachn, consider the
product

x

k(n)
on(z) = [ 90 (@).
j=1
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The functionsp,, : X — [0, 1] satisfyp,, () — ¢n(y) < Mpw(x —y) for
everyz,y € X, forsomelM,, > 1,aswellasp, = 0on K, andy,(z) = 1
whenever: € X\ U, (indeed, ifdx (z) > 1/nthenw(z —z7) > di(z) >
1/n > 2r%, so thatg, ;) (z) = 1 for everyj = 1,..., k(n), which yields
on(z) = 1).

Finally, choosen € N such thatl/m < ¢. For everyk > m we have
or(z) = 1 whenevery (x) > . Then definef : X — [0, 1] by

@) = Y geeno)

k=m

foreveryr € X.

Note that for every: € X \ K there exist an open neighbourhoBgdof
x and a positive integer,, > m such thatp,,(y) = 1 whenever € V,, and
n > n,. Indeed, for eacr € X \ K letn, be such thal /n, < di(x)
and putV, = {y € X | dx(y) > 1/n,}. Itis clear thatV, is an open
neighbourhood of, and for eachy € V,, we havey € X \ U, for every
n > n,, so thatp, (y) = 1 whenevem > n,. Then all but finitely many of
the functionsp,, in the series defining are constant on a neighbourhood of
each point inX \ K, which clearly implies thaf is aC? smooth function
onX \ K. Itisalso clearthaf ~1(0) = K, andf(z) — f(y) < w(z—y) for
everyz,y € X. Thatis,f satisfies conditions 1-3 of lemma 2.6. Let us see
that f also satisfies conditions 4 and 5. For a giyen 0, takeng > m such
that1/ng < n. Then, for everyt > ng, we have that,(x) = 1 whenever
dg (x) > n, and therefore

it {(f(0) | dic(e) 2 0} = inf{ Y genlo) | dcle) 2 n)
k=m

RN L
> inf{ Z m@k(lﬁ) | dx(x) > n} = Z L > 0.
k=ng k=no

So condition 4 is also fulfiled. Moreoverf is constant (equal to
S0, M 127F) on the set{z € X | dx(x) > e}. This concludes the
proof of lemma 2.6.

With all these tools in our hands we can give a proof of theorem 2.1.

Proof of theorem 2.1

First of all let us take amsymmetric non-complete normfrom lemma
2.3. Associated to this functional, and for a fixede > 0, let us choose
a functionf = f. from lemma 2.6. Assuming(z) = 6 > 0 whenever
di(x) > ¢, select a pathp = ps from lemma 2.5. With these choices, for
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everyr € X \ K, define

P(z) =z +p(f(2)).

We will prove thaty : X \ K — X is a CP? diffeomorphism. Lety
be an arbitrary vector ik, and letF, : (0,00) — [0,00) be defined
by Fy(a) = f(y — p(a)) for @ > 0. Let us see that),(a) satisfies the
conditions of 2.2. We have

Fy(8) — Fy(e) = f(y —p(B)) — f(y — p(a))

for every3 > a > 0. Hence, the first condition of 2.2 is fulfilled. Let us
check thatF), also satisfies the second condition. Since theysetk =
{y—z | z € K}iscompact, condition 2 oflemma 2.5 gives ug a ¢((K)
such that

inf{w(y —2z—p(t)) |0 <t <ty,z€ K} >0;
that is to say, there exists a number 0 such that
w(y —z—p(t)) =2n>0

for every0 < t < tg andz € K. Obviously, we may suppose that< 7.
Foreacht > 0, chooser; € K suchthatix (y—p(t)) > w(y—p(t)—z:)—t.
Then, for everyt with 0 < ¢ < tg, we have

di(y —p(t) = w(y —z —p(t)) — ¢
>2—t>2n—n=n>0,
thatis,dx (y — p(t)) > nfor 0 < ¢t < to. Now recall that
inf{f(z) | dx(x) > n} > 0;

this means that there exists some> 0 such thatf(z) > r whenever
di(x) > n. Then, for every) < ¢t < t, we havef(y — p(t)) > r > 0 and
therefore

limsup F,(t) = limsup f(y — p(t)) >r >0,
t—0t t—0+

so that the second condition is also satisfied.
Hence, applying 2.2, the equatiéi)(a) = o has a unique solution. This
means that for any € X, a number(y) > 0 with the property

fly —pla(y))) = a(y),
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is uniguely determined. This implies that the mapping

P(x) = 2+ p(f(2))

is one-to-one fromX \ K onto X, whose inverse satisfies
v (y) =y — pla(y)).

