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EVERY CLOSED CONVEX SET IS THE SET OF MINIMIZERS
OF SOME C∞-SMOOTH CONVEX FUNCTION

DANIEL AZAGRA AND JUAN FERRERA

(Communicated by Jonathan M. Borwein)

Abstract. We show that for every closed convex set C in a separable Banach
space X there is a C∞-smooth convex function f : X −→ [0,∞) so that
f−1(0) = C. We also deduce some interesting consequences concerning smooth
approximation of closed convex sets and continuous convex functions.

It is well known that if a separable Banach space has a C1-smooth equivalent
norm, then every closed convex C set can be regarded as the set of minimizers of a
C1-smooth convex function f . One can obtain such a function f by considering the
inf-convolution of the smooth norm with the indicator function of C (valued 0 on C
and +∞ elsewhere). Indeed, separable Asplund spaces have equivalent norms with
dual LUR norms and, as shown by Asplund and Rockafellar, inf-convolutions pre-
serve Fréchet smoothness when one of the convex functions is a norm whose dual is
LUR (see [6], Proposition 2.3 for instance). However, the inf-convolution operation
does not preserve C2 smoothness of the norm, so this procedure does not provide
C2-smooth convex functions with a prescribed set of minimizers, and it seems to
be an open question whether for every closed convex set C in a separable Banach
space X there always exist C2-smooth convex functions whose set of minimizers is
C.

In this note we provide a simple proof that for every closed convex set C in a
separable Banach space X there is a C∞-smooth convex function f : X −→ [0,∞)
so that f−1(0) = C. Surprisingly enough, the result is not true for some nonsep-
arable Banach spaces (see the Remark below). We also deduce some interesting
consequences of our main theorem.

For instance, this result allows us to recover some classical theorems on smooth
approximation of convex sets in Rn. Namely, every bounded closed convex set in
Rn can be approximated in the Hausdorff distance by C∞-smooth convex bodies.
Also, every continuous convex function on Rn can be uniformly approximated on
bounded sets by C∞-smooth convex functions.

The analogue consequences of our main theorem in the infinite-dimensional set-
ting are that every closed convex set in a separable Banach space X is the Mosco
limit of C∞-smooth convex bodies (see Definition 4 below for Mosco’s notion of
convergence), and that every continuous convex function can be uniformly approx-
imated on compact sets by C∞-smooth convex functions; on the other hand, every
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weakly continuous convex function on X can be approximated by C∞-smooth con-
vex functions, uniformly on weakly compact sets.

It is worth noting that there are infinite-dimensional separable Banach spaces
(such as `1) for which it is impossible to approximate bounded convex bodies by
C1-smooth convex bodies uniformly on bounded sets (in general, every Banach
space with no Fréchet smooth equivalent norm lacks this kind of approximation).
So, the best approximation results that one can expect in the general case are
those provided by our corollaries. Of course, if the space considered has a smooth
equivalent norm, then one should expect stronger results, such as uniform smooth
approximation on bounded sets, but this is a much subtler question. In general it
is unknown whether every Banach space X with a Cp-smooth equivalent norm has
the property that every bounded convex body can be uniformly approximated on
bounded sets by Cp-smooth convex bodies. In the case where X is separable and
p = 1 this is indeed true and can be done by using inf-convolution. For p ≥ 2, the
results of Deville, Fonf and Hájek’s [3, 4] on smooth and analytic approximation of
bounded convex bodies on some separable Banach spaces show that this is also true
for the separable polyhedral spaces and the separable Lp spaces (in fact, they obtain
uniform analytic approximation on bounded sets when an equivalent analytic norm
is available in the space).

We now state and prove our main result.

Theorem 1. For every closed convex set C in a separable Banach space X there
exists a C∞ smooth convex function f : X −→ [0,∞) so that f−1(0) = C (and, in
particular, also f ′(x) 6= 0 for all x ∈ X \ C).

