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1. Introduction

To the best of the authors’ knowledge, what one could call negligibility
theory in infinite-dimensional Banach spaces started in 1953 when Victor
L. Klee [22] proved that, ifX is either a non-reflexive Banach space or an
infinite-dimensionalLp space andK is a compact subset ofX, there exists a
homeomorphism betweenX andX\K which is the identity outside a neigh-
borhood ofK. Klee also proved that for those infinite-dimensional Banach
spaces X the unit sphere is homeomorphic to any of the closed hyperplanes
in X, and gave a topological classification of convex bodies in Hilbert spaces.
In 1966, C. Bessaga [2] proved that every infinite-dimensional Hilbert space
isC∞ diffeomorphic to its unit sphere. He had previously used his so-called
non-complete norm technique to simplify those results of Klee’s and to
generalize them to the class of all Banach spaces.

The real-analytic and smooth negligibility of compact sets in Banach
spaces was studied by the second-named author [13], who developed
Bessaga’s non-complete norm technique in the smooth case and generalized
some of the results of [2]. He [13] showed that for every infinite-dimensional
Banach spaceX having aCp non-complete normω, and for every compact
setK in X, the spaceX is Cp diffeomorphic toX \ K. If, in addition,
X has an equivalentCp smooth norm‖ · ‖ then one can deduce that the
sphereS = {x ∈ X | ‖x‖ = 1} is Cp diffeomorphic to any of the hy-
perplanes inX. He also used his results on smooth negligibility to give a
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classification of smooth convex bodies in WCG Banach spaces (see [15]).
ConcerningCp smooth negligibility of compact sets, the largest class of
Banach spaces within which these results were known to be true was that of
all Banach spaces which can be linearly injected into somec0(Γ ). It should
be remarked that there are examples of spaces withC∞ smooth equivalent
norms which do not linearly embed into anyc0(Γ ). An example of such a
(nonseparable) Banach space is given in ([11], Ex. VI.8.8), and it may be
chosen to beC(K) for a certain compact setK. So, when one wants to
generalize those results to every infinite-dimensional Banach space having
aCp smooth norm, one faces the following problem: Does every infinite-
dimensional Banach space with aCp smooth equivalent norm admit aCp

smooth non-complete norm too? This intriguing question remains unsolved.
Without proving the existence of smooth non-complete norms, the first-

named author has recently shown [1] that every Banach space(X, ‖ · ‖)
with a (not necessarily equivalent)Cp smooth norm% isCp diffeomorphic to
X\{0} and, moreover, that every hyperplaneH inX isCp diffeomorphic to
the sphere{x ∈ X | %(x) = 1}. In this paper, we strengthen theasymmetric
norm techniqueof deleting points introduced in [1] so as to generalize some
results on smooth negligibility of compacta and subspaces to the class of all
Banach spaces having a (not necessarily equivalent)Cp smooth norm. We
also give a full smooth classification of the convex bodies of every Banach
space. In particular, we show that every smooth convex body containing no
linear subspaces in an infinite-dimensional Banach space is diffeomorphic
to a half-space.

These results enable us to enlarge the class of spaces for which some
other applications of negligibility are valid. At the end of the paper we
give a sample of such applications which includes Garay’s theorems [16,
17] concerning the existence of solutions to ordinary differential equations
and cross-sections of solution funnels in Banach spaces, as well as sharper
statements of Klee’s results [22] on periodic homeomorphisms without fixed
points.

2. Removing compact sets from a Banach space

In this section we will give a method of removing compacta smoothly from
an infinite-dimensional Banach space having a (not necessarily equivalent)
smooth norm. Let us state our main result.

Theorem 2.1. Let (X, ‖ · ‖) be an infinite-dimensional Banach space with
a (not necessarily equivalent)Cp smooth norm%. Then, for every compact
setK ⊂ X, there exists aCp diffeomorphismϕ betweenX andX \ K.
Moreover, for each open%-ballB containingK, we can additionally require
thatϕ be the identity outsideB.
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The proof of this result is quite long and technical. In what follows, we
state and prove a number of auxiliary results that we will use in the proof
of 2.1. We will show that a mappingψ(x) = x+ p(f(x)), x ∈ X \K, for
certainf : X → [0,∞) with f−1(K) = 0 andp : (0,∞) → X, establishes
aCp diffeomorphism betweenX \K andX. The mapψ can be viewed as a
“small” perturbation of the identity map, and its bijectivity is obtained by an
application of Lemma 2.2, a simple fixed point fact whose proof is omitted.
In order that the perturbationp ◦ f be small,p andf must satisfy some
Lipschitzian-type conditions with respect to a certain assymetric distance
induced by anassymetric normω. Such a norm is constructed in Lemma
2.3. Lemma 2.5 gives us a required pathpwhich “avoids” compact sets; this,
in turn, will makeK “disappear”. Lemma 2.6 provides us with a required
functionf(x) which can be viewed as a smooth substitute for the asymmetric
ω-distance function fromx toK. TheCp diffeomorphismψ is constructed
in such a way that it is the identity outside a certainω-ball. Finally, in order
to obtain a required diffeomorphismϕ, we make use of Lemma 2.7, which
yields a radialCp diffeomorphism ofX sending a%-ball onto anω-ball.
This is the strategy of our proof of 2.1.

Lemma 2.2. LetF : (0,∞) −→ [0,∞) be a continuous function such that,
for everyβ ≥ α > 0,F (β)−F (α) ≤ 1

2(β−α) andlim supt→0+ F (t) > 0.
Then there exists a uniqueα > 0 such thatF (α) = α.

The following lemma shows that for every Banach space with aCp

smooth norm there exists a functional which will act as a smooth non-
complete norm in its absence.