Indeed, ify/(z) = ¥(z) = y thenf(y — p(f(x))) = f(z) and alsof (y -
p(f(2))) = f(z), so thatf(x) = f(z) = a(y) > 0 by the uniqueness of
a(y), and therefore = y — p(a(y)) = z. Moreover, for eacly € X, since
Yy — play)) =y — play)) +p(fly — pla(y)))) = y — pla(y)) +
p(a(y)), the pointr = y — p(a(y)) satisfieg)(x) =y, and alsac € X \ K
(becausef(r) = a(y) > 0andf~1(0) = K).

As f is CP smooth onX \ K andp is alsoC? smooth, so is). Let us
define® : X x (0,00) — R by

D(y,a) = a— f(y —pa)).

Since for anyy € X we havey — p(a(y)) ¢ K, the mapping? is differ-
entiable on a neighbourhood of each pdig, a(yo)) in X x (0,00). On
the other hand, sincg,(3) — F,(a) < 1(8—a) for 3 > a > 0, itis clear
that /) (o) < 1 for everya on a neighbourhood ef(y), and

0P(y, )
ox

Thus, using the implicit function theorem (see e.qg. [9], p.61) we obtain that
the mappingy — «(y) is of classC? and therefore) : X \ K — X
is aCP diffeomorphism. Moreover, it is obvious thé{z) = = whenever
di(x) > €. So, for everye > 0 we have constructed@? diffeomorphism
e + X \ K — X such that). is the identity outside the sétz € X |
di (z) < e}. This proves, in particular, the first part of theorem 2.1.

Now let us see that if{ is contained in an opegrball B = {z € X :
o(z) < r} then there exists a diffeomorphism: X — X \ K such that
@ is the identity outsideB. Choose aC? diffeomorphismG : X — X
transforming{z € X : p(z) < r}onto{zx € X | w(x) < r} (such a
diffeomorphism actually exists, according to Lemma 2.7 stated just below
this proof, see also [15]). Sind&(K) is a compact set contained {n: €
X | w(x) < r}, itis easy to see that there exists same 0 such thatG(K)
is contained iRz € X | w(z) < r — 2¢}. Indeed, consider the tower of
open setsA,, = {z € X | w(z) <r—21},n=1,2,..., whose union is
{r € X | w(x) < r}. By the compactness @¥(K), there exists, such
thatG(K) C A,,. Itis enough to choose > 0 so that2e < 1/ny. For the
compact seG(K), we can pick a diffeomorphism. : X \ G(K) — X
such thaty. is the identity outside the st € X | dgk)(z) < €}

/
=1-Fj(a)>1-1/2>0.
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Note that, as7(K) is contained i{fx € X | w(z) < r — 2¢}, the set

{z € X | dgk)(z) < e} is contained i{z € X | w(z) < r}, so that

1. IS the identity outside the latter. Then it is quite clear that the function
¢e : X — X\ K defined byp. = G~1ow 1 oG is aC? diffeomorphism
betweenX and X \ K satisfyingp.(x) = = wheneverg(z) > r. This
concludes the proof of Theorem 2.1.

Let us formally state the result which we have used in the final part
of the preceding proof. First, recall that convex bddythat is, a closed
and convex subset with a non-empty interior) in a Banach spaiesaid
to be aC? body providedU is aC? submanifold with one-codimensional
boundaryoU. For the sake of simplicity we will assume ttat intU, and
we will write ccU = {z € X | Vr > 0 rz € U}, which stands for the
characteristic cone df . If Uy, U, areC? convex bodies in a Banach space
X, we will say thatU; andU, are CP relatively diffeomorphic provided
there exists & diffeomorphismy : X — X such thatp(U;) = Us.

