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For the Banach spaces E = c0(Γ), �p(Γ), where Γ is an 
arbitrary infinite set and 1 < p < ∞, we show that for every 
(non-zero) quotient F of E, every continuous function f :
E → F can be uniformly approximated by smooth functions 
with no critical points, that is for every continuous function 
ε : E → (0, ∞), there exists a Ck smooth function g : E → F
such that g′(x) is surjective and ‖f(x) − g(x)‖ ≤ ε(x) for all 
x ∈ E (k = ∞ if E = c0(Γ) or p is an even integer, k = p − 1
if p is an odd integer and k = [p] otherwise). Moreover, for a 
wide class of (not necessarily separable) infinite dimensional 
Banach spaces E and a suitable class of quotients F of E, 
every continuous function f : E → F can be uniformly 
approximated by Ck smooth functions with no critical points 
(k depending on the properties of the smoothness of the space 
E). In particular, for every Banach space E with Ck smooth 
partitions of unity (k ∈ N ∪{∞}) and an infinite dimensional 
separable complemented subspace with a Ck smooth and LUR 
norm, we show that every continuous function f : E → Rn
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(n ∈ N) can be uniformly approximated by C1 smooth 
functions with no critical points.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

The main purpose of this paper is to extend, from the separable to the not necessarily 
separable situation, the results given in [1,25,7,5] concerning what one can regard as 
an approximate strong version of the Morse-Sard theorem for mappings between Ba-
nach spaces E and F , where E is infinite-dimensional. Namely, under some appropriate 
conditions on an infinite-dimensional Banach space E, for every (non-zero) quotient F
of E (or a certain class of quotients F of E), every continuous function f : E → F , 
and for every continuous function ε : E → (0, ∞), there exists a Ck smooth function 
g : E → F with no critical points (that is, g′(x) is surjective for all x ∈ E) such that 
‖f(x) − g(x)‖ ≤ ε(x) for all x ∈ E. Here k depends on the smoothness of E.

Let us put our work in context. This kind of results is in connection with the classical 
Morse-Sard theorem [36,37] stating that if f : Rn → Rm is a Ck smooth function with 
k > max{n − m, 0} and Cf is the set of critical points of f , i.e. the set of points x
with non surjective derivative f ′(x), then the set of critical values f(Cf ) is of Lebesgue 
measure zero in Rm. This result has been very valuable in the areas of topology and 
analysis (see for instance the monographs of Hirsch [29] and Yomdi and Comte [43]). 
Subsequently, different versions of the Morse-Sard theorem have been obtained by Bates 
and Moreira [9,34].

There are also different versions of the Morse-Sard theorem in the infinite-dimensional 
setting. Smale [38] proved for X and Y separable connected smooth manifolds modelled 
on Banach spaces and f : X → Y a Ck smooth Fredholm map that f(Cf ) is of first 
category (and thus f(Cf ) has no interior points) provided k > max{index(f ′(x)), 0} for 
all x ∈ X. The term index stands for the index of the Fredholm operator f ′(x), that is 
the difference between the dimension of the kernel of f ′(x) and the codimension of the 
image of f ′(x), which are both finite. The above assumptions impose that when X is 
infinite-dimensional then Y is infinite-dimensional. In contrast, Kupka constructed C∞

smooth functions f : �2 → R such that their critical values f(Cf ) contain intervals [31]. 
Bates and Moreira proved that such kind of functions can even be taken to be polynomial 
of degree three [9,34].

For many applications of the Morse-Sard theorem it is enough to approximate any 
continuous function by a smooth function whose set of critical points has empty interior 
[29,43], so we can refer to this as an approximate Morse-Sard theorem. In connection with 
this, Eells and McAlpin proved that any continuous function f : �2 → R can be uniformly 
approximated by smooth functions g whose set of critical values g(Cg) is of measure zero. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Azagra and Cepedello [1] showed that every continuous mapping f : �2 → Rm can be 
uniformly approximated by C∞ smooth functions with no critical points. Recall that 
a bump function is a non-zero function with bounded support. Hajek and Johanis [25]
established a similar result and proved that in any separable Banach space X containing 
c0 and with a Cp smooth bump function (p ∈ N ∪ {∞}) every continuous function 
f : X → R can be uniformly approximated by a Cp smooth function g such that g′(X)
is of first category in X∗ and g′(X) ∩N = ∅ for any pre-fixed countable set N ⊂ X∗. Later, 
Azagra and Jiménez-Sevilla [7] proved that in every separable Banach space X with a 
LUR and Cp smooth norm (p ∈ N ∪ {∞}) every continuous function f : X → R can be 
uniformly approximated by Cp smooth functions with no critical points. In particular for 
p = 1 the space X can be taken to be any separable Banach space with separable dual, 
thus providing a characterization of Banach spaces with separable dual. Also, the results 
in [7] yield the existence of approximations by Cp smooth functions with no critical 
points provided X is separable, has an unconditional basis and a Cp smooth Lipschitz 
bump function.

Recently, Azagra, Dobrowolski and García-Bravo [5] proved that every continuous 
function f : E → F can be uniformly approximated by Ck smooth functions with no 
critical points whenever E = c0, �p, Lp with p ∈ (1, ∞) and F is a (non-zero) quotient of 
E, being k = ∞ for E = c0, �p with p even integer, k = p − 1 for p odd integer and k is 
the integer part of p otherwise. Similar approximation results are also establised in [5]
under certain assumptions on a separable Banach space E and any (non-zero) quotient 
F of E.

Later, García-Bravo [21] established on a certain family of separable Banach spaces 
E (including c0 and �p with 1 < p < ∞) that for every C1 smooth function f : E → Rn, 
any continuous function ε : E → (0, ∞) and any open set U containing the critical points 
of f there is a C1 smooth function g : E → Rn such that ||f(x) − g(x)|| < ε(x) for every 
x ∈ E, g has no critical points and f = g outside U .

We refer to the introduction of the paper [5] for more background about Morse-Sard 
results. Here, we want to emphasize that in the literature there are no approximate 
Morse-Sard results for nonseparable spaces, even in the fundamental case where E is a 
nonseparable Hilbert space and F = R.

The results stated in this paper are also connected with the area of ranges of derivatives 
of a Ck smooth function f : E → R (k ∈ N ∪ {∞}), and more generally for functions 
f : E → F , for E and F Banach spaces. In particular, the size and the shape of ranges 
of derivatives has been extensively studied by many authors. Azagra and Deville [2]
constructed a C1 smooth bump function f such that f ′(X) = X∗ on every Banach space 
admitting a C1 smooth Lipschitz bump function, in contrast with James’ characterization 
of reflexive spaces as those Banach spaces E where the subdifferential of the norm ∂|| ·
|| verifies ∂|| · ||(SE) = SE∗ , where SE and SE∗ are the unit spheres of E and E∗, 
respectively. Also, Azagra, Deville and Jiménez-Sevilla in [3] and Azagra, Fabian and 
Jiménez-Sevilla in [4] established conditions on the Banach spaces X and Y for the 
existence of Fréchet (Gâteaux, Ck) smooth functions f : X → Y with bounded support 



4 D. Azagra et al. / Journal of Functional Analysis 287 (2024) 110488
so that the range of the derivatives (successive derivatives for k > 1) fill the space of 
continuous linear (symmetric k-linear for k > 1) mappings from X to Y . Subsequent 
results have been obtained by Borwein, Fabian and Loewen in [12], Borwein, Fabian, 
Kortezov and Loewen in [11] and Azagra, Fabian and Jiménez-Sevilla in [4] to establish 
sufficient conditions on the Banach spaces X, Y and on an open (or closed) set A of 
continuous linear (symmetric k-linear for k > 1) mappings from X to Y to get the 
existence of a Fréchet (Gâteaux, Ck) smooth function with bounded support such that 
the range of the derivatives (successive derivatives for k > 1) is the set A. In contrast, 
Hajek [24] proves that Fréchet differentiable real-valued functions on c0 with locally 
uniformly continuous derivative have locally compact derivative. Hajek proves that the 
same is true for Fréchet differentiable mappings from c0 into any Banach space F with 
non trivial type. Also, the results of Hajek and Johanis in [25] mentioned above provide 
Cp smooth functions whose range of first derivatives is of first category. We refer the 
reader to [25,30,16] and references therein for more information on this area. Also related 
with this subject is the existence of smooth bump functions not satisfying Rolle’s theorem 
on every infinite dimensional Banach space E with a smooth bump function (see [6] and 
references therein).

In this paper, we deal with a stronger version of an approximate Morse-Sard theorem, 
namely the uniform approximation of any continuous function f : E → F by Ck smooth 
functions with no critical points under suitable assumptions on the Banach spaces E and 
F (being F a non-zero quotient of E) and k ∈ N ∪ {∞}).

Our notation is standard. E, F , X, Y will be real Banach spaces with norm denoted 
by ‖ · ‖, dual norm denoted by ‖ · ‖∗, closed unit ball B‖·‖, unit sphere S‖·‖, etc. If a 
mapping f : E → F is (Fréchet) differentiable, its derivative at a point x ∈ E will be 
denoted indistinctly by Df(x) or f ′(x). The critical set of f (that is, the set of all points 
x ∈ E such that the linear mapping Df(x) : E → F is not surjective) will be denoted 
by Cf . So Cf = ∅ if and only if f has no critical points. For a pair of Banach spaces 
E, F , we denote by Ck(E, F ) the class of Ck smooth functions defined on E with values 
in F , where k ∈ N ∪{∞}. If F = R, we shall write Ck(E, R) or Ck(E). Other necessary 
definitions will be provided as they are needed below. For any undefined terms in Banach 
space theory we refer to the monographs [17,18,26].

