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Abstract

We establish some perturbed minimization principles, and we develop a theory of subdiffer-
ential calculus, for functions defined on Riemannian manifolds. Then we apply these results to
show existence and uniqueness of viscosity solutions to Hamilton–Jacobi equations defined on
Riemannian manifolds.
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1. Introduction

The aim of this paper is threefold. First, we extend some perturbed minimization
results such as the smooth variational principle of Deville, Godefroy and Zizler, and
other almost-critical-point-spotting results, such as approximate Rolle’s type theorems,
to the realm of Riemannian manifolds. Second, we introduce a definition of sub-
differential for functions defined on Riemannian manifolds, and we develop a the-
ory of subdifferentiable calculus on such manifolds that allows most of the known
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applications of subdifferentiability to be extended to Riemannian manifolds. For in-
stance, we show that every convex function on a Riemannian manifold (that is, every
function which is convex along geodesics) is everywhere subdifferentiable (on the other
hand, every continuous function is superdifferentiable on a dense set, hence convex
functions are differentiable on dense subsets of their domains). Third, we also use this
theory to prove existence and uniqueness of viscosity solutions to Hamilton–Jacobi
equations defined on Riemannian manifolds. Let us introduce some of these results.

It is known that the classic Rolle’s theorem fails in infinite-dimensions, that is, in
every infinite-dimensional Banach space with aC1 smooth (Lipschitz) bump function
there areC1 smooth (Lipschitz) functions which vanish outside a bounded open set
and yet have a nonzero derivative everywhere inside this set; see[7] and the references
therein. In fact, the failure of Rolle’s theorem infinite dimensions takes on a much
more dramatic form in a recent result of Azagra and Cepedello Boiso[4]: the smooth
functions with no critical points are dense in the space of continuous functions on
every Hilbert manifold (this result may in turn be viewed as a very strong approximate
version for infinite-dimensional manifolds of the Morse–Sard theorem). So, when we are
given a smooth function on an infinite-dimensional Riemannian manifold we should
not expect to be able to find any critical point, whatever the overall shape of this
function is, as there might be none. This important difference between finite and infinite
dimensions forces us to consider approximate substitutes of Rolle’s theorem and the
classic minimization principles, looking for the existence of arbitrarily small derivatives
(instead of vanishing ones) for every function satisfying (in an approximate manner)
the conditions of the classical Rolle’s theorem. This is what the papers[5,6] deal with,
one in the differentiable case (showing for instance that if a differentiable function
oscillates less than 2� on the boundary of a unit ball then there is a point inside the
ball such that the derivative of the function has norm less than or equal to�), and the
other in the subdifferentiable one. More generally, a lot of perturbed minimization (or
variational) principles have been studied, perhaps the most remarkable being Ekeland’s
principle, Borwein–Preiss’ principle, and Deville–Godefroy–Zizler’s smooth variational
principle. See[26,27] and the references therein.

There are many important applications of those variational principles. Therefore, it
seems reasonable to look for analog of these perturbed minimizations principles within
the theory of Riemannian manifolds. In Section 3, we prove some almost-critical-point
spotting results. First, we establish an approximate version of Rolle’s theorem which
holds for differentiable mappings defined on subsets of arbitrary Riemannian mani-
folds. Then we give a version of Deville–Godefroy–Zizler smooth variational principle
which holds for those complete Riemannian manifoldM which areuniformly bumpable
(meaning that there exist some numbersR > 1, r > 0 such that for every pointp ∈ M
and every� ∈ (0, r) there exists a functionb : M → [0,1] such thatb(x) = 0 if
d(x, p)��, b(p) = 1, and supx∈M ‖db(x)‖x�R/�. Of course every Hilbert space is
uniformly bumpable, and there are many other examples of uniformly bumpable mani-
folds: as we will see, every Riemannian manifold which has strictly positive injectivity
and convexity radii is uniformly bumpable). For those Riemannian manifolds we show
that, for every lower semicontinuous functionf : M → (−∞,∞] which is bounded
below, there exists aC1 smooth function� : M → R, which is arbitrarily small and
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has an arbitrarily small derivative everywhere, such thatf − � attains a strong global
minimum at somep ∈ M.

This result leads up to one of the main topics of this paper: subdifferentiability of
functions on Riemannian manifolds, since, according to the definition we are going
to give of subdifferential, this implies that suchf is subdifferentiable at the pointp.
We will say that a functionf : M → (−∞,∞] is subdifferentiable atp provided
there exists aC1 smooth function� : M → R such thatf − � attains a local
minimum atp. The set of the derivativesd�(p) of all such functions� will be called
subdifferential of f at p, a subset ofT ∗Mp which will be denoted byD−f (p). Of
course, whenM is Rn or a Hilbert space, this definition agrees with the usual one.
Apart from being a useful generalization of the theory of subdifferentiability of convex
functions, this notion of subdifferentiability plays a fundamental role in the study of
Hamilton–Jacobi equations inRn and infinite-dimensional Banach spaces. Not only is
this concept necessary to understand the notion ofviscosity solution(introduced by
Crandall and Lions, see[11–20]); from many results concerning subdifferentials one
can also deduce relatively easy proofs of the existence, uniqueness and regularity of
viscosity solutions to Hamilton–Jacobi equations; see, for instance,[21,22,25,38]. We
refer to [23,26] for an introduction to subdifferential calculus in Banach spaces and its
applications (especially Hamilton–Jacobi equations).

Section 4 is devoted to the study of subdifferentials of functions defined on manifolds.
We start by giving other equivalent definitions of subdifferentiability and superdiffer-
entiability, including a local one through charts, which sometimes makes it easy to
translate some results already established in theRn or the Banach space cases to the
setting of Riemannian manifolds. We also show that a functionf is differentiable at a
point p if and only if f is both subdifferentiable and superdifferentiable atp. Next, we
study the elementary properties of this subdifferential with respect to sums, products
and composition, including direct and inverse fuzzy rules. We finish this section by es-
tablishing two mean value theorems, and showing that lower semicontinuous functions
are subdifferentiable on dense subsets of their domains.

In Section 5, we study the links between convexity and (sub)differentiability of
functions defined on Riemannian manifolds. Recall that a functionf : M → R

defined on a Riemannian manifoldM is said to be convex providedf ◦ � is convex,
for every geodesic�. The papers[34–37] provide a very good introduction to convexity
on Riemannian manifolds and the geometrical implications of the existence of global
convex functions on a Riemannian manifold; for instance it is shown in[34] that
every two-dimensional manifold which admits a global convex function which is locally
nonconstant must be diffeomorphic to the plane, the cylinder, or the open Möbius strip.
Among other things, we show in this section that every convex function defined on a
Riemannian manifold is everywhere subdifferentiable, and is differentiable on a dense
set (when the manifold is finite-dimensional, the set of points of nondifferentiability
has measure zero).

Finally, in Section 6 we study some Hamilton–Jacobi equations defined on Rie-
mannian manifolds (either finite or infinite-dimensional). Examples of Hamilton–Jacobi
equations arise naturally in the setting of Riemannian manifolds, see[1] in relation to
Lyapounov theory and optimal control. However, we do not know of any work that
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has studied nonsmooth solutions, in general, or viscosity solutions, in particular, to
Hamilton–Jacobi equations defined on Riemannian manifolds. This may be due to the
lack of a theory of nonsmooth calculus for functions defined on Riemannian manifolds.
Here we will show how the subdifferential calculus and perturbed minimization princi-
ples that we develop in the previous sections can be applied to get results on existence
and uniqueness of viscosity solutions to equations of the form{

u+ F(du) = f
u bounded,

wheref : M → R is a bounded uniformly continuous function, andF : T ∗M → R

is a function defined on the cotangent bundle ofM which satisfies a uniform continuity
condition. The manifoldM must also satisfy that it has positive convexity and injectivity
radii (this condition is automatically met by every compact manifold, for instance). We
also prove some results about “regularity” (meaning differentiability almost everywhere)
of the viscosity solutions to some of these equations. Finally, we study the equation
‖du(x)‖x = 1 for all x ∈ �, u(x) = 0 for all x ∈ ��, where � is a bounded open
subset ofM, and we show thatx 
→ d(x, ��) is the unique viscosity solution to this
equation (which has no classical solution).

2. Preliminaries and tools

In this section, we recall some definitions and known results about Riemannian
manifolds which will be used later on.

We will be dealing with functions defined on Riemannian manifolds (either finite
or infinite-dimensional). A Riemannian manifold(M, g) is a C∞ smooth manifoldM
modelled on some Hilbert spaceH (possibly infinite-dimensional), such that for every
p ∈ M we are given a scalar productg(p) = gp := 〈·, ·〉p on the tangent space
TMp � H so that‖x‖p = (〈x, x〉p)1/2 defines an equivalent norm onTMp for each
p ∈ M, and in such a way that the mappingp ∈ M 
→ gp ∈ S2(M) is a C∞ section
of the bundle�2 : S2→ M of symmetric bilinear forms.

If a function f : M −→ R is differentiable atp ∈ M, the norm of the differential
df (p) ∈ T ∗Mp at the pointp is defined by

‖df (p)‖p = sup{df (p)(v) : v ∈ TMp, ‖v‖p�1}.

Since(TMp, ‖·‖p) is a Hilbert space, we have a linear isometric identification between
this space and its dual(T ∗Mp, ‖ · ‖p) through the mappingTMp � x 
→ fx = x ∈
T ∗Mp, wherefx(y) = 〈x, y〉 for every y ∈ TMp.

For every piecewiseC1 smooth path� : [a, b] → M we define its length as

L(�) =
∫ b

a

∥∥∥∥d�dt (s)
∥∥∥∥

�(s)
ds.
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This length depends only on the path�[a, b] itself, and not on the way the point
�(t) moves along it: ifh : [0,1] → [a, b] is a continuous monotone function then
L(� ◦ h) = L(�). We can always assume that a path� is parameterized by arc length,
which means that� : [0, T ] → M satisfies‖ d�

dt
(s)‖�(s) = 1 for all s, and therefore

L(�|[0,r]) =
∫ r

0

∥∥∥∥d�dt (s)
∥∥∥∥

�(s)
ds = r

for eachr ∈ [0, T ]. For any two pointsp, q ∈ M, let us define

d(p, q) = inf {L(�) : � is a C1 smooth path joiningp and q in M}.

Thend is a metric onM (called theg-distance onM) which defines the same topology
as the oneM naturally has as a manifold. For this metric we define the closed ball of
centerp and radiusr > 0 as

Bg(p, r) = {q ∈ M : d(p, q)�r}.

Let us recall that in every Riemannian manifold there is a unique natural covariant
derivation, namely the Levi–Civita connection (see Theorem 1.8.11 of[39]); following
Klingenberg we denote this derivation by∇XY for any vector fieldsX, Y on M. We
should also recall that a geodesic is aC∞ smooth path� whose tangent is parallel
along the path�, that is, � satisfies the equation∇d�(t)/dt d�(t)/dt = 0. A geodesic
always minimizes the distance between points which are close enough to each other.

Any path � joining p and q in M such thatL(�) = d(p, q) is a geodesic, and it
is called a minimal geodesic. In the sequel all geodesic paths will be assumed to be
parameterized by arc length, unless otherwise stated.

Theorem 2.1 (Hopf-Rinow). If M is a finite-dimensional Riemannian manifold which
is complete and connected, then there is at least one minimal geodesic connecting any
two points in M.

On the other hand, for any given pointp, the statement “q can be joined top by a
unique minimal geodesic” holds for almost everyq ∈ M; see[42].

As is well known, the Hopf–Rinow theorem fails whenM is infinite-dimensional,
but Ekeland[29] proved (by using his celebrated variational principle) that, even in
infinite dimensions, the set of points that can be joined by a minimal geodesic inM
is dense.

Theorem 2.2 (Ekeland). If M is an infinite-dimensional Riemannian manifold which is
complete and connected then, for any given point p, the set{q ∈ M : q can be joined
to p by a unique minimal geodesic} is residual in M.
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The existence theorem for ODEs implies that for everyV ∈ TM there is an open
intervalJ (V ) containing 0 and a unique geodesic�V : J (V )→ M with d�(0)/dt = V .
This in turn implies that there is an open neighborhoodT̃ M of M in TM such that for
every V ∈ T̃ M, the geodesic�V (t) is defined for|t | < 2. The exponential mapping
exp : T̃ M → M is then defined as exp(V ) = �V (1), and the restriction of exp to a
fiber TMx in T̃ M is denoted by expx .

Let us now recall some useful properties of the exponential map. See[39,41], for
instance, for a proof of the following theorem.

Theorem 2.3. For every Riemannian manifold(M, g) and everyx ∈ M there exists a
numberr > 0 and a mapexpx : B(0x, r) ⊂ TMx → M such that

(1) expx : B(0x, �) → BM(x, �) is a bi-LipschitzC∞ diffeomorphism, for all � ∈
(0, r].

(2) expx takes the segments passing through0x and contained inB(0x, r) ⊂ TMx into
geodesic paths inBM(x, r).

(3) d expx(0x) = idTMx .

In particular, taking into account condition(3), for everyC > 1, the radius r can be
chosen to be small enough so that the mappingsexpx : B(0x, r) → BM(x, r) and
exp−1

x : BM(x, r)→ B(0x, r) are C-Lipschitz.

Recall that a Riemannian manifoldM is said to begeodesically completeprovided
the maximal interval of definition of every geodesic inM is all of R. This amounts to
saying that for everyx ∈ M, the exponential map expx is defined on all of the tangent
spaceTMx (though, of course, expx is not necessarily injective on all ofTMx). It is
well known that every complete Riemannian manifold is geodesically complete. In fact
we have the following result (see[41, p. 224] for a proof).

Proposition 2.4. Let (M, g) be a Riemannian manifold. Consider the following condi-
tions:

(1) M is complete(with respect to the g-distance).
(2) All geodesics in M are defined onR.
(3) For everyx ∈ M, the exponential mapexpx is defined on all ofTMx .
(4) There is somex ∈ M such that the exponential mapexpx is defined on all ofTMx .

Then, (1) �⇒ (2) �⇒ (3) �⇒ (4). Furthermore, if we assume that M isfinite-
dimensional,then all of the four conditions are equivalent to a fifth:

(5) Every closed anddg-bounded subset of M is compact.

Next, let us recall some results about convexity in Riemannian manifolds.

Definition 2.5. We say that a subsetU of a Riemannian manifold isconvexif given
x, y ∈ U there exists a unique geodesic inU joining x to y, and such that the length
of the geodesic is dist(x, y).



310 D. Azagra et al. / Journal of Functional Analysis 220 (2005) 304–361

Every Riemannian manifold islocally convex, in the following sense.

Theorem 2.6 (Whitehead). Let M be a Riemannian manifold. For everyx ∈ M, there
existsc > 0 such that for all r with0< r < c, the open ballB(x, r) = expx B(0x, r)
is convex.

This theorem gives rise to the notion ofuniformly locally convexmanifold, which
will be of interest when discussing smooth variational principles and Hamilton–Jacobi
equations on Riemannian manifolds.

Definition 2.7. We say that a Riemannian manifoldM is uniformly locally convex
provided that there existsc > 0 such that for everyx ∈ M and everyr with 0< r < c
the ballB(x, r) = expx B(0x, r) is convex.

This amounts to saying that the global convexity radius ofM (as defined below) is
strictly positive.

Definition 2.8. The convexity radius of a pointx ∈ M in a Riemannian manifoldM

is defined as the supremum inR+ of the numbersr > 0 such that the ballB(x, r) is
convex. We denote this supremum byc(M, x). We define the global convexity radius
of M as c(M) := inf {c(M, x) : x ∈ M}.

Remark 2.9. By Whitehead’s theorem we know thatc(x,M) > 0 for every x ∈ M.
On the other hand, the functionx 
→ c(x,M) is continuous onM, see[39, Corollary
1.9.10]. Consequently, ifM is compact, thenc(M) > 0, that is,M is uniformly locally
convex.

The notion of injectivity radius of a Riemannian manifold will also play a role in
the study of variational principles and Hamilton–Jacobi equations. Let us recall its
definition.

Definition 2.10. We define the injectivity radius of a Riemannian manifoldM at a

point x ∈ M as the supremum inR+ of the numbersr > 0 such that expx is a C∞
diffeomorphism onto its image when restricted to the ballB(0x, r). We denote this
supremum byi(M, x). The injectivity radius ofM is defined byi(M) := inf {i(M, x) :
x ∈ M}.

Remark 2.11. For a finite-dimensional manifoldM, it can be seen thati(M, x) equals
the supremum of the numbersr > 0 such that expx is injective when restricted to the
ball B(0x, r), see[39]. However, for infinite-dimensional manifolds it is not quite clear
if this is always true.