Now we may restate from [15] the following

Lemma 2.7. Let X be a Banach space, and Igt, Us beC? smooth convex
bodies such that the origin is an interior point of bath and Us, and
cclU1 = ccUs. Then there exist &7 diffeomorphisny : X — X such
thatg(U;) = Us, g(0) = 0, andg(0U;) = 0U,, wheredU; stands for the
boundary ofU;.

Recall that a continuous seminormn: X — [0,00) is said to be
CP smooth provided it is so away from its set of ze#®s= o~ 1(0). We
will finish this section with an observation that appropriate adaptations of
the techniques used in the proof of Theorem 2.1 allow us to show that an
infinite-codimensional subspace of the foim= ¢~!(0) is C? smoothly
removable from a Banach spa&eadmitting aC” smooth seminorm. This
is clearly stated in the following theorem, which is a fundamental ingredient
in the proof of the classification of the smooth convex bodies given in the
next section.

Theorem 2.8. Let(X, ||-||) be a Banach space with@ smooth seminorm
o whose set of zeros is a subspdceuch that the quotient space/F is
infinite-dimensional. Then, for every> 0 there exists &7 diffeomorphism
¢ betweenX and X \ F satisfyingp(z) = x whenevep(z) > «.

3. Classification of smooth convex bodies

Making use of his pioneering results on negligibility, V. L. Klee [22] gave
a topological classification of the convex bodies of a Hilbert space. This
result was generalized to every Banach space with the help of Bessaga'’s
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non-complete norm technique (see the book by Bessaga amdyRski
[7]). To get a better insight in the history of the topological classification
of convex bodies the reader should also look at the papers by Stocker [25],
Corson and Klee [10], and Bessaga and Klee [5, 6]. In [15], T. Dobrowolski
gave aC? smooth version of that result which held within the class of WCG
Banach spaces. The results of the preceding section enable us to eliminate
this restriction, yielding a general result on the smooth classification of the
smooth convex bodies of every Banach space.

For the terms needed below, please refer to the text preceding Lemma
2.7; here we also assume tlilat intU.

Theorem 3.1. LetU be aCP? convex body in a Banach spad&e

(a) IfccU isalinear subspace of finite codimension ($ay= ccU & Z, with
Z finite-dimensional), the® is C? relatively diffeomorphic tecU +
{z € Z : |z| <1}, where| - | is an Euclidean norm ir¥.

(b) If ccU is not a linear subspace exU is a linear subspace such that the
quotient spaceX/ccU is infinite-dimensional, thely is C? relatively
diffeomorphic to a closed half-space (that{s,c X | z*(x) > 0}, for
somer* € X*).

Proof: In order to prove this theorem it suffices to repeat the argument of
[15], using corollary 2.8 above. Indeed, a careful examination of the proof of
the main theorem in [15] reveals that the argument holds for every Banach
space provided we are able to show that for every Banach spaegery
closed linear subspadeé such thatX/F' is infinite-dimensional, everg”
smooth seminormy : X — [0,00) such thato=!(0) = F, and every

e > 0, there exists & diffeomorphismA : X — X \ Fwith H(z) = x
whenever(z) > . This is exactly what theorem 2.8 reads.

Once we know how to delete points or subspaces in spaces having smooth
norms or seminorms, it is not difficult to delete smooth convex bodies. One
can give a straightforward proof of this fact, but it will be more convenient
for us to deduce it from theorem 3.1.

Theorem 3.2. Let X be a Banach space, and IEtbe aC? smooth convex
body such that its characteristic cone is either a linear subspace of infinite
codimension inX or it is not a linear subspace oX. Then there exists a
C? diffeomorphism fronX onto X \ U.