Lemma 2.3. Let(X, ‖ · ‖) be an infinite-dimensional Banach space having
a (not necessarily equivalent)Cp smooth norm%. Then there exists a con-
tinuous functionalω : X −→ [0,∞) which isCp smooth onX \ {0} and
satisfies the following conditions:

1. ω(x+ y) ≤ ω(x) + ω(y) and, consequently,ω(x) − ω(y) ≤ ω(x− y),
for everyx, y ∈ X;

2. ω(rx) = rω(x) for everyx ∈ X andr ≥ 0;
3. ω(x) = 0 if and only ifx = 0;
4. ω(

∑∞
k=1 zk) ≤ ∑∞

k=1 ω(zk) for every convergent series
∑∞

k=1 zk; and
5. For everyδ > 0, there exists a sequence of linearly independent vectors

(yk) satisfying

ω(yk) ≤ δ

4k+1

for everyk ∈ N, and with the property that for every compact setK ⊂ X
there existsn0 ∈ N such that

inf{ω(z −
n∑

k=1

yk) | n ≥ n0, z ∈ K} > 0
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Remark 2.4.The functionalω is not necessarily a norm; in general,ω(x) 6=
ω(−x). However, for our purposes, we will refer toω as to an assymetric
non-complete norm.

Proof of lemma 2.3.We will consider three cases.

Case I: The norm% is complete and the spaceX is non-reflexive.

The norm% is continuous with respect to‖ · ‖ (because it isCp smooth),
and complete. Hence, according to the open mapping theorem,% is aCp

smooth equivalent norm inX, and we can assume that% = ‖ · ‖. SinceX is
not reflexive, according to James’s theorem [21], there exists a continuous
linear functionalT : X −→ R such thatT does not attain its norm. We may
assume‖T‖ = 1, so thatsup{T (x) : ‖x‖ = 1} = 1, and yetT (x) < ‖x‖
for everyx 6= 0. Let us defineω : X −→ [0,∞) by

ω(x) = ‖x‖ − T (x).

Note thatω(x) = 0 if and only ifx = 0,ω(x+ y) ≤ ω(x)+ω(y) for every
x, y ∈ X, andω(rx) = rω(x) for eachr > 0, althoughω is not a norm inX
becauseω(x) 6= ω(−x) in general. The propertyω(z + y) ≤ ω(z) + ω(y)
implies thatω(x)−ω(y) ≤ ω(x−y), as well asω(

∑∞
k=1 zk) ≤ ∑∞

k=1 ω(zk)
for every convergent series

∑∞
k=1 zk. Thenω satisfies properties 1–4, and

it only remains to check thatω satisfies property 5. For a givenδ > 0, since
sup{T (x) : ‖x‖ = 1} = 1, there exists a sequence(yk) such that‖yk‖ = 1
andω(yk) = ‖yk‖ − T (yk) ≤ δ

4k+1 for everyk ∈ N, that is,ω satisfies the
first part of property 5. Clearly, we may assume that the vectors(yk) are
linearly independent. We only have to check that for such a sequence(yk)
the following condition is also satisfied: for every compact setK ⊂ X there
existsn0 = n0(K) ∈ N such that

inf{ω(z −
n∑

k=1

yk) | n ≥ n0, z ∈ K} > 0.

So, letK be a compact set, letM > 0, and takeR > 0 such that‖z‖ ≤ R
for everyz ∈ K. SinceT (yk) → 1 ask → ∞, we can findn0 ∈ N such
that

∑n
k=1 T (yk) > M +R for everyn ≥ n0. Then we have

ω(z −
n∑

k=1

yk) = ‖z −
n∑

k=1

yk‖ − T (z −
n∑

k=1

yk) ≥ −T (z −
n∑

k=1

yk)

= −T (z) + T (
n∑

k=1

yk) ≥ −‖z‖ + T (
n∑

k=1

yk) = −‖z‖ +
n∑

k=1

T (yk)

≥ −R+M +R = M
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whenevern ≥ n0, z ∈ K. This proves that

inf{ω(z −
n∑

k=1

yk) | n ≥ n0, z ∈ K} ≥ M > 0.

Case II: The norm% is non-complete.

Defineω = %. As % is aCp smooth norm, it is clear thatω satisfies
conditions 1–4. Let us see thatω also satisfies condition 5. Since the normω
is non-complete, for everyδ > 0 we can find a sequence(yk) inX such that
ω(yk) ≤ δ

4k+1 for eachk, and a point̂y in the completion of(X,ω), denoted

by (X̂, ω̂), such that̂y /∈ X, andlimn→∞ ω̂(ŷ−∑n
k=1 yk) = 0. So the first

part of property 5 is satisfied. Moreover it is clear that the sequence(yk) can
be chosen in such a way that{yk | k = 1, 2, ...} is a linearly independent
set of vectors. It only remains to check that for such a sequence(yk) ⊂ X
and for every compact setK ⊂ X there existsn0 ∈ N such that

inf{ω(z −
n∑

k=1

yk) | n ≥ n0, z ∈ K} > 0.

LetK be a compact set of(X, ‖·‖). It is clear that̂ω(z−∑n
k=1 yk) converges

to ω̂(z− ŷ) uniformly onz ∈ K ⊂ (X̂, ω̂). SinceK ⊂ (X̂, ω̂) is compact,
ω̂(z − ŷ) is bounded away from zero for allz ∈ K. Consequently, we get
our estimate.

Case III: The norm% is complete and the spaceX is reflexive.