This paper is structured as follows. In Section 2 we will recall some tools that will 
be essential to our proofs, such as M-bases, homeomorphic embeddings into c0(Γ) with 
smooth coordinate functions, smooth partitions of unity, and diffeomorphisms extracting 
certain sets.

In Section 3 we will prove the following two results concerning Ck smooth approxi-
mations with no critical points to continuous functions defined on the classical infinite 
dimensional Banach spaces c0(Γ) and �p(Γ), with p ∈ (1, ∞) for any infinite set Γ. Let 
us recall that, if Γ is an infinite set, c0(Γ) is defined as the space

c0(Γ) = {(xγ)γ∈Γ ⊂ RΓ : for every ε > 0 the set {γ ∈ Γ : |xγ | ≥ ε} is finite}.
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We endow this space with the supremum norm ‖(xγ)γ∈Γ‖∞ = supγ∈Γ |xγ |.
Similarly, for every 1 < p < ∞ we define �p(Γ) as the space

�p(Γ) = {(xγ)γ∈Γ ⊂ RΓ :
∑
γ∈Γ

|xγ |p < ∞},

endowed with the norm ‖(xγ)γ∈Γ‖p =
(∑

γ∈Γ |xγ |p
)1/p

.
Both (c0(Γ), ‖ · ‖∞) and (�p(Γ), ‖ · ‖p) are Banach spaces, and when Γ is uncountable 

they become non-separable.
In order to simplify the notation, we will write ‖f − g‖ < ε to refer to the inequality 

‖f(x) − g(x)‖ < ε(x) for all x ∈ E.

Theorem 1.1. Let E = c0(Γ), where Γ is any infinite set, and let F be a (non-zero) 
quotient of E. Then for every continuous mapping f : E → F and every continuous 
function ε : E → (0, ∞) there exists g ∈ C∞(E, F ) such that ‖f − g‖ < ε and g has no 
critical points.

Theorem 1.2. Let E = �p(Γ), where Γ is any infinite set and 1 < p < ∞, and let F be 
a (non-zero) quotient of E. Then for every continuous mapping f : E → F and every 
continuous function ε : E → (0, ∞) there exists g ∈ Ck(E, F ) such that ‖f − g‖ < ε and 
g has no critical points. Here k = ∞ if p is even, k = p −1 if p is odd and k = [p], where 
[p] is the integer part of p, if p /∈ N.

We will establish much more general results in other sections of the paper, but we 
think it is important to provide a separate proof of these theorems for classical Banach 
spaces, for the following two reasons. One is that some readers will only be interested in 
understanding why this kind of result is true for these spaces (especially for the Hilbert 
space), and the proofs can be written in a much more simple and transparent way in 
these cases. The other reason is that some of the ideas and techniques that we will be 
using in the proofs of the rest of our theorems are already present in these simple cases, 
so once the readers are acquainted with them they will be able to focus on the specific 
difficulties of the more general cases.

The proof of Theorem 1.2 requires two key tools: one is the existence of certain deleting 
diffeomorphisms on �p(Γ) given in [5] by Azagra, Dobrowolski and García-Bravo, and the 
other one is the existence of certain homeomorphic embeddings from �p(Γ) into c0(Γ′)
(for some infinite set Γ′) whose coordinate functions are Ck smooth, given by Toruńczyk 
in [40]. On the other hand, the proof of Theorem 1.1 only requires the existence of certain 
C∞ smooth partitions of unity of c0(Γ) with functions that locally depend on a finite 
number of coordinates. As said above, these essential tools will be explained in the next 
section.
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Since every Hilbert space E is isometric to �2(Γ), where Γ is any set with the same 
cardinal as a complete orthonormal system in E, Theorem 1.2 immediately yields the 
following fundamental corollary.

Corollary 1.3. Let E be an infinite dimensional Hilbert space, and let F be a (non-zero) 
quotient of E. Then for every continuous mapping f : E → F and every continuous 
function ε : E → (0, ∞) there exists g ∈ C∞(E, F ) such that ‖f − g‖ < ε and g has no 
critical points.

We now proceed to describe some of our more general and technical results in this 
paper.

Definition 1.4. We say that a Banach space E has a decomposition of the form E =⊕
n∈N En for a sequence {En}∞n=1 of subspaces of E, whenever the following holds:

(i) For every n ∈ N, En is a closed subspace of E;
(ii) En ∩ Em = {0} whenever n �= m;
(iii) Every x ∈ E can be written in a unique way as a sum x =

∑∞
n=1 xn with xn ∈ En

for all n;
(iv) The canonical projections Pn : E → En given by Pn(x) = xn are continuous; in 

particular each En is complemented in E.

In Section 4 we prove the following two main results for a target space F (finite or 
infinite dimensional).

Theorem 1.5. Let k ∈ N ∪ {∞} and let X, Y and F be Banach spaces such that:

(1) X has Ck smooth partitions of unity.
(2) Y is infinite-dimensional and has a Ck smooth and LUR norm.
(3) Y is reflexive, Y =

⊕
n∈N

Yn.

(4) F is a (non-zero) quotient of Yn for every n ∈ N.
(5) The canonical projection Q : Y →

⊕
j odd

Yj given by Q(y) =
∑

j odd
yj, for every 

y =
∞∑
j=1

yj ∈ Y with yj ∈ Yj, is well defined and continuous.

Then for every continuous mapping f : X ⊕ Y → F and every continuous function 
ε : X ⊕ Y → (0, ∞) there exists g ∈ Ck(X ⊕ Y, F ) such that ‖f − g‖ < ε and g has no 
critical points.

Regarding condition (5) in Theorem 1.5, it is worth mentioning that this condition 
holds in the case that the decomposition Y = ⊕n∈NYn is “unconditional”, that is, there 
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is a constant K ≥ 1 such that ‖ 
∑

j∈σ yj‖ ≤ K‖ 
∑

j∈τ yj‖ whenever σ and τ are finite 
subsets of integers with σ ⊂ τ and yj ∈ Yj for all j ∈ τ . Also, if all the Yn are isomorphic 
to Y , then condition (4) in Theorem 1.5 (and Theorem 1.6 below) can be replaced by 
“F is a non-zero quotient of Y ”.

Notice that, in Theorem 1.5, if k ≥ 2 then the assumption on the existence of a Ck

smooth and LUR norm on Y yields in particular the superreflexivity of the space Y (see 
[19] or [17, Chapter V, Proposition I.3]). So Theorem 1.5 for k ≥ 2 only concerns certain 
superreflexive Banach spaces Y . Let us also note that not every superreflexive Banach 
space can be equivalently renormed with a C2 smooth and LUR norm (for example, �p, 
for 1 < p < 2, cannot be renormed in such a way). Now, in Theorem 1.5, if we do not 
assume Y to be reflexive (so this only involves case k = 1), we have to require additional 
conditions on Y to get the same conclusion, as we do in the following theorem.

Theorem 1.6. Let X, Y and F be Banach spaces such that:

(1) X has C1 smooth partitions of unity.
(2) Y is infinite-dimensional and has a C1 smooth and LUR norm.
(3) Y =

⊕
n∈N Yn, each Yn has a shrinking M-basis and the union of all these M-bases, 

which we denote by {ui, u∗
i }i∈I ⊂

⋃
n∈N(Yn × Y ∗

n ) is a shrinking M-basis of Y .
(4) F is a (non-zero) quotient of Yn for every n ∈ N.
(5) The canonical projections

Qm : Y → (⊕m
j=1Yj) ⊕ (

⊕
j odd
j>m

Yj)

given by

Qm(y) =
m∑
j=1

yj +
∑

j odd
j>m

yj ,

for every y =
∑∞

j=1 yj ∈ Y with yj ∈ Yj, are well defined and have norm one for all 
m ∈ N. That is, ‖Qm(y)‖ ≤ ‖y‖ for all y ∈ Y and all m ∈ N.

Then for every continuous mapping f : X ⊕ Y → F and every continuous function 
ε : X ⊕ Y → (0, ∞) there exists g ∈ C1(X ⊕ Y, F ) such that ‖f − g‖ < ε and g has no 
critical points.

Regarding condition (5) in Theorem 1.6, it is worth mentioning that this condition 
holds in the case that the decomposition Y = ⊕n∈NYn is “unconditional” with associated 
constant K = 1, i.e. ‖ 

∑
j∈σ yj‖ ≤ ‖ 

∑
j∈τ yj‖ whenever σ and τ are finite subsets of 

integers with σ ⊂ τ and yj ∈ Yj for all j ∈ τ .
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As in the preceding section, a key tool in the proofs of Theorem 1.5 and Theorem 1.6 is 
the existence of certain homeomorphic embeddings from X⊕Y into c0(Γ′) (for a certain 
set Γ′) whose coordinate functions are Ck smooth. Also, the proofs require the existence 
of certain deleting diffeomorphisms on X ⊕ Y except for the case Y = c0(Γ) (for any 
infinite set Γ). In the latter case we have that in fact, the partial derivative with respect 
to the second coordinate y of the approximating function g is a surjective operator at 
every point (x, y) ∈ X ⊕ Y . Let us record this fact in the following proposition.

Proposition 1.7. Let k ∈ N ∪ {∞}, let Γ be an infinite set and let X and F be Banach 
spaces such that:

(1) X has Ck smooth partitions of unity.
(2) F is a (non-zero) quotient of c0(Γ).

