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Abstract

We establish some perturbed minimization principles, and we develop a theory of subdiffer-
ential calculus, for functions defined on Riemannian manifolds. Then we apply these results to
show existence and uniqueness of viscosity solutions to Hamilton—Jacobi equations defined on
Riemannian manifolds.
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1. Introduction

The aim of this paper is threefold. First, we extend some perturbed minimization
results such as the smooth variational principle of Deville, Godefroy and Zizler, and
other almost-critical-point-spotting results, such as approximate Rolle’s type theorems,
to the realm of Riemannian manifolds. Second, we introduce a definition of sub-
differential for functions defined on Riemannian manifolds, and we develop a the-
ory of subdifferentiable calculus on such manifolds that allows most of the known
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applications of subdifferentiability to be extended to Riemannian manifolds. For in-

stance, we show that every convex function on a Riemannian manifold (that is, every
function which is convex along geodesics) is everywhere subdifferentiable (on the other
hand, every continuous function is superdifferentiable on a dense set, hence convex
functions are differentiable on dense subsets of their domains). Third, we also use this
theory to prove existence and uniqueness of viscosity solutions to Hamilton—Jacobi
equations defined on Riemannian manifolds. Let us introduce some of these results.

It is known that the classic Rolle’s theorem fails in infinite-dimensions, that is, in
every infinite-dimensional Banach space withC& smooth (Lipschitz) bump function
there areC! smooth (Lipschitz) functions which vanish outside a bounded open set
and yet have a nonzero derivative everywhere inside this sef/s@md the references
therein. In fact, the failure of Rolle’s theorem infinite dimensions takes on a much
more dramatic form in a recent result of Azagra and Cepedello Bdisahe smooth
functions with no critical pointsare dense in the space of continuous functions on
every Hilbert manifold (this result may in turn be viewed as a very strong approximate
version for infinite-dimensional manifolds of the Morse—Sard theorem). So, when we are
given a smooth function on an infinite-dimensional Riemannian manifold we should
not expect to be able to find any critical point, whatever the overall shape of this
function is, as there might be none. This important difference between finite and infinite
dimensions forces us to consider approximate substitutes of Rolle’s theorem and the
classic minimization principles, looking for the existence of arbitrarily small derivatives
(instead of vanishing ones) for every function satisfying (in an approximate manner)
the conditions of the classical Rolle’s theorem. This is what the pgdpegskdeal with,
one in the differentiable case (showing for instance that if a differentiable function
oscillates less thane2on the boundary of a unit ball then there is a point inside the
ball such that the derivative of the function has norm less than or equd) smd the
other in the subdifferentiable one. More generally, a lot of perturbed minimization (or
variational) principles have been studied, perhaps the most remarkable being Ekeland’s
principle, Borwein—Preiss’ principle, and Deville—Godefroy-Zizler's smooth variational
principle. See[26,27] and the references therein.

There are many important applications of those variational principles. Therefore, it
seems reasonable to look for analog of these perturbed minimizations principles within
the theory of Riemannian manifolds. In Section 3, we prove some almost-critical-point
spotting results. First, we establish an approximate version of Rolle’s theorem which
holds for differentiable mappings defined on subsets of arbitrary Riemannian mani-
folds. Then we give a version of Deville—Godefroy—Zizler smooth variational principle
which holds for those complete Riemannian manifdldvhich areuniformly bumpable
(meaning that there exist some numb@&rs- 1, r > 0 such that for every poinp € M
and everyo € (0,r) there exists a functiom : M — [0, 1] such thatb(x) = O if
d(x, p)=9, b(p) =1, and sup., ldb(x)|lx <R/d. Of course every Hilbert space is
uniformly bumpable, and there are many other examples of uniformly bumpable mani-
folds: as we will see, every Riemannian manifold which has strictly positive injectivity
and convexity radii is uniformly bumpable). For those Riemannian manifolds we show
that, for every lower semicontinuous functigh: M — (—o0, co] which is bounded
below, there exists @! smooth functionp : M — R, which is arbitrarily small and
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has an arbitrarily small derivative everywhere, such tfiat ¢ attains a strong global
minimum at somep € M.

This result leads up to one of the main topics of this paper: subdifferentiability of
functions on Riemannian manifolds, since, according to the definition we are going
to give of subdifferential, this implies that sudhis subdifferentiable at the poir.

We will say that a functionf : M — (—o0, o0] is subdifferentiable ap provided
there exists aC! smooth functionp : M — R such thatf — ¢ attains a local
minimum atp. The set of the derivativego(p) of all such functionsp will be called
subdifferential off at p, a subset ofr'*M, which will be denoted byD~ f(p). Of
course, wherM is R" or a Hilbert space, this definition agrees with the usual one.
Apart from being a useful generalization of the theory of subdifferentiability of convex
functions, this notion of subdifferentiability plays a fundamental role in the study of
Hamilton—-Jacobi equations iR" and infinite-dimensional Banach spaces. Not only is
this concept necessary to understand the notiowvisdosity solution(introduced by
Crandall and Lions, sefl1-20); from many results concerning subdifferentials one
can also deduce relatively easy proofs of the existence, uniqueness and regularity of
viscosity solutions to Hamilton—Jacobi equations; see, for instgdde22,25,38] We
refer t0[23,26] for an introduction to subdifferential calculus in Banach spaces and its
applications (especially Hamilton—Jacobi equations).

Section 4 is devoted to the study of subdifferentials of functions defined on manifolds.
We start by giving other equivalent definitions of subdifferentiability and superdiffer-
entiability, including a local one through charts, which sometimes makes it easy to
translate some results already established inRheor the Banach space cases to the
setting of Riemannian manifolds. We also show that a functie differentiable at a
point p if and only if f is both subdifferentiable and superdifferentiablepaiNext, we
study the elementary properties of this subdifferential with respect to sums, products
and composition, including direct and inverse fuzzy rules. We finish this section by es-
tablishing two mean value theorems, and showing that lower semicontinuous functions
are subdifferentiable on dense subsets of their domains.

In Section 5, we study the links between convexity and (sub)differentiability of
functions defined on Riemannian manifolds. Recall that a function M — R
defined on a Riemannian manifol is said to be convex provided o ¢ is convex,
for every geodesie. The paper$34—37] provide a very good introduction to convexity
on Riemannian manifolds and the geometrical implications of the existence of global
convex functions on a Riemannian manifold; for instance it is showri3#] that
every two-dimensional manifold which admits a global convex function which is locally
nonconstant must be diffeomorphic to the plane, the cylinder, or the open Mébius strip.
Among other things, we show in this section that every convex function defined on a
Riemannian manifold is everywhere subdifferentiable, and is differentiable on a dense
set (when the manifold is finite-dimensional, the set of points of nondifferentiability
has measure zero).

Finally, in Section 6 we study some Hamilton—Jacobi equations defined on Rie-
mannian manifolds (either finite or infinite-dimensional). Examples of Hamilton—Jacobi
equations arise naturally in the setting of Riemannian manifolds[1del relation to
Lyapounov theory and optimal control. However, we do not know of any work that
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has studied nonsmooth solutions, in general, or viscosity solutions, in particular, to
Hamilton—-Jacobi equations defined on Riemannian manifolds. This may be due to the
lack of a theory of nhonsmooth calculus for functions defined on Riemannian manifolds.
Here we will show how the subdifferential calculus and perturbed minimization princi-
ples that we develop in the previous sections can be applied to get results on existence
and uniqueness of viscosity solutions to equations of the form

u+ F(du)=f

u bounded

where f : M — R is a bounded uniformly continuous function, afd: 7*M — R

is a function defined on the cotangent bundlevbfvhich satisfies a uniform continuity
condition. The manifoldM must also satisfy that it has positive convexity and injectivity
radii (this condition is automatically met by every compact manifold, for instance). We
also prove some results about “regularity” (meaning differentiability almost everywhere)
of the viscosity solutions to some of these equations. Finally, we study the equation
ldu(x)|ly = 1 for all x € Q, u(x) = 0 for all x € 0Q, whereQ is a bounded open
subset ofM, and we show thakt — d(x, 0Q) is the unique viscosity solution to this
equation (which has no classical solution).

2. Preliminaries and tools

In this section, we recall some definitions and known results about Riemannian
manifolds which will be used later on.

We will be dealing with functions defined on Riemannian manifolds (either finite
or infinite-dimensional). A Riemannian manifold/, g) is a C>* smooth manifoldM
modelled on some Hilbert spad¢é¢ (possibly infinite-dimensional), such that for every
p € M we are given a scalar produgl(p) = g, = (-,-), on the tangent space
TM, ~ H so that|x|, = ((x, x),)/2 defines an equivalent norm ahM, for each
p € M, and in such a way that the mappipge M — g, € S2(M) is a C*> section
of the bundles; : So — M of symmetric bilinear forms.

If a function f : M — R is differentiable atp € M, the norm of the differential
df(p) e T*M, at the pointp is defined by

ldf (p)llp = suddf(p)(v) :v e TMp, |vll, <1}

Since(TM,, ||-11,) is a Hilbert space, we have a linear isometric identification between
this space and its dudll’*M,, | - ||,) through the mapping'M, > x = fy = x €
T*M,, where f,(y) = (x, y) for everyy e TM,,.

For every piecewis&! smooth pathy : [a, 5] — M we define its length as

b
L(y) =/

ds.

d
d_y ()
! y(s)
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This length depends only on the paffu, b] itself, and not on the way the point
7(t) moves along it: ifh : [0,1] — [a,b] is a continuous monotone function then

L(yoh) = L(y). We can always assume that a patiis parameterized by arc length,
which means thay : [0, T] > M satisfies||%(s)||y(s) =1 for all s, and therefore

Ly = |

for eachr € [0, T]. For any two pointsp, g € M, let us define

dy
dt

ds =r
7(s)

(s)

d(p,q) =inf{L(y) : y is a C* smooth path joiningp and ¢ in M}.

Thend is a metric onM (called theg-distance orM) which defines the same topology
as the oneM naturally has as a manifold. For this metric we define the closed ball of
centerp and radiusr > 0 as

By(p,r)={qeM:d(p,q)<r}.

Let us recall that in every Riemannian manifold there is a unique natural covariant
derivation, namely the Levi—-Civita connection (see Theorem 1.8.1[B9jj; following
Klingenberg we denote this derivation ByyY for any vector fieldsX,Y on M. We
should also recall that a geodesic isC& smooth pathy whose tangent is parallel
along the pathy, that is, y satisfies the equatioNyy()/4:dy(t)/dt = 0. A geodesic
always minimizes the distance between points which are close enough to each other.
Any path y joining p and q in M such thatL(y) = d(p,q) is a geodesic, and it
is called a minimal geodesic. In the sequel all geodesic paths will be assumed to be
parameterized by arc length, unless otherwise stated.

Theorem 2.1 (Hopf-Rinow. If M is a finite-dimensional Riemannian manifold which
is complete and connectetthen there is at least one minimal geodesic connecting any
two points in M

On the other hand, for any given poipt the statementd can be joined tgp by a
unique minimal geodesic” holds for almost every M; see[42].

As is well known, the Hopf-Rinow theorem fails whe is infinite-dimensional,
but Ekeland[29] proved (by using his celebrated variational principle) that, even in
infinite dimensions, the set of points that can be joined by a minimal geodedit in
is dense.

Theorem 2.2 (Ekeland. If M is an infinite-dimensional Riemannian manifold which is
complete and connected thefior any given point pthe set{g € M :¢4 can be joined
to p by a uniqgue minimal geodesids residual in M
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The existence theorem for ODEs implies that for evérye TM there is an open
interval J (V) containing 0 and a unique geodesic : J(V) — M with dy(0)/dt = V.
This in turn implies that there is an open neighborhdad of M in TM such that for
every V € TM, the geodesicyy, (r) is defined for|¢f| < 2. The exponential mapping
exp: TM — M is then defined as exp) = yy (1), and the restriction of exp to a
fiber TM, in TM is denoted by exp

Let us now recall some useful properties of the exponential map.[341] for
instance, for a proof of the following theorem.

Theorem 2.3. For every Riemannian manifoldV, g) and everyx € M there exists a
numberr > 0 and a mapexp, : B(0,,r) C TM, — M such that

(1) exp, : B(Ox,d) — Buy(x,0) is a bi-LipschitzC* diffeomorphismfor all é €
O, r].

(2) exp, takes the segments passing throwghand contained inB(Oy, r) C T M, into
geodesic paths irBy(x, r).

(3) depr(Ox) = idTMx-

In particular, taking into account conditioi3), for every C > 1, the radius r can be
chosen to be small enough so that the mappieggs, : B(O;,r) — Buy(x,r) and
exp; ! : By(x,r) — B(Oy,r) are C-Lipschitz

Recall that a Riemannian manifoM is said to begeodesically completprovided
the maximal interval of definition of every geodesichhis all of R. This amounts to
saying that for everyx € M, the exponential map exds defined on all of the tangent
spaceT M, (though, of course, expis not necessarily injective on all dfM,). It is
well known that every complete Riemannian manifold is geodesically complete. In fact
we have the following result (sgd1, p. 224]for a proof).

Proposition 2.4. Let (M, g) be a Riemannian manifold. Consider the following condi-
tions

(1) M is complete(with respect to the g-distange

(2) All geodesics in M are defined dR.

(3) For everyx € M, the exponential magxp, is defined on all off M,.

(4) There is somea € M such that the exponential magxp, is defined on all off M,.

Then (1) = (2) = (3) = (4). Furthermore if we assume that M idinite-
dimensionalthen all of the four conditions are equivalent to a fifth

(5) Every closed andl,-bounded subset of M is compact
Next, let us recall some results about convexity in Riemannian manifolds.
Definition 2.5. We say that a subsdi of a Riemannian manifold isonvexif given

x,y € U there exists a unique geodesic lhjoining x to y, and such that the length
of the geodesic is diét, y).
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Every Riemannian manifold ikcally convexin the following sense.

Theorem 2.6 (Whiteheadl Let M be a Riemannian manifold. For evetye M, there
existsc > 0 such that for all r withO < r < ¢, the open ballB(x, r) = exp, B(Oy, r)
is convex

This theorem gives rise to the notion ahiformly locally convexmanifold, which
will be of interest when discussing smooth variational principles and Hamilton—-Jacobi
equations on Riemannian manifolds.

Definition 2.7. We say that a Riemannian manifold is uniformly locally convex
provided that there exists > 0 such that for every € M and everyr with 0 <r < ¢
the ball B(x, r) = exp, B(Ox, r) is convex.

This amounts to saying that the global convexity radiusviofas defined below) is
strictly positive.

Definition 2.8. The convexity radius of a point € M in a Riemannian manifoldv

is defined as the supremum R of the numbers- > 0 such that the balB(x, r) is
convex. We denote this supremum bgM, x). We define the global convexity radius
of M asc(M) :=inf{c(M, x) : x € M}.

Remark 2.9. By Whitehead’s theorem we know thatx, M) > O for everyx € M.
On the other hand, the function+— c(x, M) is continuous orM, see[39, Corollary
1.9.10] Consequently, iM is compact, ther (M) > 0, that is,M is uniformly locally
convex.

The notion of injectivity radius of a Riemannian manifold will also play a role in
the study of variational principles and Hamilton—Jacobi equations. Let us recall its
definition.