Remark 2.12. By Theorem2.3 we know thati(x,M) > 0 for every x ∈ M. On the
other hand, it is well known that the functionx 
→ i(x,M) is continuous onM [39,
Proposition 2.1.10]. Therefore, ifM is compact, theni(M) > 0.
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We will also need to use the parallel translation of vectors along geodesics. Recall
that, for a given curve� : I → M, a numbert0, t1 ∈ I , and a vectorV0 ∈ TM�(t0), there
exists a unique parallel vector fieldV (t) along �(t) such thatV (t0) = V0. Moreover,
the mapping defined byV0 
→ V (t) is a linear isometry between the tangent spaces
TM�(t0) and TM�(t), for eacht ∈ I . We denote this mapping byP tt0 = P tt0,�, and we
call it the parallel translation fromTM�(t0) to TM�(t) along the curve�.

The parallel translation will allow us to measure the length of the “difference”
between vectors (or forms) which are in different tangent spaces (or in duals of tangent
spaces, that is, fibers of the cotangent bundle), and do so in a natural way. Indeed, let
� be a minimizing geodesic connecting two pointsx, y ∈ M, say �(t0) = x, �(t1) = y.
Take vectorsV ∈ TMx , W ∈ TMy . Then we can define the distance betweenV and
W as the number

‖W − P t1t0,�(V )‖y = ‖V − P t0t1,�(W)‖x

(this equality holds becauseP t1t0 is a linear isometry between the two tangent spaces,
with inverseP t0t1 ). Since the spacesT ∗Mx and TMx are isometrically identified by
the formulav = 〈v, ·〉, we can obviously use the same method to measure distances
between forms� ∈ T ∗Mx and � ∈ T ∗My lying in different fibers of the cotangent
bundle.

Finally, let us consider some mean value theorems. The following two results are
easily deduced from the mean value theorem for functions of one variable, but it will
be convenient to state and prove them for future reference.

Theorem 2.13(Mean value theorem). Let (M, g) be a Riemannian manifold, and f :
M → R a Fréchet differentiable mapping. Then, for every pair of pointsp, q ∈ M and
every minimal geodesic path� : I → M joining p and q, there existst0 ∈ I such that

f (p)− f (q) = d(p, q) df (�(t0))(�′(t0));

in particular |f (p)− f (q)|�‖df (�(t0))‖�(t0)d(p, q).

Proof. Since� is a minimal geodesic we may assumeI = [0, d(p, q)], ‖�′(t)‖�(t) = 1
for all t ∈ I , �(0) = q, �(d(p, q)) = p. Consider the functionh : I → R defined by
h(t) = f (�(t)). By applying the mean value theorem to the functionh we get a point
t0 ∈ I such that

f (p)− f (q) = h(d(p, q))− h(0) = h′(t0)(d(p, q)− 0) = df (�(t0))(�′(t0))d(p, q)

and, since‖�′(t0)‖�(t0) = 1 and |df (�(t0))(�′(t0))|�‖df (�(t0))‖�(t0), we also get that
|f (p)− f (q)|�‖df (�(t0))‖�(t0)d(p, q). �

When the points cannot be joined by a minimal geodesic we have a less accurate
but quite useful result which tells us that every function with a bounded derivative
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is Lipschitz with respect to theg-distance onM. In fact this results holds even for
functions which take values in other Riemannian manifolds. For a differentiable function
between Riemannian manifoldsf : M → N , we define the norm of the derivative
df (p) at a pointp ∈ M by

‖df (p)‖p:=sup{‖df (p)(v)‖f (p) : h ∈ TMp, ‖v‖p�1}
=sup{� (df (p)(v)) : v ∈ TMp, � ∈ T ∗Nf(p), ‖v‖p = 1= ‖�‖f (p)}.

Theorem 2.14(Mean value inequality). Let M,N be Riemannian manifolds, and f :
M → N a Fréchet differentiable mapping. Assume that f has a bounded derivative, say
‖df (x)‖x�C for everyx ∈ M. Then f is C-Lipschitz, that is

dN (f (p), f (q)) �CdM(p, q)

for all p, q ∈ M.

Proof. Fix any two pointsp, q ∈ M. Take any� > 0. By definition ofd(p, q), there
exists aC1 smooth path� : [0, T ] → M with �(0) = q, �(T ) = p, and

L(�)�dM(p, q)+ �
C
;

as usual we may assume‖�′(t)‖�(t) = 1 for all t ∈ [0, T ] = [0, L(�)]. By considering
the path	(t) := f (�(t)), which joins the pointsf (p) and f (q) in N, and bearing in
mind the definitions ofdN(f (p), f (q)) and the fact that‖d�(t)‖�(t) = 1 for all t, we
get

dN (f (p), f (q))�L(	) =
∫ T

0
‖d	(t)‖	(t) dt =

∫ T

0
‖df (�(t))(d�(t))‖f (�(t)) dt

�
∫ T

0
‖df (�(t))‖�(t) dt�

∫ T

0
C dt = CT

�C (dM(p, q)+ �/C) = CdM(p, q)+ �.

We have shown thatdN(f (p), f (q))�CdM(p, q) + � for every � > 0, which means
that dN(f (p), f (q))�CdM(p, q). �

In Section 4, we will generalize these mean value theorems for the case of subdif-
ferentiable or superdifferentiable functions defined on Riemannian manifolds.

The preceding mean value theorem has a converse, which is immediate in the case
when M and N are Hilbert spaces, but requires some justification in the setting of
Riemannian manifolds.
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Proposition 2.15. Let M,N be Riemannian manifolds. Iff : M → N is K-Lipschitz
(that is, dN(f (x), f (y))�KdM(x, y) for all x, y ∈ M), then ‖df (x)‖x�K for every
x ∈ M.

Proof. Consider first the case whenN = R. Suppose that there existsx0 ∈ M with
‖df (x0)‖x0 > K. Take v0 ∈ TMx0 so that‖v0‖x0 = 1 anddf (x0)(v0) > K. Consider
the geodesic�(t) = expx0

(tv0) defined for |t |�r0 with r0 > 0 small enough. Define
F : [−r0, r0] → R by F(t) = f (�(t)). We have thatF ′(0) = df (x0)(v0) > K. By the
definition of F ′(0) we can find some�0 ∈ (0, r0) such that

F(t)− F(0)
t

> K if |t |��0.

Taking t1 = −�0, t2 = �0 we getF(t1)−F(0) < Kt1 andF(t2)−F(0) > Kt2, hence,
by summing,

F(t2)− F(t1) > K(t2− t1).

If we set x1 = �(t1), x2 = �(t2) this means that

f (x2)− f (x1) > K(t2− t1) = Kd(x2, x1),

which contradicts the fact thatf is K-Lipschitz.
Now let us consider the general case when the target space is a Riemannian manifold

N. Suppose that‖df (x0)‖x0 > K for somex0 ∈ M. Then there are�0 ∈ T ∗Nf(x0)

and v0 ∈ TMx0 with ‖v0‖x0 = 1 = ‖�0‖f (x0) and such thatK < ‖df (x0)‖x0 =
�0 (df (x0)(v0)). Takes0 > 0 and� > 0 small enough so that exp−1

f (x0)
: B(f (x0), s0)→

B(0f (x0), s0) is a (1+ �)-Lipschitz diffeomorphism andK < (1+ �)K < ‖df (x0)‖x0.
Now take r0 > 0 small enough so thatf (B(x0, r0)) ⊂ B(f (x0), s0), and define the
composition

g : B(x0, r0)→ R, g(x) = �0

(
exp−1

f (x0)
(f (x))

)
.

It is clear thatg is (1+ �)K-Lipschitz. But, sinced exp−1
f (x0)

(f (x0)) is the identity, we
have that

dg(x0)(v0)=�0

(
d exp−1

f (x0)
(f (x0))(df (x0)(v0))

)
=�0 (df (x0)(v0)) = ‖df (x0)‖x0 > (1+ �)K,

and this contradicts the result we have just proved for the caseN = R. �
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3. Almost-critical-point-spotting results

As said in the introduction, in infinite dimensions one cannot generally hope to find
any critical point for a given smooth function, whatever its shape, so one has to make
do with almost critical points.

3.1. An approximate Rolle’s theorem

We begin with an approximate version of Rolle’s theorem which holds in every
Riemannian manifold (even though it is infinite-dimensional) and ensures that every
differentiable function which has a small oscillation on the boundary of an open set
whose closure is complete has an almost critical point.

Theorem 3.1 (Approximate Rolle’s theorem). Let (M, g) be a Riemannian manifold,
U an open subset of M such thatU is complete and bounded with respect to the
g-distance, and p0 ∈ M, R > 0 be such thatBg(p0, R) ⊆ U . Let f : U −→ R be a
continuous function which is differentiable on U. Then:

(1) If supf (U) > supf (�U) then, for every r > 0 there existsq ∈ U such that
‖df (q)‖q�r.

(2) If inf f (U) < inf f (�U) then, for every r > 0 there existsq ∈ U such that
‖df (q)‖q�r.

(3) If f (U) ⊆ [−�, �] for some�>0, then there existsq ∈ U such that‖df (q)‖q��/R.

Corollary 3.2. Let (M, g) be a complete Riemannian manifold, U a bounded open
subset of M, and p0 ∈ M, R > 0 be such thatBg(p0, R) ⊆ U , � > 0. Suppose that
f (�U) ⊆ [−�, �]. Then there exists someq ∈ U such that‖df (q)‖q��/R.

To prove Theorem3.1 we begin with a simple lemma.

Lemma 3.3. Let (M, g) be a Riemannian manifold, and f : M −→ R be a differ-
entiable function on M. Suppose that‖df (p)‖p > � > 0. Then there exist a number
� > 0 and twoC1 paths
,	 : [0, �] → M, parameterized by arc length, such that

f (
(t)) < f (p)− �t and f (	(t)) > f (p)+ �t

for all t ∈ (0, �].
Proof. Let us show the existence of such a path
 (a required path	 can be obtained
in a similar manner). Since‖df (p)‖p > �, there existsh ∈ TMp so that‖h‖p = 1
and df (p)(h) < −�. Then (by the characterization of the tangent spaceTMp as the
set of derivatives of all smooth paths passing throughp) we can choose aC1 path

 : [0, r] → M, parameterized by arc length, such that

d

dt
(0) = h and 
(0) = p.
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Define the functionF : [0, r] → R by F(t) = f (
(t)). We have that

F ′(s) = df (
(s))
(
d

dt
(s)

)
for all s ∈ [0, r]. In particular, fors = 0, we have thatF ′(0) = df (p)(h) < −�, and
therefore there exists some� > 0 such that

F(t)− F(0)
t

< −�

for all t ∈ (0, �]. This means thatf (
(t)) < f (p)− �t for all t ∈ (0, �]. �

We will also make use of the following version of Ekeland’s variational principle
(see[30] for a proof).

Theorem 3.4 (Ekeland’s variational principle). Let X be a complete metric space, and
let f : X −→ [−∞,∞) be a proper upper semicontinuous function which is bounded
above. Let� > 0 and x0 ∈ X such thatf (x0) > sup{f (x) : x ∈ X} − �. Then for every
� with 0< � < 1 there exists a pointz ∈ Dom(f ) such that

(i) �d(z, x0)�f (z)− f (x0)

(ii) d(z, x0) < �/�
(iii) �d(x, z)+ f (z) > f (x) wheneverx �= z.
3.2. Proof of Theorem 3.1

Case 1: Let � = supf (U) − supf (�U) > 0. Define X = (U, dg), which is a
complete metric space. Letn > 1 be large enough so thatU ⊂ Bg(p0, n), and set
� = min{�/8n, r} > 0. Observe that, since the diameter ofU is less than or equal
to 2n, we have that�d(x, y)��/4 for all x, y ∈ U . Now, according to Ekeland’s
variational principle3.4, there existsq ∈ U such that

f (y)�f (q)+ �d(y, q) for all y ∈ X. (3.1)

In fact, it must beq ∈ U : if q ∈ �U then, takinga such thatf (a)� supf (U)− �/4
we would get

supf (U)− �/2= (supf (U)− �/4)− �/4�f (a)− �d(a, q)�f (q)� supf (�U)

a contradiction.
We claim that‖df (q)‖q���r. Indeed, assume that‖df (q)‖q > �. Then, according

to Lemma3.3, there would exist aC1 path 	, parameterized by arc length, such that
	(0) = q and

f (	(t)) > f (q)+ �t (3.2)
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for all t > 0 small enough. By combining (3.1) and (3.2), we would get that

f (q)+ �t < f (	(t))�f (q)+ �d(	(t), q)�f (q)+ �L(	|[0,t]) = f (q)+ �t

if t > 0 is small enough; but this is a contradiction.
Case2: consider the function−f and apply Case (1).
Case3: We will consider two situations.
Case 3.1: Suppose thatf (p0) �= 0. We may assume thatf (p0) < 0 (the case

f (p0) > 0 is analogous). Define� = �/R. According to Ekeland’s variational principle,
there existsq ∈ U such that

(i) d(p0, q)� 1
� (f (p0)− f (q))� 1

� (f (p0)+ �) < R, and
(ii) f (q) < f (y)+ �d(y, q) if y �= q.

The first property tells us thatq ∈ intBg(p0, R) ⊆ U . And, by using Lemma3.3 as
in Case 1, it is immediately seen that the second property implies that‖df (q)‖q�� =
�/R.
Case3.2: Suppose finally thatf (p0) = 0. We may assume that‖df (p0)‖p0 > �/R

(otherwise we are done). By Lemma3.3, there exist� > 0 and aC1 path 
 in U such
that

f (
(t)) < f (p0)− �
R
t

if 0 < t��. Definex0 = 
(�) ∈ Bg(p0, �). We have that

f (x0) < f (p0)− �
R

� = − �
R

� < 0.

By applying again Ekeland’s variational principle with� = �/R we get a pointq ∈ U
such that

(i) d(q, x0)� f (x0)+�
� <

−��/R+�
�/R = R − � and

(ii) f (q) < f (y)+ �
R
d(y, q) for all y �= q.

Now, (i) implies thatd(q, p0)�d(q, x0) + d(x0, p0) < R − � + � = R, that is, q ∈
intBg(p0, R) ⊆ U . And, as above, bearing in mind Lemma3.3, (ii) implies that
‖df (q)‖q��/R. �

Remark 3.5. If U is not complete the result is obviously false: consider for instance
M = (−1,1) ⊂ R, U = (0,1), �U = {0}, f (x) = x. On the other hand, the estimate
�/R is sharp, as this example shows:M = R, U = (−1,1), f (x) = x, R = 1, p0 = 0,
� = 1.
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3.3. A smooth variational principle

Now we turn our attention to perturbed minimization principles on Riemannian man-
ifolds. Of course, since every Riemannian manifold is a metric space, Ekeland’s varia-
tional principle quoted above holds true and is very useful in this setting: every lower
semicontinuous function can be perturbed with a function whose shape is that of an
almost flat cone in such a way that the difference attains a global minimum. But
sometimes, especially when one wants to build a good theory of subdifferentiability,
one needs results ensuring that the perturbation of the function is smooth, that is, one
needs to replace that cone with a smooth function which is arbitrarily small and has
an arbitrarily small Lipschitz constant. This is just what the Deville–Godefroy–Zizler
smooth variational principle does in those Banach spaces havingC1 smooth Lipschitz
bump functions; see[27].

Unfortunately, the main ideas behind the proof of this variational principle in the
case of Banach spaces cannot be transferred to the setting of Riemannian manifolds in
full generality. One has to impose some restriction on the structure of the manifold in
order that those ideas work. That is why we need the following definition.

Definition 3.6. We will say that a Riemannian manifoldM is uniformly bumpable
provided there exist numbersR > 1 (possibly large) andr > 0 (small) such that for
everyp ∈ M, � ∈ (0, r) there exists aC1 smooth functionb : M → [0,1] such that:

(1) b(p) = 1.
(2) b(x) = 0 if d(x, p)��.
(3) supx∈M ‖db(x)‖x�R/�.

Remark 3.7. It is easy to see that every Riemannian manifoldM is bumpable, in
the sense that for everyp ∈ M, � > 0, there exists a smooth bump functionb :
M → [0,1] with b(p) = 1, b(x) = 0 for x /∈ B(p, �), and b is Lipschitz, that is
supx∈M ‖db(x)‖x <∞. However it is not quite clear which Riemannian manifolds are
uniformly bumpable. Of course every Hilbert space is uniformly bumpable, and there
are many other natural examples of uniformly bumpable Riemannian manifolds. In fact
we do not know of any Riemannian manifold which is not uniformly bumpable.

Open Problem 3.8.Is every Riemannian manifold uniformly bumpable? If not, provide
useful characterizations of those Riemannian manifolds which are uniformly bumpable.

The following proposition provides some sufficient conditions for a Riemannian mani-
fold to be uniformly bumpable: it is enough that expx is a diffeomorphism and preserves
radial distances when restricted to balls of a fixed radiusr > 0. This is always true
whenM is uniformly locally convex and has a strictly positive injectivity radius.