This case can be reduced to the previous one by showing that every
infinite-dimensional reflexive space has a non-completeC∞ smooth norm
ω. Indeed, for every reflexive spaceX there exists a linear injectionJ :
X −→ c0(Γ ) for some (infinite) setΓ (see, e.g., [11], chapter VI, p. 246). It
is also well known that for an infinite setΓ , the spacec0(Γ ) is c0-saturated,
that is, every infinite-dimensional closed subspace ofc0(Γ ) has a closed
subspace which is isomorphic toc0. This clearly implies thatc0(Γ ) contains
no closed infinite-dimensional reflexive subspaces. ThereforeJ(X) is not
a closed subspace ofc0(Γ ). On the other hand, the spacec0(Γ ) has an
equivalentC∞ smooth normg ([11], chapter V, theorem 1.5). Then we can
define aC∞ smooth normω in X by ω(x) = g(J(x)), and the normω
happens to be non-complete because the subspaceJ(X) is not closed in
c0(Γ ). This concludes the proof of lemma 2.3.

Using the properties of the functionalω we can construct adeleting path
as follows.
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Lemma 2.5. Let (X, ‖ · ‖) be a Banach space, and letω be a functional
satisfying conditions 1, 2, and 5 of lemma 2.3. Then, for everyδ > 0, there
exists aC∞ pathp = pδ : (0,∞) −→ X such that

1. ω(p(α) − p(β)) ≤ 1
2(β − α) if β ≥ α > 0;

2. For every compact setK ⊂ X there existst0 > 0 such that

inf{ω(z − p(t)) | 0 < t ≤ t0, z ∈ K} > 0;

3. p(t) = 0 if and only ift ≥ δ.

Proof.For a givenδ > 0, choose a sequence(yk) satisfying condition 5 of
lemma 2.3, and pick a non-increasingC∞ functionγ : [0,∞) −→ [0, 1]
such thatγ = 1 in [0, δ/2],γ = 0 in [δ,∞), andsup{|γ′(t)| : t ∈ [0,∞)} ≤
4/δ. Then define a pathp : (0,∞) −→ X by

p(t) =
∞∑

k=1

γ(2k−1t)yk.

It is clear thatp is a well-definedC∞ path. If β ≥ α thenγ(2k−1α) −
γ(2k−1β) ≥ 0 becauseγ is non-increasing, and alsoγ(2k−1α)−γ(2k−1β)
≤ 4

δ |2k−1α − 2k−1β| becausesup{|γ′(t)| | t ∈ [0,∞)} ≤ 4/δ. Taking
this into account and using the properties ofω listed in lemma 2.3, we may
estimate as follows

ω(p(α) − p(β)) = ω(
∞∑

k=1

(γ(2k−1α) − γ(2k−1β))yk)

≤
∞∑

k=1

ω((γ(2k−1α) − γ(2k−1β))yk)

=
∞∑

k=1

(γ(2k−1α) − γ(2k−1β))ω(yk)

≤
∞∑

k=1

4
δ
|2k−1α− 2k−1β|ω(yk) =

∞∑

k=1

2k+1ω(yk)
δ

|β − α|

≤
∞∑

k=1

2k+1

δ

δ

4k+1 |β − α| =
1
2
(β − α)

for everyβ ≥ α. Hence, the first condition is fulfilled.
Let us see thatp also satisfies the second condition. For a compact set

K ⊂ X, condition 5 of lemma 2.3 provides us with numbersη > 0,
m1 ∈ N such thatω(z − ∑n

k=1 yk) ≥ 2η for all n ≥ m1 andz ∈ K. Since
ω(yk) ≤ δ/4k+1 for everyk, we can findm2 ∈ N so that

∑∞
k=m2+1 ω(yk) ≤∑∞

k=m2+1
δ

4k+1 ≤ η. Let n0 = max{m1,m2}, and putt0 = δ/2n0 . Then,
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taking into account thatγ(2k−1t) = 1 whenever0 < t ≤ t0 and1 ≤ k ≤
n0, we have

ω(z − p(t)) = ω(z −
∞∑

k=1

γ(2k−1t)yk)

= ω[(z −
n0∑

k=1

yk) − (
∞∑

k=1

γ(2k−1t)yk −
n0∑

k=1

yk)]

≥ ω(z −
n0∑

k=1

yk) − ω(
∞∑

k=1

γ(2k−1t)yk −
n0∑

k=1

yk)

= ω(z −
n0∑

k=1

yk) − ω(
∞∑

k=n0+1

γ(2k−1t)yk)

≥ ω(z −
n0∑

k=1

yk) −
∞∑

k=n0+1

γ(2k−1t)ω(yk)

≥ ω(z −
n0∑

k=1

yk) −
∞∑

k=n0+1

ω(yk) ≥ ω(z −
n0∑

k=1

yk) −
∞∑

k=m2+1

ω(yk)

≥ 2η − η = η > 0

for every0 < t ≤ t0 andz ∈ K. In particular,

inf{ω(z − p(t)) | 0 < t ≤ t0, z ∈ K} ≥ η > 0.

So condition 2 of 2.5 is satisfied as well.
Finally, it is easily seen that the fact that{yk | k = 1, 2, ...} is a linearly

independent set of vectors ensures thatp(t) = 0 if and only if t ≥ δ.