Then for every continuous mapping f : X ⊕ c0(Γ) → F and every continuous function 
ε : X ⊕ c0(Γ) → (0, ∞) there exists g ∈ Ck(X ⊕ c0(Γ), F ) such that ‖f − g‖ < ε and 
∂g
∂y (x, y) is surjective for every (x, y) ∈ X ⊕ c0(Γ). In particular, g has no critical points.

Note that all reflexive Banach spaces admit a C1 smooth LUR norm and a shrinking 
M-basis (see [41, Corollary 6] or [27, Theorem 6.1]).

In Section 5, we deal with the particular case of a finite dimensional target space F . 
The fact that F is finite dimensional allows us to dispense with some of the assumptions 
made in Theorem 1.5 and Theorem 1.6. In this case, our main result reads as follows.

Theorem 1.8. Let k ∈ N ∪ {∞} and let X be a Banach space with Ck smooth partitions 
of unity, let Y be a separable infinite dimensional Banach space with a Ck smooth and 
LUR norm and let F be a (non-zero) finite dimensional space. Then for every continuous 
function f : X ⊕ Y → F and every continuous function ε : X ⊕ Y → (0, ∞) there exists 
g ∈ Ck(X ⊕ Y, F ) such that ‖f − g‖ < ε and g has no critical points.

We note that for the case of E = {0} ⊕ Y = Y , where Y is separable and k = 1, 
this result yields a characterization of the approximate strong Morse-Sard property for 
finite dimensional targets F : it is necessary and sufficient that E has C1 partitions of 
unity. This was previously known for F = R (see [7]) but the result is new for higher 
dimensions of F . In fact we have the following.

Corollary 1.9. Let E be a Banach space with C1 smooth partitions of unity. Assume there 
exists an infinite dimensional separable and complemented subspace Y ⊂ E. Let F be a 
(non-zero) finite dimensional space. Then, for every continuous function f : E → F and 
every continuous function ε : X → (0, ∞) there exists g ∈ C1(E, F ) such that ‖f−g‖ < ε

and g has no critical points.
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Recall that a Banach space Y is Weakly Compactly Generated (WCG for short) 
whenever Y is the closed linear span of a weakly compact set of Y . In particular, separable 
Banach spaces are WCG. Reformulating Theorem 1.8 in a different way we get the 
following corollary which we will prove in Section 5 as well.

Corollary 1.10. Let k ∈ N ∪ {∞}, let X be a Banach space with Ck smooth partitions of 
unity, let Y be an infinite dimensional Banach space with a LUR and Ck smooth norm 
and let F be a (non-zero) finite dimensional space. For k = 1, let us assume in addition 
that Y is WCG. Then for every continuous function f : X⊕Y → F and every continuous 
function ε : X ⊕ Y → (0, ∞) there exists g ∈ Ck(X ⊕ Y, F ) such that ‖f − g‖ < ε and g
has no critical points.

Remark 1.11. The role of the space X in our main results Theorems 1.5, 1.6, 1.8 and 
Corollary 1.10, can be taken by somehow bad spaces in terms of smoothness. For instance, 
Haydon gives in [28] examples of Banach spaces C0(T ), where T is a tree, that have C∞

smooth partitions of unity but no C1 smooth equivalent norm (note that this never 
occurs for separable spaces).
We note as well that there exist Banach spaces with C1 smooth and LUR norm, as the 
Johnson-Lindenstrauss space JL0 (see [44] for the definition and more properties about 
this space), which do not lie under the assumptions given for the space Y in any of the 
main results of this paper. The reason is that JL0 does not have a M-basis and cannot 
have a separable complemented subspace, because since it is c0-saturated this would 
imply by Sobczyk’s theorem [39] that c0 is complemented in JL0, which is not true (see 
[44, page 1764]). It is indeed an open question for us if one may have approximated 
Morse-Sard type results for this kind of spaces.

The proof of Theorem 1.8 relies on three key tools. We are already familiar with two 
of them: the existence of certain deleting diffeomorphisms on X⊕Y and the existence of 
certain homeomorphic embeddings from X⊕Y into c0(Γ′) (for a suitable infinite set Γ′) 
with Ck smooth coordinate functions. When Y is not reflexive, we need a third key tool: 
the construction of a residual set of C1 smooth and LUR (equivalent) norms on Y whose 
dual norms are Fréchet differentiable at the points of a pre-fixed subspace of countable 
Hamel dimension of Y ∗ (except at 0). Here the residuality is considered within the Baire 
space (NY , ρ) of all equivalent norms on Y with the Hausdorff metric (see Section 5 for 
the definitions). Let us describe it in what follows. For a given Banach space Y with norm 
p, let us denote by NAp the set of elements x∗ ∈ Y ∗ such that x∗ attains its p∗-norm 
(being p∗ the dual norm of p), that is, there is x ∈ Sp := {x ∈ Y : p(x) = 1} satisfying 
p∗(x∗) = x∗(x). Also, we denote by cone(W ) the cone generated by a set W of a Banach 
space Y (see Section 5.1 for the definitions), and we say that a set is Kσ whenever it 
is a countable union of compact sets. Specifically we will prove the following renorming 
results.
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Proposition 1.12. Let Y be a Banach space and let W ⊂ S‖·‖∗ be a Kσ subset. Then the 
set of norms p ∈ NY such that its dual norm p∗ is Fréchet differentiable at the points of 
cone(W ) \ {0} is residual in (NY , ρ). In particular, the set of norms p ∈ NY such that 
cone(W ) ⊂ NAp is residual in (NY , ρ).

Remark 1.13. Notice that, in Proposition 1.12 as well as in Corollary 1.14, we can take 
as W the set W = H ∩ S||·||∗ , being H a subspace of Y ∗ of countable Hamel dimension 
(and thus cone(W ) = H).

Corollary 1.14. Let Y be a Banach space with a LUR norm ‖ · ‖ whose dual norm ‖ · ‖∗ is 
LUR. Let W ⊂ S‖·‖∗ be a Kσ subset. Then the set of norms p ∈ NY such that both p and 
its dual norm p∗ are LUR and p∗ is Fréchet differentiable at the points of cone(W ) \ {0}
is residual in (NY , ρ). In particular, the set of norms p ∈ NY such that both p and its 
dual norm p∗ are LUR and cone(W ) ⊂ NAp is residual in (NY , ρ).

We refer to Vanderwerff [42], Hajek [23], Dantas, Hajek and Russo [13–15] for more 
information on C1 smooth norms (or more generally Ck smooth norms and analytic 
norms) on dense subspaces of Banach spaces.

Finally, in the last section, we will show that, when stating the existence of Ck

smooth approximations with no critical points to continuous functions from an (infinite-
dimensional) Banach space X to any (non-zero) quotient space F of X, it is enough to 
consider F = X as explained in the following fact.

Fact 1.15. Let k ∈ N ∪ {∞} and let X be a Banach space. Then the following are 
equivalent:

(1) For every (non-zero) quotient F of X, every continuous mapping f : X → F and 
every continuous function ε : X → (0, ∞) there exists g ∈ Ck(X, F ) such that 
‖f − g‖ < ε and g has no critical points.

(2) For every continuous mapping f : X → X and every continuous function ε : X →
(0, ∞) there exists g ∈ Ck(X, X) such that ‖f − g‖ < ε and g has no critical points.

As in the results given in [7], the existence of Ck smooth approximations with no 
critical points to real-valued continuous functions defined on a Banach space X yields 
two important corollaries: (1) a nonlinear Ck smooth Hahn-Banach separation theorem
(Corollary 6.1) and (2) Ck smooth approximations of closed sets (Corollary 6.2), which 
shall be stated in the last section.

2. Preliminaries

Let us gather several tools that we will need in our proofs.
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2.1. M-bases and embeddings into c0(Γ) with C1 smooth coordinate functions

Let us denote by span{A} (or span(A)) the span of a set A of a normed space E, by 
span{A} (or span(A)) the closed linear span of A and by spanw∗{A} (or spanw∗(A)) the 
weak∗ closed linear span of A.

Definition 2.1. Let E be a Banach space and Γ an infinite set. A family {xγ , x∗
γ}γ∈Γ ⊂

E×E∗ is called a Markushevich basis for E, henceforth called an M-basis, if x∗
γ(xβ) = δγβ

for all γ, β ∈ Γ, E = span{xγ : γ ∈ Γ} and E∗ = spanw∗{x∗
γ : γ ∈ Γ}. It is moreover 

called shrinking provided that E∗ = span{x∗
γ : γ ∈ Γ}.

Observe that if {xγ , x∗
γ}γ∈Γ ⊂ E ×E∗ is an M-basis, the fact that E∗ = spanw∗{x∗

γ :
γ ∈ Γ} implies that {x∗

γ}γ∈Γ is a total set over E, meaning that if x∗
γ(x) = 0 for all γ

then x = 0.
It is nowadays well-known that reflexive spaces admit shrinking M-bases (see [27, 

Theorem 6.1]). Moreover we will use that reflexive spaces E have renormings that are 
locally uniformly rotund (LUR) and C1 smooth on E\{0} (see [41, Corollary 6]). Joining 
these two facts we can give a simple proof of the following result about the existence 
of homeomorphic embeddings into c0(Γ) with C1 smooth coordinate functions. We note 
that this result was first proved by Lindenstrauss [33] using strongly the results from 
[32]. However he did not use the existence of shrinking M-basis for reflexive spaces. 
Lemma 2.2, together with Theorem 2.8 was shown in [40] to derive the existence of C1

smooth partitions of unity for reflexive spaces.

Lemma 2.2. ([33]) Let E be a Banach space with an (equivalent) C1 smooth and LUR 
norm ‖ · ‖ in E and a shrinking M-basis {xγ , x∗

γ}γ∈Γ in E with ‖x∗
γ‖ = 1 for all γ ∈ Γ. 