Proposition 3.9. Let M be a Riemannian manifold. Consider the following six condi-
tions:

(1) M is compact.
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(2) M is finite-dimensional, complete, and has a strictly positive injectivity radiusi(M).
(3) M is uniformly locally convex and has a strictly positive injectivity radius.
(4) There is a constantr > 0 such that for everyx ∈ M the mappingexpx is defined

on B(0x, r) ⊂ TMx and provides aC∞ diffeomorphism

expx : B(0x, r)→ B(x, r)

and the distance function is given here by the expression

d(y, x) = ‖exp−1
x (y)‖x f or all y ∈ B(x, r).

(5) There is a constantr > 0 such that for everyx ∈ M the distance function to x,
y ∈ M 
→ d(y, x), is C∞ smooth on the punctured ballB(x, r) \ {x}.

(6) M is uniformly bumpable.

Then (1) �⇒ (2) �⇒ (3) ⇐⇒ (4) �⇒ (5) �⇒ (6).

Proof. (1) �⇒ (2) is a trivial consequence of Remark2.12.
(2) �⇒ (3): In [39, Chapter 2], the injectivity radius of a pointx ∈ M is characterized

as the distance fromx to the cut locusC(x) of x. Hence, for everyr > 0 with r < i(M)
and everyx ∈ M it is clear that expx is a diffeomorphism and preserves radial distances
when restricted to balls of a fixed radiusr > 0 in the tangent spaceTMx , andM is
uniformly locally convex. See Theorems 2.1.14 and 2.1.12 of[39].
(3) �⇒ (4): Since i(M) > 0, we know that there is somer1 > 0 such that expx is

a diffeomorphism onto its image when restricted to the ballB(0x, r1), for all x ∈ M.
The fact thatM is uniformly locally convex clearly implies that there is somer2 > 0
such that

d(y, x) = ‖exp−1
x (y)‖x for all y ∈ B(x, r2).

We may obviously assume thatr1 = r2 := r. In particular expx mapsB(0x, r) onto
B(x, r).
(4) �⇒ (3) is obvious.
(4) �⇒ (5) is trivial, since exp−1

x is a C∞ diffeomorphism between those balls,‖ · ‖x
is C∞ smooth onTMx \ {0x}, andd(y, x) = ‖exp−1

x (y)‖x for all y ∈ B(x, r).
(5) �⇒ (6): Assume that the distance functiony 
→ d(y, x) is C∞ smooth on

B(x, r) \ {x}. Let � : R → [0,1] be a C∞ smooth Lipschitz function such that
�−1(1) = (−∞,1/3] and �−1(0) = [1,∞). For a given pointx ∈ M and a number
� ∈ (0, r), defineb : M → [0,1] by

b(y) = �
(

1

�
d(y, x)

)
.

Taking into account the fact that the distance functiony 
→ d(y, x) is 1-Lipschitz
and therefore the norm of its derivative is everywhere bounded by 1 (see Proposition
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2.15), it is easy to check thatb satisfies conditions 1-2-3 of Definition3.6, for a
constantR = ‖�′‖∞ > 1 that only depends on the real function�, but not on the point
x ∈ M. �

Remark 3.10. The condition thatM has a strictly positive injectivity radius is not
necessary in order thatM is uniformly bumpable, as the following example shows. Let
M be the surface ofR3 defined by the equationz = 1/(x2+ y2), (x, y) �= (0,0), with
the natural Riemannian structure inherited fromR3. Then i(M) = 0, but, as is not
difficult to see,M is uniformly bumpable.

The following theorem is the natural extension of the Deville–Godefroy–Zizler smooth
variational principle to Riemannian manifolds which are uniformly bumpable. Recall
that a functionF : M → R ∪ {+∞} is said to attain a strong minimum atp pro-
vided F(p) = inf x∈M F(x) and limn→∞ d(pn, p) = 0 whenever(pn) is a minimizing
sequence (that is, if limn→∞ F(pn) = F(p)).

Theorem 3.11(DGZ smooth variational principle). Let (M, g) be a complete Rieman-
nian manifold which is uniformly bumpable, and letF : M −→ (−∞,+∞] be a lower
semicontinuous function that is bounded below, F �≡ +∞. Then, for every� > 0 there
exists a boundedC1 smooth function� : M −→ R such that

(1) F − � attains its strong minimum in M,
(2) ‖�‖∞ := supp∈M |�(p)| < �, and ‖d�‖∞ := supp∈M ‖d�(p)‖p < �.

Remark 3.12. The assumption thatM is complete is necessary here, as the following
trivial example shows:M = (−1,1) ⊂ R, f (x) = x.

We will split the proof of Theorem3.11 into three lemmas. In the sequelB(x, r)
denotes the open ball of centerx and radiusr in the metric spaceM, and B(�, r)
stands for the open ball of center� and radiusr in the Banach spaceY.

Lemma 3.13. Let M be a complete metric space, and (Y, ‖ · ‖) be a Banach space of
real-valued bounded and continuous functions on M satisfying the following
conditions:

(1) ‖�‖�‖�‖∞ = sup{|�(x)| : x ∈ M} for every� ∈ Y .
(2) There are numbersC > 1, r > 0 such that for everyp ∈ M, � > 0 and � ∈ (0, r)

there exists a functionb ∈ Y such thatb(p) = �, ‖b‖Y �C�(1+1/�), and b(x) = 0
if x �∈ B(p, �).

Let f : M → R∪ {+∞} be a lower semicontinuous function which is bounded below
and such thatDom(f ) = {x ∈ M|f (x) < +∞} �= ∅. Then, the set G of all the
functions� ∈ Y such thatf +� attains a strong minimum in M contains aG� dense
subset of Y.
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Proof. Take a numberN ∈ N such thatN�1/r, and for everyn ∈ N with n�N ,
consider the set

Un =
{
� ∈ Y | ∃ x0 ∈ M : (f + �)(x0) < inf

{
(f + �)(x)|x ∈ M\B

(
x0,

1

n

)}}
.

Let us see thatUn is an open dense subset ofY. Indeed,

• Un is open. Take� ∈ Un. By the definition ofUn there existsx0 ∈ M such that
(f + �)(x0) < inf {(f + �)(x)|x ∈ M\B(x0,

1
n
)}. Set 2
 = inf {(f + �)(x)|x ∈

M\B(x0,
1
n
)}− (f +�)(x0) > 0. Then, since‖ · ‖Y �‖ · ‖∞, we get thatBY (�,
) ⊂

B∞(�,
) ⊂ Un.
• Un is dense inY. Take� ∈ Y and � > 0. Sincef +� is bounded below there exists
x0 ∈ M such that(f + �)(x0) < inf {(f + �)(x)|x ∈ M} + �. Set now� = 1/n < r,
and use condition (2) to find a functionb ∈ Y such thatb(x0) = �, ‖b‖Y �C(n+1)�,
and b(x) = 0 for x �∈ B(x0,

1
n
). Then (f +�)(x0)− b(x0) < inf {(f +�)(x)|x ∈ M}

and, if we defineh = −b, we have

(f + �+ h)(x0) < inf {(f + �)(x)|x ∈ M}� inf

{
(f + �)(x)|x �∈ B

(
x0,

1

n

)}
.

Since inf{(f+�)(x)|x �∈ B(x0,
1
n
)} = inf {(f+�+h)(x)|x �∈ B(x0,

1
n
)}, it is obvious that

the above inequality implies that�+h ∈ Un. On the other hand, we have‖h‖Y �C(n+
1)�. SinceC andn are fixed and� can be taken to be arbitrarily small, this shows that
� ∈ Un, andUn is dense inY.

Therefore we can apply Baire’s theorem to conclude that the setG = ⋂∞
n=N Un

is a G� dense subset ofY. Now we must show that if� ∈ G then f + � attains
a strong minimum inM. For eachn�N , take xn ∈ M such that(f + �)(xn) <
inf {(f + �)(x)|x �∈ B(xn, 1

n
)}. Clearly, xk ∈ B(xn, 1

n
) if k�n, which implies that

(xn)
∞
n=N is a Cauchy sequence inM and therefore converges to somex0 ∈ M. Sincef

is lower semicontinuous and
⋂∞
n=N B(x0,1/n) = {x0}, we get

(f + �)(x0)� lim inf (f + �)(xn)� lim inf

[
inf

{
(f + �)(x)|x ∈ M \ B

(
x0,

1

n

)}]
= inf

{
inf

{
(f + �)(x)|x ∈ M \ B

(
x0,

1

n

)}
: n ∈ N, n�N

}
= inf {(f + �)(x)|x ∈ M \ {x0}},

which means thatf + � attains a global minimum atx0 ∈ M.
Finally, let us check that in factf + � attains a strong minimum at the pointx0.

Suppose{yn} is a sequence inM such that(f + g)(yn) → (f + g)(x0) and (yn)
does not converge tox0. We may assumed(yn, x0)�� for all n. Bearing in mind this
inequality and the fact thatx0 = lim xn, we can takek ∈ N such thatd(xk, yn) > 1

k
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for all n, and therefore

(f + �)(x0)�(f + �)(xk) < inf

{
(f + �)(x)|x /∈ B

(
xk,

1

k

)}
�(f + �)(yn)

for all n, which contradicts the fact that(f + �)(yn)→ (f + �)(x0). �

Lemma 3.14. Let M be a uniformly bumpable Riemannian manifold. Then there are
numbersC > 1, r > 0 such that for everyp ∈ M, � > 0 and � ∈ (0, r) there exists a
C1 smooth functionb : M → [0, �] such that:
(1) b(p) = � = ‖b‖∞ := supx∈M |b(x)|.
(2) ‖db‖∞ := supx∈M ‖db(x)‖x�C�/�.
(3) b(x) = 0 if x �∈ B(p, �).
In particular, max{‖b‖∞, ‖db‖∞}�C�(1+ 1/�).

Proof. The definition of uniformly bumpable manifold provides suchb in the case
when � = 1. If � �= 1, it is enough to considerb� = �b. �

Lemma 3.15. Let (M, g) be a complete Riemannian manifold. Then the vector space
Y = {� : M → R |�is C1 smooth, bounded and Lipschitz}, endowed with the norm
‖�‖Y = max{‖�‖∞, ‖d�‖∞}, is a Banach space.

Proof. It is obvious that(Y, ‖ · ‖Y ) is a normed space. We only have to show that
Y is complete. Let(�n) be a Cauchy sequence with respect to the norm‖ · ‖Y . Since
the uniform limit of a sequence of continuous mappings between metric spaces is
continuous, it is obvious that(�n) uniformly converges to a continuous function� :
M → R. SinceT ∗Mx is a complete normed space for eachx ∈ M, it is also clear
that (d�n) converges to a function� : M → T ∗M defined by

�(x) = lim
n→∞ d�n(x)

(where the limit is taken inTMx for eachx ∈ M). Let us see that� = d�. Takep ∈ M.
From Theorem2.3 we know that there exists somer > 0 (depending on p) such that
the exponential mapping is defined onB(0p, r) ⊂ TMp and gives a diffeomorphism
expp : B(0p, r)→ B(p, r) such that the derivatives of expp and its inverse(expp)

−1

are bounded by 2 onB(0p, r) andB(p, r) respectively; in particular expp provides a
bi-Lipschitz diffeomorphism between these balls. We denote�̃(h) = (� ◦ expp)(h), for
h ∈ B(0p, r). We have∣∣∣∣ �̃(h)− �̃(0)− �(p)(h)

‖h‖
∣∣∣∣= ∣∣∣∣ �̃(h)− �̃(0)

‖h‖ − �(p)(
h

‖h‖ )
∣∣∣∣

�
∣∣∣∣ �̃(h)− �̃(0)− (�̃n(h)− �̃n(0))

‖h‖
∣∣∣∣
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+
∣∣∣∣ �̃n(h)− �̃n(0)

‖h‖ − d�̃n(0)
(
h

‖h‖
)∣∣∣∣

+
∣∣∣∣(d�̃n(0)− �(p))

(
h

‖h‖
)∣∣∣∣ . (3.3)

Let us first consider the expression| �̃(h)−�̃(0)−(�̃n(h)−�̃n(0))‖h‖ |. By applying the mean
value inequality theorem we get

|�̃m(h)− �̃m(0)− (�̃n(h)− �̃n(0))|�supx∈B(0p,r) ‖d�̃m(x)− d�̃n(x)‖p‖h‖p
�2‖d�m − d�n‖∞‖h‖p.

Since (�n) is a Cauchy sequence inY we deduce that for every� > 0 there exists
n0 ∈ N such that|�̃m(h)− �̃m(0)− (�̃n(h)− �̃n(0))| < (�/3)‖h‖ wheneverm, n�n0
so, by lettingm → ∞ we get that|�̃(h) − �̃(0) − (�̃n(h) − �̃n(0))| < (�/3)‖h‖ if
n�n0.

On the other hand, the term|(d�̃n(0) − �̃(p))( h‖h‖ )| in the right-hand side of in-
equality (3.3) above is less than�/3 when n is large enough; we may assume this
happens ifn�n0.

Finally, if we fix n = n0, the term| �̃n0
(h)−�̃n0(0)
‖h‖ − d�̃n0

(0)( h‖h‖ )| can be made to
be less than�/3 if ‖h‖ is small enough, say‖h‖��.

By combining these estimations we get that, forn = n0, the left side of inequality
(3.3) is less than� if ‖h‖��. This shows that̃� is differentiable atp, with d�̃(0p) =
�(p). Hence� is differentiable atp, with d�(p) = �(p).

To conclude thatY is a Banach space it only remains to check thatd� = � is
continuous and bounded. Take� > 0. Since (�n) is a Cauchy sequence inY, there
existsn0 ∈ N such that‖d�n(y)−d�m(y)‖y�� for all y ∈ M providedn,m�n0. By
letting m → ∞ we deduce that‖d�n(y) − �(y)‖y�� for all y ∈ M, if n�n0. That
is, we have

lim
n→∞ ‖d�n − d�‖∞ = 0.

In particular, this implies that‖d�‖∞ <∞, that is,� is Lipschitz. Now we can show
� = d� is continuous. Take anyp ∈ M. As above, there existsr > 0 such that
expp : B(0p, r) → B(p, r) is a 2-Lipschitz diffeomorphism, and so is the inverse
exp−1

p . Define�̃ = �◦expp : B(0p, r)→ R. In order to see thatd� is continuous atp
it is enough to see thatd�̃ is continuous at 0p. By applying the mean value inequality
we have that

‖d�̃(x)− d�̃(0)‖p
�‖d�̃(x)− d�̃n(x)‖p + ‖d�̃n(x)− d�̃n(0)‖p + ‖d�̃n(0)− d�̃(0)‖p
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�2‖d�− d�n‖∞ + ‖d�̃n(x)− d�̃n(0)‖p + 2‖d�− d�n‖∞
= 4‖d�− d�n‖∞ + ‖d�̃n(x)− d�̃n(0)‖p (3.4)

for all n ∈ N, x ∈ B(0p, r) ⊂ TMp. Since‖d� − d�n‖∞ → 0 as n → ∞ we can
find n0 ∈ N so that

‖d�− d�n0
‖∞��/8. (3.5)

Finally, sinced�̃n0
is continuous at 0p, there exists� ∈ (0, r) such that

‖d�̃n0
(x)− d�̃n0

(0)‖p � �
2

(3.6)

if ‖x‖p��. By combining (3.4)–(3.6) we get that‖d�̃(x)− d�̃(0)‖p�� if ‖x‖p��.
This shows thatd�̃ is continuous at 0p. �

Now the proof of Theorem3.11 is an obvious combination of the above Lemmas.

Remark 3.16. It should be noted that Lemma3.13 is quite a powerful statement from
which a lot of other perturbed minimization principles can be obtained. For instance:

(1) When we takeM = X, a complete metric space, andY is the space of all the
Lipschitz and bounded functionsf : X→ R, with the norm

‖f ‖Y = ‖f ‖∞ + Lip(f ) = ‖f ‖∞ + sup

{ |f (x)− f (y)|
d(x, y)

: x, y ∈ X, x �= y
}

(which satisfies(1) and (2) of Lemma3.13 with C = 1 and anyr), then we obtain
a statement that is easily seen to imply Ekeland’s variational principle.

(2) When we considerM = X, a Banach space having aC1 smooth Lipschitz bump
function, and we defineY as the Banach space ofC1 smooth Lipschitz functions
f : X→ R, with the norm

‖f ‖Y = ‖f ‖∞ + ‖f ′‖∞,

then we recover the known DGZ smooth variational principle for Banach spaces.
(3) LetM = X be any metric space in which some notion ofdifferentiability has been

defined, andY be a Banach space ofdifferentiable(whatever this word should mean
in this context) and Lipschitz functionsf : X→ R, with the norm

‖f ‖Y = ‖f ‖∞ + Lip(f ).
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Suppose thatX is uniformly bumpable in the sense thatY satisfies(2) of Lemma
3.13. Then we get a perturbed minimization principle with functions which are
differentiableand Lipschitz.