The last thing we will need in order to prove theorem 2.1 is to associate
each compact setK ⊂ X with a functionf : X −→ [0,∞) such thatf is
Cp smooth onX \K, it satisfiesf−1(0) = K, andf(x)−f(y) ≤ ω(x−y)
for every x, y ∈ X. The existence of such functions is ensured by the
following lemma, which should be compared with Proposition VIII.3.8 of
[11]. It should be noted thatf cannot in general be chosen to beCp on the
whole spaceX, as a recent paper by P. Hájek [20] shows. Indeed, according
to Corollary 9 of [20], for an uncountableΓ there is noC2 smooth function
f : c0(Γ ) −→ [0,∞) with f−1(0) = 0 (thoughc0(Γ ) admits aC∞
norm). The idea of our proof of 2.6 is an adaptation of that of the proof of
Lemma 1.1 of [13], where the case of a genuine normω was treated, and
the correspondingf was called aCp Whitney function forK (with respect
to ω).
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Lemma 2.6. Let ω : X −→ [0,∞) be a continuous functional satisfying
properties 1–3 of lemma 2.3, and such thatω is Cp smooth onX \ {0}.
LetK be a compact subset ofX. For x ∈ X, write dK(x) = inf{ω(x −
y) | y ∈ K}. Then, for eachε > 0 there exists a continuous function
f = fε : X −→ [0,∞) such that

1. f isCp smooth onX \K;
2. f(x) − f(y) ≤ ω(x− y) for everyx, y ∈ X;
3. f−1(0) = K;
4. inf{f(x) | dK(x) ≥ η} > 0 for everyη > 0;
5. f is constant on the set{x ∈ X | dK(x) ≥ ε}.

Proof of lemma 2.6
First of all let us see that the functiondK is continuous and satisfies

d−1
K (0) = K, anddK(x) − dK(y) ≤ ω(x− y) for everyx, y ∈ X. Indeed,

for every y ∈ X and for everyε > 0 there existsyε ∈ K such that
dK(y) + ε ≥ ω(y − yε). Then

dK(x) − dK(y) = inf{ω(x− z) | z ∈ K} − inf{ω(y − z) | z ∈ K}
≤ ω(x− yε) − ω(y − yε) + ε ≤ ω[(x− yε) − (y − yε)] + ε

= ω(x− y) + ε,

so that we obtaindK(x) − dK(y) ≤ ω(x− y) by lettingε go to zero. Since
ω(z) ≤ 2‖z‖ for everyz, this inequality implies thatdK(x) − dK(y) ≤
2‖x − y‖ for everyx, y ∈ X and hence|dK(x) − dK(y)| ≤ 2‖x − y‖
for everyx, y ∈ X, that is,dK is Lipschitz and therefore continuous. The
same argument shows thatf is Lipschitz if only it satisfies condition 2. On
the other hand, ifdK(x) = 0 then there exists a sequence(yn) ⊆ K such
that limn ω(x − yn) = 0. SinceK is compact we may assume that(yn)
converges to somey ∈ K. By the continuity ofω, we have thatω(x−y) = 0,
which implies thatx = y ∈ K. This, together with the obvious fact that
dK(x) = 0 for everyx ∈ K, implies thatd−1

K (0) = K.
Now let us define the setsUn = {x ∈ X | dK(x) < 1/n} for eachn ∈

N. These are open sets satisfyingUn+1 ⊆ Un for eachn, and
⋂∞

n=1 Un = K.
Next, for everyx ∈ X and everyr > 0, we define theasymmetricω-ball
A(x, r) by

A(x, r) = {z ∈ X | ω(z − x) < r}.
It should be noted that the setsUn areω-open, that is, for everyx ∈ Un

there existsrx > 0 such thatA(x, rx) ⊆ Un. Indeed, ifx ∈ Un, choose
r = 1

n − dK(x) > 0. If ω(z − x) < r thendK(z) − dK(x) ≤ ω(z − x) <
r = 1

n −dK(x), so thatdK(z) < 1/n. This means thatA(x, r) is contained
in Un.

So, for eachn ∈ N and eachx ∈ K choosern
x > 0 such thatrn

x <
1
2n and

A(x, rn
x) ⊆ Un. Since, for eachn we haveK ⊂ ⋃

x∈K A(x, rn
x), the sets
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A(x, r) are open, andK is compact, there existxn
j ∈ K, j = 1, ..., k(n),

so that

K ⊂
k(n)⋃

j=1

A(xn
j , r

n
j ),

wherern
j stands forrn

xn
j

.

Next, let us see that for everyω-ball A(x0, r) there exists aCp function
g : X −→ [0, 1] such thatA(x0, r) = g−1(0), g = 1 outsideA(x0, 2r),
andg(x) − g(y) ≤ Mω(x − y) for someM > 0. Let h : R −→ R be
a non-decreasingC∞ function such thath−1(0) = (−∞, r] andh = 1
on [2r,∞). Let M = sup{|h′(t)| : t ∈ R}. Defineg : X −→ [0,∞)
by g(y) = h(ω(y − x0)) for every y ∈ X. It is clear thatA(x0, r) =
g−1(0) andg = 1 outsideA(x0, 2r). If ω(y − x0) − ω(x − x0) ≥ 0 then
g(y) = h(ω(y−x0)) ≥ h(ω(x−x0)) = g(x) becauseh is non-decreasing,
and theng(x) − g(y) ≤ Mω(x − y) trivially holds. If, on the contrary,
ω(x− x0) −ω(y− x0) ≥ 0 then, taking into account that|h′(t)| ≤ M , we
get

g(x) − g(y) = h(ω(x− x0)) − h(ω(y − x0))
≤ M |ω(x− x0) − ω(y − x0)| = M(ω(x− x0) − ω(y − x0))
≤ Mω(x− y).