Proof. We may obviously assume that ∅ 6= C 6= X . It is well known that, as a
consequence of the Hahn-Banach theorem, every such closed convex set C is the
intersection of the half-spaces of X which contain C; that is,

C =
⋂
i∈I

Hi,

where the Hi can be assumed to be of the form Hi = {x ∈ X : x∗i (x) ≤ αi} for some
x∗i ∈ X∗ with ‖x∗i ‖ = 1, and αi ∈ R. Then we have that X \ C =

⋃
i∈I(X \Hi),

and since the complements X \Hi are open and X \ C is a Lindelöf space, there
exists a countable subcovering

X \ C =
∞⋃
n=1

(X \Hn),

where the Hn = {x ∈ X : x∗n(x) ≤ αn} form a subsequence of the family (Hi)i∈I .
Therefore C can be written as a countable intersection of closed half-spaces,

C =
∞⋂
n=1

{x ∈ X : x∗n(x) ≤ αn}.(1)

Now, let θ : R −→ [0,∞) be a C∞ smooth convex function so that θ(t) = 0 for
t ≤ 0, and θ(t) > 0 whenever t > 0; furthermore, ensure that θ(t) be an affine
function of slope 1 for t ≥ 1, say θ(t) = t + b for t ≥ 1, where −1 < b < 0. It
is easy to construct such a function θ by integrating twice a suitable C∞ smooth
nonnegative function whose support is precisely the interval [0, 1]. Then define
θn : R −→ [0,∞) by

θn(t) = θ(t− αn);
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clearly θn is a C∞ smooth convex function so that θn vanishes precisely on the
interval (−∞, αn], and θn restricts to an affine function on [αn + 1,∞), namely
θn(t) = t− αn + b for t ≥ αn + 1.

Let us define our function f : X −→ [0,∞) by

f(x) =
∞∑
n=1

θn(x∗n(x))
(1 + |αn|)2n

for all x ∈ X . It is clear that f is a convex function. Let us see that f is well
defined and C∞ smooth. We can write f as a function series, f(x) =

∑∞
n=1 fn(x),

where

fn(x) =
θn(x∗n(x))

(1 + |αn|)2n
.

In order to see that f is C∞ smooth it is enough to check that the series of deriva-
tives

∑∞
n=1 f

(j)
n (x) converges uniformly on each ball B(0, R), with R > 1, for all

j = 0, 1, 2, .... Since the derivatives of the function θ are all bounded and θn is a
mere translation of θ, there are constants Mj > 0 so that ‖θ(j)

n ‖∞ = ‖θ(j)‖∞ = Mj

for all j = 1, 2, ..., while for j = 0 we have

0 ≤ θn(t) = θ(t− αn) ≤ max{θ(1), t− αn + b}
for all t ∈ R. By using these bounds, and bearing in mind that ‖x∗n‖ = 1, we can
estimate, for ‖x‖ ≤ R,

|fn(x)| =
∣∣∣ θn(x∗n(x))
(1 + |αn|)2n

∣∣∣ ≤ θ(1) +R+ |αn|+ |b|
(1 + |αn|)2n

:= δ(0)
n ,

and since
∑∞

n=1 δ
(0)
n < ∞, it follows that

∑∞
n=1 fn(x) converges uniformly on the

ball B(0, R). For j ≥ 1 it is easily seen that the j-linear map f
(j)
n (x) ∈ Ljs(X) is

given by

f (j)
n (x) =

θ
(j)
n (x∗n(x))

(1 + |αn|)2n

j︷ ︸︸ ︷
x∗n ⊗ ...⊗ x∗n

(there Ljs(X) stands for the set of continuous symmetric j-linear forms on X).
Then, by taking into account that ‖x∗n ⊗ ...⊗ x∗n‖ ≤ 1 = ‖x∗n‖, and ‖θ(j)

n ‖∞ = Mj,
we get that

‖f (j)
n (x)‖ ≤ MjR

(1 + |αn|)2n
:= δ(j)

n

whenever ‖x‖ ≤ R and, since
∑∞

n=1 δ
(j)
n <∞, this ensures that

∑∞
n=1 f

(j)
n converges

uniformly on bounded sets, for all j ∈ N. Therefore, f is of class C∞.
The fact that f−1(0) = C follows immediately from equality (1) above and from

the definitions of the functions θn and f .
Finally, every convex differentiable nonnegative function which vanishes precisely

on a set C cannot have a zero derivative outside C; therefore our function f satisfies
f ′(x) 6= 0 for all x ∈ X \ C.