Definition 2.10. We define the injectivity radius of a Riemannian manifditl at a

point x € M as the supremum iR of the numbers- > 0 such that expis a C*®
diffeomorphism onto its image when restricted to the ba{D,, r). We denote this
supremum byi (M, x). The injectivity radius ofM is defined byi (M) := inf{i(M, x) :
x € M}.

Remark 2.11. For a finite-dimensional manifol¥l, it can be seen that M, x) equals
the supremum of the numbers> 0 such that expis injective when restricted to the
ball B(Oy, r), see[39]. However, for infinite-dimensional manifolds it is not quite clear
if this is always true.

Remark 2.12. By Theorem2.3 we know thati(x, M) > O for everyx € M. On the
other hand, it is well known that the function— i(x, M) is continuous onM [39,
Proposition 2.1.10]Therefore, ifM is compact, theri (M) > 0.



D. Azagra et al./Journal of Functional Analysis 220 (2005) 304-361 311

We will also need to use the parallel translation of vectors along geodesics. Recall
that, for a given curve : I — M, a numberyo, 11 € I, and a vectoWy € T M, there
exists a unique parallel vector field(z) along y(z) such thatV(rg) = Vp. Moreover,
the mapping defined byo — V() is a linear isometry between the tangent spaces
T My) and T My, for eachs € 1. We denote this mapping by; = P ., and we
call it the parallel translation fronT' M, to T M, along the curve;.

The parallel translation will allow us to measure the length of the “difference”
between vectors (or forms) which are in different tangent spaces (or in duals of tangent
spaces, that is, fibers of the cotangent bundle), and do so in a natural way. Indeed, let
7 be a minimizing geodesic connecting two pointsy € M, say y(t) = x, y(t1) = y.

Take vectorsV € TM,, W € TM,. Then we can define the distance betwa&eand
W as the number

IW = Pl (V)lly = IV = P2, (W)

0,7

. . ll . . .
(this equality holds becausg,; is a linear isometry between the two tangent spaces,

with inverse P[lo). Since the space¥*M, and T M, are isometrically identified by
the formulav = (v, -), we can obviously use the same method to measure distances
between formsé € T*M, andy € T*M, lying in different fibers of the cotangent
bundle.

Finally, let us consider some mean value theorems. The following two results are
easily deduced from the mean value theorem for functions of one variable, but it will

be convenient to state and prove them for future reference.

Theorem 2.13(Mean value theorejn Let (M, g) be a Riemannian manifoléind f :
M — R a Fréchet differentiable mapping. Thefior every pair of pointsp, g € M and
every minimal geodesic path : I — M joining p and q there existsg € I such that

f(p) = f(q) =d(p.q)df (c(t0))(d' (10));

in particular | f(p) — f (@< lldf (6(to)lls0)d (P, @)

Proof. Sincec is a minimal geodesic we may assuthe= [0, d(p. ¢)]1, llo' () lloq) = 1

forall t € I, 0(0) = ¢, a(d(p, q)) = p. Consider the functiotk : I — R defined by
h(t) = f(a(t)). By applying the mean value theorem to the functiowe get a point
to € I such that

f(p) = (@) = h(d(p, q)) — h(0) = W (t0)(d(p, q) — 0) = df (6(t0))(d’ (t0))d (P, q)

and, sincel|a’ (10) o) = 1 and|df (a(t0))(c’ (to) | < |ldf (6(10)) lo(0), WE also get that
[ f(p) — f@I<ldf (c(to)leend(p,q). U

When the points cannot be joined by a minimal geodesic we have a less accurate
but quite useful result which tells us that every function with a bounded derivative
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is Lipschitz with respect to thg-distance onM. In fact this results holds even for
functions which take values in other Riemannian manifolds. For a differentiable function
between Riemannian manifoldé : M — N, we define the norm of the derivative
df(p) at a pointp € M by

ldf (Pl p:=suRlldf (PYW)ll f(p) - h € TMp, |lvll, <1}
=sup{(df(p)w) :v € TMp, L€ T*Nyp), Ivllp = 1= {1l () }-

Theorem 2.14(Mean value inequalily Let M, N be Riemannian manifoldand f :
M — N a Fréchet differentiable mapping. Assume that f has a bounded derivatiye
lldf (x)]lx <C for everyx € M. Then f is C-Lipschitzthat is

dn (f(p), f(q)) <Cdu(p, q)
for all p,q € M.

Proof. Fix any two pointsp, g € M. Take anye > 0. By definition ofd(p, ¢), there
exists aC! smooth pathy : [0, 7] — M with y(0) = ¢, 7(T) = p, and

&
L(y)<du(p,q) + c

as usual we may assumi¢’ (1), = 1 for all r € [0, T] = [0, L(y)]. By considering
the pathf(r) := f(y(¢)), which joins the pointsf(p) and f(¢) in N, and bearing in
mind the definitions oty (f(p), f(g)) and the fact thafldy(®)|,: = 1 for all t, we
get

T T
dn (f(p), f(@) <L) :./o BN pery dt=./0 ldf @)y f ey dt

T T
< fo Idf Gl di < /0 Cdi=CT
<Cdu(p,q)+¢/C)=Cdyu(p,q)+e.

We have shown thatly (f(p), f(q)) <Cdy(p,q) + ¢ for every ¢ > 0, which means
thatdy (f(p), f(@)<Cdmu(p,q). U

In Section 4, we will generalize these mean value theorems for the case of subdif-
ferentiable or superdifferentiable functions defined on Riemannian manifolds.

The preceding mean value theorem has a converse, which is immediate in the case
when M and N are Hilbert spaces, but requires some justification in the setting of
Riemannian manifolds.
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Proposition 2.15. Let M, N be Riemannian manifolds. If : M — N is K-Lipschitz
(that is dn(f(x), f(y)) <Kdu(x,y) for all x,y € M), then |df (x)|. <K for every
xeM.

Proof. Consider first the case whedM = R. Suppose that there existg € M with
ldf (x0)llxo > K. Takevg € T My, so that|lvglly, = 1 anddf (xg)(vg) > K. Consider
the geodesic)(t) = exp,,(tvo) defined for|z|<ro with ro > 0 small enough. Define
F :[—ro,rol = R by F(t) = f(y(¢)). We have thatF’(0) = df (xo)(vo) > K. By the
definition of F’(0) we can find som&g € (0, rg) such that

LF(O) > K if |¢]<do.

Taking 11 = —do, r2 = g We getF (1) — F(0) < Kt and F(t2) — F(0) > K1y, hence,
by summing,

F(t2) — F(t1) > K(t2 — 11).
If we setx1 = y(11), x2 = y(t2) this means that
fx2) — f(x1) > K(t2 — 11) = Kd(x2, x1),

which contradicts the fact thdtis K-Lipschitz.

Now let us consider the general case when the target space is a Riemannian manifold
N. Suppose thatldf (xo)ll., > K for somexg € M. Then there ar€y € T*Ny(y,)
and vo € TM,, with |luglly, = 1 = [{llrxe) and such thatk < [ldf (xo)llx, =
Lo (df (x0)(vp)). Takesg > 0 ande > 0 small enough so that egéo : B(f(x0), s0) —
B(Of(xp)» S0) is @ (14 ¢)-Lipschitz diffeomorphism andK < (1+ &)K < [|df (x0) llxo-
Now takero > 0 small enough so thaf (B(xo, r0)) C B(f(xo0),so), and define the
composition

g BUo.ro) > R, g(0) = Lo (Xl (1))

It is clear thatg is (14 ¢)K-Lipschitz. But, sinced expj?(lxo)(f(xo)) is the identity, we
have that

dg (x0) (v0)=Co (d Xy ) (f (x0)) (@f (x0) (v0)) )
=0 (df (x0)(10) = lldf (x0) 15 > (1+ &)K.

and this contradicts the result we have just proved for the daseR. O
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3. Almost-critical-point-spotting results

As said in the introduction, in infinite dimensions one cannot generally hope to find
any critical point for a given smooth function, whatever its shape, so one has to make
do with almost critical points.

3.1. An approximate Rolle’s theorem

We begin with an approximate version of Rolle’s theorem which holds in every
Riemannian manifold (even though it is infinite-dimensional) and ensures that every
differentiable function which has a small oscillation on the boundary of an open set
whose closure is complete has an almost critical point.

Theorem 3.1 (Approximate Rolle’s theoremLet (M, g) be a Riemannian manifold
U an open subset of M such that is complete and bounded with respect to the
g-distance and po € M, R > 0 be such thatB,(po, R) C U. Let f : U — R be a
continuous function which is differentiable on U. Then

(1) If supf(U) > supf(dU) then for everyr > 0 there existsq € U such that
ldf(@llg<r.

(2) If inf f(U) < inf f(0U) then for everyr > 0 there existsg € U such that
ldf (g)llg <r.

(3) If f(U) S [—¢, ¢] for somee>0, then there existg € U such that||ldf (¢)|; <&/R.

Corollary 3.2. Let (M, g) be a complete Riemannian manifpld a bounded open
subset of Mand po € M, R > 0 be such thatB,(po, R) € U, ¢ > 0. Suppose that
f(0U) C [—¢, €]l. Then there exists somge U such that|ldf (¢)ll; <&/R.

To prove Theoren8.1 we begin with a simple lemma.

Lemma 3.3. Let (M, g) be a Riemannian manifoldand f : M — R be a differ-
entiable function on M. Suppose thidf(p)ll, > ¢ > 0. Then there exist a number
d > 0 and twoC! pathsa, f : [0, 5] — M, parameterized by arc lengtisuch that

f@) < f(p)—e and  f(P@) > f(p) + et

for all r € (0, J].

Proof. Let us show the existence of such a patfa required path can be obtained
in a similar manner). Sincddf(p)ll, > &, there existsh € TM, so that||r]l, = 1
and df (p)(h) < —e. Then (by the characterization of the tangent sp#@dé, as the
set of derivatives of all smooth paths passing thropytwe can choose &'l path
o:[0,r] — M, parameterized by arc length, such that

do
T O =h and a(0) = p.
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Define the functionF : [0,7] — R by F(r) = f(«(r)). We have that
F'(s) = df (u(s)) <% (S))

for all s € [0, r]. In particular, fors = 0, we have thatF’(0) = df(p)(h) < —e, and
therefore there exists some> 0 such that

F()~FO) _ _
t

for all r € (0, 6]. This means thayf (a(¢)) < f(p) — et for all t € (0,0]. O

We will also make use of the following version of Ekeland’s variational principle
(see[30] for a proof).

Theorem 3.4 (Ekeland’s variational principle Let X be a complete metric spa@nd

let f : X — [—00, 00) be a proper upper semicontinuous function which is bounded
above. Lete > 0 and xp € X such thatf(xp) > sup f(x) : x € X} —e¢. Then for every

A with 0 < /1 < 1 there exists a point € Dom(f) such that

(i) 4d(z,x0) < f(2) — f(x0)
(i) d(z,x0) <¢/2
(i) Ad(x,z) + f(z) > f(x) wheneverx # z.

3.2. Proof of Theorem 3.1

Case 1: Let y = supf(U) — supf(dU) > 0. Define X = (U, dg), which is a
complete metric space. Let > 1 be large enough so thal c Bg(po,n), and set
A = min{n/8n,r} > 0. Observe that, since the diameter Wfis less than or equal
to 212, we have thatid(x, y)<n/4 for all x,y € U. Now, according to Ekeland’s
variational principle3.4, there exists; € U such that

fO<f(g) +42d(y,q) forall yeX. 3.1

In fact, it must beq € U: if g € 0U then, takinga such thatf(a) > supf(U) — n/4
we would get

supf(U) —n/2 = (supf(U) —n/4) —n/4< f(a) — Jd(a, q) < f(q) < supf (U)

a contradiction.

We claim that||df (¢)|l, <4<r. Indeed, assume thdt/f(q)[, > 4. Then, according
to Lemma3.3, there would exist aC path f§, parameterized by arc length, such that
B(0) =¢q and

fB@) > fg)+ it (3.2)
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for all r > 0 small enough. By combining (3.1) and (3.2), we would get that

F@)+ 7t < FOBO)< (@) + 2d(Be). ) < £(q) + ALy, ) = f(q) + It

if + > 0 is small enough; but this is a contradiction.

Case?2: consider the function- f and apply Case (1).

Case3: We will consider two situations.

Case 3.1: Suppose thatf(pg) # 0. We may assume that(pg) < 0 (the case
f(po) > 0 is analogous). Defing = ¢/R. According to Ekeland’s variational principle,
there existsy € U such that

() d(po.9) <3 (f(po) — f(@)<F(f(po) +¢) < R, and
(i) f(@) < fy)+4d(y,q) if y#q.

The first property tells us that € int By (po, R) € U. And, by using LemmaB.3 as
in Case 1, it is immediately seen that the second property implies|tfay)|l, <4 =
e/R.

Case3.2: Suppose finally thaf (pg) = 0. We may assume thatlf (po)llp, > ¢/R
(otherwise we are done). By Lemn3a3, there existd > 0 and aC! patho in U such
that

&
) < f(po) — Et
if 0 < <. Definexg = a(d) € Bg(po, 9). We have that
‘s—_ts<o0
f(X0)<f(PO)—E __E < U

By applying again Ekeland’s variational principle with=¢/R we get a pointg € U
such that

(i) d(g.x0) < f‘"g”f < ‘“j;,’;“ =R -5 and
(i) flg) < fy)+ 5d(y,q) forall y #gq.

Now, (i) implies thatd(g, po) <d(q, x0) + d(x0, po) < R—J+ 0 = R, that is,q €
int Bg(po, R) € U. And, as above, bearing in mind Lemn®&3, (ii) implies that
ldf(@llg <e/R. T

Remark 3.5. If U is not complete the result is obviously false: consider for instance
M=(-11)cCcR,U=(0,1), dU ={0}, f(x) =x. On the other hand, the estimate
¢/R is sharp, as this example showd:= R, U = (-1, 1), f(x) =x, R=1, po=0,
e=1.
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3.3. A smooth variational principle

Now we turn our attention to perturbed minimization principles on Riemannian man-
ifolds. Of course, since every Riemannian manifold is a metric space, Ekeland’s varia-
tional principle quoted above holds true and is very useful in this setting: every lower
semicontinuous function can be perturbed with a function whose shape is that of an
almost flat cone in such a way that the difference attains a global minimum. But
sometimes, especially when one wants to build a good theory of subdifferentiability,
one needs results ensuring that the perturbation of the function is smooth, that is, one
needs to replace that cone with a smooth function which is arbitrarily small and has
an arbitrarily small Lipschitz constant. This is just what the Deville—Godefroy—Zizler
smooth variational principle does in those Banach spaces h@Angmooth Lipschitz
bump functions; se27].

Unfortunately, the main ideas behind the proof of this variational principle in the
case of Banach spaces cannot be transferred to the setting of Riemannian manifolds in
full generality. One has to impose some restriction on the structure of the manifold in
order that those ideas work. That is why we need the following definition.

Definition 3.6. We will say that a Riemannian manifoltl is uniformly bumpable
provided there exist numbe® > 1 (possibly large) and > 0 (small) such that for
everyp € M, d € (0, r) there exists a1 smooth functionb : M — [0, 1] such that:

(1) b(p) = 1.
(2) b(x) =0 if d(x, p)=0.
(3) supey lldb(x)|x <R/0.