In either case we obtaing(x) − g(y) ≤ Mω(x− y) for everyx, y ∈ X.
So, for eachω-ball A(xn

j , r
n
j ) let us pick aCp functiong(n,j) : X −→

[0, 1] such thatA(xn
j , r

n
j ) = g−1

(n,j)(0), g(n,j) = 1 outsideA(xn
j , 2r

n
j ), and

g(n,j)(x) − g(n,j)(y) ≤ M(n,j)ω(x − y) for everyx, y ∈ X and some
M(n,j) ≥ 1. Let us note that the product of two non-negative bounded
functions satisfying an inequality likeg(x) − g(y) ≤ Mω(x − y) also
satisfies such an inequality (perhaps with a differentM > 0). Indeed, if
g1(x) − g1(y) ≤ M1ω(x− y) andg2(x) − g2(y) ≤ M2ω(x− y) then

g1(x)g2(x) − g1(y)g2(y) =
= g1(x)g2(x) − g1(x)g2(y) + g1(x)g2(y) − g1(y)g2(y)
= g1(x)[g2(x) − g2(y)] + g2(y)[g1(x) − g1(y)]
≤ g1(x)M2ω(x− y) + g2(y)M1ω(x− y)
≤ (‖g1‖∞M2 + ‖g2‖∞M1)ω(x− y),

where‖gi‖∞ = sup{|gi(z)| : z ∈ X}. Now, for eachn, consider the
product

ϕn(x) =
k(n)∏

j=1

g(n,j)(x).
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The functionsϕn : X −→ [0, 1] satisfyϕn(x) −ϕn(y) ≤ Mnω(x− y) for
everyx, y ∈ X, for someMn ≥ 1, as well asϕn = 0 onK, andϕn(x) = 1
wheneverx ∈ X \Un (indeed, ifdK(x) ≥ 1/n thenω(x−xn

j ) ≥ dK(x) ≥
1/n ≥ 2rn

j , so thatg(n,j)(x) = 1 for everyj = 1, ..., k(n), which yields
ϕn(x) = 1).

Finally, choosem ∈ N such that1/m < ε. For everyk ≥ m we have
ϕk(x) = 1 wheneverdK(x) ≥ ε. Then definef : X −→ [0, 1] by

f(x) =
∞∑

k=m

1
2kMk

ϕk(x)

for everyx ∈ X.
Note that for everyx ∈ X \K there exist an open neighbourhoodVx of

x and a positive integernx ≥ m such thatϕn(y) = 1 whenevery ∈ Vx and
n ≥ nx. Indeed, for eachx ∈ X \ K let nx be such that1/nx < dK(x)
and putVx = {y ∈ X | dK(y) > 1/nx}. It is clear thatVx is an open
neighbourhood ofx, and for eachy ∈ Vx we havey ∈ X \ Un for every
n ≥ nx, so thatϕn(y) = 1 whenevern ≥ nx. Then all but finitely many of
the functionsϕn in the series definingf are constant on a neighbourhood of
each point inX \K, which clearly implies thatf is aCp smooth function
onX \K. It is also clear thatf−1(0) = K, andf(x)−f(y) ≤ ω(x−y) for
everyx, y ∈ X. That is,f satisfies conditions 1–3 of lemma 2.6. Let us see
thatf also satisfies conditions 4 and 5. For a givenη > 0, taken0 ≥ m such
that1/n0 ≤ η. Then, for everyk ≥ n0, we have thatϕk(x) = 1 whenever
dK(x) ≥ η, and therefore

inf{f(x) | dK(x) ≥ η} = inf{
∞∑

k=m

1
2kMk

ϕk(x) | dK(x) ≥ η}

≥ inf{
∞∑

k=n0

1
2kMk

ϕk(x) | dK(x) ≥ η} =
∞∑

k=n0

1
2kMk

> 0.

So condition 4 is also fulfilled. Moreover,f is constant (equal to∑∞
k=mM−1

k 2−k) on the set{x ∈ X | dK(x) ≥ ε}. This concludes the
proof of lemma 2.6.

With all these tools in our hands we can give a proof of theorem 2.1.

Proof of theorem 2.1
First of all let us take anasymmetric non-complete normω from lemma
2.3. Associated to this functionalω, and for a fixedε > 0, let us choose
a functionf = fε from lemma 2.6. Assumingf(x) = δ > 0 whenever
dK(x) ≥ ε, select a pathp = pδ from lemma 2.5. With these choices, for
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everyx ∈ X \K, define

ψ(x) = x+ p(f(x)).

We will prove thatψ : X \ K −→ X is a Cp diffeomorphism. Lety
be an arbitrary vector inX, and letFy : (0,∞) −→ [0,∞) be defined
by Fy(α) = f(y − p(α)) for α > 0. Let us see thatFy(α) satisfies the
conditions of 2.2. We have

Fy(β) − Fy(α) = f(y − p(β)) − f(y − p(α))
≤ ω((y − p(β)) − (y − p(α)))

= ω(p(α) − p(β)) ≤ 1
2
(β − α)

for everyβ ≥ α > 0. Hence, the first condition of 2.2 is fulfilled. Let us
check thatFy also satisfies the second condition. Since the sety − K =
{y−z | z ∈ K} is compact, condition 2 of lemma 2.5 gives us at0 = t0(K)
such that

inf{ω(y − z − p(t)) | 0 < t ≤ t0, z ∈ K} > 0;

that is to say, there exists a numberη > 0 such that

ω(y − z − p(t)) ≥ 2η > 0

for every0 < t ≤ t0 andz ∈ K. Obviously, we may suppose thatt0 ≤ η.
For eacht > 0, choosext ∈ K such thatdK(y−p(t)) ≥ ω(y−p(t)−xt)−t.
Then, for everyt with 0 < t ≤ t0, we have

dK(y − p(t)) ≥ ω(y − xt − p(t)) − t

≥ 2η − t ≥ 2η − η = η > 0,

that is,dK(y − p(t)) ≥ η for 0 < t ≤ t0. Now recall that

inf{f(x) | dK(x) ≥ η} > 0;

this means that there exists somer > 0 such thatf(x) ≥ r whenever
dK(x) ≥ η. Then, for every0 < t ≤ t0 we havef(y − p(t)) ≥ r > 0 and
therefore

lim sup
t→0+

Fy(t) = lim sup
t→0+

f(y − p(t)) ≥ r > 0,

so that the second condition is also satisfied.
Hence, applying 2.2, the equationFy(α) = α has a unique solution. This

means that for anyy ∈ X, a numberα(y) > 0 with the property

f(y − p(α(y))) = α(y),
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is uniquely determined. This implies that the mapping

ψ(x) = x+ p(f(x))

is one-to-one fromX \K ontoX, whose inverse satisfies

ψ−1(y) = y − p(α(y)).