Assuming 0 /∈ Γ, the mapping u : E → c0({0} ∪ Γ) defined by

u(x)γ =
{
‖x‖2 if γ = 0
x∗
γ(x) if γ ∈ Γ,

(u(x)γ being the γ-coordinate of u(x)) is a homeomorphic embedding and x → u(x)γ is 
C1 smooth for every γ ∈ {0} ∪ Γ.

Proof. It is clear that the mapping L : E → �∞(Γ) defined by L(x)γ = x∗
γ(x) if γ ∈ Γ is 

linear and continuous (where L(x)γ is the γ-coordinate of L(x)). In fact, since ‖x∗
γ‖ = 1

for all γ ∈ Γ, we have ‖L(x)‖ = sup{|x∗
γ(x)| : γ ∈ Γ} ≤ ‖x‖ for all x ∈ E. Besides, since 

L : E → �∞(Γ) is bounded, L(span{xγ : γ ∈ Γ}) ⊂ c0(Γ), and c0(Γ) is closed in �∞(Γ), 
we have that L : E → c0(Γ). Therefore u is well-defined and continuous, and the fact 
that {xγ , x∗

γ}γ∈Γ is an M-basis in E implies that L is injective, hence u is injective too.
Let us see that u−1 : u(E) → E is continuous as well. If (yk)k∈N ⊂ u(E) converges 

to some y ∈ u(E), say yk = u(xk) 
k→∞−−−−→ u(x) = y. For γ = 0, u(xk)γ = ‖xk‖2 k→∞−−−−→
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u(x)γ = ‖x‖2. Therefore (‖xk‖)k is bounded. Moreover we have that x∗
γ(xk) 

k→∞−−−−→ x∗
γ(x), 

for all γ, which together with the boundedness of (‖xk‖)k and the fact that {xγ , x∗
γ}γ∈Γ

is a shrinking M-basis in E imply that xk weakly converges to x. Finally, the weak 
convergence and the convergence of norms limk→∞ ‖xk‖ = ‖x‖ yield that (xk)k converges 
to x in the norm topology, as the norm ‖ · ‖, being LUR, has the Kadec-Klee property 
[17]. �
2.2. Smooth partitions of unity and LFC functions. Toruńczyk result

Let Γ be a set. For every γ ∈ Γ let us introduce the linear functionals e∗γ : c0(Γ) → R

that map any vector x = (xγ)γ∈Γ to its γ-coordinate, that is e∗γ(x) = xγ .

Definition 2.3. For k ∈ N ∪ {∞}, We will say that a Ck smooth function f : c0(Γ) → R

locally depends on finitely many coordinates (LFC or LFC-{e∗γ}γ∈Γ) if for every x ∈ c0(Γ)
there is an open neighbourhood Ux of x, a finite set {γ1, . . . , γn} ⊂ Γ and a Ck smooth 
function ϕ : Rn→R so that for every y ∈ Ux we have

f(y) = ϕ(e∗γ1
(y), . . . , e∗γn

(y)) = ϕ(yγ1 , . . . , yγn
).

Observe that for all y ∈ Ux we have f ′(y) ∈ span{e∗γk
: k = 1, . . . , n} and therefore

n⋂
k=1

Ker e∗γk
⊂ Ker f ′(y).

The following result can be found in [26, Page 284] (for the separable case the original 
proof is due to N. Kuiper and can be found in [10]).

Theorem 2.4. For any set Γ the space c0(Γ) admits an equivalent C∞ smooth
LFC-{e∗γ}γ∈Γ norm.

In order to construct our smooth approximation in the proofs of the main theorems 
it will be important for us to have smooth and LFC partitions of unity at our disposal. 
Recall that the (open) support of a function ψ : X → R is defined as supp0 ψ = {x ∈
X : ψ(x) �= 0}.

Definition 2.5. Let X be a Banach space and a family {ψα}α∈Δ of continuous functions 
ψα : X → [0, ∞) for all α ∈ Δ. The family {ψα}α∈Δ is called a partition of unity on X
if for every x ∈ X there is a neighbourhood Ux in X which intersect only finitely many 
of {supp0 ψα}α∈Δ and 

∑
α∈Δ ψα(x) = 1 for all x ∈ X.

Definition 2.6. We say that a Banach space X admits C-partitions of unity for a certain 
class C of continuous functions defined on X if for any open covering {Uα}α∈Δ of X there 
is a partition of unity {φβ}β∈Ω on X such that {φβ}β∈Ω ⊂ C and for each β there is α
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such that supp0 φβ ⊂ Uα (we will say that {ψβ}β∈Ω is subordinated to {Uα}α∈Δ). The 
type of families C that we consider throughout the paper allows us to have for a Banach 
space X with C-partitions of unity and for every open covering {Uα}α∈Ω a partition of 
unity {ψα}α∈Ω ⊂ C such that supp0 ψα ⊂ Uα for all α (and say with this meaning that 
{ψα}α∈Ω is subordinated to {Uα}α∈Ω). So we will use this last property in a Banach 
space X admitting C-partitions of unity.

For the next result see [40] or also [26, p. 422].

Lemma 2.7. ([40]) For any set Γ the space c0(Γ) admits C∞-smooth and LFC-{e∗γ}γ∈Γ
partitions of unity.

We need to state for future use Toruńczyk’s result [40, Theorem 1], about the existence 
of certain type of partitions of unity for Banach spaces which admit homeomorphic 
embeddings into c0(Γ) with C1 smooth coordinate functions.

Theorem 2.8. ([40]) Let E be a Banach space and let S be a family of real valued con-
tinuous functions defined on E satisfying

(1) For every function g : E → R, every open cover U = {Ui}i∈Δ of E and every family 
{ψi : i ∈ Δ} ⊂ S, if ψi|Ui

= g|Ui
for all i ∈ Δ, then g ∈ S.

(2) If n ∈ N, Ψ ∈ C∞(Rn) and ψ1, . . . , ψn ∈ S, then Ψ(ψ1, . . . , ψn) ∈ S.

Then E admits S-partitions of unity if and only if there is a set Γ and a homeomorphic 
embedding u : E → c0(Γ) so that e∗γ ◦ u ∈ S for every γ ∈ Γ.

2.3. Diffeomorphic extraction of closed sets

Finally we need a result which guarantees that we can diffeomorphically extract cer-
tain closed sets. This is basically a restatement of [5, Theorem 1.4].1

Theorem 2.9. ([5]) Let E be a Banach space, k ∈ N ∪ {∞}, and C ⊂ E be a closed set 
with the property that, for each x ∈ C, there exist a neighbourhood Ux of x in E, Banach 
spaces E(1,x) and E(2,x), and a continuous mapping fx : Cx → E(2,x), where Cx is a closed 
subset of E(1,x), such that:

(1) E = E(1,x) ⊕ E(2,x);
(2) E(1,x) has Ck smooth partitions of unity;
(3) E(2,x) is infinite-dimensional and has an equivalent Ck smooth norm;

1 We note that there is an omission in the assumptions of [5, Theorem 1.4]: in item (3) it is important 
that the Cp smooth norm in E(2,x) is equivalent to the restriction of the original one in E.
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(4) C ∩ Ux ⊂ G(fx), where

G(fx) = {y = (y1, y2) ∈ E(1,x) ⊕E(2,x) : y2 = fx(y1), y1 ∈ Cx}.

Then, for every open cover G of E there exists a Ck diffeomorphism d : E → E \C which 
is limited by G (that is, the family of sets {{x, d(x)} : x ∈ E} refines G, meaning that 
for every x ∈ E there is a Gx ∈ G such that both x and d(x) are in Gx).

In some cases we will use the above theorem in the following form.

Corollary 2.10. ([5]) Let E be a Banach space, k ∈ N ∪ {∞}, and C ⊂ E be a closed 
set with the property that, for each x ∈ C, there exist a neighbourhood Ux of x in E and 
Banach spaces E(1,x) and E(2,x) such that:

(1) E = E(1,x) ⊕ E(2,x);
(2) E(1,x) has Ck smooth partitions of unity;
(3) E(2,x) is infinite-dimensional and has an equivalent Ck smooth norm;
(4) C ∩ Ux ⊂ E(1,x) ⊕ {0}.

Then, for every open cover G of E there exists a Ck diffeomorphism d : E → E \C which 
is limited by G.

3. Proofs for the classical spaces c0(Γ) and �p(Γ)

3.1. Proof of Theorem 1.1

The proof for the space c0(Γ) is simpler than that for �p(Γ), since in this case we do 
not have to extract any critical set. Let us write E = c0(Γ). By Lemma 2.7, the space 
E admits C∞ smooth partitions of unity {ψα}α∈A where the functions ψα locally are of 
the form

x �→ ψα(x) = ϕα

(
e∗γ1

(x), ..., e∗γn
(x)
)
, (3.1)

where the functionals e∗γ : E → R are defined by e∗γ(x) = xγ (the γ-th coordinate of x ∈
c0(Γ)) for certain indexes γ1, ..., γn ∈ Γ with n ∈ N (depending on the neighbourhood), 
and certain C∞ smooth function ϕα : Rn �→ R (also depending on the neighbourhood).

Thus, given f and ε as in the statement, we may find an open covering {Uα}α∈A of 
E and a partition of unity {ψα}α∈A subordinated to {Uα}α∈A such that each ψα locally 
is of the form (3.1) and

‖f(x) − f(y)‖ < ε(y)/4 and ε(x) < 2ε(y) for all x, y ∈ Uα, and for each α ∈ A.
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Without loss of generality we may assume that for every α ∈ A the diameter of the 
set Uα is less than ε(xα)/4, where xα is a point in Uα that we fix from now on.