Proof.According to theorem 3.1, there existSaself-diffeomorphism oX

mappingl onto a closed half-space. Therefd¢g U is C? diffeomorphic to
an open half-space. Since an open half-space is obvialislgiffeomorphic
to the whole space, we may conclude tRatU andX areC? diffeomorphic.
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4. Garay'’s phenomena for ODE’s in Banach spaces

Perhaps one of the most unexpected applications of negligibility theory is
that found by Barnabas M. Garay [16, 17] concerning some strange topolog-
ical properties of cross-sections of solution funnels for ordinary differential
equations in infinite-dimensional Banach spaces. Garay made use of negli-
gibility theory to study the geometry of the failure of Kneser and Peano’s
theorems in infinite-dimensional Banach spaces. He showed that, for sev-
eral classes of infinite-dimensional Banach spaces, including the separable
Hilbert space, every compact set can be represented as a cross-section of a
solution funnel to some ordinary differential equation. The results of section

2 enable us to extend Garay’s theorems to the class of all Banach spaces
havingC? smooth norms, withh € NU{co}. As a matter of fact, combining
Garay'’s results with theorem 2.1, one can obtain the following

Theorem 4.1 (Garay)LetX be aninfinite-dimensional Banach space with
an equivalent Fechet differentiable norm - ||. Let A be either a compact
set or a bounded'! smooth convex body iX. We may assume that is
contained in the unit ball ofX. Then, there exists a continuous function
f: X — X such thatf~1(0) = A, f(z) = = whenevei|z| > 2, and
such that, for everyty, zg) € R x (X \ A), the differential equation

v = f(z)

has a unique solution passing throu¢h, x(), and the solution is global
and unbounded.

as well as

Theorem 4.2 (Garay)LetX be aninfinite-dimensional Banach space hav-
ing a Fréchet differentiable norrp - ||, and letA C X be either a compact
set with at least two points or a bound€d smooth convex body. Then there
exists a continuous map : R x X — X such that the Cauchy problem

Z'(t) = F(t,z), x(to) = zo

admits a unique (global) solution through each pait =) # (0, 0), while
the solutions througli0, 0) are not unique and given by

1
x(t) = §(t2 +tlt))a, a€ A,

which means that at the tinte= 1 the solutions througko0, 0) reach all the
points of A.
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Theorem 4.2 is a relatively easy consequence of Theorem 4.1, which in
turn is immediately deduced by combining our Theorem 2.1 with Theorem
1 of [16]. Nevertheless we will say a few words about the way one can use
Theorem 2.1 to obtain Theorem 4.1.

Outline of the proof of 4.1.

Leth be aC! diffeomorphism fromX \ {0} onto X \ 4 which satisfies
h(z) = xif |z|| > 2 (h does exist thanks to theorems 2.1 and 3.2). Let us
consider the family of curves

z(t) = h(h(z0)e!), teR, zoe X\ {0}, (1)

which are pairwise disjoint and cover the s€t\ A. They provide the
solutions to the differential equatiori = g(x), whereg(xz) = [(Dh™1)
(h(z))]h(x). Let f1 : X — X be the extension of defined by letting
fi = 0 on the setd. Then the differential equation’ = f;(x) almost
satisfy the assertion of 4.1, except thiatmight be discontinuous at the
points of A. One can correct this flaw by puttintz) = ¢(z) f1(x), where
¢ : X — [0,1] is a continuous function such that*(0) = A and
¢(x) = 1 whenevel|z| > 2.
Then the equation

o' = f() (2)
has a unique solution passing through each p@int:) € R x (X \ A),
and the solution is global and unbounded, while; it a bounded global
solution of (2) then there exists a point A such that:(t) = a for every
teR.

Remark 4.3.If, in 4.1, the spaceX has an equivalenf” smooth norm

and, moreover, for the compactumthere exists & smooth real-valued
function ¢ with $=1(0) = A, then f may be chosen to b€”~! smooth.

As shown in [13], for every compactutii of a separable Banach space

X there exists &> smooth functiony : X — [0, 1] with ¢~1(0) = K.
However, for a nonseparable Banach sp&ceven if X admits aC'* norm,

such functions need not exist, as a cited result of Hajek’s shows. The referee
pointed out to us that it would be interesting to identify the Banach spaces
X which admit such functions.