Open Problem 3.17. Is Theorem3.11 true if one drops the assumption thatM is
uniformly bumpable?

4. A notion of viscosity subdifferential for functions defined on Riemannian
manifolds

4.1. Definitions and basic properties

Definition 4.1. Let (M, g) be a Riemannian manifold, andf : M −→ (−∞,∞] be a
proper function. We will say thatf is subdifferentiable at a pointp ∈ dom(f ) = {x ∈
M : f (x) < ∞} provided there exists aC1 function � : M −→ R such thatf − �
attains a local minimum at the pointp. In this case we will say that� = d�(p) ∈
(TMp)

∗ � H ∗ = H is a subdifferential off at p. We define the subdifferential set of
f at p by

D−f (p) = {d�(p) : � ∈ C1(M,R), f − � attains a local minimum atp}

a subset ofT ∗Mp. Similarly, we define

D+f (p) = {d�(p) : � ∈ C1(M,R), f − � attains a local maximum atp}

and we say thatf is superdifferentiable atp providedD+f (p) �= ∅.
For every� ∈ D−f (p) ∪D+f (p), the norm of� is defined as

‖�‖p = sup{|�(h)| : h ∈ TMp, ‖h‖p = 1}.

Remark 4.2. The following properties are obvious from the definition:

(1) f is subdifferentiable atp if and only if −f is superdifferentiable atp, and

D+(−f )(p) = −D−f (p).

(2) If f has a local minimum atp then 0∈ D−f (p).
(3) If h has a local maximum atp then 0∈ D+f (p).

Next, we give other useful equivalent definitions of subdifferentiability.
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Theorem 4.3 (Characterizations of subdifferentiability). Let f : M → (−∞,∞] be a
function defined on a Riemannian manifold, p ∈ M, and � ∈ T ∗Mp. The following
statements are equivalent:

(1) � ∈ D−f (p), that is, there exists aC1 smooth function� : M → R so thatf −�
attains a local minimum at p, and � = d�(p).

(2) There exists a function� : M → R so thatf − � attains a local minimum at p,
� is Fréchet differentiable at p, and � = d�(p).

(3) For every charth : U ⊂ M → H with p ∈ U , if we take� = � ◦ dh−1(h(p)) then
we have that

lim inf
v→0

(f ◦ h−1)(h(p)+ v)− f (p)− 〈�, v〉
‖v‖ �0.

(4) There exists a charth : U ⊂ M → H with p ∈ U and such that, for � =
� ◦ dh−1(h(p)), we have

lim inf
v→0

(f ◦ h−1)(h(p)+ v)− f (p)− 〈�, v〉
‖v‖ �0.

Moreover, if the function f is locally bounded below(that is, for everyx ∈ M there is
a neighborhood U of x such that f is bounded below on U), then the above conditions
are also equivalent to the following one:

(5) There exists aC1 smooth function� : M → R so that f − � attains a global
minimum at p, and � = d�(p).

Consequently, any of these statements can be taken as a definition of� ∈ D−f (p).
Analogous statements are equivalent in the case of a superdifferentiable function; in
particular � ∈ D+f (p) if and only if there exists a charth : U ⊂ M → H with
p ∈ U and such that, for � = � ◦ dh−1(h(p)),

lim sup
v→0

(f ◦ h−1)(h(p)+ v)− f (p)− 〈�, v〉
‖v‖ �0.

Proof. (1) �⇒ (2) and (3) �⇒ (4) are obvious.
(2) �⇒ (3): If f − � has a local minimum atp then g := f ◦ h−1 − � ◦ h−1 has

also a local minimum ath(p), which implies

lim inf
v→0

g(h(p)+ v)− g(h(p))
‖v‖ �0
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and, by combining this inequality with the fact that

lim
v→0

(� ◦ h−1)(h(p)+ v)− (� ◦ h−1)(h(p))− 〈�, v〉
‖v‖ = 0

(because� = d(� ◦ h−1)(h(p))), it is easily deduced that

lim inf
v→0

(f ◦ h−1)(h(p)+ v)− (f ◦ h−1)(h(p))− 〈�, v〉
‖v‖ �0.

(4) �⇒ (1). In order to prove this we will use the following lemma, which is shown
in [27] in a more general situation.

Lemma 4.4. If V is an open set of a Hilbert space H, x ∈ V , andF : V → (−∞,∞]
is a function satisfying

lim inf
v→0

F(x + v)− F(x)− 〈�, v〉
‖v‖ �0

for some� ∈ H ∗, then there exists aC1 smooth function� : H → R such thatF −�
has a local minimum at x, and d�(x) = �.

Take an open neighborhoodV of p so thatV ⊂ U . Note thatF := f ◦ h−1 is a
function from the open subseth(U) of the Hilbert spaceH into (−∞,∞], and by the
hypothesis we have that

lim inf
v→0

F(h(p)+ v)− F(h(p))− 〈�, v〉
‖v‖ �0.

By the preceding lemma, there exists aC1 smooth function� : h(U)→ R such that
F − � has a local minimum ath(p) and � = d�(h(p)). Let us define� := � ◦ h :
U → R, which is aC1 smooth function. It is clear thatF ◦ h − � ◦ h = f − � has
a local minimum atp, and d�(p) = d�(h(p)) ◦ dh(p) = � ◦ dh(p) = �. In order to
finish the proof it is enough to extend� to the complement ofV by defining� = ��,
where � is a C1 smooth Uryshon-type function which is valued 1 on the setV and
0 outsideU (such a function certainly exists becauseM hasC∞ smooth partitions of
unity andV ⊂ U). It is obvious that� keeps the relevant properties of�.

Finally, let us see that, whenf is locally bounded below,(1) ⇐⇒ (5). Obviously,
(5) �⇒ (1). To see that(1) �⇒ (5), let us assume that there exists aC1 smooth
function � : M → R and somer > 0 such that 0= f (p) − �(p)�f (x) − �(x) if
x ∈ B(p, r), and denote� = d�(p). We have to see that there exists aC1 smooth
function � : M → R such thatf −� attains aglobal minimum atp and d�(p) = �.
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Consider the open setU = M \B(p, r/2). Sincef −� is locally bounded below, for
eachx ∈ U there exist�x > 0 andmx ∈ R such thatB(x, �x) ⊂ U andmx�f (y)−
�(y) for all y ∈ B(x, �x). Consider the open covering

G := {B(x, �x) : x ∈ U} ∪ {B(p, r)}

of M. SinceM hasC∞ smooth partitions of unity there exists a locally finite refinement
{Ui}i∈I of the coveringG and a family of functions{�i}i∈I ⊂ C∞(M, [0,1]) so that
supp(�i ) ⊂ Ui for eachi and

∑
i∈I �i = 1.

For eachi ∈ I , if Ui ⊂ B(p, r) then we define
i = 0. Otherwise we can pick
somexi ∈ U = M \ B(p, r/2) such thatUi ⊂ B(xi, �xi ), and in this case we define

i = mxi . Now we can define our function� : M → R by

�(x) = �(x)+
∑
i∈I


i�i (x).

It is clear that� is a C1 smooth function such that� = � on B(p, r/2) (indeed, take
x ∈ B(p, r/2); if x ∈ Ui thenUi ⊂ B(p, r) because of the choice of the coveringG
and the�y , so 
i = 0, while for all the rest ofj ∈ I we have�j (x) = 0; therefore
�(x) = �(x)+ 0= �(x)). In particular, it follows that� = d�(p) = d�(p).

We claim thatf − � attains a global minimum atp. Indeed, fixx ∈ M. If x ∈
B(p, r/2) = M\U then, as we have just seen,�(x) = �(x), and 0= (f−�)(p)�(f−
�)(x) = (f − �)(x). If x ∈ U then, for thosei ∈ I such thatx ∈ Ui we have
(f − �)(x)�mxi = 
i , while �j (x) = 0 for thosej ∈ I with x /∈ Uj . Therefore,

f (x)− �(x)=f (x)− �(x)−
∑
i∈I


i�i (x)

=f (x)− �(x)−
∑
{
i�i (x) : i ∈ I, x ∈ Ui}

�sup{
i : i ∈ I, x ∈ Ui} −
∑
{
i�i (x) : i ∈ I, x ∈ Ui}

�0= f (p)− �(p),

and f − � has a global minimum atp. �

Corollary 4.5. Let f : M → (−∞,∞] be a function defined on a Riemannian man-
ifold, and let h : U ⊂ M → h(U) ⊂ H be a chart of M. Then,

D−f (p)=
{
� ◦ dh(p) : � ∈ H ∗, lim inf

v→0

(f ◦ h−1)(h(p)+ v)− f (p)− 〈�, v〉
‖v‖ �0

}
={� ◦ dh(p) : � ∈ D−(f ◦ h−1)(h(p))}.

Now we can show that subdifferentiable plus superdifferentiable equals differentiable.
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Proposition 4.6. A function f is differentiable at p if and only if f is both subdifferen-
tiable and superdifferentiable at p. In this case, {df (p)} = D−f (p) = D+f (p).

Proof. Assume first thatf is both subdifferentiable and superdifferentiable atp. Then
there existC1 functions �,� : M → R such thatf − � and f − � have a local
minimum and a local maximum atp, respectively. We can obviously assumef (p) =
�(p) = �(p). Then these conditions mean thatf (x)−�(x)�0 andf (x)−�(x)�0 for
all x ∈ U , whereU is an open neighborhood ofp. On the other hand,(f−�)−(f−�) =
�− � has a local minimum atp, hence 0= d(�− �)(p) = d�(p)− d�(p). That is,
we have that

�(x)�f (x)��(x) for all x ∈ U, �(p) = �(p) = f (p),
and d�(p) = d�(p).

By using charts, it is an easy exercise to check that these conditions imply thatf is
differentiable atp, with df (p) = d�(p) = d�(p); in particular this argument shows
that {df (p)} = D−f (p) = D+f (p).

Now, if f is differentiable atp then, by the chain rule, so isf ◦h−1 at h(p) for any
chart h : U ⊂ M → H ; in particular, putting� = d(f ◦ h−1)(h(p)), we have

lim
v→0

(f ◦ h−1)(h(p)+ v)− f (p)− 〈�, v〉
‖v‖ = 0,

which, thanks to Theorem4.3, yields df (p) = � ◦ dh(p) ∈ D−f (p)∩D+f (p). �
What the above proof really shows is the (not completely obvious) following result:

a function f is differentiable at a pointp if and only if its graph is trapped between
the graphs of twoC1 smooth functions which have the same derivative atp and touch
the graph off at p.

Corollary 4.7 (Criterion for differentiability). A functionf : M → R is Fréchet dif-
ferentiable at a point p if and only if there areC1 smooth functions�,� : M → R

such that

�(x)�f (x)��(x) f or all x ∈ M, �(p) = �(p) = f (p),
and d�(p) = d�(p).

Let us say a few words about the relationship between subdifferentiability and conti-
nuity. In general, a subdifferentiable function need not be continuous. For instance, the
function f : R −→ R defined byf (x) = 0 if x ∈ [0,1], and 1 elsewhere, is Fréchet
subdifferentiable everywhere inR, and yetf is not continuous at 0 and 1. However, it
is easy to see that subdifferentiability implies lower semicontinuity.
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Proposition 4.8. If f is subdifferentiable at p then f is lower semicontinuous at p. In
the same way, superdifferentiability implies upper semicontinuity.

Proof. The result is immediate in the case of a functiong : V ⊂ H → (−∞,∞];
indeed, if

lim inf
v→0

g(x + v)− g(x)− 〈�, v〉
‖v‖ �0

then lim infy→x g(y)�g(x). The general case follows by applying Theorem4.3. �

4.2. Some rules and fuzzy rules

Next, we study some properties of the subdifferentials related to composition, sum
and product of subdifferentiable and differentiable functions. Of course, all the state-
ments hold for superdifferentials as well, with obvious modifications.

Proposition 4.9 (Chain rule). Let M, N be Riemannian manifolds, g : M → N , and
f : N → (−∞,∞]. Assume that the function f is subdifferentiable atg(p), and that
g is Fréchet differentiable at p. Then the compositionf ◦ g : M → (−∞,∞] is
subdifferentiable at p, and

{� ◦ dg(p) : � ∈ D−f (g(p))} ⊆ D−(f ◦ g)(p).

Proof. Take � ∈ D−f (g(p)), then there exists a function� : N → R so that
f − � has a local minimum atg(p), � is Fréchet differentiable atg(p), and � =
d�(g(p)). In particular there exists� > 0 such thatf (y)−�(y)�f (g(p))−�(g(p))
wheneverd(y, g(p)) < �. Define � = � ◦ g. Since g is differentiable atp and �
is differentiable atg(p), by the chain rule it follows that� is a function fromM
into R which is Fréchet differentiable atp, with d�(p) = d�(g(p)) ◦ dg(p). Since
g is continuous atp, there exists� > 0 such thatd(g(x), g(p)) < � for all x with
d(x, p) < �. Then we getf (g(x))−�(g(x))�f (g(p))−�(g(p)) if d(x, p) < �, that
is, f ◦ g − � has a local minimum atp. By Theorem4.3 [(1) ⇐⇒ (2)], this ensures
that f ◦ g is subdifferentiable atp, with � ◦ dg(p) = d�(g(p)) ◦ dg(p) = d�(p) ∈ D−
(f ◦ g)(p). �

The following example shows that the inclusion provided by Proposition4.9 is strict,
in general.

Example 4.10.Let M = N = R, g(x) = |x|3/2, f (y) = |y|1/2; f ◦g(x) = |x|3/4. Then
g is C1 smooth onR, and we havedg(0) = 0, D−f (g(0)) = D−f (0) = (−∞,∞),
D−(f ◦ g)(0) = (−∞,∞). Therefore� ◦ dg(0) = 0 for every� ∈ D−f (g(0)).

Corollary 4.11. Let M, N be Riemannian manifolds, h : M → N a C1 diffeomor-
phism. Then, f : M → (−∞,∞] is subdifferentiable at p if and only iff ◦ h−1 is
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subdifferentiable ath(p), and

D−f (p) = {� ◦ dh(p) : � ∈ D−(f ◦ h−1)(h(p))}.

Proof. If f : M → (−∞,∞] is subdifferentiable atp then, by the preceding Propo-
sition, f ◦ h−1 : N → (−∞,∞] is subdifferentiable ath(p) ∈ N and, moreover, we
know that if T ∈ D−f (p) then � := T ◦ dh−1(h(p)) ∈ D−(f ◦ h−1)(h(p)). Then
T = � ◦ dh(p), with � ∈ D−(f ◦ h−1)(h(p)).

Conversely, iff ◦h−1 is subdifferentiable ath(p) then, again by the preceding result,
f = (f ◦ h−1) ◦ h is subdifferentiable atp and, for any� ∈ D−(f ◦ h−1)(h(p)), we
have� ◦ dh(p) ∈ D−1

(
(f ◦ h−1) ◦ h)(p) = D−f (p). �

Proposition 4.12 (Sum rule). For all functionsf1, f2 : M −→ (−∞,∞], p ∈ M, we
have

D−f1(p)+D−f2(p) ⊆ D−(f1+ f2)(p)

and analogous inclusions hold for superdifferentials.

Proof. Take �i ∈ D−fi(p), i = 1,2. There areC1 smooth functions�i : M →
R such thatfi − �i have a minimum atp and �i = d�i (p) for i = 1,2. Then
(f1 + f2) − (�1 + �2) = (f1 − �1) + (f2 − �2) clearly has a minimum atp, hence
�1+ �2 = d(�1+ �2)(p) belongs toD−(f1+ f2)(p). �

When one of the functions involved in the sum is uniformly continuous the inclusion
provided by this statement can be reversed in a fuzzy way. This assumption is necessary
in general, as a counterexample (in the Hilbert space) of Deville and Ivanov shows;
see[28].

Theorem 4.13(Fuzzy rule for the subdifferential of the sum). Let (M, g) be a Rie-
mannian manifold. Letf1, f2 : M −→ R be such thatf1 is lower semicontinu-
ous and f2 is uniformly continuous. Takep ∈ M, a chart (U,�) with p ∈ U ,
� ∈ D−(f1 + f2)(p), � > 0, and a neighborhood V of(p, �) in the cotangent
bundle T ∗M. Then there existp1, p2 ∈ U , �1 ∈ D−f1(p1), �2 ∈ D−f2(p2) such
that: (pi, �1 ◦ d�(p1)

−1 ◦ d�(pi) + �2 ◦ d�(p2)
−1 ◦ d�(pi)) ∈ V for i = 1,2; and

|fi(pi)− fi(p)| < � for i = 1,2.