Let us define g : E → F by

g(x) =
∑
α∈A

ψα(x) (f(xα) + T (x− xα)) , (3.2)

where T : E → F is a continuous linear operator that we define as follows. Note that 
�(Γ ×N) = �Γ, so we may write

Γ =
⋃
n∈N

Γn,

where �Γn = �Γ and Γn ∩ Γm = ∅ for all n, m ∈ N with n �= m. Hence we have

E =
⊕
n∈N

En,

where En = c0(Γn) for all n ∈ N, and now the direct sum is understood in the c0 sense. 
For every n ∈ N, we let Pn : E → En denote the canonical projection. Since c0(Γn) is 
isometric to c0(Γ) and F is a linear quotient of the latter, for every n ∈ N there exists 
a continuous linear surjection Tn : En → F ; by dividing by the norm of Tn, if necessary, 
we may assume that ‖Tn‖ = 1. We define T : E → F by

T =
∞∑

n=1

1
2nTn ◦ Pn.

A routine calculation yields

‖f(x) − g(x)‖ < ε(x) for all x ∈ E. (3.3)

Let us end the proof by showing that g has no critical points.
Since the sum defining g is locally finite and each ψα is locally of the form (3.1), 

given z ∈ E there exists an open neighbourhood Vz of z, there exist α1, ..., αm ∈ A, 
γ1,j , ..., γnj ,j ∈ Γ for j = 1, ..., m, and there exist C∞ smooth functions ϕαj

: Rnj �→ R

for j = 1, ..., m such that

g(x) =
m∑
j=1

ψαj
(x)
(
f(xαj

) + T (x− xαj
)
)

for all x ∈ Vz

where

ψαj
(x) = ϕαj

(
e∗γ1,j

(x), ..., e∗γnj,j
(x)
)

for all x ∈ Vz.

A straightforward calculation shows that
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Dg(x) = T +
m∑
j=1

nj∑
i=1

μi,j(x)e∗γi,j
, (3.4)

where

μi,j(x) :=
∂ϕαj

∂yi
(e∗γ1,j

(x), ..., e∗γnj,j
(x))

(
f(xαj

) + T (x− xαj
)
)

for all x ∈ Vz (and 
∂ϕαj

∂yi
is the partial derivative of ϕαj

with respect to the i-th variable 
yi). We may choose n ∈ N large enough so that

{γi,j : 1 ≤ i ≤ nj , 1 ≤ j ≤ m} ∩ Γn = ∅,

which implies that

En ⊂
m⋂
j=1

nj⋂
i=1

Ker(e∗γi,j
). (3.5)

Now, given w ∈ F , since Tn : En → F is surjective, we may find v ∈ En with Tn(v) =
2nw, hence T (v) = w, and, according to (3.5),

e∗γi,j
(v) = 0

for all 1 ≤ i ≤ nj , 1 ≤ j ≤ m. Thus, by substituting in (3.4) we obtain

Dg(x)(v) = T (v) = w,

showing that Dg(x) : E → F is surjective for all x ∈ Vz. �
3.2. Proof of Theorem 1.2

Recall that the norm || · ||p in E = �p(Γ) is LUR (locally uniformly rotund) for every 
p ∈ (1, ∞) and the function ‖ · ‖p is Ck smooth, where k = ∞ if p is an even integer, 
k = p − 1 if p is an odd integer and k = [p] otherwise (for the proof of the smoothness 
result, see for instance [17, Chapter V. Theorem 1.1]).

According to the result of Toruńczyk [40] the mapping u : E → c0({0} ∪ Γ) defined 
by the coordinate functions

u(x)γ =
{
‖x‖p if γ = 0
x if γ ∈ Γ

(3.6)

γ
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is a homeomorphic embedding2 (here we are assuming 0 /∈ Γ). Define now Sk to be the 
family of functions ψ : E → R so that ψ ∈ Ck(E) and ψ is locally of the form

ψ(x) = ϕ
(
‖x‖p, e∗γ1

(x), ..., e∗γn
(x)
)
, (3.7)

where the functionals e∗γ : E → R are defined by e∗γ(x) = xγ (the γ-th coordinate of 
x ∈ E), for certain indexes γ1, ..., γn ∈ Γ with n ∈ N (depending on the neighbourhood), 
and certain Ck smooth function ϕ : Rn+1 �→ R (also depending on the neighbourhood). 
Observe that these properties imply that if Ψ ∈ C∞(Rn) and ψ1, . . . , ψn ∈ Sk, then 
Ψ(ψ1, . . . , ψn) ∈ Sk. Therefore by Theorem 2.8 and (3.6) we get that E admits Sk-
partitions of unity.

Thus, given f and ε as in the statement, we may find an open covering {Uα}α∈A of 
E and a partition of unity {ψα}α∈A subordinated to {Uα}α∈A such that each ψα locally 
is of the form (3.7) and

‖f(x) − f(y)‖ < ε(y)/8 and ε(x) < 5
3ε(y) for all x, y ∈ Uα and for each α ∈ A.

(3.8)
Without loss of generality we may assume that for every α ∈ A the diameter of the 

set Uα is less than ε(xα)/8, where xα is a point in Uα that we fix from now on.
Our approximating function g will be of the form g = p ◦ d, with d a diffeomorphism 

close to the identity that extracts the critical set of a previous approximation p defined 
by

p(x) =
∑
α∈A

ψα(x) (f(xα) + T (x− xα)) , (3.9)

where T : E → F is a continuous linear operator that we define next. Note that �(Γ ×
N) = �Γ, so we may write

Γ =
⋃
n∈N

Γn,

where �Γn = �Γ and Γn ∩ Γm = ∅ for all n, m ∈ N with n �= m. Hence we have

E =
⊕
n∈N

En,

where En = �p(Γn) for all n ∈ N, and in this case the direct sum is understood in the 
�p sense. For every n ∈ N, we let Pn : E → En denote the canonical projection. Since 
�p(Γn) is isometric to �p(Γ) and F is a linear quotient of the latter, for every n ∈ N

2 By replacing ‖ · ‖2 with ‖ · ‖p, this result can be proved exactly as in Lemma 2.2 above.
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there exists a continuous linear surjection Tn : En → F ; by dividing by the norm of Tn, 
if necessary, we may assume that ‖Tn‖ = 1. We define T : E → F by

T =
∞∑

n=1

1
2nT2n−1 ◦ P2n−1.

It is routine to check that

‖f(x) − p(x)‖ < ε(x)/2 for all x ∈ E. (3.10)

Claim 3.1. The critical set Cp := {x ∈ E : Dp(x) is not surjective} is locally contained 
in a closed subspace of infinite codimension in E.

Proof. Since the sum defining p is locally finite and the functions {ψα}α∈A locally are 
of the form (3.7), given z ∈ E there exists an open neighbourhood Vz of z, there 
exist α1, ..., αm ∈ A, γ1,j , ..., γnj ,j ∈ Γ for j = 1, ..., m, and Ck smooth functions 
ϕαj

: Rnj+1 �→ R for j = 1, . . . , m, such that

p(x) =
m∑
j=1

ψαj
(x)
(
f(xαj

) + T (x− xαj
)
)

for all x ∈ Vz,

where

ψαj
(x) = ϕαj

(
‖x‖p, e∗γ1,j

(x), ..., e∗γnj,j
(x)
)

for all x ∈ Vz.

A straightforward calculation shows that

Dp(x) = T +
m∑
j=1

[
rj(x)J(x) +

nj∑
i=1

μi,j(x)e∗γi,j

]
, (3.11)

where

J(x) := D‖ · ‖(x),

rj(x) := p‖x‖p−1 ∂ϕαj

∂y1
(‖x‖p, e∗γ1,j

(x), ..., e∗γnj,j
(x))

(
f(xαj

) + T (x− xαj
)
)
,

and

μi,j(x) :=
∂ϕαj

∂yi+1
(‖x‖p, e∗γ1,j

(x), ..., e∗γnj,j
(x))

(
f(xαj

) + T (x− xαj
)
)
,

for all x ∈ Vz (where 
∂ϕαj

∂yi
is the partial derivative of ϕαj

with respect to the i-th variable 
yi). Let us define
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E(1,z) := span
(
{eγi,j

: 1 ≤ i ≤ nj , 1 ≤ j ≤ m} ∪
{
ei : i ∈

⋃
k∈N

Γ2k−1

})
. (3.12)

Suppose that x ∈ Vz and x /∈ E(1,z). Then there exists

γx ∈ Γ \
(
{γi,j : 1 ≤ i ≤ nj , 1 ≤ j ≤ m} ∪

⋃
k∈N

Γ2k−1

)
(3.13)

such that xγx
�= 0, implying that

J(x)(eγx
) �= 0 (3.14)

(checking this fact just involves a straightforward calculation of the differential of the 
�p(Γ) norm), and also

T (eγx
) = 0. (3.15)

We may now choose and odd number n ∈ N large enough so that

Γn ∩ {γi,j : 1 ≤ i ≤ nj , 1 ≤ j ≤ m} = ∅,

which implies that

En ⊂
m⋂
j=1

nj⋂
i=1

Ker(e∗γi,j
). (3.16)

Then, given any w ∈ F , since Tn : En → F is surjective, we may find v ∈ En with 
Tn(v) = 2sw, where n = 2s − 1, hence T (v) = w, and for

tv := − J(x)(v)
J(x)(eγx

)

we have that

J(x)(v + tveγx
) = 0,

and also, bearing in mind (3.13) and (3.16),

e∗γi,j
(v + tveγx

) = 0 for all 1 ≤ i ≤ nj , 1 ≤ j ≤ m.