Remark. The above proof more generally shows that every closed convex set C in a
(possibly nonseparable) Banach space that is a countable intersection of half-spaces
can be written as C = f−1(0) for some C∞-smooth convex function f : X −→
[0,∞) (in particular, all convex sets in separable Banach spaces are of this form).
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However, there are very simple closed convex sets in quite reasonable nonseparable
Banach spaces for which Theorem 1 fails. For instance, take X = c0(Γ), where
Γ is an uncountable set, and C = {0}. As shown by Petr Hájek [7], there is no
C2-smooth function on c0(Γ) which attains its minimum at exactly one point. This
shows that Theorem 1 is false for X = c0(Γ) even if we drop convexity. It seems to
be an intriguing open question how to characterize the nonseparable Banach spaces
for which every closed convex set (or even a mere singleton) can be written as the
set of minimizers of a C∞-smooth (convex) function.

Corollary 2. Every bounded closed convex set in Rn can be approximated in the
Hausdorff distance by C∞ smooth convex bodies.

Proof. Let C be a bounded closed convex set of Rn. By Theorem 1, there exists a
convex C∞ smooth function f : X −→ [0,∞) so that C = f−1(0), and f ′(x) 6= 0 for
all x ∈ X \ C. Consider the sets Un = f−1([0, 1/n]). Since f ′(x) 6= 0 when f(x) =
1/n, the implicit function theorem [2] tells us that the level set {x : f(x) = 1/n},
which is the boundary of the convex body Un, is a one-codimensional C∞-smooth
manifold, and this means that the convex body Un is C∞-smooth as well. By using
standard compactness arguments, it is easy to see that Un converges to C in the
Hausdorff distance.

By applying the above results to the epigraph of a continuous convex function,
it is easy to deduce the following.

Corollary 3. Every convex function on Rn can be approximated uniformly on
bounded sets by C∞ smooth convex functions.

Finally, we see what kind of approximation results can be deduced from Theorem
1 in the infinite-dimensional case. As remarked above, in general one cannot expect
to have uniform approximation on bounded sets, so we are made to deal with
weaker notions of convergence. In the case of functions, we can consider uniform
convergence on compact sets. For convex bodies, perhaps the strongest notion of
convergence that remains useful in the general case is that of Mosco’s.

Definition 4. Let Cn, C be closed convex subsets of a Banach space (X, ‖ · ‖).
The sequence Cn is said to converge to C in the Mosco sense provided that

(1) For every x ∈ C there is a sequence (xn) so that limn→∞ ‖xn − x‖ = 0 and
xn ∈ Cn for each n.

(2) For every sequence (xnj ) weakly converging to some x, if xnj ∈ Cnj for all j,
then x ∈ C.

Here are some useful remarks about Mosco convergence.
(1) This definition makes sense for nonconvex sets as well but, when the convexity

condition is dropped, a constant sequence may not converge to itself.
(2) If, in the second condition of the above definition, we replace weakly conver-

gence with norm convergence, we are left with the definition of Kuratowski
convergence.

(3) Obviously, Mosco convergence implies Kuratowski convergence, and both no-
tions of convergence are equivalent in Schur spaces.

(4) In reflexive Banach spaces, Mosco convergence implies pointwise convergence
of the distance functions to the corresponding sets (the so-called Wijsman
convergence).
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For further information concerning Mosco and Wijsman convergence, see [1].
For a closed convex subset C of a separable Banach space, let f be the C∞-

smooth convex function constructed in the proof of Theorem 1. We have that
C = f−1(0). Put Cn = f−1([0, 1/n]) for each n. Since f ′(x) 6= 0 whenever
f(x) = 1/n, by the implicit function theorem [2], Cn is a C∞-smooth convex body.