Proof. Fix a chart(U,�) such thatp ∈ U and T ∗U is diffeomorphic toU × H ∗
through the canonical diffeomorphismL : T ∗U → U × H ∗ defined byL(q, �) =
(q, � ◦ d�(q)−1). The theorem can be reformulated as follows:for everyp ∈ U , � ∈
D−(f1 + f2)(p), and � > 0, there existp1, p2 ∈ U , �1 ∈ D−f1(p1), �2 ∈ D−f2(p2)

such that:d(p1, p2) < �, ||�1 ◦ d�(p1)
−1 + �2 ◦ d�(p2)

−1 − � ◦ d�(p)−1|| < �, and
|fi(pi)− fi(p)| < � for i = 1,2. But this statement follows immediately from Deville
and El Haddad’s fuzzy rule for Banach spaces[24] applied to the functionsf1 ◦ �−1

and f2 ◦ �−1. �
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Proposition 4.14 (Product rule). Supposef1, f2 : M −→ [0,∞) are functions subd-
ifferentiable atp ∈ M. Thenf1f2 is subdifferentiable at p, and

f1(p)D
−f2(p)+ f2(p)D

−f1(p) ⊆ D−(f1f2)(p).

Proof. If f1(p) = f2(p) = 0 the result is obvious, so we may assume, for instance,
that f1(p) > 0.

Pick �i ∈ D−fi(p), and findC1 smooth functions�i : M → R such thatfi − �i
have a local minimum atp and�i = d�i (p) for i = 1,2. As usual we may assume that
�i (p) = fi(p), so thatfi − �i�0. Since�1(p) = f1(p) > 0 and �1 is continuous,
there exists a neighborhoodV of p such that�1�0 on V. We may assume thatV is
small enough so that the restriction of�1− f1 to V has a global minimum atp. Then
we deduce thatf1f2��1f2��1�2 on V, that is,

(f1f2− �1�2)(x)�0= (f1f2− �1�2)(p) for all x ∈ V,

which means thatf1f2− �1�2 has a local minimum atp, and therefore

f1(p)�2+ f2(p)�1=�1(p)d�2(p)+ �2(p)d�1(p)

=d(�1�2)(p) ∈ D−(f1f2)(p). �

Remark 4.15. If the functions are not positive, the result is not necessarily true, as
the following example shows:M = R, f1(x) = |x|, f2(x) = −1, p = 0 (note that the
function (f1f2)(x) = −|x| is not subdifferentiable at 0).

4.3. Topological and geometrical properties of the subdifferential sets

Proposition 4.16.D−f (p) andD+f (p) are closed and convex subsets ofT ∗Mp. In
particular, if f is locally Lipschitz then these sets arew∗-compact as well.

Proof. Let us first check thatD−f (p) is convex. Pick�1, �2 ∈ D−f (p), and find
C1 smooth functions�1,�2 : M → R such thatd�i (p) = �i , and (f − �i )(x)�0=
(f − �i )(p) for all x in a neighborhood ofp. Take t ∈ [0,1], and define the function
�t : M → R by �t (x) = (1− t)�1(x) + t�2(x). It is immediately seen that�t is a
C1 smooth function such thatf − �t attains a local minimum atp, and therefore

(1− t)�1+ t�2 = d�t (p) ∈ D−f (p).

Now let us see thatD−f (p) is closed. Take a charth : U ⊂ M → H with
p ∈ U . Since dh(p) : TMp → H is a linear isomorphism and(dh(p))∗ : H ∗ →
(TMp)

∗ (defined by(dh(p))∗(�) = �◦dh(p)) is a linear isomorphism as well, and, by
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Corollary 4.5, we know that

D−f (p) = {� ◦ dh(p) : � ∈ D−(f ◦ h−1)(h(p))} = (dh(p))∗
(
D−(f ◦ h−1)(h(p))

)
it is enough to show thatD−(f ◦h−1)(h(p)) is closed inH ∗. That is, we have to show
the result in the case of a functiong : V ⊂ H → (−∞,∞] which is subdifferentiable
at a pointx. So let us prove thatD−g(x) is closed in(H ∗, ‖ · ‖). Let (pn) ⊂ D−g(x)
be such that‖pn − p‖ → 0, and let us check thatp ∈ D−g(x). We have

lim inf
v→0

g(x + v)− g(x)− 〈pn, v〉
‖v‖ �0

for all n, and therefore

lim inf
v→0

g(x + v)− g(x)− 〈p, v〉
‖v‖

= lim inf
v→0

[
1

‖v‖ (g(x + v)− g(x)− 〈pn, v〉)+
1

‖v‖〈pn − p, v〉
]

� lim inf
v→0

1

‖v‖ (g(x + v)− g(x)− 〈pn, v〉)+ lim inf
v→0

1

‖v‖〈pn − p, v〉

�0+ lim inf
v→0

1

‖v‖〈pn − p, v〉 = −‖pn − p‖

for all n, that is,

lim inf
v→0

g(x + v)− g(x)− 〈p, v〉
‖v‖ � − ‖pn − p‖

for all n ∈ N, and since‖pn − p‖ → 0 we deduce that

lim inf
v→0

g(x + v)− g(x)− 〈p, v〉
‖v‖ �0,

which meansp ∈ D−g(x).
Finally, whenf is locally Lipschitz, by composing with the inverse of the exponential

map (which provides a Lipschitz chart on a neighborhood of each point) and using
Corollary 4.5, it is easily seen thatD−f (p) andD+f (p) are bounded. Then, by the
Alaoglu–Bourbaki theorem it follows that these sets arew∗-compact. �
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4.4. Density of the points of subdifferentiability

As a consequence of the smooth variational principle, every lower semicontinuous
function is subdifferentiable on a dense subset of its domain.

Proposition 4.17. Let M be a Riemannian manifold. Iff : M −→ (−∞,∞] is lower
semicontinuous and proper then{p ∈ dom(f ) : D−f (p) �= ∅} is dense indom(f) :=
{x ∈ M : f (x) <∞}.

Proof. Assume first thatM is complete and uniformly bumpable (such is, for instance,
the case whenM is a Hilbert spaceH). In this case we can deduce the result directly
by applying the smooth variational principle3.11 as follows. Pick any pointp0 with
f (p0) < ∞, and any open neighborhoodU of p0. We must show that there is some
p ∈ U such thatD−f (p) �= ∅. SinceM has smooth partitions of unity, there is aC∞
smooth functionb : M → [0,∞) such thatb(y) > 0 if and only if y ∈ U . Consider
the functiong : M → (−∞,∞] defined by

g(y) = 1

b(y)
if y ∈ U and g(y) = ∞ if y /∈ U.

The functiong is lower semicontinuous onM, andC∞ smooth onU. Then the sum
f + g is lower semicontinuous, and(f + g)(p0) < +∞. According to the smooth
variational principle, there exists aC1 smooth function� : M → R such that(f +
g)−� attains a strong minimum at some pointp ∈ M. In fact we havep ∈ U , because
this function is valued+∞ outsideU. But, since the function�− g is C1 smooth on
U, andf − (�− g) attains its minimum atp, we conclude that

d(�− g)(p) ∈ D−f (p) �= ∅.

Now let us consider the case whenM is not necessarily complete or uniformly
bumpable. Pick a pointp0 ∈ dom(f ) and an open setU containingp0. We may assume
thatU is small enough so that there is a charth : U ⊂ V → H . By Corollary 4.5 we
know that, for anyp ∈ M, we haveD−f (p) �= ∅ if and only if D−(f ◦ h−1)(p) �= ∅,
so it is enough to see that there is somex ∈ h(U) with D−(f ◦ h−1)(x) �= ∅. Define
F(x) = f ◦ h−1(x) if x ∈ h(U), andF(x) = +∞ otherwise. The functionF is lower
semicontinuous onH, andF = f ◦h−1 on h(U). Since the Hilbert spaceH is certainly
complete and uniformly bumpable, we can apply the first part of the argument to find
somex ∈ h(U) so that∅ �= D−F(x) = D−(f ◦ h−1)(x). �

4.5. Mean value inequalities

There are many subdifferential mean value inequality theorems for functions defined
on Banach spaces. Here, we will only consider two of them, which complement each
other. The first one is due to Deville[22] and holds for all lower semicontinuous
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functions f defined on an open convex set of a Banach space, even if they are not
required to be everywhere subdifferentiable, but it demands a bound forall of the
subgradients of the function at all the points where it is subdifferentiable. The second
one is due to Godefroy (who improved a similar previous result of Azagra and Deville),
see[5,33], and only demands the existence ofone subdifferential or superdifferential
which is bounded (by the same constant) at each point, but it requires the function to
satisfyD−f (x)∪D+f (x) �= ∅ for all the pointsx in the domain off (an open convex
subset of a Banach space).

Next, we extend these mean value inequality theorems to the setting of Riemannian
manifolds. The main ideas of the proofs of these results could be adapted to obtain
direct proofs which would be valid for the case of manifolds, but for shortness we
choose here to deduce them from the Hilbert space case.

Theorem 4.18(Deville’s mean value inequality). Let (M, g) be a Riemannian mani-
fold, and let f : M −→ R be a lower semicontinuous function. Assume that there
exists a constantK > 0 such that‖�‖p�K for all � ∈ D−f (p) and p ∈ M. Then,

|f (p)− f (q)|�KdM(p, q) f or all p, q ∈ M.

Proof. The result is true in the case whenM = H is a Hilbert space[22]. For
completeness we give a hint of Deville’s argument, which is an instructive application
of the smooth variational principle. By standard arguments it suffices to show the result
locally (see the proof of the general case below). Fixx0 ∈ H . Sincef is locally bounded
below there areN, � > 0 so thatf (x)−f (x0)�−N wheneverx ∈ B(x0,2�). For fixed
y ∈ B(x0, �/4), � > 0, consider the function defined byF(x) = f (x)−f (y)−
(‖x−y‖)
for ‖x−y‖��, andF(x) = +∞ elsewhere, where
 : [0,∞)→ [0,∞) is C1 smooth
and satisfies
(t) = (K + �)t if t��/2, 
(�)�N , and 
′(t)�K + � for all t > 0. If
inf F < 0, by applying the Smooth Variational Principle one can get a pointx1 ∈
B(y, �) \ {y} and a subgradient� ∈ D−f (x1) so that‖�‖ > K, a contradiction. Hence
F�0, and by letting�→ 0 the local result follows. See[22] for the details.

Now consider the general case of a Riemannian manifold. Fix any two pointsp, q ∈
M, and consider a continuous and piecewiseC1 smooth path� : [0, T ] → M, param-
eterized by arc length, with�(0) = p, �(T ) = q. Take � > 0. According to Theorem
2.3, for eachx ∈ �([0, T ]) there existsrx > 0 so that expx : B(0x,2rx) ⊂ TMx →
B(x,2rx) ⊂ M is a C∞ diffeomorphism so that the derivatives of expx and exp−1

x are
bounded by 1+� on these balls. Since�([0, T ]) is compact, there are a finite collection
of points x1 = p, x2, . . . , xn = q ∈ �[0, T ] so that

� ([0, T ]) ⊂
n⋃
j=1

B(xj , rj ),

where we denoterj = rxj for short. Setr = min{r1, . . . , rn}, and pick anm ∈ N big
enough so thatT/m < r/2. Define t0 = 0 < t1 = T/m < · · · < tj = jT /m < · · · <
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T = tm, and consider the pointsaj , bj with aj = bj−1 = �(tj−1), j = 1, . . . , m, and
bm = �(tm).

For eachj ∈ {1, . . . , m− 1} we may choose anij ∈ {1, . . . , n} so that

�[tj−1, tj ] ∩ B(xij , rij ) �= ∅,

and we also seti0 = 1, im = n (so thatxi0 = p and xim = q). Since the length of the
restriction of � to [tj−1, tj ], which we denote�j , is tj − tj−1 = T/m < r/2�rij /2,
this obviously means that

�[tj−1, tj ] ⊂ B(xij ,2rij )

for each j = 1, . . . , m. In order to avoid an unnecessary burden of notation, in the
sequel we denoteyj = xij , and sj = rij , for j = 0,1, . . . , m.

Consider the functionfj : B(0yj ,2sj )→ R defined byfj = f ◦expyj . By Corollary
4.11 we know that

D−fj (x) = {� ◦ d expyj (x) : � ∈ D−(f )(expyj (x))}

for all x ∈ B(0yj ,2sj ). Since ‖�‖y�K for all � ∈ D−f (y) with y ∈ M, and
‖d expyj (x)‖�(1+ �) for all x ∈ B(0yj ,2sj ), we deduce that‖�‖yj �(1+ �)K for all

� ∈ D−fj (x), x ∈ B(0yj ,2sj ). Then we can apply the result for the caseH = TMxj
and the functionfj to see that

|f (aj )− f (bj )|=|fj (exp−1
yj
(aj ))− f (exp−1

yj
(bj ))|

�(1+ �)KdTMyj

(
exp−1

yj
(aj )),exp−1

yj
(bj )

)
for all j = 1,2, . . . , m. On the other hand, since exp−1

xj
is (1+ �)-Lispchitz we also

have

dTMyj

(
exp−1

yj
(aj )),exp−1

yj
(bj )

)
�(1+ �)dM(aj , bj )

for all j = 1,2, . . . , m. By combining these two last inequalities we deduce that

|f (aj )− f (bj )|�(1+ �)2KdM(aj , bj )�(1+ �)2K
∫ tj

tj−1

‖d�(t)‖ dt

for all j = 1, . . . , m. Therefore,

|f (p)− f (q)|=
∣∣∣∣∣∣
m∑
j=1

(f (aj )− f (bj ))
∣∣∣∣∣∣ �

m∑
j=1

|f (aj )− f (bj )|
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�(1+ �)2K
m∑
j=1

∫ tj

tj−1

‖d�(t)‖ dt = (1+ �)2K
∫ T

0
‖d�(t)‖ dt

=(1+ �)2KL(�).

By taking the infimum over the set of continuous and piecewiseC1 paths� joining p
and q with lengthL(�), we get

|f (q)− f (p)|�(1+ �)2KdM(q, p).

Finally, by letting � go to 0 we obtain the desired inequality:|f (q) − f (p)|�
KdM(q, p). �

Corollary 4.19. Let (M, g) be a Riemannian manifold, and let f : M −→ R be a
continuous function. Then

sup
{‖�‖p : � ∈ D−f (p), p ∈ M} = sup

{‖�‖p : � ∈ D+f (p), p ∈ M} .
These quantities are finite if and only if f is Lipschitz on M, and in this case they are
equal to the Lipschitz constant of f.

Theorem 4.20(Godefroy’s mean value inequality). Let (M, g) be a Riemannian man-
ifold, and let f : M −→ R be a Borel function such that

D−f (p) ∪D+f (p) �= ∅

for everyp ∈ M. Define� : M −→ R by

�(p) = inf {‖�‖p : � ∈ D−f (p) ∪D+f (p)}.

Then, for every path� : I → M parameterized by arc length, one has that

� (f (�(I ))) �
∫
I

�(�(t)) dt.

Here � is the Lebesgue measure inR.
Proof. The result is already proved in the case whenM = H is a Hilbert space,
see[33]. Let us see how the general case can be deduced. Let us denoteI = [0, T ].
For a given� > 0, choose pointsyj = xij , aj , bj , and numberssj = rij , tj , exactly
as in the proof of Theorem4.18. Let us denotefj = f ◦ expyj : B(0yj ,2sj ) → R,

�j = exp−1
yj
◦� : Ij := [tj−1, tj ] → B(0yj ,2sj ) ⊂ TMyj , and

�j (y) = inf {‖�‖yj : � ∈ D−fj (x) ∪D+fj (x)}
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for eachx ∈ B(0yj ,2sj ). SinceD−fj (x) = {� ◦ d expyj (x) : � ∈ D−(f )(expyj (x))} for
all x ∈ B(0yj ,2sj ), and expyj is (1+ �)-bi-Lipschitz on these balls, it is easy to see
that �j (x)�(1+ �)�(expyj (x)) for all x ∈ B(0yj ,2sj ).

By applying the result forH = TMyj , the functionfj and the path�j , we get that

�
(
f (�(Ij ))

) = �
(
fj (�j (Ij ))

)
�
∫
Ij

�j (�j (t)) dt (4.1)

for all j = 1,2, . . . , m. But we also have that

∫
Ij

�j (�j (t)) dt�
∫
Ij

(1+ �)�(expyj (�j (t))) dt = (1+ �)
∫
Ij

�(�(t)) dt. (4.2)

By combining inequalities(4.1) and (4.2), and summing overj = 1, . . . , m, we get

� (f (�(I )))�
m∑
j=1

�
(
f (�(Ij ))

)
�

m∑
j=1

(1+ �)
∫
Ij

�(�(t)) dt

�(1+ �)
m∑
j=1

∫
Ij

�(�(t)) dt = (1+ �)
∫
I

�(�(t)) dt.