Remark 3.7. It is easy to see that every Riemannian maniftddidis bumpable in

the sense that for every € M, 6 > 0, there exists a smooth bump functién:

M — [0,1] with b(p) = 1, b(x) = 0 for x ¢ B(p,d), and b is Lipschitz, that is
SUP.cp lldb(x)|lx < oo. However it is not quite clear which Riemannian manifolds are
uniformly bumpable. Of course every Hilbert space is uniformly bumpable, and there
are many other natural examples of uniformly bumpable Riemannian manifolds. In fact
we do not know of any Riemannian manifold which is not uniformly bumpable.

Open Problem 3.8.Is every Riemannian manifold uniformly bumpable? If not, provide
useful characterizations of those Riemannian manifolds which are uniformly bumpable.

The following proposition provides some sufficient conditions for a Riemannian mani-
fold to be uniformly bumpable: it is enough that exis a diffeomorphism and preserves
radial distances when restricted to balls of a fixed radius 0. This is always true
when M is uniformly locally convex and has a strictly positive injectivity radius.

Proposition 3.9. Let M be a Riemannian manifold. Consider the following six condi-
tions

(1) M is compact
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(2) M is finite-dimensionalcomplete and has a strictly positive injectivity radiugM).

(3) M is uniformly locally convex and has a strictly positive injectivity radius

(4) There is a constant > 0 such that for every € M the mappingexp, is defined
on B(0,,r) C TM, and provides aC* diffeomorphism

exp, : B(Ox,r) — B(x,r)
and the distance function is given here by the expression

d(y,x) = llexp;tW)lly  for all y € B(x,r).

(5) There is a constant > 0 such that for everyx € M the distance function to,x
y e M d(y,x), is C>® smooth on the punctured ball(x, r) \ {x}.
(6) M is uniformly bumpable

Then(l) = (2) = (3) < 4 = (5) = (6).

Proof. (1) = (2) is a trivial consequence of Remagk12

(2) = (3): In [39, Chapter 2]the injectivity radius of a point € M is characterized
as the distance fromto the cut locusC(x) of x. Hence, for every > 0 with r < i(M)
and everyx € M it is clear that exp is a diffeomorphism and preserves radial distances
when restricted to balls of a fixed radius> O in the tangent spacéM,, andM is
uniformly locally convex. See Theorems 2.1.14 and 2.1.1236i.

(3) = (4): Sincei(M) > 0, we know that there is soma > 0 such that expis
a diffeomorphism onto its image when restricted to the ., r1), for all x € M.
The fact thatM is uniformly locally convex clearly implies that there is some> 0
such that

d(y,x) = |lexp; 2|, for ally € B(x, r2).

We may obviously assume that = rp := r. In particular exp maps B(O, r) onto
B(x,r).

(4) = (3) is obvious.

(4) = (5) is trivial, since exg1 is a C* diffeomorphism between those balls; ||,
is C> smooth onT M, \ {0,}, andd(y, x) = || exp; 1(»)|l. for all y € B(x, r).

(55 = (6): Assume that the distance function+— d(y,x) is C* smooth on
B(x,r) \ {x}. Let & : R — [0,1] be aC*™ smooth Lipschitz function such that
071(1) = (=00, 1/3] and 671(0) = [1, 00). For a given pointr € M and a number
0 € (0,r), defineb : M — [0, 1] by

1
b(y)=10 (gd(y, x)) .

Taking into account the fact that the distance function— d(y, x) is 1-Lipschitz
and therefore the norm of its derivative is everywhere bounded by 1 (see Proposition
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2.15, it is easy to check thab satisfies conditions 1-2-3 of DefinitioB.6, for a
constantR = |||« > 1 that only depends on the real functi6nbut not on the point
xeM. U

Remark 3.10. The condition thatM has a strictly positive injectivity radius is not
necessary in order thél is uniformly bumpable, as the following example shows. Let
M be the surface oR® defined by the equation = 1/(x2 + y2), (x, y) # (0, 0), with
the natural Riemannian structure inherited fré&d. Theni(M) = 0, but, as is not
difficult to see,M is uniformly bumpable.

The following theorem is the natural extension of the Deville—Godefroy—Zizler smooth
variational principle to Riemannian manifolds which are uniformly bumpable. Recall
that a functionF : M — R U {+o0} is said to attain a strong minimum @t pro-
vided F(p) = inf,cpy F(x) and lim,_ o d(p,, p) = 0 whenever(p,) is a minimizing
sequence (that is, if lim, o F(p,) = F(p)).

Theorem 3.11(DGZ smooth variational principle Let (M, g) be a complete Rieman-
nian manifold which is uniformly bumpablend letF : M — (—o0, +o0] be a lower
semicontinuous function that is bounded beldw# +oco. Then for everyo > 0 there
exists a bounded’! smooth functionp : M — R such that

(1) F — ¢ attains its strong minimum in M
() ll@llioo :=SUP,ep l@(P)| < 0, and ld@lloo 1= SUP,ecp Id@(P)Ilp < 0.

Remark 3.12. The assumption tha¥l is complete is necessary here, as the following
trivial example showsM = (-1,1) C R, f(x) = x.

We will split the proof of TheorenB.11 into three lemmas. In the sequsl(x, r)
denotes the open ball of centgrand radiusr in the metric spaceM, and B(o, r)
stands for the open ball of center and radiusr in the Banach space.

Lemma 3.13. Let M be a complete metric spacand (Y, || - ||) be a Banach space of
real-valued bounded and continuous functions on M satisfying the following
conditions

(1) llellZl@llec = sup|e(x)| : x € M} for everyp € Y.

(2) There are numberg > 1,r > 0 such that for everyp € M, ¢ >0 and é € (O, r)
there exists a functioh € Y such thatb(p) = ¢, ||b]ly <Ce&(1+1/0), andb(x) =0
if x & B(p, 9).

Let f : M - RU{+o0} be a lower semicontinuous function which is bounded below
and such thatDom(f) = {x € M|f(x) < +oo} # ¥. Then the set G of all the
functions¢ € Y such thatf + ¢ attains a strong minimum in M contains G5 dense
subset of Y
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Proof. Take a numbeV € N such thatN >1/r, and for everyn € N with n >N,
consider the set

Uy = {q’ €Y[Axoe M : (f +9)(xo) < inf {<f+‘f’)(x)'x < M\B <x°’ %>”

Let us see that, is an open dense subsetYaf Indeed,

e U, is open. Takep € U,. By the definition ofU, there existsxp € M such that
(f + @)x0) < inf{(f + @)(X)|x € M\B(xo, )}. Set 2 = inf{(f + P)()|x €
M\B(x0, 1)} — (f + @)(x0) > 0. Then, since| - [y >l - [lso, We get thatBy (¢, p) C
Boo(@, p) C Uy.

e U, is dense inY. Takep € Y and¢ > 0. Sincef + ¢ is bounded below there exists
x0 € M such that(f + ¢)(xo) < inf{(f + @)(x)|x € M} + ¢ Set nowo =1/n < r,
and use condition (2) to find a functidne Y such thatb(xg) = ¢, ||blly <C(n+ 1,
andb(x) = 0 for x ¢ B(xo, ). Then (f + @)(x0) — b(xo) < Inf{(f + @)(x)|x € M}
and, if we defineh = —b, we have

. . 1
(f + ¢+ h)(x0) <inf{(f + @)(x)|x € M}< inf {(f +o)(x)|x ¢ B <xo, ;)} :

Since inf{( f+¢)(x)|x & B(xo, 2)} = inf{(f+p+h)(x)|x & B(xo, 1)}, it is obvious that
the above inequality implies that+#4 € U,. On the other hand, we hay ||y <C(n+
1)e. SinceC andn are fixed and can be taken to be arbitrarily small, this shows that
¢ € U,, andU, is dense inY.

Therefore we can apply Baire’s theorem to conclude that theGset (2, U,
is a G5 dense subset of. Now we must show that ifp € G then f + ¢ attains
a strong minimum inM. For eachn> N, take x, € M such that(f + ¢)(x,) <
inf{(f + @)(X)|x & B(x,, 1)}. Clearly, x; € B(x,, ) if k>n, which implies that
(xn),2y is @ Cauchy sequence M and therefore converges to somge M. Sincef
is lower semicontinuous an@);~ y B(xo, 1/n) = {xo}, we get

(f + @) (xo) <liminf (f + @) (x,) < lim inf [inf {(f +@)(x)|lx e M\ B (xo, %) ”

=inf {inf {(f+(p)(x)|x eM\ B (xo, %)} ‘n € N,n}N}
=inf{(f + @)(x)|x € M \ {xo}},

which means thalf + ¢ attains a global minimum atp € M.

Finally, let us check that in facy + ¢ attains a strong minimum at the poimg.
Suppose{y,} is a sequence itM such that(f + g)(v,) — (f + g)(x0) and (y,)
does not converge tog. We may assumé(y,, xg) >e¢ for all n. Bearing in mind this
inequality and the fact thatg = lim x,,, we can takek € N such thatd (xg, y,) > %
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for all n, and therefore

. 1
(f + @) (xo) < (f + @) (xi) < inf {(f +o)(x)lx ¢ B <Xka ;)} S(fF+ o))

for all n, which contradicts the fact thatf + ¢)(y,) — (f + ¢)(x0)- O

Lemma 3.14. Let M be a uniformly bumpable Riemannian manifold. Then there are
numbersC > 1,r > 0 such that for everyp € M, ¢ > 0 and ¢ € (0, r) there exists a
¢! smooth functiorb : M — [0, ¢] such that

(1) b(p) =& = |Iblloc := SUR.ep 1D(X)].
(2) lldblloo := SUR.ep ldb(x)lx <Ce/d.
(3) b(x) =0 if x € B(p, J).

In particular, max||b|co, |db|loc} < Ce(1+ 1/0).

Proof. The definition of uniformly bumpable manifold provides sughin the case
whene=1. If ¢ £#1, it is enough to consider, = eb. [

Lemma 3.15. Let (M, g) be a complete Riemannian manifold. Then the vector space
Y ={p : M — R|¢is C! smooth bounded and Lipschijz endowed with the norm
lolly = maX{ll@llsc, ldellc}, is @ Banach space

Proof. It is obvious that(Y, | - |ly) is a normed space. We only have to show that
Y is complete. Let(p,) be a Cauchy sequence with respect to the ng¢rnjjy. Since

the uniform limit of a sequence of continuous mappings between metric spaces is
continuous, it is obvious thatp,) uniformly converges to a continuous functign :

M — R. SinceT*M, is a complete normed space for eache M, it is also clear

that (d¢,,) converges to a functiof : M — T*M defined by

Yx) = lim dg,(x)

(where the limit is taken irT M, for eachx € M). Let us see thay = d¢. Takep € M.
From Theoren2.3 we know that there exists some> 0 (depending on p) such that
the exponential mapping is defined @&10,,r) C TM, and gives a diffeomorphism
exp, : B(Op,r) — B(p,r) such that the derivatives of expand its inverse(expp)—1
are bounded by 2 o®(0,, r) and B(p, r) respectively; in particular expprovides a
bi-Lipschitz diffeomorphism between these balls. We dergte) = (@ oexp,)(h), for

h € B(0,,r). We have

() —9©0) — Y(p)(h) ‘:
171l

o -0 h ‘
1] VPG

@(h) — (0) — (@, (h) — $,(0) ‘
171l

g ‘
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I YT gm0y [ —
1] OO\ g
~ h
-ﬂw%©—wwngﬂﬂ. (3.3)

Let us first consider the expressiq:“?(h)_“”(o)_”(f”"(h)_wﬂ(o))|.

value inequality theorem we get

By applying the mean

@ (1) — @, (0) — (@, (h) — 7,(0)| <SUR.ep(0,.r) 1Py (X) — APy () plIA
S2ldey, —doylloollllp-

Since (¢,) is a Cauchy sequence i we deduce that for every > O there exists
no € N such that|,,(h) — ¢,,(0) — (¢, (h) — $,(0))| < (¢/3)||h]| wheneverm, n>ng
so, by lettingm — oo we get that|@(h) — @) — (@, (h) — ¢,(0)| < (¢/J)|\h] if
n=no. N

On the other hand, the termid, (0) — ¢(p))<w’;—”)| in the right-hand side of in-
equality (3.3) above is less thani3 whenn is large enough; we may assume this
happens ifn > ny. B B

i ; - PugW=P0©® i

Finally, if we fix n = ng, the term|°T - d¢no(o)(m)| can be made to
be less thare/3 if ||| is small enough, sayh| <d.

By combining these estimations we get that, fioe= ng, the left side of inequality
(3.3) is less than if ||k]|<o. This shows thafp is differentiable atp, with d%(0,) =
Y (p). Henceg is differentiable atp, with do(p) = Y (p).

To conclude thaty is a Banach space it only remains to check that =  is
continuous and bounded. Take> 0. Since(¢,) is a Cauchy sequence iy there
existsng € N such thatl|lde, (y) —d¢,,(») |y <e for all y e M providedn, m >ng. By
letting m — oo we deduce thatde,(y) — y(y)lly<e for all y € M, if n>no. That
is, we have

lim ldg, — dglle = 0.
n—0oo

In particular, this implies thafd¢|l~ < oo, that is, ¢ is Lipschitz. Now we can show
Y = do is continuous. Take any € M. As above, there exists > 0 such that
exp, : B(0p,r) — B(p,r) is a 2-Lipschitz diffeomorphism, and so is the inverse
exp;l. Definep = poexp, : B(0,,r) — R. In order to see thad¢ is continuous ap

it is enough to see thate is continuous at P. By applying the mean value inequality
we have that

ld@(x) —dp ),
<ldox) = do, () p + 1de, (x) = dp, O, + 1d, (0) — dpO)
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L2de —de,llc + 1d¢, () —dp, ), + 2lde — dp,llo
= 4lldp —dp,llc + 1d9,(x) —dp, ), (3.4)

forall n € N, x € B(0,,r) C TM,,. Since|ldp — d¢,llc — 0 asn — oo we can
find ng € N so that

Finally, sincedg?;no is continuous at p, there existsd € (0, r) such that

”dano(x) - d?DnO(O)”p g (36)

N o

if |lx||, <J. By combining (3.4)—(3.6) we get thddp(x) — dp(0)||, <e if |x|, <o.
This shows that/ is continuous at p. [

Now the proof of Theoren8.11is an obvious combination of the above Lemmas.

Remark 3.16. It should be noted that Lemnm&13is quite a powerful statement from
which a lot of other perturbed minimization principles can be obtained. For instance:

(1) When we takeM = X, a complete metric space, andis the space of all the
Lipschitz and bounded functiong : X — R, with the norm

lf ) — fOI

I|f||Y=||f||oo+Li|0(f)=||f||oo+SUIO{ dGey) ~x,y€X,X75Y}

(which satisfieg1) and (2) of Lemma3.13with C = 1 and anyr), then we obtain
a statement that is easily seen to imply Ekeland’s variational principle.

(2) When we consideM = X, a Banach space having@' smooth Lipschitz bump
function, and we defin& as the Banach space 6f! smooth Lipschitz functions
f: X - R, with the norm

£y = 1 Flloe + 11Lf lloos

then we recover the known DGZ smooth variational principle for Banach spaces.
(3) Let M = X be any metric space in which some notiondifferentiability has been

defined, andr be a Banach space dffferentiable(whatever this word should mean

in this context) and Lipschitz functiong : X — R, with the norm

I/ lly = 11 flloo 4+ Lip(S).
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Suppose thaK is uniformly bumpable in the sense thétsatisfies(2) of Lemma
3.13 Then we get a perturbed minimization principle with functions which are
differentiableand Lipschitz.