Indeed, ifψ(x) = ψ(z) = y thenf(y − p(f(x))) = f(x) and alsof(y −
p(f(z))) = f(z), so thatf(x) = f(z) = α(y) > 0 by the uniqueness of
α(y), and thereforex = y−p(α(y)) = z. Moreover, for eachy ∈ X, since
ψ(y − p(α(y))) = y − p(α(y)) + p(f(y − p(α(y)))) = y − p(α(y)) +
p(α(y)), the pointx = y−p(α(y)) satisfiesψ(x) = y, and alsox ∈ X \K
(becausef(x) = α(y) > 0 andf−1(0) = K).

As f is Cp smooth onX \K andp is alsoCp smooth, so isψ. Let us
defineΦ : X × (0,∞) −→ R by

Φ(y, α) = α− f(y − p(α)).

Since for anyy ∈ X we havey − p(α(y)) /∈ K, the mappingΦ is differ-
entiable on a neighbourhood of each point(y0, α(y0)) in X × (0,∞). On
the other hand, sinceFy(β) −Fy(α) ≤ 1

2(β−α) for β ≥ α > 0, it is clear
thatF ′

y(α) ≤ 1
2 for everyα on a neighbourhood ofα(y), and

∂Φ(y, α)
∂α

= 1 − F ′
y(α) ≥ 1 − 1/2 > 0.

Thus, using the implicit function theorem (see e.g. [9], p.61) we obtain that
the mappingy → α(y) is of classCp and thereforeψ : X \ K −→ X
is aCp diffeomorphism. Moreover, it is obvious thatψ(x) = x whenever
dK(x) ≥ ε. So, for everyε > 0 we have constructed aCp diffeomorphism
ψε : X \ K −→ X such thatψε is the identity outside the set{x ∈ X |
dK(x) ≤ ε}. This proves, in particular, the first part of theorem 2.1.

Now let us see that ifK is contained in an open%-ballB = {x ∈ X :
%(x) < r} then there exists a diffeomorphismϕ : X −→ X \K such that
ϕ is the identity outsideB. Choose aCp diffeomorphismG : X −→ X
transforming{x ∈ X : %(x) ≤ r} onto {x ∈ X | ω(x) ≤ r} (such a
diffeomorphism actually exists, according to Lemma 2.7 stated just below
this proof, see also [15]). SinceG(K) is a compact set contained in{x ∈
X | ω(x) < r}, it is easy to see that there exists someε > 0 such thatG(K)
is contained in{x ∈ X | ω(x) ≤ r − 2ε}. Indeed, consider the tower of
open setsAn = {x ∈ X | ω(x) < r − 1

n}, n = 1, 2, . . ., whose union is
{x ∈ X | ω(x) < r}. By the compactness ofG(K), there existsn0 such
thatG(K) ⊂ An0 . It is enough to chooseε > 0 so that2ε < 1/n0. For the
compact setG(K), we can pick a diffeomorphismψε : X \G(K) −→ X
such thatψε is the identity outside the set{x ∈ X | dG(K)(x) ≤ ε}.
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Note that, asG(K) is contained in{x ∈ X | ω(x) ≤ r − 2ε}, the set
{x ∈ X | dG(K)(x) ≤ ε} is contained in{x ∈ X | ω(x) ≤ r}, so that
ψε is the identity outside the latter. Then it is quite clear that the function
ϕε : X −→ X \K defined byϕε = G−1 ◦ψ−1

ε ◦G is aCp diffeomorphism
betweenX andX \ K satisfyingϕε(x) = x whenever%(x) ≥ r. This
concludes the proof of Theorem 2.1.

Let us formally state the result which we have used in the final part
of the preceding proof. First, recall that convex bodyU (that is, a closed
and convex subset with a non-empty interior) in a Banach spaceX is said
to be aCp body providedU is aCp submanifold with one-codimensional
boundary∂U . For the sake of simplicity we will assume that0 ∈ intU , and
we will write ccU = {x ∈ X | ∀r > 0 rx ∈ U}, which stands for the
characteristic cone ofU . If U1, U2 areCp convex bodies in a Banach space
X, we will say thatU1 andU2 areCp relatively diffeomorphic provided
there exists aCp diffeomorphismϕ : X −→ X such thatϕ(U1) = U2.

Now we may restate from [15] the following

Lemma 2.7. LetX be a Banach space, and letU1, U2 beCp smooth convex
bodies such that the origin is an interior point of bothU1 and U2, and
ccU1 = ccU2. Then there exist aCp diffeomorphismg : X −→ X such
that g(U1) = U2, g(0) = 0, andg(∂U1) = ∂U2, where∂Uj stands for the
boundary ofUj .

Recall that a continuous seminorm% : X −→ [0,∞) is said to be
Cp smooth provided it is so away from its set of zerosF = %−1(0). We
will finish this section with an observation that appropriate adaptations of
the techniques used in the proof of Theorem 2.1 allow us to show that an
infinite-codimensional subspace of the formF = %−1(0) is Cp smoothly
removable from a Banach spaceX admitting aCp smooth seminorm%. This
is clearly stated in the following theorem, which is a fundamental ingredient
in the proof of the classification of the smooth convex bodies given in the
next section.

Theorem 2.8. Let(X, ‖·‖) be a Banach space with aCp smooth seminorm
% whose set of zeros is a subspaceF such that the quotient spaceX/F is
infinite-dimensional. Then, for everyε > 0 there exists aCp diffeomorphism
ϕ betweenX andX \ F satisfyingϕ(x) = x whenever%(x) ≥ ε.