Finally, by letting � go to 0 we get� (f (�(I ))) �
∫
I
�(�(t)) dt . �

Corollary 4.21. Let (M, g) be a Riemannian manifold, f : M → R a Borel function
such that for everyp ∈ M there exists� ∈ D−f (p) ∪D+f (p) with ‖�‖p�K. Then,

� (f (�(I ))) �KL(�)

for every path� : I → M. In particular, when f is continuous it follows that|f (p)−
f (q)|�KdM(p, q) for all p, q ∈ M.

5. (Sub)differentiability of convex functions on Riemannian manifolds

The aim of this section is to prove that every (continuous) convex function defined on
a Riemannian manifold is everywhere subdifferentiable, and differentiable on a dense
set.

Definition 5.1. Let M be a Riemannian manifold. A functionf : M → R is said to
be convex provided that the functionf ◦� : I ⊆ R→ R is convex for every geodesic
� : I → M (parameterized by arc length).
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The following proposition is probably known, at least in the case whenM is finite-
dimensional, but we provide a short proof for the reader’s convenience, as we have not
been able to find an explicit reference.

Proposition 5.2. Let M be a Riemannian manifold. If a functionf : M → R is convex
and locally bounded, then f is locally Lipschitz. In particular, every continuous convex
function is locally Lipschitz.

Proof. Takep ∈ M. Sincef is locally bounded there existsR > 0 such thatf is bounded
on the ballB(p,R). According to Theorem2.6, there existsr > 0 with 0< r < R/2
such that the open ballsB(p,2r) and B(p, r) are convex. FixC = sup{f (x) : x ∈
B(p,2r)}, andm = inf {f (x) : x ∈ B(p,2r)}. We are going to see thatf is K-Lispchitz
on the ballB(p, r), whereK = (C − m)/r. Indeed, takex1, x2 ∈ B(p, r). Since
B(p, r) is convex, there exists a unique geodesic� : [t1, t2] → B(p, r), with length
d(x1, x2) = t2−t1, joining x1 to x2. Takev1 ∈ TMx1 such that�(t) = expx1

((t − t1)v1)

for t� t1 small enough. Since the ballB(p,2r) is still convex andx1 ∈ B(p, r), we
may define a geodesic�1 : [−r, r] → B(p,2r) ⊂ M throughx1 by

�1(t) = expx1
(tv1) for all t ∈ [−r, r].

In the same way we may takev2 ∈ TMx2 and define a geodesic�2 : [−r, r] →
B(p,2r) ⊂ M throughx2 by

�2(t) = expx2
(tv2) for all t ∈ [−r, r],

in such a way that�(t) = expx2
((t − t2)v2) for t� t2 with |t | small enough. Set

t3 = t1− r, t4 = t2 + r, x3 = �1(−r), x4 = �2(r), and I = [t3, t4]. Then, if we define
� : I → B(p,2r) by

�(t) =


�1(t − t1) if t ∈ [t3, t1];
�(t) if t ∈ [t1, t2];
�2(t − t2) if t ∈ [t2, t4],

it is clear that� is a geodesic joiningx3 to x4 in B(p,2r). Now, sincef is convex,
the functiong : [t3, t4] ⊂ R→ R defined as

g(t) = f (�(t))

is convex. Therefore we have

g(t1)− g(t3)
t1− t3 � g(t2)− g(t1)

t2− t1 � g(t4)− g(t2)
t4− t2 ,
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where t3 = t1− r < t1 < t2 < t2+ r = t4. Bearing in mind thatx3, x4 ∈ B(p,2r), and
t2− t1 = d(x1, x2), it follows that:

−C −m
r

� f (x1)− f (x3)

r
� f (x2)− f (x1)

d(x1, x2)
� f (x4)− f (x2)

r
� C −m

r
.

This shows that|f (x1) − f (x2)|�Kd(x1, x2) for all x1, x2 ∈ B(p, r), whereK =
(C −m)/r. �

Let us recall that for a locally Lipschitz functionF : H → R on a Hilbert space
H, we may define the generalized directional derivativeF 0(x, v) as the

lim sup
(y,t)→(x,0+)

F (y + tv)− F(y)
t

.

For every x ∈ H , F 0(x, v) is a subadditive positively homogeneous function ofv,
and the set{x∗ ∈ H ∗ : x∗(v)�F 0(x, v) for all v} is called the generalized gradient
of F at x, and is denoted by�F(x). The generalized gradient is a nonempty, convex,
w∗-compact subset ofH ∗; see[10] for more information.

Theorem 5.3. Let g : M → R be a continuous convex function on a Riemannian
manifold. Then g is subdifferentiable at every point of M.

Proof. Let �p : Up → H be an exponential chart atp. We have�p(p) = 0. Given

another pointq ∈ Up, take a(�p, v) ∈ TMq , and denote�q,v(t) = �−1
q (tw), where

(�p, v) ∼ (�q, w), which is a geodesic passing throughq with derivative (�p, v).

Here, (�p, v) ∼ (�q, w) means thatw = d(�q ◦ �−1
p )(�p(q))(v), or equivalently

v = d(�p ◦ �−1
q )(0q)(w).

Let us define

f 0(p, v) = lim sup
q→p t→0+

f (�q,v(t))− f (q)
t

.

Claim 5.4. We have thatf 0(p, v) = inf t>0
f (�p,v(t))−f (p)

t
, and consequently

f 0(p, v) = inf
t>0

(f ◦ �−1
p )(tv)− (f ◦ �−1

p )(0)

t
.

Claim 5.5. There existsx∗ ∈ H ∗ such thatx∗(v)�f 0(p, v) for everyv ∈ H .

From these facts it follows that:

(f ◦ �−1
p )(tv)− (f ◦ �−1

p )(0)− x∗(tv)�0
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for every v ∈ SH , and everyt ∈ [0, r), provided thatB(0, r) ⊂ �p(Up). Hence

(f ◦�−1
p )− x∗ attains a minimum at 0 and thereforex∗ ∈ D−((f ◦�−1

p ))(0). We then
conclude thatD−f (p) �= ∅ by Corollary 4.5. This shows the theorem. �

Proof of Claim 5.4. Fix a � > 0. Sincef ◦ �q,v is convex we have that

f 0(p, v)= lim
�→0+

sup
d(p,q)� ��

sup
0<t<�

f (�q,v(t))− f (q)
t

= lim
�→0+

sup
d(p,q)� ��

f (�q,v(�))− f (�q,v(0))
�

= (∗).

Next, we estimated(�p,v(�),�q,v(�)). We have

d(�p,v(�),�q,v(�))�Kp||�p(�p,v(�))− �p(�q,v(�))|| = Kp||�v − �p(�q,v(�))||
=Kp||�v − (�p ◦ �−1

q )(�w)||
=Kp||�v − (�p ◦ �−1

q )(0)− �d(�p ◦ �−1
q )(0)(w)− o(�)||

=Kp||(�p ◦ �−1
q )(0)+ o(�)||�Kp(||�p(q)|| + ||o(�)||)

�Kp(Lpd(p, q)+ ||o(�)||)�Kp(Lp��+ ��)�C��,

where Lp and Kp are the Lipschitz constants of�p and �−1
p respectively,C =

Kp(Lp+1), and� is small enough so that‖o(�)‖��� and ||D(�p ◦�−1
q )(v)−v|| < �.

Since f is locally Lipschitz there existsK > 0 so thatf is K-Lispchitz on a neigh-
borhood ofp which may be assumed to beUp. From the above estimates we get that,
for d(p, q)���,

∣∣∣∣f (�q,v(�))− f (�q,v(0))�
− f (�p,v(�))− f (�p,v(0))

�

∣∣∣∣
� 1

�
(|f (�q,v(�))− f (�p,v(�))| + |f (p)− f (q)|)

�K
�
(d(�p,v(�),�q,v(�))+ d(p, q))�K(C + 1)�.

Now we deduce that

(∗)� lim
�→0+

f (�p,v(�))− f (�p,v(0))
�

+K(C + 1)�
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and, by letting�→ 0, we get

f 0(p, v)� lim
t→0+

f (�p,v(t))− f (p)
t

= inf
t>0

f (�p,v(t))− f (p)
t

.

Since the other inequality holds trivially the claim is proved.�

Proof of Claim 5.5. We have that

lim sup
q→p t→0+

f (�q,v(t))− f (�q,v(0))
t

= lim
�→0+

sup
d(p,q)<� 0<t<�

f (�q,v(t))− f (�q,v(0))
t

= lim
�→0+

sup
d(p,q)<� 0<t<�

(f ◦ �−1
p )(�p(�q,v(t))− (f ◦ �−1

p )(�p(q))

t

= lim
�→0+

sup
d(p,q)<� 0<t<�

F(y + �y(t))− F(y)
t

,

where (f ◦ �−1
p ) = F , y = �p(q), and �y(t) = �p(�q,v(t))− �p(q). Next, we get

lim
�→0+

sup
d(p,q)<� 0<t<�

F(y + �y(t))− F(y)
t

= lim
�→0+

sup
||y||<� 0<t<�

F(y + �y(t))− F(y)
t

,

becauseLp||y||�d(p, q)�Kp||y|| (recall that�p and (�p)
−1 are Lipschitz).

Now, if we take ||y|| < � and 0< t < �, we have∣∣∣∣F(y + �y(t))− F(y)
t

− F(y + tv)− F(y)
t

∣∣∣∣= ∣∣∣∣F(y + �y(t))− F(y + tv)
t

∣∣∣∣
�K ′ ||�y(t)− tv||

t
= K ′�(t),

whereK ′ is the Lipschitz constant ofF and � satisfies limt→0+ �(t) = 0, because

�y(t)− tv = �p(�q,v(t))− �p(q)− tv = o(t).

Finally, we have∣∣∣∣∣ sup
||y||<� 0<t<�

F(y + �y(t))− F(y)
t

− sup
||y||<� 0<t<�

F(y + tv)− F(y)
t

∣∣∣∣∣
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� sup
||y||<� 0<t<�

∣∣∣∣F(y + �y(t))− F(y)
t

− F(y + tv)− F(y)
t

∣∣∣∣
�K ′ sup

0<t<�
�(t),

which goes to 0 as�→ 0+. Thereforef 0(p, v) = F 0(0, v) and x∗(v)�f 0(p, v) for
every v ∈ H , provided thatx∗ ∈ �F(0), the generalized gradient ofF at 0. �

Theorem 5.6. Let g : M → R be a continuous convex function on a complete Rie-
mannian manifold. Then the setDiff (g) := {x ∈ M : g is differentiable atx} is dense
in M.

Proof. According to Proposition4.17, Diff+(g) := {p ∈ M : D+g(p) �= ∅} is dense in
M. On the other hand, by Theorem5.3, we know that Diff−(g) := {p ∈ M : D−g(p) �=
∅} = M. Then, by Proposition4.6, we get that

Diff (g) = Diff+(g) ∩ Diff−(g) = Diff+(g) is dense inM. �

By using more sophisticated tools, this result can be extended to the category of
locally Lipschitz functions, as we next show.

Theorem 5.7. Let g : M → R be a locally Lipschitz function. If M is finite-
dimensional, then g is differentiable almost everywhere, that is, the setM \ Diff (g)
has measure zero. If M is infinite-dimensional, then the set of points of differentiability
of g, Diff (g), is dense in M.

Proof. SinceM is separable, it suffices to prove the result for any small enough open
set U ⊂ M so thatg is Lipschitz onU. Take a pointp ∈ U . Since the exponential
mapping atp is locally almost an isometry, in particular Lipschitz, it provides us with
a charth = �p : V → H which is Lipschitz, for a suitably small open setV ⊂ U .
Then the compositiong ◦ h−1 : h(V ) ⊂ H → R is a Lipschitz function from an open
subset of a Hilbert space intoR.

In the case whenH is finite-dimensional, the classic theorem of Rademacher tells us
that g ◦h−1 is differentiable almost everywhere inh(V ) (see[31]) and, sinceh is aC1

diffeomorphism (soh preserves points of differentiability and sets of measure zero), it
follows that g is differentiable almost everywhere inV.

If H is infinite-dimensional then we can apply a celebrated theorem of Preiss that
ensures that every Lipschitz function from an open set of an Asplund Banach space
(such as the Hilbert space) has at least one point of differentiability[44]. By this
theorem, it immediately follows thatg ◦ h−1 is differentiable on a dense subset of
h(V ). Since againh is a C1 diffeomorphism, we have thatg is differentiable on a
dense subset ofV.
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Finally, sinceM can be covered by a countable union of such open setsV on each
of which g is Lipschitz, the result follows. �

Corollary 5.8. Let M be a Riemannian manifold, and f : M → R a convex and
locally bounded function. Then f is differentiable on a dense subset of M(whose
complement has measure zero if M is finite-dimensional).

Proof. By Proposition5.2 we know thatf is locally Lipschitz. Then, by Theorem5.7.
it follows that f is differentiable on a dense subset ofM. �

6. Hamilton–Jacobi equations in Riemannian manifolds

First-order Hamilton–Jacobi equations are of the form

F(x, u(x), du(x)) = 0

in the stationary case, and of the form

F(t, x, u(x, t), du(t, x)) = 0

in the evolution case. These equations arise, for instance, in optimal control theory,
Lyapounov theory, and differential games.

Even in the simplest cases, such as the spaceRn, it is well known that very natural
Hamilton–Jacobi equations do not always admit classical solutions. However, weaker
solutions, such as the so-called viscosity solutions, do exist under very general assump-
tions. There is quite a large amount of literature about viscosity solutions to Hamilton–
Jacobi equations, see[8,10–20,26,27]and the references cited therein, for instance.
All these works deal with Hamilton–Jacobi equations inRn or in infinite-dimensional
Banach spaces.

Examples of Hamilton–Jacobi equations also arise naturally in the setting of Rie-
mannian manifolds, see[1]. However, we do not know of any work that has studied
nonsmooth solutions, in general, or viscosity solutions, in particular, to Hamilton–
Jacobi equations defined on Riemannian manifolds (either finite-dimensional or infinite-
dimensional). This may be due to the lack of a theory of nonsmooth calculus for
functions defined on Riemannian manifolds.

In this final section, we will show how the subdifferential calculus we have developed
can be applied to get results on existence and uniqueness of viscosity solutions to some
Hamilton–Jacobi equations defined on Riemannian manifolds. We will also prove some
results about “regularity” (meaning Lipschitzness) of viscosity solutions to some of
these equations.

There are lots of Hamilton–Jacobi equations on Riemannian manifoldsM for which
the tools we have just developed could be used in one way or the other to get interesting
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results about viscosity solutions. For instance, one could get a maximum principle for
stationary first-order Hamilton–Jacobi equations of the type{

u(x)+ F(x, du(x)) = 0 for all x ∈ �,

u(x) = 0 for all x ∈ ��,

where � is an open submanifold ofM with boundary��. One could also prove a
maximum principle for parabolic Hamilton–Jacobi equations of the form{

ut + F(x, ux) = 0,

u(0, x) = u0(x),

where u : R+ ×M → R, and u0 : M → R is an initial condition (assumed to be
bounded and uniformly continuous), in the manner of[26, Section 6].

However, this final section is only intended to give a glimpse of the potential applica-
tions of nonsmooth calculus to the theory of Hamilton–Jacobi equations on Riemannian
manifolds, and not to elaborate a comprehensive treatise on such equations. That is why
we will restrict ourselves mainly to one of the most interesting examples of first-order
Hamilton–Jacobi equations, namely equations of the form

(∗)
{
u+G(du) = f,
u bounded,

wheref : M → R is a bounded uniformly continuous function, andG : T ∗M → R

is a function defined on the cotangent bundle ofM. In fact these equations are really
of the form

(∗)
{
u+ F(du) = 0,

u bounded,

whereF : T ∗M → R, since we can always take a functionF of the formF(x, �x) =
G(x, �x)− f (x).

A bounded Fréchet-differentiable functionu : M → R is a classical solution of the
equation(∗) provided that

u(p)+ F(p, du(p)) = 0 for every p ∈ M.

Let us now introduce the notion of viscosity solution.

Definition 6.1. An upper semicontinuous (usc) functionu : M → R is a viscosity
subsolutionof u+F(du) = 0 if u(p)+F(p, �)�0 for everyp ∈ M and � ∈ D+u(p).
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A lower semicontinuous (lsc) functionu : M → R is a viscosity supersolutionof
u+ F(du) = 0 if u(p)+ F(p, �)�0 for everyp ∈ M and � ∈ D−u(p). A continuous
function u : M → R is a viscosity solutionof u+ F(du) = 0 if it is both a viscosity
subsolution and a viscosity supersolution ofu+ F(du) = 0.

We can define viscosity solutions on a open set� ⊂ M in a natural way when the
functions are defined on�.

Remark 6.2. Since for a Fréchet differentiable functionu we haveD+u(p) = D−u(p)
= {du(p)}, it is clear that every bounded Frechet differentiable viscosity solution of
u+ F(du) = 0 is a classical solution of(∗).