Open Problem 3.17.Is Theorem3.11 true if one drops the assumption thist is
uniformly bumpable?

4. A notion of viscosity subdifferential for functions defined on Riemannian
manifolds

4.1. Definitions and basic properties

Definition 4.1. Let (M, g) be a Riemannian manifold, anfl : M — (—o0, 0] be a
proper function. We will say that is subdifferentiable at a point € dom(f) = {x €
M : f(x) < oo} provided there exists & function ¢ : M — R such thatf — ¢
attains a local minimum at the poimt In this case we will say thaf = do(p) €

(TM,)* ~ H* = H is a subdifferential off at p. We define the subdifferential set of
f atp by

D™ f(p)={do(p): ¢ € CX(M,R), f — ¢ attains a local minimum ap}
a subset off *M,. Similarly, we define
DY f(p) ={do(p): ¢ € CL(M,R), f — ¢ attains a local maximum gt}

and we say thaf is superdifferentiable gb provided D f(p) # 4.
For everyl e D™ f(p) U D" f(p), the norm of{ is defined as

ICllp = supll(h)| : h € TM), ||Rll, = 1}.

Remark 4.2. The following properties are obvious from the definition:

(1) f is subdifferentiable ap if and only if — f is superdifferentiable g, and

D*(=f)(p) =—D" f(p).

(2) If f has a local minimum ap then 0 D~ f(p).
(3) If h has a local maximum g then Oc D™ f(p).

Next, we give other useful equivalent definitions of subdifferentiability.
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Theorem 4.3 (Characterizations of subdifferentiabilitylLet f/ : M — (—o0, co] be a
function defined on a Riemannian manifoled € M, and y € T*M,. The following
statements are equivalent

(1) n € D™ f(p), that is there exists aC* smooth functionp : M — R so thatf — ¢
attains a local minimum at,pand n = do(p).

(2) There exists a functiop : M — R so that f — ¢ attains a local minimum at,p
¢ is Fréchet differentiable at,pand n = do(p).

(3) For every charth : U ¢ M — H with p € U, if we take{ = nodh~1(h(p)) then
we have that

1 _ B
iming SR DGM) +v) = f(p) = (L v)

>0.
v->0 vl -

(4) There exists a charh : U ¢ M — H with p € U and such thatfor { =
nodh~1(h(p)), we have

-1 _ B
iming S oRDGM) +0) — f(p) = (L v)

>0.
v->0 vl -

Moreover if the function f is locally bounded belogthat is, for everyx € M there is
a neighborhood U of x such that f is bounded below gntblen the above conditions
are also equivalent to the following one

(5) There exists aCl smooth functionp : M — R so that f — ¢ attains aglobal
minimum at p and n = do(p).

Consequently any of these statements can be taken as a definition af D~ f(p).
Analogous statements are equivalent in the case of a superdifferentiable furotion
particular { € DT f(p) if and only if there exists a chat : U ¢ M — H with

p € U and such thatfor { = 5o dhY(h(p)),

oh™1 — —
Iimsup(f h™7)(h(p) +v) — f(p) — (L v)

<0.
v—0 vl

Proof. (1) = (2) and (3) = (4) are obvious.
(2) = (3): If f — ¢ has a local minimum ap theng := foh ™t — poh™! has
also a local minimum ak(p), which implies

iminf 8P +v) — gh(p)) >
v—>0 l[vll
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and, by combining this inequality with the fact that

im (@0 Y (h(p) +v) — (@ o k= H(h(p)) — (L, v)
v—0 [[vll

=0

(because’ = d (¢ o k=Y (h(p))), it is easily deduced that

o -1 _ ° -1 _
iminf (f o h™H(h(p) + v) ||1()J||C HGE) — () o

(4) = (1). In order to prove this we will use the following lemma, which is shown
in [27] in a more general situation.

Lemma 4.4. If V is an open set of a Hilbert space € V,and F : V — (—o0, o0]
is a function satisfying

liminf LX TV - F@O={@v
v—>0 lvll

for somer € H*, then there exists @ smooth functiony : H — R such thatF —
has a local minimum at,xand dy/(x) = .

Take an open neighborhood of p so thatV ¢ U. Note thatF := foh lis a
function from the open subsétU) of the Hilbert spaceH into (—oo, oo], and by the
hypothesis we have that

lim "3“ F(h(p) +v) —”11)”"(/1(17)) — () >0,

By the preceding lemma, there existsCa smooth functiony : h(U) — R such that
F — 1 has a local minimum ak(p) and { = dy/(h(p)). Let us definep :=yoh :
U — R, which is aC! smooth function. It is clear thaF o h —\y o h = f — ¢ has
a local minimum atp, andd¢(p) = dy(h(p)) o dh(p) = { o dh(p) = . In order to
finish the proof it is enough to extenfl to the complement o¥ by definingp = 0¢,
where 0 is a C* smooth Uryshon-type function which is valued 1 on the \¢etnd
0 outsideU (such a function certainly exists becaugehas C* smooth partitions of
unity andV c U). It is obvious thatp keeps the relevant properties ¢f

Finally, let us see that, whehis locally bounded below(l) <= (5). Obviously,
(5 = (1). To see that(l) = (5), let us assume that there existsC& smooth
functiony : M — R and somer > 0 such that 0= f(p) — Y (p) < f(x) — Y (x) if
x € B(p,r), and denote; = dy/(p). We have to see that there existsCa smooth
function ¢ : M — R such thatf — ¢ attains aglobal minimum atp anddg(p) = 1.
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Consider the open sét = M\ B(p, r/2). Since f — is locally bounded below, for
eachx € U there existd, > 0 andm, € R such thatB(x, d,) C U andm, < f(y) —
Y (y) for all y € B(x, d,). Consider the open covering

G:={B(x,0y) :x e UYU{B(p,r)}

of M. SinceM hasC® smooth partitions of unity there exists a locally finite refinement
{Ui}ier of the coveringG and a family of functionsy;}ic; € C*(M, [0, 1]) so that
suppy;) C U; for eachi and ), .; ¥, = 1.

For eachi € I, if U; ¢ B(p,r) then we definex; = 0. Otherwise we can pick
somex; € U = M \ B(p,r/2) such thatU; C B(x;, 0y;), and in this case we define
o; = my,. Now we can define our functiop : M — R by

Q) = Y(x) + Y oy (x).

iel

It is clear thatp is a C! smooth function such thap =y on B(p, r/2) (indeed, take
x € B(p,r/2); if x € U; thenU; C B(p,r) because of the choice of the coverify
and thed,, so «; = 0, while for all the rest ofj € I we havex//j(x) = 0; therefore
@(x) = Y(x) +0=1(x)). In particular, it follows thaty = dy/(p) = d(p).

We claim that f — ¢ attains a global minimum ap. Indeed, fixx € M. If x €
B(p,r/2) = M\U then, as we have just seep(x) = y(x), and 0= (f—)(p) <(f —
V)(x) = (f — @)(x). If x € U then, for thosei € I such thatx € U; we have
(f =¥ (x)=my, = o;, while xpj(x) = 0 for thosej e I with x ¢ U;. Therefore,

FO) = @)= Fx) = h(x) = D ot (x)

iel
=f(x) —¢Yx) - Z{ailﬁi(x) ciel, x €U
>supoy i€ lx €U} — Y {oa;(x):i € I,x € Uj)
=20= f(p) — o(p),

and f — ¢ has a global minimum g. O

Corollary 4.5. Let f : M — (—o0, co] be a function defined on a Riemannian man-
ifold, and leth : U c M — h(U) C H be a chart of M. Then

(f o h™H(h(p) +v) — f(p) — (L, v)

vl

D‘f(p):{Codh(p):CeH*,Iimilgf 20}

={lodh(p):Le D™ (f o h Y (h(p)))}.

Now we can show that subdifferentiable plus superdifferentiable equals differentiable.
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Proposition 4.6. A function f is differentiable at p if and only if f is both subdifferen-
tiable and superdifferentiable at p. In this cagdf(p)} = D™ f(p) = D f(p).

Proof. Assume first thaf is both subdifferentiable and superdifferentiablepaihen
there existC! functions ¢, : M — R such thatf — ¢ and f —y have a local
minimum and a local maximum gi, respectively. We can obviously assunfi¢p) =
@(p) = Y (p). Then these conditions mean thétx) —(x) >0 and f (x) —y(x) <0 for
all x € U, whereU is an open neighborhood pf On the other hand,f —¢)—(f—{) =
V¥ — @ has a local minimum ap, hence 0= d({y — @)(p) = dy(p) — de(p). That is,
we have that

P f)<Yx) forall xeU, o(p)=y(p) = f(p),
and do(p) =dy(p).

By using charts, it is an easy exercise to check that these conditions imply ihat
differentiable atp, with df (p) = dy/(p) = de(p); in particular this argument shows
that {df (p)} = D™ f(p) = D" f(p).

Now, if f is differentiable atp then, by the chain rule, so i§oh~1 at h(p) for any
charth : U ¢ M — H; in particular, puttingl = d(f o k1) (h(p)), we have

im LA DBMP +v) = fp) = Lw
v—>0 llvll
which, thanks to Theorem.3, yieldsdf(p) = {odh(p) € D™ f(p) N DT f(p). O
What the above proof really shows is the (not completely obvious) following result:
a functionf is differentiable at a poinp if and only if its graph is trapped between
the graphs of twaC! smooth functions which have the same derivativg aind touch
the graph off at p.

Corollary 4.7 (Criterion for differentiability). A function f : M — R is Fréchet dif-
ferentiable at a point p if and only if there a€' smooth functionsp,  : M — R
such that

)< f)<Y(x)  for all x € M, o(p) =Y(p) = f(p),
and do(p) =dy(p).

Let us say a few words about the relationship between subdifferentiability and conti-
nuity. In general, a subdifferentiable function need not be continuous. For instance, the
function f : R — R defined by f(x) =0 if x € [0, 1], and 1 elsewhere, is Fréchet
subdifferentiable everywhere iR, and yetf is not continuous at 0 and 1. However, it
is easy to see that subdifferentiability implies lower semicontinuity.
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Proposition 4.8. If f is subdifferentiable at p then f is lower semicontinuous at p. In
the same waysuperdifferentiability implies upper semicontinuity

Proof. The result is immediate in the case of a functipn V ¢ H — (—o0, o0];
indeed, if

iminf $& TV —8&) — (r.v)
v—>0 llvll

>0

then liminf,_, . ¢(y)>¢g(x). The general case follows by applying Theord8. [
4.2. Some rules and fuzzy rules

Next, we study some properties of the subdifferentials related to composition, sum
and product of subdifferentiable and differentiable functions. Of course, all the state-
ments hold for superdifferentials as well, with obvious modifications.

Proposition 4.9 (Chain rulé. Let M, N be Riemannian manifoldg : M — N, and
f : N — (—o0, 00]. Assume that the function f is subdifferentiablegép), and that
g is Fréchet differentiable at p. Then the compositipr g : M — (—o0,00] is
subdifferentiable at pand

{{odg(p):{e D™ f(g(p)} S D (fog)p).

Proof. Take { € D™ f(g(p)), then there exists a functiop : N — R so that
f — ¢ has a local minimum ag(p), ¢ is Fréchet differentiable ag(p), and { =

dop(g(p)). In particular there exists > 0 such thatf (y) — ¢(y) = f(g(p)) — @(g(p))

wheneverd(y, g(p)) < ¢ Defineyy = ¢ o g. Sinceg is differentiable atp and ¢

is differentiable atg(p), by the chain rule it follows thaiy is a function fromM

into R which is Fréchet differentiable gi, with dy/(p) = dp(g(p)) o dg(p). Since
g is continuous afp, there existso > 0 such thatd(g(x), g(p)) < ¢ for all x with

d(x, p) < 6. Then we getf(g(x)) — o(g(x)) = f(g(p)) — @(g(p)) if d(x, p) < 6, that
is, f og— 1y has a local minimum ap. By Theorem4.3 [(1) < (2)], this ensures
that f o g is subdifferentiable ap, with {odg(p) = dp(g(p)) odg(p) =dy(p) € D~

(fog)p). U

The following example shows that the inclusion provided by Proposii@ris strict,
in general.

Example 4.10.Let M = N = R, g(x) = [x|¥?, f(y) = |y|¥?; fog(x) = |x|¥% Then
g is C! smooth onR, and we haveig(0) = 0, D~ f(g(0)) = D~ f(0) = (—o0, 0),
D™ (f 0 g)(0) = (—o0, 00). Thereforel o dg(0) = 0 for every{ € D™ f(g(0)).

Corollary 4.11. Let M, N be Riemannian manifold#s : M — N a C?! diffeomor-
phism. Then f : M — (—o0, 0o] is subdifferentiable at p if and only if o 21 is
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subdifferentiable at:(p), and

D™ f(p) ={lodh(p): L€ D™ (f oh™H(h(p))}.

Proof. If f: M — (—o0, o] is subdifferentiable ap then, by the preceding Propo-
sition, f o h~1 : N — (—o0, oc] is subdifferentiable at(p) € N and, moreover, we
know that if 7 € D~ f(p) then( := T o dh~X(h(p)) € D~ (f o =Y (h(p)). Then
T ={odh(p), with { € D™(f o k™Y (h(p)).

Conversely, iff oh~1 is subdifferentiable ak(p) then, again by the preceding result,
f = (f oh™Y) o h is subdifferentiable ap and, for anyl € D= (f o k™Y (h(p)), we
havelodh(p) € D7Y(foh ™Yo h)(p) =D f(p). O

Proposition 4.12 (Sum rulg. For all functions f1, f : M — (—o00, ], p € M, we
have

D™ fi(p) + D™ fa(p) € D™ (f1+ f2)(p)

and analogous inclusions hold for superdifferentials

Proof. Take {; € D™ fi(p), i = 1,2. There areC! smooth functionsp; : M —
R such thatf; — ¢; have a minimum atp and {; = do;(p) for i = 1,2. Then
(f1+ f2) = (@1 + ¢2) = (fi — @1) + (f2 — @) clearly has a minimum ap, hence

{1+ =d(@1+ @) (p) belongs toD™ (f1+ f2)(p). U
When one of the functions involved in the sum is uniformly continuous the inclusion

provided by this statement can be reversed in a fuzzy way. This assumption is necessary
in general, as a counterexample (in the Hilbert space) of Deville and Ivanov shows;
see[28].

Theorem 4.13(Fuzzy rule for the subdifferential of the synhet (M, g) be a Rie-
mannian manifold. Letfi, f» : M — R be such thatf; is lower semicontinu-
ous and f» is uniformly continuous. Take € M, a chart (U, ¢) with p € U,

{ € D™(f1 + f2)(p), ¢ > 0, and a neighborhood V ofp, () in the cotangent
bundle 7*M. Then there existp1, p2 € U, {1 € D™ fi(p1), (o € D™ fa(p2) such
that (pi, {1 0 do(p) ™ o do(pi) + Lz 0 do(p2) ™t o do(p)) € V for i = 1,2; and

|fitpi) — fi(p)l < e fori=12.