3. Classification of smooth convex bodies

Making use of his pioneering results on negligibility, V. L. Klee [22] gave
a topological classification of the convex bodies of a Hilbert space. This
result was generalized to every Banach space with the help of Bessaga’s
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non-complete norm technique (see the book by Bessaga and Pel´ czyński
[7]). To get a better insight in the history of the topological classification
of convex bodies the reader should also look at the papers by Stocker [25],
Corson and Klee [10], and Bessaga and Klee [5,6]. In [15], T. Dobrowolski
gave aCp smooth version of that result which held within the class of WCG
Banach spaces. The results of the preceding section enable us to eliminate
this restriction, yielding a general result on the smooth classification of the
smooth convex bodies of every Banach space.

For the terms needed below, please refer to the text preceding Lemma
2.7; here we also assume that0 ∈ intU .

Theorem 3.1. LetU be aCp convex body in a Banach spaceX.

(a) If ccU is a linear subspace of finite codimension (sayX = ccU⊕Z, with
Z finite-dimensional), thenU is Cp relatively diffeomorphic toccU +
{z ∈ Z : |z| ≤ 1}, where| · | is an Euclidean norm inZ.

(b) If ccU is not a linear subspace orccU is a linear subspace such that the
quotient spaceX/ccU is infinite-dimensional, thenU is Cp relatively
diffeomorphic to a closed half-space (that is,{x ∈ X | x∗(x) ≥ 0}, for
somex∗ ∈ X∗).

Proof: In order to prove this theorem it suffices to repeat the argument of
[15], using corollary 2.8 above. Indeed, a careful examination of the proof of
the main theorem in [15] reveals that the argument holds for every Banach
space provided we are able to show that for every Banach spaceX, every
closed linear subspaceF such thatX/F is infinite-dimensional, everyCp

smooth seminorm% : X −→ [0,∞) such that%−1(0) = F , and every
ε > 0, there exists aCp diffeomorphismH : X −→ X \F withH(x) = x
whenever%(x) ≥ ε. This is exactly what theorem 2.8 reads.

Once we know how to delete points or subspaces in spaces having smooth
norms or seminorms, it is not difficult to delete smooth convex bodies. One
can give a straightforward proof of this fact, but it will be more convenient
for us to deduce it from theorem 3.1.

Theorem 3.2. LetX be a Banach space, and letU be aCp smooth convex
body such that its characteristic cone is either a linear subspace of infinite
codimension inX or it is not a linear subspace ofX. Then there exists a
Cp diffeomorphism fromX ontoX \ U .

Proof.According to theorem 3.1, there exists aCp self-diffeomorphism ofX
mappingU onto a closed half-space. ThereforeX\U isCp diffeomorphic to
an open half-space. Since an open half-space is obviouslyC∞ diffeomorphic
to the whole space, we may conclude thatX\U andX areCp diffeomorphic.
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4. Garay’s phenomena for ODE’s in Banach spaces

Perhaps one of the most unexpected applications of negligibility theory is
that found by Barnabas M. Garay [16,17] concerning some strange topolog-
ical properties of cross-sections of solution funnels for ordinary differential
equations in infinite-dimensional Banach spaces. Garay made use of negli-
gibility theory to study the geometry of the failure of Kneser and Peano’s
theorems in infinite-dimensional Banach spaces. He showed that, for sev-
eral classes of infinite-dimensional Banach spaces, including the separable
Hilbert space, every compact set can be represented as a cross-section of a
solution funnel to some ordinary differential equation. The results of section
2 enable us to extend Garay’s theorems to the class of all Banach spaces
havingCp smooth norms, withp ∈ N∪{∞}. As a matter of fact, combining
Garay’s results with theorem 2.1, one can obtain the following

Theorem 4.1 (Garay).LetX be an infinite-dimensional Banach space with
an equivalent Fŕechet differentiable norm‖ · ‖. LetA be either a compact
set or a boundedC1 smooth convex body inX. We may assume thatA is
contained in the unit ball ofX. Then, there exists a continuous function
f : X −→ X such thatf−1(0) = A, f(x) = x whenever‖x‖ ≥ 2, and
such that, for every(t0, x0) ∈ R × (X \A), the differential equation

x′ = f(x)

has a unique solution passing through(t0, x0), and the solution is global
and unbounded.

as well as

Theorem 4.2 (Garay).LetX be an infinite-dimensional Banach space hav-
ing a Fréchet differentiable norm‖ · ‖, and letA ⊂ X be either a compact
set with at least two points or a boundedC1 smooth convex body. Then there
exists a continuous mapF : R ×X −→ X such that the Cauchy problem

x′(t) = F (t, x), x(t0) = x0

admits a unique (global) solution through each point(t0, x0) 6= (0, 0), while
the solutions through(0, 0) are not unique and given by

x(t) =
1
2
(t2 + t|t|)a, a ∈ A,

which means that at the timet = 1 the solutions through(0, 0) reach all the
points ofA.



460 D. Azagra, T. Dobrowolski

Theorem 4.2 is a relatively easy consequence of Theorem 4.1, which in
turn is immediately deduced by combining our Theorem 2.1 with Theorem
1 of [16]. Nevertheless we will say a few words about the way one can use
Theorem 2.1 to obtain Theorem 4.1.