By inserting the last two equations in (3.11), and then using (3.15), we thus obtain

Dp(x)(v + tveγx
) = T (v + tveγx

) = T (v) = w.
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This argument shows that

Cp ∩ Vz ⊂ E(1,z)

completing the proof of our claim. �
In conclusion, following the notation of Corollary 2.10, the closed set Cp ⊂ E satisfies 

that for every z ∈ Cp there is an open neighbourhood Vz of z in E and there are Banach 
spaces E(1,z) (defined in (3.12)) and E(2,z) defined by

E(2,z) := span
({

ei : i ∈
( ⋃

k∈N
Γ2k

)}
\ {eγi,j

: 1 ≤ i ≤ nj , 1 ≤ j ≤ m}
)

satisfying the conditions given in Corollary 2.10, that is, (1) E = E(1,z) ⊕ E(2,z), (2) 
E(1,z) has Ck smooth partitions of unity, (3) E(2,z) is infinite-dimensional and has an 
equivalent Ck smooth norm and (4) Cp ∩ Vz ⊂ E(1,z) ⊕ {0}.

Then, we may apply Corollary 2.10 for the open cover G = {supp0 ψα : α ∈ A} of 
E, to find a Ck diffeomorphism d : E → E \ Cp which is limited by G, that is, for every 
x ∈ E there is α ∈ A such that {x, d(x)} ⊂ supp0 ψα.

Let us define

g = p ◦ d.

Recall that according to (3.10), ‖p(x) − f(x)‖ < ε(x)/2 for all x ∈ E. Since d is 
limited by G we have that, for any given x ∈ E, there exists α ∈ A such that x, d(x) ∈
supp0 ψα ⊂ Uα, and by (3.8) we have ‖f(x) − f(d(x))‖ < ε(x)/8. By combining this 
inequality with (3.8) and (3.10), we obtain that

‖g(x) − f(x)‖ ≤ ‖p(d(x)) − f(d(x))‖ + ‖f(d(x)) − f(x)‖ ≤ ε(d(x))
2 + ε(x)

8

<
5
6ε(x) + ε(x)

8 < ε(x)

for all x ∈ E. Besides, it is clear that g does not have any critical point: since d(x) /∈ Cp, 
we have that Dp(d(x)) : E → F is surjective, and Dd(x) : E → E is a linear isomorphism, 
so Dg(x) = Dp(d(x)) ◦Dd(x) : E → F is surjective. �
4. Results for a general target space

Here we prove the theorems for a general target space F (finite or infinite dimen-
sional). The proofs of Theorem 1.5, Theorem 1.6 and Proposition 1.7 have a very similar 
structure, so we present a unified proof until the moment that we must split the proofs. 
The main difference between Theorems 1.5 and 1.6 is the reflexivity assumption on the 



D. Azagra et al. / Journal of Functional Analysis 287 (2024) 110488 21
space Y in Theorem 1.5, which does not appear in Theorem 1.6, where in contrast we 
have to make stronger decomposability assumptions on the space Y , namely assumption 
(5). Also, Proposition 1.7 will follow closely the proof of Theorem 1.6.

Proofs of Theorem 1.5, Theorem 1.6 and Proposition 1.7. We begin by noting that item 
(3) of Theorem 1.5 implies that each subspace Yn of Y is reflexive and therefore each 
Yn has a shrinking M-basis (see [27, Theorem 6.1]). It can be checked that by joining 
all these M-bases, and because of the decomposition of Y assumed in condition (3), we 
get an M-basis of Y , that we call {ui, u∗

i }i∈I and that is contained in 
⋃

n∈N(Yn × Y ∗
n ). 

Since every M-basis in a reflexive Banach space is shrinking (see [27, Theorem 6.1]), we 
have that {ui, u∗

i }i∈I is also a shrinking M-basis of Y . For a subset Z ⊂ E, the term Z⊥

denotes the annihilator of Z in Y ∗, that is Z⊥ = {y∗ ∈ Y ∗ : y∗(z) = 0 for all z ∈ Z}. 
Here and throughout the paper, we are identifying Y ∗

n with 
(⊕

j∈N\{n} Yj

)⊥ for all 
n ∈ N. Also, we may assume without loss of generality that the functionals {u∗

i }i∈I are 
normalized.

Let us first establish the existence of adequate smooth partitions of unity on the space 
X ⊕ Y . This is the content of the next lemmas, following the ideas of Toruńczyk in [40].

Lemma 4.1. Let X be a Banach space with Ck smooth partitions of unity and let Y be a 
Banach space with a shrinking M-basis {ui, u∗

i }i∈I ⊂ Y ×Y ∗ and a Ck smooth LUR norm 
‖ ·‖. Then there exists a set A and a homeomorphic embedding u : X⊕Y → c0(A ∪N∪I)
defined by

u(x, y) = (û(x), ϕ(y), L(y)), for all x ∈ X and y ∈ Y, (4.1)

where

(1) û : X → c0(A) is a homeomorphic embedding with e∗a ◦ û ∈ Ck(X) for every a ∈ A. 
The functionals e∗γ : c0(A ∪N∪I) → R are defined by e∗γ(x) = xγ (the γ-th coordinate 
of x).

(2) ϕ : Y → c0(N) is defined by e∗n ◦ϕ = 1
n (ϕn ◦ ‖ · ‖) : Y → R, where, for every n ∈ N, 

ϕn ∈ C∞(R) is a nondecreasing function with ϕn(t) = t for all t ≥ 1/n, ϕn(t) = 0
for all t ≤ 1/2n and |ϕ′

n(t)| ≤ 3 for all t.
(3) L : Y → c0(I) is a continuous linear injective operator defined by e∗i ◦ L = u∗

i for 
every i ∈ I.

In particular, e∗γ ◦ u ∈ Ck(X ⊕ Y ) for every γ ∈ Γ := A ∪N ∪ I. (We are assuming the 
sets A, N and I are pairwise disjoint).

Proof. We follow the ideas of Toruńczyk from [40]. We include here the details for the 
sake of completeness. Let us begin by checking the validity of items (1)–(3).

Firstly, the existence of û follows from Theorem 2.8, which proves (1).
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Secondly, the existence of the C∞ smooth functions ϕn : R → R is clear. Thus we 
have (2). Observe in addition that ϕ : Y → c0(N) is a continuous function. This follows 
from the equicontinuity of the family of real-valued functions {ϕn}n∈N since they are 
3-Lipschitz. Namely if for a given y0 ∈ Y we have a sequence (ym)m ⊂ Y converging to 
y0, then limm→∞ ‖ym‖ = ‖y0‖ and hence

‖ϕ(ym) − ϕ(y0)‖ = sup
n∈N

∣∣∣∣ 1nϕn(‖ym‖) − 1
n
ϕn(‖y0‖)

∣∣∣∣ ≤ 3| ‖ym‖ − ‖y0‖ | m→∞−→ 0.

And lastly, to prove (3), note that the linear operator L : Y → c0(I) is injective and 
continuous because of the following facts: The linear operator L : Y → �∞(I) defined by 
L(y)i = u∗

i (y) for all i ∈ I (L(y)i being the i-coordinate of L(y)) is continuous (recall 
that the functionals {u∗

i }i∈I are normalized) and Ker(L) = {0} (because {ui, u∗
i } is 

M-basis in Y , so {u∗
i } is a total set over Y ). Moreover, since span{ui : i ∈ I} = Y , 

L(span{ui : i ∈ I}) ⊂ c0(I) and c0(I) is a closed subspace of �∞(I), we have that 
L(Y ) ⊂ c0(I).

Now we will conclude the proof verifying that (1)–(3) together with the definition of 
u given in (4.1) yields a homeomorphic embedding with e∗γ ◦ u ∈ Ck(X ⊕ Y ) for every 
γ ∈ Γ. We mainly follow [40, Page 48] but we provide details for the sake of completeness.

The continuity of u follows by the continuity of û, ϕ and L given by assumptions 
(1)–(3).

Moreover u is injective: take two points (x1, y1), (x2, y2) ∈ X ⊕ Y so that u(x1, y1) =
u(x2, y2); then we have û(x1) = û(x2) and L(y1) = L(y2). Since û and L are injective, 
by (1) and (3) we get that x1 = x2 and y1 = y2.

We now prove that u has a continuous inverse u−1 : u(X⊕Y ) → X⊕Y . To do so, let 
us take a sequence (xn, yn) ∈ X ⊕ Y and (x0, y0) ∈ X ⊕ Y so that limn→∞ ‖u(xn, yn) −
u(x0, y0)‖ = 0 and check that limn→∞ ‖(xn, yn) − (x0, y0)‖ = 0. First we have that⎧⎪⎪⎨⎪⎪⎩

limn→∞ ‖û(xn) − û(x0)‖ = 0
limn→∞ ‖ϕ(yn) − ϕ(y0)‖ = 0
limn→∞ ‖L(yn) − L(y0)‖ = 0

.

In particular, using that û has a continuous inverse we get that limn→∞ ‖xn − x0‖ = 0. 
Moreover limn→∞ ‖ϕ(yn) − ϕ(y0)‖ = 0 implies that

lim
n→∞

‖yn‖ = ‖y0‖ (4.2)

and in particular (‖yn‖)n is bounded. On the other hand for every i ∈ I we have

lim
n→∞

|u∗
i (yn) − u∗

i (y0)| = 0, (4.3)

so by using that Y ∗ = span{u∗
i : i ∈ I} we can join the previous two facts (4.2) and 

(4.3) to conclude that yn
n→∞−−−−→ y0 weakly. Weak convergence together with convergence 
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of norms (4.2) imply strong convergence and limn→∞ yn = y0 because our norm is LUR 
(and thus has the Kadec-Klee property).