Proof. Fix a chart(U, ¢) such thatp € U and T*U is diffeomorphic toU x H*
through the canonical diffeomorphisih : T*U — U x H* defined byL(q, &) =
(g, Eodo(g)™1). The theorem can be reformulated as folloiar: everyp € U, {
D™ (f1+ f2)(p), and e > O, there existp1, p2 € U, {1 € D™ fi(p1), {2 € D™ fa(p2)
such that:d(p1, p2) < &, 1{10de(pD) L+ {odp(p2)™t = Lode(p)~l]| < & and

| fi(pi) — fi(p)| < ¢ for i =1, 2. But this statement follows immediately from Deville
and El Haddad’s fuzzy rule for Banach spa¢24] applied to the functiongfy o ¢~1
and Lo t. O
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Proposition 4.14 (Product rulg. Supposefi, f2 : M — [0, c0) are functions subd-
ifferentiable atp € M. Then f1 f2 is subdifferentiable at pand

AP)D™ f2(p) + f2(p) D™ f1(p) S D™ (frf2)(p).

Proof. If fi1(p) = f2(p) = 0 the result is obvious, so we may assume, for instance,
that f1(p) > 0.

Pick {; € D™ f;(p), and findC! smooth functionsp;, : M — R such thatf; — ¢;
have a local minimum gb and{; = do,(p) for i = 1, 2. As usual we may assume that
@;(p) = fi(p), so thatf; — ¢; >0. Sincep.(p) = f1(p) > 0 and ¢4 is continuous,
there exists a neighborhood of p such thatp; >0 onV. We may assume that is
small enough so that the restriction @f — f1 to V has a global minimum gb. Then
we deduce thalf1 f2> @41 f2> @10, on V, that is,

(fifo — @102)(x) =0= (f1fo — @r0o)(p) forall x eV,

which means thaif1 f2 — @19, has a local minimum ap, and therefore

P+ f2(p)la=@1(p)deo(p) + @2(p)d e, (p)
=d(p1902)(p) € D™ (f1f2)(p). O

Remark 4.15. If the functions are not positive, the result is not necessarily true, as
the following example showsM = R, fi(x) = |x|, f2(x) = —1, p = 0 (note that the
function ( f1 f2)(x) = —|x| is not subdifferentiable at 0).

4.3. Topological and geometrical properties of the subdifferential sets

Proposition 4.16. D~ f(p) and D% f(p) are closed and convex subsets7fM,,. In
particular, if f is locally Lipschitz then these sets awmg-compact as well

Proof. Let us first check thatD~ f(p) is convex. Pick{y, {, € D™ f(p), and find
€' smooth functionsp,, ¢, : M — R such thatde;(p) = {;, and (f — ¢;)(x) =0 =
(f — @;)(p) for all x in a neighborhood op. Taker € [0, 1], and define the function
@, M —> Rby @,(x)=10—-1)p1(x) +tp,(x). It is immediately seen thap, is a
C* smooth function such thaf — ¢, attains a local minimum gp, and therefore

L=l +1tl=de,(p) € D™ f(p).

Now let us see thatD~ f(p) is closed. Take a cha : U ¢ M — H with
p € U. Sincedh(p) : TM, — H is a linear isomorphism and/h(p))* : H* —
(TMp)* (defined by(dh(p))*({) = {odh(p)) is a linear isomorphism as well, and, by
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Corollary 4.5, we know that
D™ f(p) = {Lodh(p) : { € D™(f o i H(h(p))} = (@h(p)* (D™(f o A H(h(p))

it is enough to show thab—(foh~1)(h(p)) is closed inH*. That is, we have to show
the result in the case of a functign: V ¢ H — (—o0, co] which is subdifferentiable
at a pointx. So let us prove thaD~g(x) is closed in(H*, || - ||). Let (p,) C D™ g(x)
be such thaf|p, — pll — 0, and let us check thgt € D~ g(x). We have

im iBf gx +v) _|ig(ﬁ) — P, v) >0
v—> v

for all n, and therefore

lim inf gx +v) —gx) —(p,v)
v—>0 vl

1 1
= liminf [ﬂ (g(x +v) —g@) = (pn.v)) + ﬂ( - P, v)]

Ilmlgf ﬂ(g(x+v) g(x) — {pn, >)+|Imlr3f ”1” (Pn — Py V)

1
>0+ liminf —(p, — p,v) = —|pn — Pl
v—0 vl

for all n, that is,

lim inf gx +v) —gx) —(p,v) -

min ol —llpn— Pl
for all n € N, and since||p, — pll — 0 we deduce that
||m|nf g(-x—i_v)_g(-x)_(ps‘u)}o’

v—0 vl

which meansp € D™ g(x).

Finally, whenf is locally Lipschitz, by composing with the inverse of the exponential
map (which provides a Lipschitz chart on a neighborhood of each point) and using
Corollary 4.5, it is easily seen thaD~ f(p) and D¥ f(p) are bounded. Then, by the
Alaoglu—Bourbaki theorem it follows that these sets afecompact. O
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4.4. Density of the points of subdifferentiability

As a consequence of the smooth variational principle, every lower semicontinuous
function is subdifferentiable on a dense subset of its domain.

Proposition 4.17. Let M be a Riemannian manifold. |f : M — (—o0, 0c0] is lower
semicontinuous and proper thdp € dom(f) : D~ f(p) # @} is dense indom(f) :=
{xeM: f(x) < oo}

Proof. Assume first thaM is complete and uniformly bumpable (such is, for instance,
the case whe is a Hilbert spaceH). In this case we can deduce the result directly
by applying the smooth variational princip&11 as follows. Pick any poinpy with
f(po) < oo, and any open neighborhodd of pg. We must show that there is some
p € U such thatD™ f(p) # @. SinceM has smooth partitions of unity, there isC&°
smooth functionb : M — [0, co) such thatb(y) > 0 if and only if y € U. Consider
the functiong : M — (—o0, oo] defined by

1 . .
gy)=——1if yeU and g(y)=oc0 if y¢U.
b(y)

The functiong is lower semicontinuous oM, and C*° smooth onU. Then the sum
f + g is lower semicontinuous, andf + g)(po) < +oo. According to the smooth
variational principle, there exists @' smooth functionp : M — R such that(f +
g)— ¢ attains a strong minimum at some pomt M. In fact we havep € U, because
this function is valued+oo outsideU. But, since the functiorp — g is C* smooth on
U, and f — (¢ — g) attains its minimum ap, we conclude that

d(¢ —g)(p) € D™ f(p) # 9.

Now let us consider the case whéw is not necessarily complete or uniformly
bumpable. Pick a pointg € dom(f) and an open séil containingpg. We may assume
that U is small enough so that there is a chart U c V — H. By Corollary 4.5 we
know that, for anyp € M, we haveD~ f(p) # ¢ if and only if D= (f oh~ 1) (p) # ¥,

S0 it is enough to see that there is some h(U) with D=(f o h~1)(x) # #. Define

F(x) = foh™l(x) if x € h(U), and F(x) = +oo otherwise. The functiorF is lower
semicontinuous o, and F = foh~1 on h(U). Since the Hilbert spacH is certainly
complete and uniformly bumpable, we can apply the first part of the argument to find
somex € h(U) so thatf # D" F(x) =D (foh Hx). O

4.5. Mean value inequalities
There are many subdifferential mean value inequality theorems for functions defined

on Banach spaces. Here, we will only consider two of them, which complement each
other. The first one is due to Devill22] and holds for all lower semicontinuous



334 D. Azagra et al./Journal of Functional Analysis 220 (2005) 304-361

functions f defined on an open convex set of a Banach space, even if they are not
required to be everywhere subdifferentiable, but it demands a boundllfayf the
subgradients of the function at all the points where it is subdifferentiable. The second
one is due to Godefroy (who improved a similar previous result of Azagra and Deuville),
see[5,33], and only demands the existence arfe subdifferential or superdifferential
which is bounded (by the same constant) at each point, but it requires the function to
satisfy D~ f(x) UDY f(x) # ¢ for all the pointsx in the domain off (an open convex
subset of a Banach space).

Next, we extend these mean value inequality theorems to the setting of Riemannian
manifolds. The main ideas of the proofs of these results could be adapted to obtain
direct proofs which would be valid for the case of manifolds, but for shortness we
choose here to deduce them from the Hilbert space case.

Theorem 4.18(Deville’s mean value inequality Let (M, g) be a Riemannian mani-
fold, and let f : M — R be a lower semicontinuous function. Assume that there
exists a constank > 0 such that|| (||, <K for all { € D™ f(p) and p € M. Then

lf(p) — F(@I<Kdu(p,q) for all p,geM.

Proof. The result is true in the case whev = H is a Hilbert space22]. For
completeness we give a hint of Deville’s argument, which is an instructive application
of the smooth variational principle. By standard arguments it suffices to show the result
locally (see the proof of the general case below). fgx H. Sincef is locally bounded
below there areV, 6 > 0 so thatf (x) — f (xg) > — N wheneverx € B(xg, 20). For fixed
y € B(xo, 0/4), ¢ > 0, consider the function defined y(x) = f(x)—f(y)—a(lx—yl)
for |x —y|| <6, and F(x) = +oo elsewhere, where : [0, oo) — [0, 00) is C1 smooth
and satisfiesu(r) = (K + &)t if 1<6/2, «(0)>=N, ando'(t) > K + ¢ for all z > 0. If
inf F < 0, by applying the Smooth Variational Principle one can get a peint
B(y,d) \ {y} and a subgradienf € D~ f(x1) so that||{|| > K, a contradiction. Hence
F >0, and by lettinge — 0 the local result follows. Se2] for the details.

Now consider the general case of a Riemannian manifold. Fix any two ppjigtse
M, and consider a continuous and piecewiesmooth pathy : [0, T] — M, param-
eterized by arc length, with(0) = p, y(T) = q. Takee > 0. According to Theorem
2.3 for eachx € ([0, T]) there existsr, > 0 so that exp : B(0y,2ry) C TM, —
B(x,2ry) C M is aC®™ diffeomorphism so that the derivatives of exand exgl are
bounded by % ¢ on these balls. Sincg([0, T']) is compact, there are a finite collection
of pointsx1 = p, x2,...,x, = ¢q € y[0, T] so that

70, 7] c | BGxj, rp),

j=1

where we denote; = rx; for short. Setr = min{ry, ..., r,}, and pick anm € N big
enough so thal'/m < r/2. Definern=0<tu1=T/m < --- <t; = jT/m < --- <
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T =t,, and consider the points;, b; with a; =b;_1 = y(t;—1), j=1,...,m, and

bm = V(tm)-
For eachj € {1,...,m — 1} we may choose an; € {1, ...,n} so that

Wtj—1, 810 B(xij, rij) # 9,
and we also seip = 1, i,, = n (so thatx;, = p andx;, = ¢). Since the length of the

restriction ofy to [¢;_1, #;1, which we denote/j, ist;—tji_1=T/m < r/2<ri; /2,
this obviously means that

Vtj-1,t;1 C B(xi;, 2ri;)
for eachj = 1,...,m. In order to avoid an unnecessary burden of notation, in the
sequel we denote; = x;;, ands; =r;;, for j =0,1,...,m.

Consider the functiorf; : B(0y;, 2s;) — R defined byf; = foexpyj. By Corollary
4.11 we know that

D™ fj(x) = {Codexp, (x) : { € D™ (f)(exp, (x))}

for all x € B(0y;, 2s;). Since ||{|ly <K for all { € D™ f(y) with y € M, and
Ild exp,, (O)I< (@ +e) for all x € B(Oy;, 2s;), we deduce thafin|l,, <(1+ &K for all

ne D™ fj(x), x € B0y, 2s;). Then we can apply the result for the cale= T My,
and the functionf; to see that

|f(aj) = fFbpl=1fiExp, a)) — fexp; b))l
<A+ oKdru,, (exp @), exp o j))

forall j =1,2,...,m. On the other hand, since Q‘\);bis (1 4 ¢)-Lispchitz we also
have

dru,, (€xp;a))), exp; H(b)) < (L + e)du (a;, by)

forall j =1,2,...,m. By combining these two last inequalities we deduce that
1j
|flaj) = fOHISA+ 8)2KdM(aj, bj)<(1+ S)ZK/ ldy@)l dt

fji—1

forall j =1,..., m. Therefore,

Y (flap) = fb))

j=1

lf(p) = f@)l= <Z|f(aj)—f(bj)|
j=1
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2 m tj 2 T
ca+ark Y- [ wnondr= a+o?x [ lao)a
j:l fji—1 0

=(1+¢&)?KL()).

By taking the infimum over the set of continuous and piecewidepathsy joining p
and q with length L(y), we get

1f(@) — F(PI<A+8)2Kdu(g, p).

Finally, by letting ¢ go to O we obtain the desired inequalityf(q) — f(p)|<
Kdy(q,p). U

Corollary 4.19. Let (M, g) be a Riemannian manifolcand let f : M — R be a
continuous function. Then

sup{llCll, : C € D™ f(p), p e M} =sup{llll,: e D* f(p), p e M}.

These quantities are finite if and only if f is Lipschitz on &hd in this case they are
equal to the Lipschitz constant aof f

Theorem 4.20(Godefroy’s mean value inequaljityLet (M, g) be a Riemannian man-
ifold, and let f : M — R be a Borel function such that

D™ f(p)UD*f(p) #0
for everyp € M. Define® : M — R by
®(p) =inf{l[Cll, : L€ D™ f(p)U DT f(p)).

Then for every pathy : I — M parameterized by arc lengtlone has that

W) < /I () dr.

Here u is the Lebesgue measure &
Proof. The result is already proved in the case when= H is a Hilbert space,
see[33]. Let us see how the general case can be deduced. Let us derofé, T].
For a givene > 0, choose pointy; = x;;,a;,b;, and numbers; = r;;,t;, exactly
as in the proof of Theorem.18 Let us denotef; = f oexp, : B(0y;,2s)) - R,

7; =exptoy 1 Ij :=1[tj-1,1;] — B0y, 25;) C TM,;, and

@;(y) = inf{lClly, : { € D™ f;() U DT f;(x)}
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for eachx € B(0y,, 2s5;). Since D™ f;(x) = {Qodexpyi x): e D*(f)(expyj (x))} for
all x e B(0y;, 2s;), and exp, is (1 + ¢)-bi-Lipschitz on these balls, it is easy to see

that ®; (x) < (1+ s)(D(expyj (x)) for all x € B(Oy,, 2s;).
By applying the result fortf = TM,;, the functionf; and the patty;, we get that

W (FGUN) = 1 (f0,0) < f] D0, dr 1)

forall j=1,2, ..., m. But we also have that
f ®;(y; (1) dt < / (L4 &)D(exp,, (7;(0)) dt = (1+¢) f O(y()dt. (42
I Ij I

By combining inequalitieg4.1) and (4.2), and summing ovelj = 1, ..., m, we get

WG 1 (FoU) <Y A+o /, (1) dr
=1 j

j=1

<A+o) /1 D) dt = (1+e) fl (1)) dt.
j=1 J

Finally, by lettinge go to 0 we getu (f(y(1))) < J;q)(y(t))dt. [l

Corollary 4.21. Let (M, g) be a Riemannian manifaldf : M — R a Borel function
such that for everyp € M there exists{ € D~ f(p) U DT f(p) with ||{]|,<K. Then

w(fp)) <KL(y)

for every pathy : I — M. In particular, when f is continuous it follows thaif (p) —
f@I<Kdu(p.q) forall p.q e M.