We are going to show the existence and uniqueness of viscosity solutions to Hamilton
–Jacobi equations of the form(∗) provided thatF : T ∗M → R is a function defined
on the cotangent bundle ofM which satisfies a certain uniform continuity condition, see
Definition 6.10 below. The manifoldM must also satisfy the following requirement.

Throughout the remainder of this sectionM will be a complete Riemannian manifold
(either finite- or infinite-dimensional) such thatM satisfies conditions (3) or (4) (which
are both equivalent) of Proposition3.9, that is,M is uniformly locally convex and has
a strictly positive injectivity radius. Equivalently, there is a constantr = rM > 0 such
that for everyx ∈ M the mapping expx is defined onB(0x, r) ⊂ TMx and provides a
C∞ diffeomorphism

expx : B(0x, r)→ B(x, r)

and the distance function is given by the expression

d(y, x) = ‖exp−1
x (y)‖x for all y ∈ B(x, r).

In particular, all compact manifolds satisfy this property. In the remainder of this section
the constantr = rM will be fixed.

Note also that ifM satisfies condition(3) of Proposition3.9 thenM is uniformly
bumpable and therefore the smooth variational principle3.11 holds forM.

We begin with a simple observation that ifM is uniformly bumpable then so is
M ×M.

Lemma 6.3. Let M be a Riemannian manifold. If M is uniformly bumpable thenM×M
is uniformly bumpable as well.

Proof. The natural Riemannian structure inM × M induced by(M, g) is the one
given by

(g × g)(p1,p2)

(
(v1, v2), (w1, w2)

) := gp1(v1, w1)+ gp2(v2, w2).

Let dM×M denote the Riemannian distance that this metric gives rise to in the product
M ×M. It is obvious that if�(t) = (
(t),	(t)) is a path inM ×M then 
 and 	 are
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paths inM satisfying

max{L(
), L(	)}�L(�)�L(
)+ L(	)�2 max{L(
), L(	)},

which implies that

max{dM(x1, y1), dM(x2, y2)}�dM×M ((x1, x2), (y1, y2))

�dM(x1, y1)+ dM(x2, y2)

�2 max{dM(x1, y1), dM(x2, y2)}

for every x = (x1, x2), y = (y1, y2) ∈ M ×M.
SinceM is uniformly bumpable, there exist numbersR = RM > 1 andrM > 0 such

that for everyp0 ∈ M, � ∈ (0, rM) there exists aC1 smooth functionb : M → [0,1]
such thatb(p0) = 1, b(x) = 0 if dM(x, p0)��, and supx∈M ‖db(x)‖x�R/�. Now take
a pointp = (p1, p2) ∈ M×M. For any� ∈ (0, rM), there areC1 smooth bumpsb1, b2
on M such thatbi(pi) = 1, bi(xi) = 0 wheneverdM(xi, pi)��, and ‖dbi(xi)‖�R/�
for every xi ∈ M; i = 1,2. Define aC1 smooth bumpb : M ×M → R by

b(x) = b(x1, x2) = b1(x1)b2(x2) for all x = (x1, x2) ∈ M ×M.

It is obvious thatb(p1, p2) = 1. If dM×M(x, p)�2� we have that

2 max{dM(x1, p1), dM(x2, p2)}�dM×M(x, p)�2�,

so dM(xi, pi)�� for somei ∈ {1,2}, hencebi(xi) = 0 for the samei, and b(x) = 0.
Finally, we have that

‖db(x1, x2)‖2
(x1,x2)

= ‖db1(x1)‖2
x1
+ ‖db2(x2)‖2

x2
�2(R/�)2,

which means that

‖db(x)‖x� 2
√

2R

2�

for everyx = (x1, x2) ∈ M×M. ThereforeM×M satisfies the conditions in Definition
3.6, with RM×M = 2

√
2R, and rM×M = 2rM . �

Since we are assuming thatM is uniformly locally convex andi(M) > r > 0,
hence that the distance functiony 
→ d(y, x) is C∞ smooth onB(x, r) \ {x} for
every x ∈ M, we can consider the distance functiond : M ×M → R and its partial
derivatives�d(x0, y0)/�x and �d(x0, y0)/�y. We next see that these partial derivatives



D. Azagra et al. / Journal of Functional Analysis 220 (2005) 304–361 347

satisfy a nice antisymmetry property. In order to compare them in a natural way we
need to use the parallel translation fromTMx0 to TMy0 along the geodesic joiningx0
to y0 (note that there is a unique minimizing geodesic joiningx0 to y0 becauseM is
uniformly locally convex andd(x0, y0) < r).

Notation 6.4. Let x0, y0 ∈ M be such thatd(x0, y0) < r. Let �(t) = expx0
(tv0),

0� t�1 be the unique minimizing geodesic joining these two points. For every vector
w ∈ TMx0, we denote

Lx0y0(w) = P 1
0,�(w)

the parallel translation ofw from x0 to y0 along �. Recall that the mappingLx0y0 :
TMx0 → TMy0 is a linear isometry, with inverseLy0x0 : TMy0 → TMx0. As we cus-
tomarily identify TMp with T ∗Mp (via the linear isometryv 
→ 〈v, ·〉p), the isometry
Lx0y0 induces another linear isometry between the cotangent fibersT ∗Mx0 andT ∗My0.
We will still denote this new isometry byLx0y0 : T ∗Mx0 → T ∗My0.

Lemma 6.5. Let x0, y0 ∈ M be such that0< d(x0, y0) < r. Then

Ly0x0

(
�d(y0, x0)

�y

)
= −�d(x0, y0)

�x
.

Proof. Denoter0 = d(x0, y0) < r. Consider the geodesic�(t) = expx0
(tv0), 0� t�1,

wherey0 = expx0
(v0). By the definitions of parallel translation and geodesic it is clear

that

Lx0y0(v0) = �′(1) = d expx0
(v0)(v0).

On the other hand, under the current assumptions onM, and by the Gauss lemma
(see [39,41]), we know that�′(1) is orthogonal to the sphereS(x0, r0) = {y ∈ M :
d(y, x0) = r0} = expx0

(S(0x0, r0)). Since this sphereS(x0, r0) is a one-codimensional
submanifold ofM defined as the set of zeros of the smooth functiony 
→ d(y, x0)− r0
and (as is easily checked)

�d(y0, x0)

�y
�= 0,

we also have that this partial derivative is orthogonal to the sphereS(x0, r0) at the
point y0. Therefore,

Lx0y0(v0) = �′(1) = �
�d(y0, x0)

�y
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for some� �= 0. Furthermore, since the functiont 
→ d(�(t), x0) is increasing, we get
that � > 0. Finally, it is clear thaty 
→ d(y, x0) is 1-Lipschitz, and∥∥∥∥�d(y0, x0)

�y

∥∥∥∥ = 1,

from which we deduce that� = ‖Lx0y0(v0)‖y0 = ‖v0‖x0, and

Lx0y0(v0) = ‖v0‖x0

�d(x0, y0)

�y
. (6.1)

Now consider the geodesic	(t) = expy0
(tw0), 0� t�1, where expy0

(w0) = x0. By
the definitions of parallel translation and geodesic we know that

Lx0y0(v0) = −w0 and ‖w0‖y0 = ‖v0‖x0. (6.2)

A completely analogous argument to the one we used for� above shows that

Ly0x0(w0) = ‖w0‖ �d(x0, y0)

�x
. (6.3)

By combining (6.1)–(6.3) we immediately get that

Ly0x0

(
�d(y0, x0)

�y

)
= v0

‖v0‖x0

= −Ly0x0(w0)

‖w0‖y0

= −�d(x0, y0)

�x
. �

The following proposition can be viewed as a perturbed minimization principle for
the sum or the difference of two functions. Its proof is a consequence of the smooth
variational principle3.11 and Lemma6.5.

Proposition 6.6. Let u, v : M → R be two bounded functions which are upper semi-
continuous(usc) and lower semicontinuous(lsc) respectively. Then, for every � > 0,
there existx0, y0 ∈ M, and � ∈ D+u(x0), � ∈ D−v(y0) such that

(i) d(x0, y0) < �,
(ii) ‖�− Ly0x0(�)‖x0 < �

(iii) v(z)− u(z)�v(y0)− u(x0)− � for everyz ∈ M.

Here Ly0x0 : T ∗My0 → T ∗Mx0 stands for the parallel translation.

Proof of Proposition 6.6.We can obviously assume that� < r(M). Let b : R→ R

be aC∞ smooth function such thatb is nonincreasing,

b(t) = b(0) > 2(‖v‖∞ + ‖u‖∞)+ � if t��/4, and b(t) = 0 if t��. (6.4)
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Define the functionw : M ×M → R by

w(x, y) = v(y)− u(x)− b(d(x, y)) for all (x, y) ∈ M ×M.

The functionw is lower semicontinuous and bounded. By Lemma6.3 we know that
M ×M is uniformly bumpable, andM ×M is obviously complete, so we can apply
the smooth variational principle3.11 to the functionw to get a pair(x0, y0) ∈ M ×M
and aC1 smooth functiong : M ×M → R such that

(a) ‖g‖∞ < �/2> ‖dg‖∞
(b) v(y)− u(x)− b(d(x, y))− g(x, y)�v(y0)− u(x0)− b(d(x0, y0))− g(x0, y0) for all

x, y ∈ M.

If we take x = x0 in (b) we get thatv is subdifferentiable at the pointy0, and

� := �g(x0, y0)

�y
+ �(b ◦ d)(x0, y0)

�y
∈ D−v(y0). (6.5)

In a similar manner, by takingy = y0 in (b) we get that

� := −
(

�g(x0, y0)

�x
+ �(b ◦ d)(x0, y0)

�x

)
∈ D+u(x0). (6.6)

Let us note that

Ly0x0

(
�(b ◦ d)(x0, y0)

�y

)
+ �(b ◦ d)(x0, y0))

�x

= b′(d(x0, y0))

[
Ly0x0

(
�d(x0, y0)

�y

)
+ �d(x0, y0)

�x

]
= 0, (6.7)

thanks to Lemma6.5 whenx0 �= y0, and to the definition ofb whenx0 = y0. Therefore,

‖Ly0x0(�)− �‖x0

=
∥∥∥∥Ly0x0

(
�g(x0, y0)

�y

)
+ Ly0x0

(
�(b ◦ d)(x0, y0)

�y

)

+ �g(x0, y0)

�x
+ �(b ◦ d)(x0, y0)

�x

∥∥∥∥
x0

= ‖Ly0x0

(
�g(x0, y0)

�y

)
+ �g(x0, y0)

�x
‖x0

�
∥∥∥∥�g(x0, y0)

�y

∥∥∥∥
y0

+
∥∥∥∥�g(x0, y0)

�x

∥∥∥∥
x0

�‖dg‖∞ + ‖dg‖∞ < �
2
+ �

2
= �,
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which shows (ii).
On the other hand, if we hadd(x0, y0)�� then, by takingx = y = z in (b) we

would get

b(0)�v(z)− u(z)− g(z, z)+ g(x0, y0)− v(y0)+ u(x0)

�2(‖v‖∞ + ‖u‖∞)+ �,

which contradicts the definition ofb, see (1) above. Therefored(x0, y0) < � and (i) is
proved.

Finally, if we takez = x = y in (b) and we bear in mind that‖g‖∞ < �/2 and the
function b is nonincreasing, we get that

v(z)− u(z)�v(y0)− u(x0)+ b(0)− b(d(x0, y0))+ g(z, z)− g(x0, y0)

�v(y0)− u(x0)+ 0− �/2− �/2= v(y0)− u(x0)− �,

which shows (iii) and finishes the proof.�

Remark 6.7. Let us observe that the preceding proposition is no longer true if the
manifold is not complete. For example:M = (0,1) ⊂ R, g(x) = x, f (x) = 0, and
� > 0 small.

Definition 6.8. For a given open set� ⊂ M and a functionu : � → R, we define
the upper semicontinuous envelope ofu, which we denoteu∗, by

u∗(x) = inf {v(x) | v : �→ R is continuous andu�v on �} for any x ∈ �.

In a similar way we define the lower semicontinuous envelope, denoted byu∗.

Proposition 6.9. Let � be an open subset of M. LetF be a uniformly bounded family
of upper semicontinuous functions on�, and let u = sup{v : v ∈ F}. Then, for every
p ∈ �, and every� ∈ D+u∗(p), there exist sequences{vn} ⊂ F , and {(pn, �n)} ⊂
T ∗(�), with �n ∈ D+vn(pn) and such that
(1) limn vn(pn) = u∗(p)
(2) limn (pn, �n) = (p, �).

Proof. Fix a chart(U,�), with p ∈ U . Let us consider the familyF ◦�−1 = {v◦�−1 :
v ∈ F}. The functions of this collection are upper semicontinuous on�(U ∩ �), and
the family is uniformly bounded. On the other handu ◦ �−1 = sup{v ◦ �−1 : v ∈ F},
and u∗ ◦ �−1 = (u ◦ �−1)∗. Now apply [27, Proposition VIII.1.6](which is nothing
but the result we want to prove in the case of a Banach space) to the Hilbert space,
the open set�(U ∩ �), the family F ◦ �−1, the point�(p), and the superdifferential
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�◦d�(p)−1 ∈ D+(u◦�−1)(�(p)). We get sequences{�(pn)} in �(U ∩�), {vn ◦�−1}
in F ◦ �−1, and �n ◦ d�(p)−1 ∈ D+(vn ◦ �−1)(�(pn)) such that limn �(pn) = �(p),
limn �n ◦ d�(p)−1 = � ◦ d�(p)−1, and

lim
n
(vn ◦ �−1)(�(pn)) = (u ◦ �−1)∗(�(p)) = u∗ ◦ �−1(�(p)).

Hence limn pn = p, limn vn(pn) = u∗(p), and

lim
n

�n ◦ d�(pn)−1 = lim
n

�n ◦ d�(pn)−1 ◦ d�(p) ◦ d�(p)−1 = lim
n

�n ◦ d�(p)−1

because� is C1, so limn d�(pn)−1 ◦ d�(p) = id. The result follows trivially from the
local representation of the cotangent bundle.�

Now we introduce the notion of uniform continuity that we have to require of
F : T ∗M → R in order to prove the existence and uniqueness of viscosity solutions
to the Hamilton–Jacobi equation(∗).

Definition 6.10. We will say that a functionF : T ∗M → R is intrinsically uniformly
continuous provided that for every� > 0 there exists� ∈ (0, rM) such that

d(x, y)��, � ∈ T ∗Mx, � ∈ T ∗My, ‖�− Lyx(�)‖x�� �⇒ |F(x, �)− F(y, �)|��.

Remark 6.11. It should be noted that ifF satisfies the above definition thenF is
continuous. This is obvious once we notice that the mapping

(x, �) ∈ T ∗Mx 
→ Lxx0(�)

is continuous at(x0, �0), that is, if (xn, �n) → (x0, �0) in T ∗M then Lxnx0(�n) →
�0, for every (x0, �0) ∈ T ∗M. The fact that this mapping is continuous is an easy
consequence of the definition of the parallel translation along a curve as a solution to
an ordinary linear differential equation.

Remark 6.12. Consider a finite-dimensional manifoldM embedded inRn, so T ∗M ⊂
R2n. Assume thatM satisfies the following condition:
∀� ∃ � > 0: v, h ∈ TMx x ∈ M, ‖v‖x�� norm of h�1 �⇒ ‖d expx(v)(h)−h‖x��
(note in particular that this condition is automatically met whenM is compact, and in
many other natural examples). Then every functionF : T ∗M → R which is uniformly
continuous with respect to the usual Euclidean metric inR2n is intrinsically uniformly
continuous as well, as is easily seen. Consequently there are lots of natural examples
of intrinsically uniformly continuous functionsF : T ∗M → R.

Now we can prove the followingmaximum principlefor Hamilton–Jacobi equations
of the form (∗).
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Theorem 6.13.Let f, g : M → R be bounded uniformly continuous functions, and
F : T ∗M → R be intrinsically uniformly continuous. If u is a bounded viscosity
subsolution ofu+F(du) = f andv is a bounded viscosity supersolution ofv+F(dv) =
g, then v − u� inf (g − f ).

Proof. If � > 0 is given, then, by Proposition6.6, there existp, q ∈ U , and � ∈
D+u(p), � ∈ D−v(q) such that

(i) d(p, q) < �, ‖�− Lqp(�)‖p < �
(ii) v(x)− u(x)�v(q)− u(p)− � for every x ∈ M.

Since u and v are viscosity sub and super solutions respectively, we haveu(p) +
F(p, �)�f (p) and v(q)+ F(q, �)�g(q). Hence, for everyx ∈ M,

v(x)− u(x)�v(q)− u(p)− ��g(q)− F(q, �)− f (p)+ F(p, �)− �

� inf (g − f )+ (f (q)− f (p))+ (F (p, �)− F(q, �))− �.