Finally, the Ck smoothness of each e∗γ ◦ u : X ⊕ Y → R is clear too. �
Definition 4.2. Let X and Y be Banach spaces, let {ui, u∗

i }i∈I ⊂ Y × Y ∗ be an M-basis 
in Y , let ‖ · ‖ be a Ck smooth norm on Y and let Sk be the family of all functions 
ψ : X ⊕ Y → R satisfying:

(i) ψ ∈ Ck(X ⊕ Y ).
(ii) ψ is locally of the form ψ(x, y) = ϕ(x, ϕk1(‖y‖), . . . , ϕkm

(‖y‖), u∗
i1

(y), . . . , u∗
in

(y))
for certain indexes k1, . . . , km ∈ N, i1, . . . , in ∈ I and a certain function ϕ ∈
Ck(X ⊕ Rm+n). Here {ϕj}j denotes the family of C∞ smooth functions defined 
in Lemma 4.1.

Notice that conditions (i) and (ii) yield

(iii) If Ψ ∈ C∞(Rj) and ψ1, . . . , ψj ∈ Sk, then Ψ(ψ1, . . . , ψj) ∈ Sk.

Lemma 4.3. Let X be a Banach space with Ck smooth partitions of unity. Let Y be a 
Banach space with a shrinking M-basis {ui, u∗

i }i∈I ⊂ Y × Y ∗ and a Ck smooth LUR 
norm. Then X ⊕ Y admits Sk-partitions of unity.

Proof. By Lemma 4.1 there is a homeomorphic embedding u : X ⊕ Y → c0(A ∪N ∪ I)
for some set of indexes A. Moreover, by the definition of u given in Lemma 4.1 one can 
easily check that for every γ ∈ A ∪ N ∪ I we have e∗γ ◦ u ∈ Sk. Now we simply apply 
Theorem 2.8 and get that X ⊕ Y admits Sk-partitions of unity. �

Let us now begin the proof of Theorems 1.6 and 1.5. Let f : X ⊕ Y → F and 
ε : X⊕Y → (0, ∞) be continuous functions. By continuity we may find an open covering 
{Ui}i∈Δ of X ⊕ Y of the form Ui := B̊X(xi, ri) × B̊Y (yi, ri) (where B̊X(xi, ri) ⊂ X is 
the open ball in X centered at xi with radius ri > 0 and B̊Y (yi, ri) ⊂ Y is the open ball 
in Y centered at yi with radius ri > 0) with ri <

ε(xi,yi)
8 and such that

{
‖f(x, y) − f(x′, y′)‖ < ε(x, y)/4
|ε(x, y) − ε(x′, y′)| < ε(x, y)/8

(4.4)

for all (x, y), (x′, y′) ∈ Ui.
By applying Lemma 4.3 there exists a partition of unity {ψi}i∈Δ ⊂ Sk subordinated 

to {Ui}i∈Δ. Recall also that Y =
⊕

n Yn and that F is a quotient of Yn for every n ∈ N. 
Then we choose a surjective mapping T : Y → F of norm one satisfying T (Yn) = F for n
odd and T (Yn) = {0} for n even. For instance, if Tn : Yn → F are surjective continuous 
linear operators, one may take
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T (y) =
∞∑

n=1

T2n−1(P2n−1(y))
2n‖P2n−1‖ ‖T2n−1‖

, (4.5)

where Pn : Y → Yn is the canonical projection onto Yn. Now define the function

p(x, y) =
∑
i∈Δ

ψi(x, y)(f(xi, yi) + T (y − yi)), (x, y) ∈ X ⊕ Y. (4.6)

Observe that by the Ck smoothness of the bump functions {ψi}i∈Δ we have that 
p ∈ Ck(X ⊕ Y, F ).

It is easy to check that ‖p(x, y) − f(x, y)‖ ≤ ε(x,y)
2 for all (x, y) ∈ X ⊕ Y . That is, for 

every (x, y) ∈ X ⊕ Y , using (4.4)

‖p(x, y) − f(x, y)‖ ≤
∑
i∈Δ

ψi(x, y)(‖f(xi, yi) − f(x, y)‖ + ‖T (y − yi)‖) (4.7)

≤
∑
i∈Δ

ψi(x, y)(ε(x, y)/4 + ‖y − yi‖)

≤
∑
i∈Δ

ψi(x, y)(ε(x, y)/4 + ε(xi, yi)/8)

≤
∑
i∈Δ

ψi(x, y)(ε(x, y)/4 + ε(x, y)/4) ≤ ε(x, y)/2.

Next, to inspect the critical set of points of p let us differentiate p with respect to y. 
If we prove that (∂p/∂y)(x, y) is surjective in particular Dp(x, y) will be surjective.

Observe that since {ψi}i∈Δ ⊂ Sk, for each (a0, b0) ∈ X ⊕ Y and for each ψi there is 
a neighbourhood of (a0, b0) where ψi locally depends on x ∈ X, on ϕk(‖y‖) for finitely 
many indexes k and on the ‘coordinates’ u∗

j (y) of y ∈ Y for finitely many indexes j. 
Recall that {ϕk}k is the family of C∞ smooth functions defined in Lemma 4.1. Together 
with the local finiteness of {supp0(ψi)}i∈Δ we get that for every (a0, b0) ∈ X⊕Y there is 
an open and bounded neighbourhood U(a0,b0) and two finite set of indexes Δ(a0, b0) ⊂ Δ, 
I(a0, b0) = {n1, · · · , nk} ⊂ I, depending on (a0, b0), such that for all (x, y) ∈ U(a0,b0)

p(x, y) =
∑

i∈Δ(a0,b0)

ψi(x, y)(f(xi, yi) + T (y − yi))

where

∂p

∂y
(x, y) =

∑
i∈Δ(a0,b0)

ψi(x, y)T +
∑

i∈Δ(a0,b0)

(f(xi, yi) + T (y − yi))
∂ψi

∂y
(x, y)

= T +
∑

i∈Δ(a0,b0)

(f(xi, yi) − T (yi))
∂ψi

∂y
(x, y)

= T + z(x, y) · ‖ · ‖′(y) +
k∑

zj(x, y)u∗
nj
. (4.8)
j=1
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Here {z(x, y), z1(x, y), . . . , zk(x, y)} ⊂ F are just some vectors where z(x, 0) = 0 when-
ever (x, 0) ∈ U(a0,b0) (this comes from the fact that the functions ϕn(t) are zero locally 
around t = 0 and therefore for every ψ ∈ Sk we have ∂ψ

∂y (x, 0) ∈ span{u∗
i : i ∈ I}). 

Also note that in the second equality we are using that 
∑

i∈Δ ψi(x, y) = 1 and ∑
i∈Δ

∂ψi

∂y (x, y) = 0.
� Assume first that (x, y) ∈ U(a0,b0) with z(x, y) = 0. In such case (4.8) becomes

∂p

∂y
(x, y) = T +

k∑
j=1

zj(x, y)u∗
nj
.

Since the shrinking M-basis {ui, u∗
i }i∈I of Y is contained in ∪n∈N(Yn ×Y ∗

n ), by defining 
for every n In = {i ∈ I : ui ∈ Yn} and by letting m ∈ N be a natural number so that 
{n1, . . . , nk} ⊂ I1 ∪ · · · ∪ Im, we have

∂p

∂y
(x, y)|Y2m+1 = T |Y2m+1 ,

which implies that the operator (∂p/∂y)(x, y) is surjective. We fix such m ∈ N from now 
on, that only depends on (a0, b0).

� Assume now that (x, y) ∈ U(a0,b0) with z(x, y) �= 0, and let us study the surjectivity 
of (∂p/∂y)(x, y) : Y → F .

Now, Definition 1.4, together with assumption (5) in Theorem 1.5 and Theorem 1.6, 
allows us to define the closed and complemented subspaces of Y⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z0 = (⊕m
j=1Yj) ⊕ (

⊕
j odd
j>m

Yj)

Z1 =
⊕

j even
j>m

Yj

,

and we have Y = Z0 ⊕ Z1. This is where the proof forks. As we already observed, in 
Theorem 1.5 we have Y reflexive, while in Theorem 1.6 we cannot rely on reflexivity of 
Y but we can make use of assumption (5). We first present the proof of Theorem 1.6
because assumption (5) makes the argument easier. Thereafter we prove Theorem 1.5
using the reflexivity of Y .

Since Y = Z0 ⊕ Z1 we can identify Y ∗ = Z∗
0 ⊕ Z∗

1 = Z⊥
1 ⊕ Z⊥

0 (i.e. Z∗
0 = Z⊥

1 and 
Z∗

1 = Z⊥
0 , where Z⊥

i denotes the annihilator of Zi in Y ∗, that is Z⊥
i = {y∗ ∈ Y ∗ :

y∗(z) = 0 for all z ∈ Zi}).

Proof of Theorem 1.6 (Y is not necessarily reflexive). By assumption (5) of Theo-
rem 1.6 we know that the projection Qm : Y → Z0 has norm one.