We are going to see that the sequence (Cn) converges to C in the Mosco sense.
Since Cn is a decreasing sequence of convex sets whose intersection is C, we only
have to check the second condition of Definition 4. To this end, suppose xnj ∈ Cnj
and (xnj ) weakly converges to x. As f is continuous and convex, it is weakly lower
semicontinuous. Hence f(x) ≤ lim inf f(xnj ) ≤ lim 1

nj
= 0, and therefore x ∈ C.

Thus we have shown the following

Corollary 5. Every closed convex subset (not necessarily bounded) of a separable
Banach space can be approximated in the sense of Mosco by C∞-smooth convex
bodies.

As in the finite-dimensional case, when one applies these techniques to the
epigraphs of continuous convex functions, one can deduce some results on smooth
approximation of convex functions.

Corollary 6. Every continuous convex function on a separable Banach space can
be approximated, uniformly on compact sets, by C∞ smooth convex functions.

If we demand that our convex function be weakly continuous, then we can get
uniform approximation on weakly compact sets (in particular, for reflexive Banach
spaces, the approximation is uniform on bounded sets).

Corollary 7. Every weakly sequentially continuous convex function on a separable
Banach space can be approximated by C∞ smooth convex functions, uniformly on
weakly compact sets

Next we provide a proof for Corollary 7. The same argument, with obvious
modifications (just considering the norm topology instead of the weak topology),
yields the proofs of Corollaries 6 and 3.

Take a weakly sequentially continuous convex function g : X −→ R. Let C be
the epigraph of g, a subset of X × R. By Corollary 5 there is a sequence (Cn)
of C∞ smooth convex bodies in X × R that converge to C in the sense of Mosco.
Since the bodies Cn contain C, which is the epigraph of a convex function defined
on the whole of X , every Cn is itself the epigraph of a C∞ smooth convex function
gn : X −→ R which lies below g; moreover, gn ≤ gn+1 ≤ g for all n. The fact that
the functions gn are C∞ smooth is a standard consequence of the implicit function
theorem.

We see that gn converges to g uniformly on weakly compact sets. If not, there
would exist some weakly compact subset K of X , some sequence (xn) ⊂ K, and
some ε > 0 so that

g(xn)− gn(xn) = |g(xn)− gn(xn)| > ε

for every n ∈ J , where J is some cofinal subset of N; we may assume J = N
for the sake of simplicity. Since K is weakly compact, there exists a subsequence
of (xn) that weakly converges to some x ∈ K; again we may assume that (xn)
weakly converges to x. Then, since g is weakly sequentially continuous, we have
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that limn→∞ g(xn) = g(x), and therefore

g(x)− gn(xn) ≥ ε/2(2)

if n is large enough; we may as well assume that this is so for all n ∈ N.
On the other hand, note that the sequence (gn(xn)) ⊂ R is bounded. Indeed,

it is bounded above because gn(xn) ≤ g(xn) and g is bounded on K; and it is
also bounded below since g1(xn) ≤ gn(xn) and g1 is bounded below on K (bear in
mind that every convex function is bounded below on a bounded set). Then we
can choose a convergent subsequence of (gn(xn)). As always, we may assume that
gn(xn) converges to some α ∈ R.

To sum up, we have seen that (xn, gn(xn)) weakly converges to (x, α) in X ×R.
Since (xn, gn(xn)) belongs to Cn (the epigraph of gn), and Cn converges to C in
the Mosco sense, we must conclude that (x, α) ∈ C, that is, g(x) ≤ α. But this
contradicts (2).
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[6] M. Fabian, P. Hájek, and J. Vanderwerff, On smooth variational principles in Banach spaces,
Journal of Mathematical Analysis and Applications 197, 153- 172 (1996). MR 96m:49026
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