Now, if we let �→ 0+, we have thatf (q) − f (p) goes to 0 becausef is uniformly
continuous. On the other hand, the fact thatF is intrinsically uniformly continuous
implies thatF(p, �) − F(q, �) goes to 0 as� → 0+. Consequently we obtainv −
u� inf (g − f ). �

Remark 6.14. In fact, an obvious modification of the above proof yields the following
result on continuous dependence of viscosity solutions of equations of the form(∗)
with respect to the HamiltoniansF. Namely, letF,G : T ∗M → R be intrinsically
uniformly continuous Hamiltonians, and define‖F −G‖∞ = sup{|F(p, �)−G(p, �)| :
(p, �) ∈ T ∗M}. If u andv are viscosity solutions ofu+F(du) = 0 andv+G(dv) = 0,
respectively, then|v(x)− u(x)|�‖F −G‖∞ for every x ∈ M.

Proposition 6.15. Let� be an open subset of M. LetF be a uniformly bounded family
of functions on�, and let u = sup{v : v ∈ F}. If every v is a viscosity subsolution of
u+ F(du) = 0, then u∗ is a viscosity subsolution ofu+ F(du) = 0.

Proof. Let p ∈ � and � ∈ D+u∗(p). According to Proposition6.9, there exist
sequences{vn} ⊂ F , and {(pn, �n)} ⊂ T ∗(�) with �n ∈ D+vn(pn) and such that

(i) lim n vn(pn) = u∗(p)
(ii) lim

n
(pn, �n) = (p, �).

Since vn are viscosity subsolutions ofu + F(du) = 0, we have thatvn(pn) +
F(pn, �n)�0. Henceu∗(p)+ F(p, �)�0. �

Corollary 6.16. The supremum of two viscosity subsolutions is a viscosity subsolution.

Theorem 6.17.Let M be a complete Riemannian manifold which is uniformly locally
convex and has a strictly positive injectivity radius. LetF : T ∗M → R be an intrin-
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sically uniformly continuous function(see Definition6.10). Assume also that there is
a constantA > 0 so that−A�F(x,0x)�A for every x ∈ M. Then, there exists a
unique bounded viscosity solution of the equationu+ F(du) = 0.

Proof. Uniqueness follows from Theorem6.13, by takingf = g = 0. In order to show
existence, let us defineF as the family of the viscosity subsolutionsw : M → R to
u+ F(du) = 0 that satisfy

−A�w(p)�A for every p ∈ M.

The family F is nonempty, as the functionw0(p) = −A belongs toF (because
−A+ F(p,0p)�0). Let u be the upper semicontinuous envelope of sup{w : w ∈ F},
and v be the lower semicontinuous envelope ofu. By the definition, we havev�u.
On the other hand, according to Proposition6.15, u is a viscosity subsolution of
u+ F(du) = 0.

Claim 6.18. v is a viscosity supersolution ofu+ F(du) = 0.

Once we have proved the claim, we have thatu�v by Proposition6.13, henceu = v
is a viscosity solution, and existence is established.

So let us prove the claim. Ifv is not a viscosity supersolution, there existp0 ∈ M
and �0 ∈ D−v(p) such thatv(p0) + F(p0, �0) < 0. By Theorem4.3(5), there exists
a C1 smooth functionh : M → R with �0 = dh(p0) and such thatv − h attains a
global minimum atp0. Hence we may assume that

v(p0)+ F(p0, dh(p0)) < 0, v(p0) = h(p0), and h(p)�v(p)

for all p ∈ M. (6.8)

From the inequalityh(p)�v(p)�u(p)�A we geth(p0) < A: otherwiseA−h would
have a local minimum atp0, and consequentlydh(p0) = 0, which impliesv(p0) +
F(p0, dh(p0)) = h(p0)+ F(p0, dh(p0)) = A+ F(p0,0)�A−A = 0, a contradiction
with (6.8).

Now we can take a number� > 0 and aC1 smooth functionb : M → [0,∞) with
support onB(p0, �), b(p0) > 0, and such that||b||∞, ||db||∞ are small enough so that

h(p)+ b(p)+ F(p, dh(p)+ db(p)) < 0 for every p ∈ B(p0,2�) (6.9)

and

h(p)+ b(p)�A for every p ∈ M. (6.10)

This is possible because of (6.8) and the fact thatF is continuous.
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Let us consider the following function:

w(p) =
{

max{h(p)+ b(p), u(p)} if p ∈ B(p0,2�),
u(p) otherwise.

We have thatw(p) = u(p) if p ∈ �1 := M \ B(p0, �), becauseu(p)�v(p)�h(p) =
h(p)+b(p) wheneverp ∈ B(p0,2�) \B(p0, �). Thereforew is a viscosity subsolution
of u+F(du) = 0 on �1. On the other hand, bearing (6.9) in mind, it is clear thatw is
the maximum of two viscosity subsolutions on�2 := B(p0,2�), and consequentlyw is
a viscosity subsolution on�2. Thereforew is a viscosity subsolution ofu+F(du) = 0
onM = �1∪�2. This implies thatw ∈ F , since−A�u�w andw(p)�A, by (6.10).

Finally, we have thatu�w, becauseu� supF . Therefore we haveu(p)�w(p)�h
(p) + b(p) on B(p0, �) and in particularv(p0) = u∗(p0)�h(p0) + b(p0) > h(p0),
which contradicts (6.8). �

WhenM is compact, the preceding Theorem takes on a simpler appearance.

Corollary 6.19. Let M be a compact Riemannian manifold, f : M → R a continuous
function, and F : T ∗M → R an intrinsically uniformly continuous function. Then
there exists a unique viscosity solution of the equationu+ F(du) = f .

Proof. This follows immediately from Theorem6.17, taking into account the following
facts: (1) if M is compact thenM is uniformly locally convex andi(M) > 0 (see
Remarks2.9 and2.12); (2) every viscosity solutionu is continuous, henceu is bounded
on the compact manifoldM; and of course (3)f is uniformly continuous becausef is
continuous onM, compact. �

Remark 6.20. In particular, when a compact manifoldM is regarded as embedded in
Rn, so T ∗M ⊂ R2n, andF : T ∗M → R is uniformly continuous with respect to the
usual Euclidean metric inR2n, then Corollary6.19 and Remark6.12 yield the existence
of a unique viscosity solution to the equationu+ F(du) = f .

However, the requirement thatF is uniformly continuous cannot be relaxed in prin-
ciple, because the cotangent bundleT ∗M is never compact, so, even thoughF is
continuous, we cannot ensure thatF is uniformly continuous onT ∗M.

Remark 6.21. It should be noted that one may pose a Hamilton–Jacobi problem
such as

u+ F(du) = 0, u bounded (∗)

on a manifoldM without presupposing any Riemannian structure defined onM. Then
one may consider the natural question whether it is possible to find a suitable Rieman-
nian structureg which makesM uniformly locally convex and with a positive injectivity
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radius, and which makesF intrinsically uniformly continuous as well. In other words,
one can seek for a Riemannian manifoldN with positive convexity and injectivity radii
and a diffeomorphism� : N → M so that the functionG : T ∗N → R is intrinsically
uniformly continuous, whereG = F ◦ (T ∗�), with T ∗� : T ∗N → T ∗M defined by

T ∗�(x, �) :=
(
�(x), � ◦ (d�−1)(�(x))

)
. Then, by Theorem6.17, the equation

v +G(dv) = 0, v bounded (∗∗)

has a unique viscosity solution. But it is obvious thatv is a viscosity solution to(∗∗) if
and only if the functionu = v ◦�−1 is a viscosity solution to(∗). Hence the equation
(∗) has a unique viscosity solution as well. This means that Theorem6.17 above is
applicable to even more situations than one might think of at a single glance. The
following example reveals the power of this scheme.

Example 6.22.Let M be the submanifold ofR3 defined by

z = 1

x2+ y2 ,

let F : T ∗M ⊂ R6→ R, and consider the Hamilton–Jacobi equationu+ F(du) = 0.
If we endowM with its natural Riemannian structure inherited fromR3, M will not
be uniformly locally convex, and besidesi(M) = 0, so Theorem6.17 is not directly
applicable. Now let us defineN by

z = 1

x2+ y2− 1
, z > 0,

with its natural Riemannian structure as a submanifold ofR3. It is clear thatN is
uniformly locally convex and has a positive injectivity radius. The mapping� : N →
M defined by

(x, y, z) =
(√

x2+ y2− 1√
x2+ y2

x,

√
x2+ y2− 1√
x2+ y2

y, z

)

is a C∞ diffeomorphism. Assume that the functionG = F ◦ (T ∗�) : T ∗N → R

is uniformly continuous with respect to the usual metric inR6. Since N satisfies
the property of Remark6.12, we have thatG is intrinsically uniformly continuous.
Therefore, by the preceding Remark6.21, the equationu+ F(du) = 0, u bounded on
M, has a unique viscosity solution.

Now let us see how Deville’s mean value Theorem4.18 allows to deduce a result on
the regularity of viscosity solutions (or even subsolutions) to Hamilton–Jacobi equations
with a “coercive” structure.
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Corollary 6.23. Let M be a Riemannian manifold, andF : R×T ∗M → R a function.
Consider the following Hamilton–Jacobi equation:

F(u(x), du(x)) = 0. (HJ3)

Assume that there exists a constantK > 0 such thatF(t, �x) > 0 whenever‖�x‖x�K
and t ∈ R. Let u : M → R be a viscosity subsolution of(HJ3). Then:

(1) u is K-Lipschitz, that is, |u(x)− u(y)|�Kd(x, y) for everyx, y ∈ M.
(2) If M is finite dimensional, u is Fréchet differentiable almost everywhere.
(3) If M is infinite-dimensional u is Fréchet differentiable on a dense subset of M.

Proof. If u is a viscosity subsolution thenF(u(x), �x)�0 for every x ∈ M and
�x ∈ D−u(x). Hence‖�x‖�K for every �x ∈ D−u(x) (otherwiseF(u(x), �x) > 0, a
contradiction). Then, by Theorem4.18, u is K-Lipschitz.

On the other hand, (2) and (3) follow immediately from Theorem5.7. �

Let us conclude with a brief study of a HJ equation which is not of the form(∗)
above, but which is still very interesting because of the geometrical significance of its
unique viscosity solution. LetM be a complete Riemannian manifold,� a bounded
open subset ofM, and let �� be the boundary of�. Consider the Hamilton–Jacobi
equation

(HJ4)

{ ‖du(x)‖x = 1 for all x ∈ �,
u(x) = 0 for all x ∈ ��.

There is no classical solution of (HJ4). Indeed, if we had a functionu : � ⊂ M → R

which is differentiable on� and satisfies‖du(x)‖x = 1 for x ∈ � and u = 0 on ��,
then we could apply Theorem3.1 to find a pointx0 ∈ � so that‖du(x0)‖x0 <

1
2, a

contradiction.
Nevertheless, we are going to see that there is a unique viscosity solution to (HJ4),

namely the distance function to the boundary��. By definition, a functionu is a
viscosity solution to (HJ4) if and only ifu is continuous;u = 0 on ��; ‖�‖x�1 for
all � ∈ D−u(x), x ∈ �; and ‖�‖x�1 for all � ∈ D+u(x), x ∈ �.

Theorem 6.24.Let M be a complete Riemannian manifold, and � a bounded open
subset of M with boundary��. Then the functionx 
→ d(x, ��) := inf {d(x, y) : y ∈
��} is a viscosity solution of Eq.(HJ4). Moreover, if M is uniformly locally convex
and has a positive injectivity radius, then d(·, ��) is the unique viscosity solution of
this equation.

Proof. Let us first check uniqueness. Assumeu, v : � → R are viscosity solutions
of (HJ4). Sinceu and v are continuous, andu = v = 0 on ��, we can extendu and
v with continuity to the whole ofM by settingu = 0 = v on M \ �. It is enough to
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see thatu�v on � (in a similar way, or by symmetry,v�u, henceu = v). To this
end we take any
 ∈ (0,1) and we check that
u�v. Indeed, suppose we had that
inf {v(x)− 
u(x) : x ∈ �} < 0. Pick � with

0< 2� < min

{
1− 


2
, − inf {v(x)− 
u(x) : x ∈ �}

}
.

Note that, asu andv are viscosity solutions, we have‖�‖x�1 for every� ∈ D+u(x)∪
D+v(x), x ∈ �, so by the mean value Theorem4.18 u and v are 1-Lipschitz. In
particular, since� is bounded we have thatu and v are bounded. Then, according to
Proposition6.6, there existx0, y0 ∈ M, � ∈ D+(
u)(x0), � ∈ D−v(y0) with

(1) d(x0, y0) < �
(2) ‖�− Lx0y0(�)‖x0 < �
(3) inf(v − 
u)�v(y0)− 
u(x0)− �.

Taking into account the facts thatu and v are 1-Lipschitz, andu = v = 0 onM \ �,
it is easy to see that (3) and the choice of� imply that x0, y0 ∈ �. Now, sinceu and
v are viscosity solutions we have that

1



� ∈ D+u(x0) �⇒

∥∥∥∥1



�

∥∥∥∥
x0

�1�⇒ ‖�‖x0 �


and

� ∈ D−v(y0) �⇒ ‖�‖y0 �1.

Now, from (2), and bearing in mind thatLx0y0 is a linear isometry, we get that

1�‖�‖y0 = ‖Lx0y0(�)‖x0 �‖�‖x0 + ��
+ � < 1,

a contradiction.
Now let us prove thatu := d(·, ��) is a viscosity solution to (HJ4), hence the only

one. The propertyu = 0 on �� is obvious from the definition, so we only have to
check the conditions on the norms of the vectors ofD−u(x) andD+u(x), for x ∈ �.
Step1: Take� ∈ D−u(x), x ∈ �. We have to see that‖�‖x�1. By Theorem4.3 we

can pick aC1 smooth function� : M → R so thatu(y)−�(y)�u(x)−�(x) = 0 for
all y ∈ M. Fix 0< � < 1. Now, for every
 with 0 < 
 < d(x, ��), by the definition
of d(x, ��) we can takex
 ∈ �� with

d(x, ��)�d(x, x
)− �

4
.
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Next, by making use of Ekeland’s approximate Hopf–Rinow type Theorem2.2, we can
find a pointy
 ∈ � with

d(x
, y
) <
�

4

and a geodesic�
 : [0, T
] → � ⊂ M joining x = �
(0) to y
 = �
(T
), and such
that L(�
) = d(x, y
). Then we have

L(�
) = d(x, y
)�d(x, x
)+ d(x
, y
)�d(x, x
)+
�

4

�d(x, ��)+ �

2
,

that is

d(x, ��)�L(�
)−
�

2
. (6.11)

Set v
 = d�
(0)/dt ∈ TMx , so that�
(t) = expx(tv
) and ‖v
‖x = 1, and define
z
 = �
(
). Then we have

�(z
)− �(x)�u(z
)− u(x) = d(z
, ��)− d(x, ��)

�d(z
, ��)− L(�
)+
�

2

�d(z
, y
)+ d(y
, x
)− L(�
)+
�

2

�L(�
|[
,T
]))+
�

2
− L(�
)+

�

2

=L(�
)− 
+ �

2
− L(�
)+

�

2
= 
(−1+ �),

hence

�(z
)− �(x)



� − 1+ �. (6.12)

By the mean value theorem there iss
 ∈ [0, 
] such that

d�(�
(s
))

(
d�
(s
)

dt

)
= �(z
)− �(x)



. (6.13)

By combining (6.12) and (6.13), and bearing in mind that‖d�
(s)/dt‖�
(s)
= 1 for all

s, we get that

‖d�(�
(s
))‖�
(s
)
�1− � (6.14)
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for every 
 ∈ (0, u(x)). Then, since the functionsy → d�(y) and (y, �)→ ‖�‖y are
continuous, and�
(s
) = expx(s
v
)→ expx(0) = x as 
→ 0, it follows that

‖�‖x = ‖d�(x)‖x = lim

→0+

‖d�(�
(s
))‖�
(s
)
�1− �. (6.15)

Finally, by letting �→ 0 in (6.15), we deduce that‖�‖x�1.
Step2: Now take� ∈ D+u(x), x ∈ �, and let us see that‖�‖x�1. This is much

easier. Pick aC1 smooth function� : M → R so that d�(x) = � and u(y) −
�(y)�u(x) − �(x) = 0 for all y ∈ M. For eachv ∈ TMx consider the geodesic
�v(t) = expx(tv). Sinceu = d(·, ��) is 1-Lipschitz we have that

�(�v(t))− �(�v(0))�u(�v(t))− u(�v(0))� − d(�v(t), �v(0)) = −t,

hence

�(�v(t))− �(�v(0))
t

� − 1

for all t > 0 small enough, and

d�(x)(v) = lim
t→0+

�(�v(t))− �(�v(0))
t

� − 1. (6.16)

As (6.16) holds for everyv ∈ TMx , we conclude that‖�‖x = ‖d�(x)‖x�1. �
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