5. (Sub)differentiability of convex functions on Riemannian manifolds

The aim of this section is to prove that every (continuous) convex function defined on
a Riemannian manifold is everywhere subdifferentiable, and differentiable on a dense
set.

Definition 5.1. Let M be a Riemannian manifold. A functiofi : M — R is said to
be convex provided that the functiohoo : I € R — R is convex for every geodesic
o : I — M (parameterized by arc length).
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The following proposition is probably known, at least in the case wileis finite-
dimensional, but we provide a short proof for the reader’'s convenience, as we have not
been able to find an explicit reference.

Proposition 5.2. Let M be a Riemannian manifold. If a functigh: M — R is convex
and locally boundedthen f is locally Lipschitz. In particularevery continuous convex
function is locally Lipschitz

Proof. Takep € M. Sincef is locally bounded there exis#® > 0 such thaf is bounded
on the ball B(p, R). According to Theoren2.6, there exists: > 0 with 0 <r < R/2

such that the open ballB(p, 2r) and B(p,r) are convex. FixC = sugf(x) : x €

B(p, 2r)}, andm = inf{f(x) : x € B(p, 2r)}. We are going to see thatis K-Lispchitz
on the ball B(p,r), where K = (C — m)/r. Indeed, takexi, x> € B(p,r). Since
B(p,r) is convex, there exists a unique geodesic [f1, t2] — B(p, r), with length
d(x1, x2) = tz—1t1, joining x1 to x2. Takevy € T M,, such thaty(t) = exp,, ((t — t1)v1)

for t > small enough. Since the ball(p, 2r) is still convex andx; € B(p,r), we
may define a geodesig; : [—r,r] — B(p,2r) C M throughx; by

o1(t) = exp,, (tv1) forall r € [—rr].

In the same way we may take, € TM,, and define a geodesie; : [—r,r] —
B(p, 2r) C M throughxz by

o2(t) = exp,,(tvp) forall t € [-r,r],

in such a way thaty(r) = exp, ((t —t2)vz) for <z with [¢| small enough. Set
t3=t—r, ta=t+r, x3=01(—r), x4 = 02(r), and I = [13, t4]. Then, if we define
o :1— B(p,2r) by

o1(t —nn) if t €3, 11];
o(t) = { (1) if telr, ]
o2t —1p) if 1 € [12, 14],

it is clear thates is a geodesic joiningiz to x4 in B(p, 2r). Now, sincef is convex,
the functiong : [73,74] € R — R defined as

g(t) = f(a(1))

is convex. Therefore we have

8(r1) —g(t3) _g(t2) —g(t1) _g(ta) — 8(t2)
11 —13 = ) —11 = 4 — 12
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wherers =1 —r <11 <2 < f2 +r = t4. Bearing in mind thatcz, x4 € B(p, 2r), and
1) — 11 = d(x1, x2), it follows that:

_C—mgf(xl)—f(m)gf(xz)—f(xl)gf(m)—f(xz)gC—m‘
r r d(x1, x2) r r

This shows that] f(x1) — f(x2)| < Kd(x1, x2) for all x1,x2 € B(p,r), where K =
C—-—m)/r. 0O

Let us recall that for a locally Lipschitz functioR : H — R on a Hilbert space
H, we may define the generalized directional derivath®x, v) as the

. F(y+tv)—F
lim sup (y ) (y).
(v,1)=(x,0%) 4

For everyx € H, F%x,v) is a subadditive positively homogeneous functionwpf
and the set(x* € H* : x*(v) < FOx,v) for all v} is called the generalized gradient
of F at x, and is denoted by F(x). The generalized gradient is a nonempty, convex,
w*-compact subset off*; see[10] for more information.

Theorem 5.3.Let ¢ : M — R be a continuous convex function on a Riemannian
manifold. Then g is subdifferentiable at every point af M

Proof. Let¢, : U, — H be an exponential chart @ We have¢ ,(p) = 0. Given
another pointy € U,, take a(qsp, v) € TM,, and denotes, ,(t) = gb;l(tw), where
(¢, v) ~ (¢,, w), which is a geodesic passing throughwith derivative (¢, v).
Here, (¢,,v) ~ (¢,, w) means thatw = d(¢, o qS;l)(d)p(Cl))(v), or equivalently

v=d(¢, o ¢, )0 w).
Let us define

fO(P, U) = |lim sup f(aq,v(t)) - f(CI) .

q—p t—0t t
Claim 5.4. We have thatf%(p, v) = inf,~ w, and consequently

(f o, H(av) = (f 0 ¢, H)(0)
t .

£2p.v) = inf
t>0
Claim 5.5. There existsc* € H* such thatx*(v) < f%(p, v) for everyv € H.

From these facts it follows that:

(f 0§, H(tv) — (f 0 ¢, H(0) — x*(1v) >0
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for every v € Sy, and everyr € [0, r), provided thatB(0,r) C d)I,(U,,). Hence
(fo¢,h)—x* attains a minimum at 0 and therefaré € D((f o ¢,))(0). We then
conclude thatD™ f(p) # @ by Corollary 4.5. This shows the theorem. [

Proof of Claim 5.4 Fix a 6 > 0. Since f o g4, is convex we have that

f(o-q,v(t)) - f(Q)

fOp,v)=lim  sup sup

e=0" 4(p.g)<ed O<t<e t
. 0,00) — f(o,,(0
_ lim sup f(og.0(&) — f(aq,0(0) — %),
e=0" 4(p,g)<ed J

Next, we estimatel(c, (), g4.,(¢)). We have

d(O'p’U(S), O'q,v('g))ngHd)p(Up,v(g)) - ¢p(aq,v(8))|| = Kpllev — d)p(aq,v(g))”
=Kpllev — (¢, 0 ¢, H(ew)||
=Kpllev — (¢, 0 ¢, H(0) — ed($, 0 p,HO)(w) — 0(@)|

=Kll($, 0 ¢;HO) + 0@ <K, (1§, (@] + llo@)]])
SKp(Lpd(p,q) +1lo(®)) < Kp(Lped + e0) < Céd,

where L, and K, are the Lipschitz constants Q;ﬁp and qb;l respectively,C =
K,(L,+1), ande is small enough so thafo(e)|| <o and ||D(¢po¢;l)(v) —v|| < 0.

Sincef is locally Lipschitz there existX > 0 so thatf is K-Lispchitz on a neigh-
borhood ofp which may be assumed to l#,. From the above estimates we get that,
for d(p, q) <ed,

flogv(®) — f(aq,v(o)) _ flopu(e) — f(o'p,v(o))

& &

1
< % (1f(o4,0(8) — flopv@)|+1f(p)— f(@D
K
< " (d(0p,0(e), 64.0(e) +d(p,q) <K(C +1)o.
Now we deduce that

f(ap.v(g)) - f(o'p,v(o))

&

(x) < Iirg+ +K(C+ 1o
&—>
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and, by lettingd — 0, we get

fOpo®) = f(p) _ o FOpu®) = f(p)
; .

0 .
< lim
f(p,v) [Jim. inf ;
Since the other inequality holds trivially the claim is provedl
Proof of Claim 5.5 We have that

f(o'q,v(t)) - f(o'q,v(o))

lim sup
g—p t—>0* !
— lim sup f(o'q,v(t)) - f(o'q,v(o))
e—0t d(p,q)<e O<t<e t
-1 -1
Cim s o900 = (o h 6, @)
e—>0t d(p,q)<e O<t<e t
F / —F
— Im sup (y + 4y (1) (y)’
e—0t d(p,q)<e O<t<e !

where(f o qS;l) =F,y= ¢p(q), and Ay (1) = ¢p(aq,v(t)) — (],’)p(q). Next, we get

im sup O AO) = FO) _ sp PO Iy () = FO)

e—0* d(p,q)<e O<t<e ! =0t [ly||<e O<t<e t

becauseL ,||y||<d(p. q) <K,|lyll (recall that¢>[, and (qs,,)—l are Lipschitz).
Now, if we take||y|| < ¢ and O< r < ¢, we have

Fiy+24y®)—F() FQ+mw)-F@y Z‘F(y + 4y()) = F(y +1v)
t t t

<k OO g,

where K’ is the Lipschitz constant of and ¢ satisfies lim_, o+ @(r) = 0, because

ly(t) —tv =, (04.0(1) — ¢ ,(q) — tv = 0(1).
Finally, we have

F L — _
sup O+4@)-F@») sup F(y +1tv) — F(y)
lIvl|<e O<r<e 1 llyll<e O<t<e t
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< sup Fiy4+4@)—F@G) FQy+mw) - F@y)

ly|l<e O<t<e t t

<K' sup o),

O<r<e

which goes to 0 as — 0t. Therefore fO(p, v) = F%(0, v) and x*(v) < f%(p, v) for
everyv € H, provided thatx* € 0F (0), the generalized gradient &f at 0. [J

Theorem 5.6.Let ¢ : M — R be a continuous convex function on a complete Rie-
mannian manifold. Then the sBiff (g) := {x € M : g is differentiable atx} is dense
in M.

Proof. According to Propositiont.17, Diff *(g) := {p € M : D" g(p) # ¥} is dense in
M. On the other hand, by Theore®3, we know that Diff (g) :=={p € M : D™ g(p) #
@} = M. Then, by Propositiort.6, we get that

Diff (g) = Diff " (g) N Diff ~(g) = Diff *(g) is dense inM. O

By using more sophisticated tools, this result can be extended to the category of
locally Lipschitz functions, as we next show.

Theorem 5.7.Let ¢ : M — R be a locally Lipschitz function. If M is finite-
dimensiongl then g is differentiable almost everywhetbat is the setM \ Diff (g)
has measure zero. If M is infinite-dimensignilen the set of points of differentiability
of g, Diff(g), is dense in M

Proof. SinceM is separable, it suffices to prove the result for any small enough open
setU C M so thatg is Lipschitz onU. Take a pointp € U. Since the exponential
mapping atp is locally almost an isometry, in particular Lipschitz, it provides us with
a charth = ®, : V — H which is Lipschitz, for a suitably small open s&tc U.
Then the compositiog o 2~1 : h(V) ¢ H — R is a Lipschitz function from an open
subset of a Hilbert space inta.

In the case whem is finite-dimensional, the classic theorem of Rademacher tells us
that goh~1 is differentiable almost everywhere (V) (see[31]) and, sinceh is a C?
diffeomorphism (sch preserves points of differentiability and sets of measure zero), it
follows thatg is differentiable almost everywhere Wi

If H is infinite-dimensional then we can apply a celebrated theorem of Preiss that
ensures that every Lipschitz function from an open set of an Asplund Banach space
(such as the Hilbert space) has at least one point of differentialjilidy. By this
theorem, it immediately follows thag o 2~ is differentiable on a dense subset of
h(V). Since againh is a C! diffeomorphism, we have thaj is differentiable on a
dense subset of.
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Finally, sinceM can be covered by a countable union of such open\#aisa each
of which g is Lipschitz, the result follows. O

Corollary 5.8. Let M be a Riemannian manifgldand f : M — R a convex and
locally bounded function. Then f is differentiable on a dense subset dfvivbse
complement has measure zero if M is finite-dimensjonal

Proof. By Proposition5.2 we know thatf is locally Lipschitz. Then, by Theorers.7.
it follows that f is differentiable on a dense subsetMf [

6. Hamilton—-Jacobi equations in Riemannian manifolds

First-order Hamilton—-Jacobi equations are of the form
F(x,u(x),du(x)) =0
in the stationary case, and of the form
F(t,x,u(x,t),du(t,x)) =0

in the evolution case. These equations arise, for instance, in optimal control theory,
Lyapounov theory, and differential games.

Even in the simplest cases, such as the sfi&lteit is well known that very natural
Hamilton—Jacobi equations do not always admit classical solutions. However, weaker
solutions, such as the so-called viscosity solutions, do exist under very general assump-
tions. There is quite a large amount of literature about viscosity solutions to Hamilton—
Jacobi equations, s€8,10-20,26,27]and the references cited therein, for instance.
All these works deal with Hamilton—-Jacobi equationsRfi or in infinite-dimensional
Banach spaces.

Examples of Hamilton—Jacobi equations also arise naturally in the setting of Rie-
mannian manifolds, segl]. However, we do not know of any work that has studied
nonsmooth solutions, in general, or viscosity solutions, in particular, to Hamilton—
Jacobi equations defined on Riemannian manifolds (either finite-dimensional or infinite-
dimensional). This may be due to the lack of a theory of nonsmooth calculus for
functions defined on Riemannian manifolds.

In this final section, we will show how the subdifferential calculus we have developed
can be applied to get results on existence and uniqueness of viscosity solutions to some
Hamilton—-Jacobi equations defined on Riemannian manifolds. We will also prove some
results about “regularity” (meaning Lipschitzness) of viscosity solutions to some of
these equations.

There are lots of Hamilton—Jacobi equations on Riemannian manifdlétsr which
the tools we have just developed could be used in one way or the other to get interesting
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results about viscosity solutions. For instance, one could get a maximum principle for
stationary first-order Hamilton—Jacobi equations of the type
{u(x) + F(x,du(x)) =0 for all x € Q,
u(x) =0 for all x € 0Q,
where Q is an open submanifold ofl with boundarydQ. One could also prove a
maximum principle for parabolic Hamilton—Jacobi equations of the form
:uf + F(x,uy) =0,
u(0, x) = uo(x),
whereu : R x M - R, andug : M — R is an initial condition (assumed to be
bounded and uniformly continuous), in the mannei{28, Section 6]
However, this final section is only intended to give a glimpse of the potential applica-
tions of nonsmooth calculus to the theory of Hamilton—Jacobi equations on Riemannian
manifolds, and not to elaborate a comprehensive treatise on such equations. That is why

we will restrict ourselves mainly to one of the most interesting examples of first-order
Hamilton—-Jacobi equations, namely equations of the form

G(du) = f,
(*){u+ (du) = f.

u bounded,

where f : M — R is a bounded uniformly continuous function, agd: T*M — R
is a function defined on the cotangent bundleMf In fact these equations are really
of the form

u+ F(du) =0,
()
u bounded,
whereF : T*M — R, since we can always take a functiénof the form F(x, £,) =
G(x, <) — f(x).

A bounded Fréchet-differentiable function: M — R is a classical solution of the
equation(x) provided that

u(p)+ F(p,du(p)) =0 for every p e M.

Let us now introduce the notion of viscosity solution.

Definition 6.1. An upper semicontinuous (usc) function: M — R is a viscosity
subsolutionof u + F(du) = 0 if u(p)+ F(p, ) <0 for everyp e M and{ € DT u(p).
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A lower semicontinuous (Isc) functiom : M — R is a viscosity supersolutiorof
u+ F(du) =0 if u(p)+ F(p,{) >0 for everyp e M and{ € D u(p). A continuous
functionu : M — R is aviscosity solutiorof u + F(du) = 0 if it is both a viscosity
subsolution and a viscosity supersolutionuwof- F(du) = 0.

We can define viscosity solutions on a open Qet M in a natural way when the
functions are defined of®.

Remark 6.2. Since for a Fréchet differentiable functionwe haveDTu(p) = D~ u(p)
= {du(p)}, it is clear that every bounded Frechet differentiable viscosity solution of
u+ F(du) =0 is a classical solution ofx).