5. Periodic diffeomorphisms without fixed points in Banach spaces

V. L. Klee also used his results on negligibility [22] to prove thakifis
either anon-reflexive Banach space or aninfinite dimensighsphace, there
exists a two-periodic homeomorphisfn: X — X without fixed points.
This was somewhat surprising because, for a finite-dimensional spaee
A. Smith [24] had proved that every prime-periodic homeomorphisdi of



Smooth negligibility of compact sets 461

must have a fixed point. Klee even showed that for the Hilbert spaaad
foreachintegen > 2 there exists a periodic homeomorphismH — H

of pure period: that has no fixed points. By using the results of the preceding
sections, in many Banach spaces these results can now be sharpened so as
to obtain periodic diffeomorphisms of arbitrary periachaving no fixed

points.

Theorem 5.1. Let X be aninfinite-dimensional Banach space having a (not
necessarily equivalen)” smooth normp. Then there exists a two-periodic
C? diffeomorphismf : X — X such thatf has no fixed points and
transforms the bal{z € X | o(z) < 1} onto itself.

Proof. From theorem 2.1 we get@? diffeomorphismy : X — X \ {0}
such thaty is the identity outside the balB = {z € X | p(x) < 1}.
Put A(z) = —x for everyxz € X (note thatA is a two-periodic linear
isomorphism whose only fixed point is the origin, addakes the balB
onto itself). Definef : X — X by f(z) = ¢ (A(p(z))) for every
x € X.Thenitis clear thaf is the desired diffeomorphism.

An adaptation of this argument, using appropiate rotations instead of the
function A(z) = —=, allows to show the following generalization of Klee’s
result [22].

Theorem 5.2. Let X be a Banach space ofthe folkh= Y x Z, whereZ is

a separable infinite-dimensional space which is isomorphic to its cartesian
square. Then, for each integer > 2 there exists a’>° diffeomorphism

f: X — X of pure periodn such thatf has no fixed points.

We will finish this paper with aremark on the Borsuk-Ulam coincidence-
type theorem in infinite dimensions. Recall that the Borsuk-Ulam theorem
says that, for any mapping : S™ — R" of the n-dimensional sphere
there existszy € S™ such thatf(a(zo)) = f(zo), Wwherea(z) = —x is
the antipodal map of™. If f is real-valued then, as it is readily seen, the
conclusion above holds if one replaeely an arbitrary continuous mapping
T:5" — S™ ltis easy to see that the following infinite-dimensional version
of the Borsuk-Ulam theorem follows from the classical, finite-dimensional
one. For everyr € N, and every mapping : S — R"™ of a unit sphere
S in an infinite-dimensional normed spadg there existsc € S so that
f(=x) = f(x).Ulam[23], Problem 167, asked whether this can be extended
so as to obtairf (7Tx) = f(z) for somez € S, whereT is a self-mapping
of S and X is a Hilbert space. In a commentary following the statement
of Problem 167 in [23], Klee answered this question in the negative by
exhibiting a self-diffeomorphisr’ of S and a smooth real-valued mapping
f:S — Rsothatf(Tz) = f(x) fornoz € S. Below we show that the
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same is true for all Banach spaces having (not necessarily equivalent)
smooth or real-analytic norms.

Remark 5.3.Let X be either an infinite-dimensional Banach space with a
CP smooth (not necessarily equivalent) nozmor a separable (infinite-
dimensional) Banach space with a real-analytic (not necessarily equivalent)
normw. Then there exist &7 (resp. real-analytic) self-diffeomorphisim

of S = {z € X | w(z) = 1} and aC? smooth (resp. real-analytic) mapping
f:S—=Rsothatf(Tx) = f(z)fornoz € S.

Proof. By [1] (resp. [14]),S is CP (resp. real-analytic) diffeomorphic to a
hyperplaneF of X. Now it suffices to exhibit the requirédl and f on E.
This is trivial. Take a continuous linear functional on £ and a vector
xo € F so thatz*(z9) # 0, and letT" be the shiftl'z = = + z(. Clearly,
x*(Txz) = z*(x) fornox.

AcknowledgementsThe authors wish to thank the referee for many helpful suggestions
which improved the exposition.
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