Outline of the proof of 4.1.
Leth be aC1 diffeomorphism fromX \ {0} ontoX \A which satisfies

h(x) = x if ‖x‖ ≥ 2 (h does exist thanks to theorems 2.1 and 3.2). Let us
consider the family of curves

x(t) = h−1(h(x0)et), t ∈ R, x0 ∈ X \ {0}, (1)

which are pairwise disjoint and cover the setX \ A. They provide the
solutions to the differential equationx′ = g(x), whereg(x) = [(Dh−1)
(h(x))]h(x). Let f1 : X −→ X be the extension ofg defined by letting
f1 = 0 on the setA. Then the differential equationx′ = f1(x) almost
satisfy the assertion of 4.1, except thatf1 might be discontinuous at the
points ofA. One can correct this flaw by puttingf(x) = φ(x)f1(x), where
φ : X −→ [0, 1] is a continuous function such thatφ−1(0) = A and
φ(x) = 1 whenever‖x‖ ≥ 2.

Then the equation
x′ = f(x) (2)

has a unique solution passing through each point(t0, x0) ∈ R × (X \ A),
and the solution is global and unbounded, while, ifx is a bounded global
solution of (2) then there exists a pointa ∈ A such thatx(t) = a for every
t ∈ R.

Remark 4.3.If, in 4.1, the spaceX has an equivalentCp smooth norm
and, moreover, for the compactumA there exists aCp smooth real-valued
functionφ with φ−1(0) = A, thenf may be chosen to beCp−1 smooth.
As shown in [13], for every compactumK of a separable Banach space
X there exists aC∞ smooth functionφ : X → [0, 1] with φ−1(0) = K.
However, for a nonseparable Banach spaceX, even ifX admits aC∞ norm,
such functions need not exist, as a cited result of Hajek’s shows. The referee
pointed out to us that it would be interesting to identify the Banach spaces
X which admit such functions.

5. Periodic diffeomorphisms without fixed points in Banach spaces

V. L. Klee also used his results on negligibility [22] to prove that ifX is
either a non-reflexive Banach space or an infinite dimensionalLp space, there
exists a two-periodic homeomorphismf : X −→ X without fixed points.
This was somewhat surprising because, for a finite-dimensional spaceX, P.
A. Smith [24] had proved that every prime-periodic homeomorphism ofX
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must have a fixed point. Klee even showed that for the Hilbert spaceH and
for each integern ≥ 2 there exists a periodic homeomorphismf : H −→ H
of pure periodn that has no fixed points. By using the results of the preceding
sections, in many Banach spaces these results can now be sharpened so as
to obtain periodic diffeomorphisms of arbitrary periodn having no fixed
points.

Theorem 5.1. LetX be an infinite-dimensional Banach space having a (not
necessarily equivalent)Cp smooth norm%. Then there exists a two-periodic
Cp diffeomorphismf : X −→ X such thatf has no fixed points andf
transforms the ball{x ∈ X | %(x) ≤ 1} onto itself.

Proof.From theorem 2.1 we get aCp diffeomorphismϕ : X −→ X \ {0}
such thatϕ is the identity outside the ballB = {x ∈ X | %(x) ≤ 1}.
PutA(x) = −x for everyx ∈ X (note thatA is a two-periodic linear
isomorphism whose only fixed point is the origin, andA takes the ballB
onto itself). Definef : X −→ X by f(x) = ϕ−1(A(ϕ(x))) for every
x ∈ X. Then it is clear thatf is the desired diffeomorphism.

An adaptation of this argument, using appropiate rotations instead of the
functionA(x) = −x, allows to show the following generalization of Klee’s
result [22].

Theorem 5.2. LetX be a Banach space of the formX = Y ×Z, whereZ is
a separable infinite-dimensional space which is isomorphic to its cartesian
square. Then, for each integern ≥ 2 there exists aC∞ diffeomorphism
f : X −→ X of pure periodn such thatf has no fixed points.

We will finish this paper with a remark on the Borsuk-Ulam coincidence-
type theorem in infinite dimensions. Recall that the Borsuk-Ulam theorem
says that, for any mappingf : Sn → R

n of the n-dimensional sphere
there existsx0 ∈ Sn such thatf(α(x0)) = f(x0), whereα(x) = −x is
the antipodal map ofSn. If f is real-valued then, as it is readily seen, the
conclusion above holds if one replacesαby an arbitrary continuous mapping
T : Sn → Sn. It is easy to see that the following infinite-dimensional version
of the Borsuk-Ulam theorem follows from the classical, finite-dimensional
one. For everyn ∈ N, and every mappingf : S → R

n of a unit sphere
S in an infinite-dimensional normed spaceX, there existsx ∈ S so that
f(−x) = f(x). Ulam [23], Problem 167, asked whether this can be extended
so as to obtainf(Tx) = f(x) for somex ∈ S, whereT is a self-mapping
of S andX is a Hilbert space. In a commentary following the statement
of Problem 167 in [23], Klee answered this question in the negative by
exhibiting a self-diffeomorphismT of S and a smooth real-valued mapping
f : S → R so thatf(Tx) = f(x) for no x ∈ S. Below we show that the
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same is true for all Banach spaces having (not necessarily equivalent)Cp

smooth or real-analytic norms.

Remark 5.3.Let X be either an infinite-dimensional Banach space with a
Cp smooth (not necessarily equivalent) normω, or a separable (infinite-
dimensional) Banach space with a real-analytic (not necessarily equivalent)
normω. Then there exist aCp (resp. real-analytic) self-diffeomorphismT
of S = {x ∈ X | ω(x) = 1} and aCp smooth (resp. real-analytic) mapping
f : S → R so thatf(Tx) = f(x) for nox ∈ S.

Proof. By [1] (resp. [14]),S is Cp (resp. real-analytic) diffeomorphic to a
hyperplaneE of X. Now it suffices to exhibit the requiredT andf onE.
This is trivial. Take a continuous linear functionalx∗ on E and a vector
x0 ∈ E so thatx∗(x0) 6= 0, and letT be the shiftTx = x + x0. Clearly,
x∗(Tx) = x∗(x) for nox.

Acknowledgements.The authors wish to thank the referee for many helpful suggestions
which improved the exposition.
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