We are going to show the existence and uniqueness of viscosity solutions to Hamilton
—Jacobi equations of the forigx) provided thatF : T*M — R is a function defined
on the cotangent bundle & which satisfies a certain uniform continuity condition, see
Definition 6.10 below. The manifoldM must also satisfy the following requirement.
Throughout the remainder of this sectibhwill be a complete Riemannian manifold
(either finite- or infinite-dimensional) such thit satisfies conditions (3) or (4) (which
are both equivalent) of Propositidh9, that is,M is uniformly locally convex and has
a strictly positive injectivity radius. Equivalently, there is a constast r); > 0 such
that for everyx € M the mapping expis defined onB(0, r) C TM, and provides a
C* diffeomorphism

exp, : B(Oy,r) = B(x,r)
and the distance function is given by the expression
d(y,x) = llexp; ')l for all y e Bex,r).

In particular, all compact manifolds satisfy this property. In the remainder of this section
the constant = ry; will be fixed.

Note also that ifM satisfies condition(3) of Proposition3.9 then M is uniformly
bumpable and therefore the smooth variational princglel holds for M.

We begin with a simple observation that M is uniformly bumpable then so is
M x M.

Lemma 6.3. Let M be a Riemannian manifold. If M is uniformly bumpable théx M
is uniformly bumpable as well

Proof. The natural Riemannian structure M x M induced by (M, g) is the one
given by

(& X &) (pr.p2 (1, v2), (W1, w2)) := gp, (1, W1) + gp, (v2, W2).

Let dy«pr denote the Riemannian distance that this metric gives rise to in the product
M x M. It is obvious that ify(r) = (a(r), (1)) is a path inM x M theno and § are



346 D. Azagra et al./Journal of Functional Analysis 220 (2005) 304-361

paths inM satisfying
max{L(«), L(P}<L(y) <L(x) + L(B)<2maxL(x), L(B)},

which implies that

max{da (x1, y1), dy (x2, y2)} <dmxm ((x1, x2), (y1, ¥2))
<dy(x1, y1) +dpy(x2, y2)

<2maXdy (x1, y1), dy(x2, y2)}

for every x = (x1,x2), y = (y1, y2) € M x M.

SinceM is uniformly bumpable, there exist numbeRs= Ry; > 1 andry; > 0 such
that for everypg € M, ¢ € (0, ryy) there exists a1 smooth functionb : M — [0, 1]
such thatb(pg) = 1, b(x) = 0 if dy(x, po) =9, and supg,, lldb(x)||x < R/J. Now take
a pointp = (p1, p2) € M x M. For anyé € (0, ry), there areC smooth bumps1, b
on M such thatb; (p;) = 1, b;(x;) = 0 wheneverdy; (x;, p;) =9, and ||db; (x;)|| < R/J
for everyx; € M; i = 1, 2. Define aC' smooth bumph : M x M — R by

b(x) = b(x1, x2) = b1(x1)b2(x2) for all x = (x1,x2) € M x M.
It is obvious thatb(p1, p2) = 1. If dyxp(x, p) =20 we have that

2maxdy (x1, p1), du (x2, p2)} Zduxm(x, p) =29,

S0 dy(x;, pi) =0 for somei € {1, 2}, henceb; (x;) = 0 for the samd, andb(x) = 0.
Finally, we have that

ldb(x1, x2)I12,, 1,y = lldb1(x1) |3, + db2(x2) 12, <2(R/6)?,

X2 X
which means that

2J/2R
db(X)|lx < —(—
ldb(x) |l 25

for everyx = (x1, x2) € M x M. ThereforeM x M satisfies the conditions in Definition
3.6, wWith Ryrxpy = 2\/§R, andryxy = 2ry. O

Since we are assuming thdd is uniformly locally convex and(M) > r > O,
hence that the distance function — d(y,x) is C* smooth onB(x,r) \ {x} for
every x € M, we can consider the distance functign: M x M — R and its partial
derivativesdd (xo, yo)/0x and dd(xg, yo)/0y. We next see that these partial derivatives
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satisfy a nice antisymmetry property. In order to compare them in a natural way we
need to use the parallel translation frahd/,, to T M,, along the geodesic joiningo

to yo (note that there is a unique minimizing geodesic joinipgto yg becauseM is
uniformly locally convex andi(xo, yo) < r).

Notation 6.4. Let xo, yo € M be such thatd(xo, yo) < r. Let y(t) = exp,(tvo),
0<t<1 be the unique minimizing geodesic joining these two points. For every vector
w e TM,,, we denote

Lgyo(w) = Pg.,(w)

the parallel translation oW from xo to yg along y. Recall that the mappind.,,,, :
TM,, — TM,, is a linear isometry, with inversé, ., : TM,, — TM,,. As we cus-
tomarily identify 7 M, with T*M, (via the linear isometry — (v, -),), the isometry
L,,y, induces another linear isometry between the cotangent fibevs,, and 77" M.
We will still denote this new isometry bY..yy, : T*Myy — T*My,.

Lemma 6.5. Let xg, yo € M be such tha0 < d(xg, yo) < r. Then

L dd (yo, x0) _ 0d (xo, yo)
Yoxo T - Ox ’

Proof. Denotero = d(xo, yo) < r. Consider the geodesiat) = exp,,(tvo), 0<r<1,
where yo = exp,,(vo). By the definitions of parallel translation and geodesic it is clear
that

Ligyo(v0) = 7'(1) = d expy, (vo) (vo).

On the other hand, under the current assumptiondMorand by the Gauss lemma
(see[39,41), we know thaty’(1) is orthogonal to the spher§(xp,ro) = {y € M :
d(y, xo) = ro} = exp,,(S(0x, 70)). Since this sphere(xo, ro) is a one-codimensional
submanifold ofM defined as the set of zeros of the smooth function- d(y, xo) —ro
and (as is easily checked)

dd(yo, x0) 20
dy ’

we also have that this partial derivative is orthogonal to the spl§érg, ro) at the
point yo. Therefore,

, ad(vo,
Ligyo(v0) = 7/(1) = 4 222000

dy
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for some/ # 0. Furthermore, since the functian— d(y(¢), xo) is increasing, we get
that 4 > 0. Finally, it is clear thaty — d(y, xo) is 1-Lipschitz, and

H ¢d(yo.x0) | _

dy

from which we deduce that = || Ly, (vo)lly, = llvollx, and

5d(x0, yo)
Lxgy0(v0) = [vollxo T (6.1)

Now consider the geodesif(z) = exp,, (fwo), 0<r <1, where exp,(wo) = xo. By
the definitions of parallel translation and geodesic we know that

onyo(UO) = —wo and ”wO”yo = ||U0||xo~ (62)

A completely analogous argument to the one we used) fabove shows that

dd(xo, yo0) 63)

Lyoxo (w0) = ” wO”

By combining (6.1)—(6.3) we immediately get that

0

L <(7d(yo,xo)> vo  Lyy(wo)  0dd(xo, yo)
Yoxo - - .

Oy lvollxo lwollyo 0x

The following proposition can be viewed as a perturbed minimization principle for
the sum or the difference of two functions. Its proof is a consequence of the smooth
variational principle3.11 and Lemma6.5.

Proposition 6.6. Letu, v : M — R be two bounded functions which are upper semi-
continuous(usg and lower semicontinuou@sc) respectively. Thenfor everye > 0,
there existxg, yo € M, and { € DV u(xg), £ € D~ v(yp) such that

(i) d(xo,y0) <&,
(”) ”C - Lyoxo(é)”)co <é
(i) v(z) — u(z) =>v(yo) — u(xp) — ¢ for everyz € M.

Here Lyo, : T*M,, — T*M,, stands for the parallel translation.

Proof of Proposition 6.6. We can obviously assume that< r(M). Letb : R - R
be aC*> smooth function such thdi is nonincreasing,

b(t) =b0) > 2(||Iv]lco + ulloo) +& if t<e/4, and b(t) =0 if t>e (6.4
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Define the functionw : M x M — R by

wx,y) =v(y) —ux) —bd(x,y)) forall (x,y)eM x M.

The functionw is lower semicontinuous and bounded. By Lemfa we know that
M x M is uniformly bumpable, and/ x M is obviously complete, so we can apply
the smooth variational principl8.11to the functionw to get a pair(xo, yo) € M x M
and aC! smooth functiong : M x M — R such that

@) liglloo < &/2> lldglleo
(b) v(y) —u(x) —b(d(x,y)) —g(x, y) = v(yo) — u(xo) — b(d(xo, yo)) — g(xo, yo) for all
X,y e M.

If we takex = xp in (b) we get thatv is subdifferentiable at the point, and

_ 9g(x0, y0) N d(b o d)(x0, y0)

< dy dy

€ D™ v(yp). (6.5

In a similar manner, by taking = yo in (b) we get that

L <5g(xo, y0) n 0(b o d)(xo, yo)

+
e Em > € D" u(xo). (6.6)

Let us note that
0(b o d)(xo, yo) 0(b o d)(xo, y0))
LyOXO - +
dy 0x

dd (xo, YO)> n ad (xo, yo)i| —0.
dy 0x

(6.7)

= b/'(d(x0, y0)) |:Lyoxo (

thanks to Lemm&.5whenxg # yo, and to the definition ob whenxg = yg. Therefore,

”Lyoxo(@ - (”xo
_ ‘LWO (&g(m, yo)) Ly (6(!) o d)(xo, yo)>

dy dy
n 0g(xo, yo) n 0(b o d)(xo, yo)
Ox Ox

X0

0 , 0 ,
_ ||Lyoxo< g();o yo)) N g(xo0, yo) e
y Ox

0g(x0, yo)
dy

& &
Sldgllee + lldgllee < 54 5 =&,

2 2

<
A H Ox

. H dg(x0, y0)
Yo

X0
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which shows (ii).
On the other hand, if we had(xg, yo) >¢ then, by takingx = y = z in (b) we
would get

b(0)<v(z) — u(z) — g(z, 2) + g(x0, yo) — v(yo) + u(xo)
L2([[vlloo + llulloo) + &,

which contradicts the definition df, see (1) above. Therefow(xg, yo) < ¢ and (i) is
proved.

Finally, if we takez = x = y in (b) and we bear in mind thdlg|. < ¢/2 and the
function b is nonincreasing, we get that

v(z) — u(z) Zv(yo) — ulxo) + b(0) — b(d(xo, yo)) + g(z, z) — g(xo0, yo)
Zv(yo) —u(xo) +0—¢/2—¢/2 = v(yo) — u(xo) — &,

which shows (iii) and finishes the proof[]

Remark 6.7. Let us observe that the preceding proposition is no longer true if the
manifold is not complete. For exampldZ = (0,1) Cc R, g(x) = x, f(x) =0, and
&> 0 small.

Definition 6.8. For a given open se® ¢ M and a functionu : Q — R, we define
the upper semicontinuous envelopewfwhich we denota:*, by

u*(x) = inf{u(x)|v : @ - R is continuous ande<v on Q} for any x € Q.

In a similar way we define the lower semicontinuous envelope, denoted..by

Proposition 6.9. Let Q be an open subset of M. L&t be a uniformly bounded family
of upper semicontinuous functions 6y and letu = sugv : v € F}. Then for every
p € Q, and every{ € DV u*(p), there exist sequencds,} c F, and {(p.,{,)} C
T*(Q), with {, € D™v,(p,) and such that

(1) limy, v (pn) = u*(p)
(2) “mn (Pn, én) = (P, C)

Proof. Fix a chart(U, @), with p € U. Let us consider the familFop™! = {vop~!:

v € F}. The functions of this collection are upper semicontinuouspgty N Q), and

the family is uniformly bounded. On the other hand ¢! = sup{vo ¢~ : v e F},

andu* o ™1 = (u o ¢~ 1*. Now apply [27, Proposition VIII.1.6](which is nothing

but the result we want to prove in the case of a Banach space) to the Hilbert space,
the open setp(U N Q), the family F o ¢~1, the pointe(p), and the superdifferential
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{odp(p)™t e DT (o™ (p(p)). We get sequencesp(p,)} in @(UNQ), {vy0 ¢~}
in Fopt, and{, odo(p)™t € D (v, 0 91 (@(pn)) such that lim ¢(p,) = ¢(p),
lim, {, odo(p)™t =L odp(p)~1, and

lim (v, 0 9™1)(@(pn)) = (w0 9™ (@(p)) = u* 0 @™ (@(p))-
Hence lim, p, = p, lim, v,(p,) = u*(p), and
lim £, o dp(p) ™ = lim ¢, 0 do(pn) ™ o de(p) o dp(p)™ =lim L, ode(p)™

becausep is C1, so lim, do(p,) Todp(p) = id. The result follows trivially from the
local representation of the cotangent bundle]

Now we introduce the notion of uniform continuity that we have to require of
F : T*M — R in order to prove the existence and uniqueness of viscosity solutions
to the Hamilton—Jacobi equatio®).

Definition 6.10. We will say that a functionF : T*M — R is intrinsically uniformly
continuous provided that for every> 0 there exist®) € (0, rjs) such that

d(x,y)<0, L e T"My, £ € T*My, |I{ = Lyx(OIx <0 = |[F(x, ) — F(y, OI<e.

Remark 6.11. It should be noted that iF satisfies the above definition then is
continuous. This is obvious once we notice that the mapping

x,0) € T*Mx = Lxxo(C)

is continuous at(xg, {p), that is, if (x,,(,) — (xo0,{p) in T*M then L, ,((,) —

{o, for every (xg, (o) € T*M. The fact that this mapping is continuous is an easy
consequence of the definition of the parallel translation along a curve as a solution to
an ordinary linear differential equation.

Remark 6.12. Consider a finite-dimensional manifodd embedded ifR", so T*M C

R?'. Assume thaM satisfies the following condition:

Ve 30>0:v,heTM, x e M, |[v],<d norm of h<1 = ||d exp, (v)(h) —hllx <&

(note in particular that this condition is automatically met wiNdris compact, and in

many other natural examples). Then every function T*M — R which is uniformly
continuous with respect to the usual Euclidean metri@f is intrinsically uniformly
continuous as well, as is easily seen. Consequently there are lots of natural examples
of intrinsically uniformly continuous functiong” : T*M — R.

Now we can prove the followingnaximum principlefor Hamilton—Jacobi equations
of the form (%).
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Theorem 6.13.Let f,¢g : M — R be bounded uniformly continuous functiprasd

F : T*M — R be intrinsically uniformly continuous. If u is a bounded viscosity
subsolution ofi+ F (du) = f andv is a bounded viscosity supersolutionwf F (dv) =

g, thenv —u>inf(g — f).

Proof. If ¢ > 0 is given, then, by Propositiof.6, there existp,q € U, and( €
DTu(p), ¢ € D™ v(g) such that

() d(p,q) <&, I~ Lqp(@”p <é
(i) v(x) —ux)>v(g) —u(p) — ¢ for everyx € M.

Sinceu and v are viscosity sub and super solutions respectively, we hayg +
F(p,O< f(p) andv(g) + F(q, <) =2 g(q). Hence, for everyr € M,

v(x) —ux)=v(g) —u(p) —e=g(q) — F(q. &) — f(p) + F(p. ) —¢
2inf(g— )+ (f(q@) — f(p)+ (F(p,) — F(g, %)) —e.

Now, if we let ¢ — 0T, we have thatf(g) — f(p) goes to 0 becauskis uniformly

continuous. On the other hand, the fact tfatis intrinsically uniformly continuous
implies that F(p,{) — F(q, &) goes to 0 ass — O*. Consequently we obtain —

uz>inf(g — f). O

Remark 6.14. In fact, an obvious modification of the above proof yields the following
result on continuous dependence of viscosity solutions of equations of the (form
with respect to the Hamiltonians. Namely, letF, G : T*M — R be intrinsically
uniformly continuous Hamiltonians, and defiti€ — G||oo = SU|F (p, () — G(p, )| :

(p, ) e T*M}. If uandv are viscosity solutions af + F(du) = 0 andv+ G(dv) = 0,
respectively, thenv(x) — u(x)|<||F — G|l for everyx € M.

Proposition 6.15. Let Q be an open subset of M. L&t be a uniformly bounded family
of functions onQ, and letu = supv : v € F}. If everyv is a viscosity subsolution of
u+ F(du) =0, thenu™ is a viscosity subsolution of + F(du) = 0.

Proof. Let p € Q and { € DTu*(p). According to Proposition6.9, there exist
sequencesv,} C F, and {(p,, {,)} C T*(Q) with {,, € D™ v,(p,) and such that

(i) limy, v, (pp) = u*(p)
(i) 1im (pi. ) = (..

Since v, are viscosity subsolutions of + F(du) = 0, we have thatv,(p,) +
F(pn,(,)<0. Henceu*(p) + F(p,()<0. O

Corollary 6.16. The supremum of two viscosity subsolutions is a viscosity subsolution

Theorem 6.17.Let M be a complete Riemannian manifold which is uniformly locally
convex and has a strictly positive injectivity radius. Liet: 7*M — R be an intrin-
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sically uniformly continuous functiofsee Definition6.10. Assume also that there is
a constantA > 0 so that—A< F(x,0,)<A for everyx € M. Then there exists a
unique bounded viscosity solution of the equatiow F(du) = 0.

Proof. Uniqueness follows from Theoref13 by taking f = g = 0. In order to show
existence, let us defing as the family of the viscosity subsolutions : M — R to
u + F(du) = 0 that satisfy

—A<w(p)<A forevery pe M.

The family F is nonempty, as the functiomg(p) = —A belongs toF (because
—A+ F(p,0,)<0). Let u be the upper semicontinuous envelope of{supw e F},
and v be the lower semicontinuous envelope wfBy the definition, we have <u.
On the other hand, according to Propositiéril5 u is a viscosity subsolution of
u+ F(du) = 0.

Claim 6.18. v is a viscosity supersolution of + F(du) = 0.

Once we have proved the claim, we have thatv by Proposition6.13 henceu = v
is a viscosity solution, and existence is established.

So let us prove the claim. I# is not a viscosity supersolution, there exjgt € M
and {5 € D~ v(p) such thatv(po) + F(po, {p) < 0. By Theorem4.35), there exists
a C! smooth functions : M — R with {; = dh(po) and such thav — & attains a
global minimum atpg. Hence we may assume that

v(po) + F(po,dh(po)) <0, wv(po) =h(po), and h(p)<v(p)
for all p € M. (6.8)

From the inequalityr(p) <v(p) <u(p) <A we geth(po) < A: otherwiseA — h would
have a local minimum apg, and consequentlyiz(pg) = 0, which impliesv(pg) +
F(po, dh(po)) = h(po) + F(po,dh(po)) = A+ F(po,0)>A — A =0, a contradiction
with (6.8).

Now we can take a number> 0 and aC® smooth functionb : M — [0, co) with
support onB(po, 0), b(po) > 0, and such thalib||~, ||db||s are small enough so that

h(p) +b(p) + F(p,dh(p) +db(p)) <0 for every p e B(po,25) (6.9
and
h(p) +b(p)<A forevery peM. (6.10)

This is possible because of (6.8) and the fact fhas continuous.
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Let us consider the following function:

w(p) = max{h(p) + b(p),u(p)} if  p e B(po,20),
p)= u(p) otherwise.

We have thatw(p) = u(p) if p € Q1 := M \ B(po, §), becausai(p) >v(p) >h(p) =
h(p) +b(p) wheneverp € B(po, 26) \ B(po, ). Thereforew is a viscosity subsolution
of u+ F(du) = 0 on Q4. On the other hand, bearing (6.9) in mind, it is clear thas
the maximum of two viscosity subsolutions 6 := B(po, 2J), and consequentlw is
a viscosity subsolution of2,. Thereforew is a viscosity subsolution af + F(du) = 0
on M = Q1UQ,. This implies thatw € F, since—A<u<w andw(p) <A, by (6.10).
Finally, we have that: > w, because: > supF. Therefore we have(p) > w(p)>h

(p) + b(p) on B(po,d) and in particularv(po) = u4(po) =h(po) + b(po) > h(po),
which contradicts (6.8). [

When M is compact, the preceding Theorem takes on a simpler appearance.

Corollary 6.19. Let M be a compact Riemannian manifolfl : M — R a continuous
function and F : T*M — R an intrinsically uniformly continuous function. Then
there exists a unique viscosity solution of the equation F(du) = f.

Proof. This follows immediately from Theore.17, taking into account the following
facts: (1) if M is compact therM is uniformly locally convex and (M) > 0 (see
Remarks2.9 and2.12); (2) every viscosity solutiom is continuous, hence is bounded
on the compact manifold; and of course (3f is uniformly continuous becaudeis
continuous onM, compact. [

Remark 6.20. In particular, when a compact manifol is regarded as embedded in
R", soT*M Cc R**, and F : T*M — R is uniformly continuous with respect to the
usual Euclidean metric ift?*, then Corollary6.19and Remark6.12yield the existence
of a unique viscosity solution to the equatiant F(du) = f.

However, the requirement th&t is uniformly continuous cannot be relaxed in prin-
ciple, because the cotangent bundiéM is never compact, so, even though is
continuous, we cannot ensure thats uniformly continuous or* M.

Remark 6.21. It should be noted that one may pose a Hamilton—Jacobi problem
such as

u+ F(du) =0, u bounded (%)

on a manifoldM without presupposing any Riemannian structure definedohen
one may consider the natural question whether it is possible to find a suitable Rieman-
nian structureg which makesM uniformly locally convex and with a positive injectivity
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radius, and which makes intrinsically uniformly continuous as well. In other words,
one can seek for a Riemannian manifdldvith positive convexity and injectivity radii
and a diffeomorphism) : N — M so that the functiorG : T*N — R is intrinsically
uniformly continuous, wher&; = F o (T*y), with T*y : T*N — T*M defined by

T*Y(x,n) = (lp(x), no (dl//_l)(z//(x))>. Then, by Theoren®.17, the equation

v+ G(dv) =0, v bounded (%)

has a unique viscosity solution. But it is obvious that a viscosity solution t@sx) if

and only if the functioru = vo npfl is a viscosity solution ta*). Hence the equation

(x) has a unique viscosity solution as well. This means that Theddm above is
applicable to even more situations than one might think of at a single glance. The
following example reveals the power of this scheme.

Example 6.22.Let M be the submanifold oRR® defined by

1
z:m,

let F : T*M c R® — R, and consider the Hamilton—Jacobi equation F(du) = 0.
If we endow M with its natural Riemannian structure inherited frd&i, M will not
be uniformly locally convex, and besidééM) = 0, so Theoren6.17 is not directly
applicable. Now let us definil by

1
= —1 07
¢ x24y2 -1 “=
with its natural Riemannian structure as a submanifoldR3f It is clear thatN is
uniformly locally convex and has a positive injectivity radius. The mapping N —
M defined by

3.2 = \/xz—i-yz—lx \/x2+y2—1y .

is a C* diffeomorphism. Assume that the functioci = F o (T*y) : T*N — R

is uniformly continuous with respect to the usual metric 3. Since N satisfies
the property of Remarl6.12 we have thatG is intrinsically uniformly continuous.
Therefore, by the preceding Remask], the equation: + F(du) = 0, u bounded on
M, has a unique viscosity solution.

Now let us see how Deville’s mean value Theorérii8 allows to deduce a result on
the regularity of viscosity solutions (or even subsolutions) to Hamilton—Jacobi equations
with a “coercive” structure.
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Corollary 6.23. Let M be a Riemannian manifgldnd F : Rx T*M — R a function.
Consider the following Hamilton—Jacobi equation

F(u(x),du(x)) =0. (HJJ

Assume that there exists a const&t> 0 such thatF(z, {,) > 0 whenever|{,|lx > K
andr € R. Letu : M — R be a viscosity subsolution ¢HJ3). Then

(1) u is K-Lipschitz that is, |u(x) — u(y)|<Kd(x,y) for everyx,y € M.
(2) If M is finite dimensionalu is Fréchet differentiable almost everywhere
(3) If M is infinite-dimensional u is Fréchet differentiable on a dense subset.of M

Proof. If u is a viscosity subsolution thed (u(x),{,)<0 for everyx € M and
{, € D"u(x). Hence||{,|| <K for every(, € D u(x) (otherwiseF(u(x),{,) > 0, a
contradiction). Then, by Theoredh 18 u is K-Lipschitz.

On the other hand, (2) and (3) follow immediately from Theorgm (]

Let us conclude with a brief study of a HJ equation which is not of the fo#n
above, but which is still very interesting because of the geometrical significance of its
unique viscosity solution. LeM be a complete Riemannian manifol®, a bounded
open subset oM, and letdQ be the boundary of). Consider the Hamilton—Jacobi
equation

ldu(x)lly =1 for all x € Q,

(HJ9 { u(x)=0  for all x € 0Q.

There is no classical solution of (HJ4). Indeed, if we had a funatianQ c M — R
which is differentiable o2 and satisfieq|du(x)||x = 1 for x € Q andu = 0 on 0Q,
then we could apply Theorer8.1 to find a pointxg € Q so that||du(xg) |, < % a
contradiction.

Nevertheless, we are going to see that there is a unique viscosity solution to (HJ4),
namely the distance function to the bounddif. By definition, a functionu is a
viscosity solution to (HJ4) if and only ifi is continuous;u = 0 on 0Q; (|l >1 for
all e D u(x), x e Q; and |||, <1 for all { € DT u(x), x € Q.

Theorem 6.24.Let M be a complete Riemannian manifolthd Q2 a bounded open
subset of M with boundargQ. Then the functiont — d(x, 0Q) := inf{d(x,y) : y €
0Q} is a viscosity solution of EgHJ4). Moreover if M is uniformly locally convex
and has a positive injectivity radiyshend(-, 0Q) is the unique viscosity solution of
this equation

Proof. Let us first check uniqueness. Assumgv : Q — R are viscosity solutions
of (HJ4). Sinceu and v are continuous, and = v = 0 on 0Q, we can extendl and
v with continuity to the whole ofM by settingu = 0= v on M \ Q. It is enough to
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see thatu <v on Q (in a similar way, or by symmetryy <u, henceu = v). To this
end we take any: € (0,1) and we check thatw <v. Indeed, suppose we had that
inf{v(x) —ou(x) : x € Q} < 0. Pick ¢ with

0< 2 < min{l_a, —inf{o(x) —om(x) : x GQ}}.

Note that, asi andv are viscosity solutions, we havg|, <1 for everyl € DV u(x)uU
DTv(x), x € Q, so by the mean value Theoretl8 u and v are 1-Lipschitz. In
particular, since is bounded we have that and v are bounded. Then, according to
Proposition6.6, there existrg, yo € M, { € D¥ (o) (xg), ¢ € D™ v(yg) With

(1) d(xo, yo) < ¢
@) 18- onyo(f)”xo <é
(3) inf(v — aw) > v(yo) — am(xo) — &.

Taking into account the facts thatand v are 1-Lipschitz, andt =v =0 on M \ Q,
it is easy to see that (3) and the choicecofmply that xg, yo € Q. Now, sinceu and
v are viscosity solutions we have that

<1= Cly<a

1 1
Z e DMulxg) = H—C
o % xo

and
¢e D v(yo) = l<lly =1
Now, from (2), and bearing in mind thdt,,,, is a linear isometry, we get that
1< 1€lyo = Loy O llxo <Illxp +e<a+6 < 1,

a contradiction.

Now let us prove that := d(-, Q) is a viscosity solution to (HJ4), hence the only
one. The propertys = 0 on 9Q is obvious from the definition, so we only have to
check the conditions on the norms of the vectorsDofu(x) and D*u(x), for x € Q.

Stepl: Takeé € D~ u(x), x € Q. We have to see thaf||, >1. By Theorem4.3 we
can pick aC! smooth functionp : M — R so thatu(y) — ¢(y) >u(x) — @(x) = 0 for
all y e M. Fix 0 < ¢ < 1. Now, for everya with 0 < a < d(x, 0Q), by the definition
of d(x, 0Q) we can takex, € 0Q with

d(x, 0Q)>d(x, xy) — %.
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Next, by making use of Ekeland’s approximate Hopf—Rinow type Thed&we can
find a pointy, € Q with

e
d(xy, yo) < Z

and a geodesig, : [0, T,] — Q C M joining x = 7,(0) to y, = y,(T), and such
that L(y,) = d(x, y,). Then we have

&o &0
L(yy) = d(x, yo) Sd(x, x5) + d(Xo, yo) Sd (X, x2) + Zéd(x, 0Q) + >

that is

d(x, 00> L(y,) — % (6.11)

Setv, = dy,(0)/dt € TM,, so thaty,(r) = exp,(tvy) and [|v,|, = 1, and define
Zo0 = 7,(2). Then we have

P(z0) — (x) <u(zy) — u(x) = d(zy, 0Q) — d(x, 0Q)

eo e
<d(z4, 0Q) — L(Vgc) + E <d(zg, Yo) +d (Yo, Xo) — L(Va) + E

&o &a
<Ly )+ 5 = LG + =

2 2
e e
=L(y,) —o+ > L(y,) + 5= a(—=1+4¢),
hence
) — 00 g4, 6.12)

o

By the mean value theorem theresise [0, «] such that

(6.13)

dy o o) —
d@(ya(sa))< Ve (S )) _ 9y qo(x).

dt o

By combining (6.12) and (6.13), and bearing in mind théd,(s)/dt|,, ) = 1 for all
s, we get that

dp (o (s lly, 0 =1 —¢€ (6.14)



D. Azagra et al./Journal of Functional Analysis 220 (2005) 304-361 359

for every o € (0, u(x)). Then, since the functions — de(y) and (y, ) — (I, are
continuous, and, (sy) = exp, (sxvy) — exp,(0) = x asa — 0, it follows that

I€lx = llde()]lx = y'i"& ld @7y (so) lly, (s 21 — & (6.15

Finally, by lettinge — 0 in (6.15), we deduce thaf|, >1.

Step2: Now take( € DTu(x), x € Q, and let us see that{|, <1. This is much
easier. Pick aC! smooth functionyy : M — R so thatdy(x) = { and u(y) —
Yy(y)<u(x) —y(x) = 0 for all y € M. For eachv € TM, consider the geodesic
7, (#) = exp, (tv). Sinceu = d(-, 0Q) is 1-Lipschitz we have that

Y, (0) = Y, (0) Zuy (1)) — u(,(0) = — d(7,(1), 7,(0) = —,

hence

Y, () - VGO0

1

for all r > 0 small enough, and

1 (6.16)

dy()) = lim

As (6.16) holds for everw € TM,, we conclude that|{|. = |ldy ()|, <1. O
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