Fact 4.4. Let us consider the C1 smooth LUR norm ‖ · ‖ on Y . We have that y ∈ Z0 if 
and only if ‖ · ‖′(y) ∈ Z∗

0 .
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Proof. Note that it is enough to prove the fact for y ∈ S‖·‖ (the unit sphere of Y ). Let 
us then take y ∈ S‖·‖ satisfying ‖ · ‖′(y) ∈ Z∗

0 . Since y = z0 + z1 with z0 = Qm(y) ∈ Z0

and z1 ∈ Z1, ‖z0‖ = ‖Qm(y)‖ ≤ ‖y‖ = 1 and 1 = ‖ · ‖′(y)(y) = ‖ · ‖′(y)(z0) we get that 
‖z0‖ = 1. We have ‖y‖ = ‖z0‖. If y �= z0 then by the strict convexity of the norm and 
because Qm has norm one,

‖z0‖ =
∥∥∥Qm

(
z0 + z1

2

)∥∥∥ ≤ ∥∥∥z0 + z1

2

∥∥∥ = 1
2‖2z0 + z1‖ = 1

2‖y + z0‖ < 1 = ‖z0‖,

which is a contraction. Therefore y = z0 and y ∈ Z0.
For the other implication let us take y ∈ Z0∩S‖·‖ and consider ‖ ·‖′(y) = z∗ = z∗0 +z∗1 , 

where z∗i ∈ Z∗
i , i = 0, 1. In particular, 1 = ‖ · ‖′(y)(y) = z∗0(y) ≤ ‖z∗0‖∗‖y‖ = ‖z∗0‖∗. Here 

‖ · ‖∗ denotes the dual norm on Y ∗ and ‖z∗0‖∗ is the dual norm of z∗0 as an element of 
Y ∗. On the other hand, for every y′ = z′0 + z′1 ∈ S‖·‖ with z′i ∈ Zi, i = 1, 2, it holds 
z∗0(y′) = z∗0(z′0) = z∗0(Qm(y′)) = (z∗0 + z∗1)(Qm(y′)) = ‖ · ‖′(y)(Qm(y′)) ≤ ‖Qm‖‖y′‖ = 1
so ‖z∗0‖∗ = 1. Since 1 = z∗0(y) = z∗(y) = ‖z∗0‖∗ = ‖z∗‖∗ = ‖y‖ and the norm ‖ · ‖ is 
Gâteaux smooth, we get that z∗ = z∗0 ∈ Z∗

0 . �
Let us show that

{(x, y) ∈ U(a0,b0) : ∂p

∂y
(x, y) is not surjective } ⊂ U(a0,b0) ∩

(
X ⊕ Z0

)
. (4.9)

Indeed, if y /∈ Z0, by Fact 4.4 || · ||′(y) �∈ Z∗
0 = Z⊥

1 , so there is an even integer t > m

and an index i0 ∈ It such that ‖ · ‖′(y)(ui0) �= 0. We fix from now on this i0 ∈ It
that depends only on y. In particular, for every w ∈ Y2m+1 there is λw ∈ R such that 
‖ · ‖′(y)(w − λwui0) = 0. This way, from (4.8) we get

∂p

∂y
(x, y)(w − λwui0) = T (w − λwui0) = T (w),

because T (ui0) = 0. It is then clear that (∂p/∂y)(x, y) is surjective. The inclusion (4.9)
is now proved.

As a conclusion of (4.9), the closed sets of critical points Cp and CPp,

Cp : = {(x, y) ∈ X ⊕ Y : p′(x, y) is not surjective}

⊂ CPp := {(x, y) ∈ X ⊕ Y : ∂p

∂y
(x, y) is not surjective}

satisfy that

U(a0,b0) ∩ Cp ⊂ U(a0,b0) ∩ CPp ⊂ X ⊕
(
(⊕m

j=1Yj) ⊕ (
⊕

j odd
Yj)
)

= X ⊕ Z0 ⊕ {0}.
j>m
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Observe that X ⊕ Z0 and Z1 are closed subspaces of X ⊕ Y , X ⊕ Z0 has C1 smooth 
partitions of unity and Z1 is infinite-dimensional and has a C1 smooth norm. Notice 
that, by the construction, the spaces X ⊕Z0 and Z1 depend on the point (a0, b0). Then 
by applying Corollary 2.10, there exists a C1 diffeomorphism

d : X ⊕ Y →
(
X ⊕ Y

)
\ CPp

limited by the open cover {supp0 ψi}i∈Δ where supp0 ψi = {(x, y) ∈ X ⊕ Y : ψi(x, y) >
0}. Define

g = p ◦ d.

We now verify that g has no critical points. Observe that for all (x, y) ∈ X⊕Y we have 
that d′(x, y) is an isomorphism and since d(x, y) /∈ CPp it follows that (∂p/∂y)(d(x, y))
is a surjective operator from Y onto F , which makes p′(d(x, y)) a surjective operator 
from X ⊕ Y onto F as well. Therefore for every (x, y) ∈ X ⊕ Y

(p ◦ d)′(x, y) = p′(d(x, y)) ◦ d′(x, y)

is a surjective operator.
Finally let us verify that ‖f(x, y) − g(x, y)‖ ≤ ε(x, y) for all (x, y) ∈ X ⊕ Y . Indeed, 

for every (x, y) ∈ X ⊕ Y , using (4.4), (4.7) and that d is limited by the open cover 
{supp0 ψi}i∈Δ,

‖f(x, y) − g(x, y)‖ ≤ ‖f(x, y) − f(d(x, y))‖ + ‖f(d(x, y)) − p(d(x, y))‖
≤ ε(x, y)/4 + ε(d(x, y))/2

≤ ε(x, y).

The proof of Theorem 1.6 is now complete.

Now let us briefly mention how to modify the proof of Theorem 1.6 to obtain the 
proof of Proposition 1.7.

Proof of Proposition 1.7. Note that taking c0(Γ) = Y in the above proof and using a 
norm ‖ · ‖ in c0(Γ) that is C∞ smooth and locally depends on finitely many coordinates, 
we define the mapping u : X ⊕ c0(Γ) → c0(A ∪ Γ) by u(x, y) = (û(x), y) for every 
(x, y) ∈ X ⊕ c0(Γ), being û : X → c0(A) a homeomorphic embedding of X into c0(A)
with Ck smooth coordinate functions. Then u is a homeomorphic embedding with Ck

smooth coordinate functions satisfying that each coordinate function locally depends on 
x ∈ X and a finite number of ‘coordinates’ of y, so by Lemma 2.7 the space X ⊕ c0(Γ)
admits Ck smooth partitions of unity satisfying the same local property. Thus following 
the above proof, we define p in such a way that for any (a0, b0) ∈ X ⊕ c0(Γ) there is a 
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bounded neighbourhood U(a0,b0) of (a0, b0) and there is a set of indexes {n1, · · · , nk} ⊂ I, 
depending on (a0, b0), such that for all (x, y) ∈ U(a0,b0) the expression (4.8) of the partial 
derivative of p is

∂p

∂y
(x, y) = T +

k∑
j=1

zj(x, y)e∗nj
, (4.10)

for some vectors zj(x, y) ∈ F . In this case, the use of deleting diffeomorphisms in the last 
step of the above proof is not required. Indeed, by the definition of T from (4.5), which 
required a decomposition of c0(Γ) =

⊕
n∈N Yn with {eγ , e∗γ}γ∈Γ ⊂

⋃
n∈N(Yn × Y ∗

n ), and 
calling In = {γ ∈ Γ : eγ ∈ Yn} we have that taking m ∈ N so that {n1, . . . , nk} ⊂
I1 ∪ · · · ∪ Im then

∂p

∂y
(x, y)|Y2m+1 = T |Y2m+1 .

This yields that (∂p/∂y)(x, y) is surjective. Notice that, as in the proof of Theorem 1.1, 
the closed subspaces Yn can be considered to be Yn = c0(Γn), where Γ = ∪nΓn with 
|Γn| = |Γ| and Γn∩Γm = ∅ for m �= n. Therefore, using (4.7) and letting g = p the proof 
of Proposition 1.7 is finished with no use of deleting diffeomorphisms.

Proof of Theorem 1.5 (Y is reflexive). As in the non reflexive case, let us consider the 
closed sets Cp and CPp,

Cp : = {(x, y) ∈ X ⊕ Y : p′(x, y) is not surjective }

⊂ CPp := {(x, y) ∈ X ⊕ Y : ∂p

∂y
(x, y) is not surjective}.

Let us prove first that

U(a0,b0) ∩ CPp ⊂ U(a0,b0) ∩
{

(x, y) ∈ X ⊕ Y : ‖ · ‖′(y) ∈ Z∗
0

}
(4.11)

= U(a0,b0) ∩
{

(x, y) ∈ X ⊕ Y : ‖ · ‖′(y) ∈ Z∗
0 ∩ S‖·‖∗

}
= U(a0,b0) ∩

{
(x, y) ∈ X ⊕ Y : Z1 ⊂ Ker(‖ · ‖′(y))

}
,

where here ‖ · ‖ denotes the Ck smooth LUR norm on Y . The last two equalities are 
clear. For the first inclusion we have that whenever ‖ · ‖′(y) /∈ Z∗

0 = Z⊥
1 , there is an 

even integer t > m and an index i0 ∈ It with ‖ · ‖′(y)(ui0) �= 0. In particular for every 
w ∈ Y2m+1 there is λw ∈ R such that ‖ · ‖′(y)(w − λwui0) = 0, so from (4.8) we get

∂p (x, y)(w − λwui0) = T (w − λwui0) = T (w),

∂y
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because T (ui0) = 0. Thus (∂p/∂y)(x, y) is a surjective operator from Y onto F .
For the following lemma it is a key point the reflexivity of Y .

Lemma 4.5. Let us consider the Ck smooth LUR norm ‖ ·‖ on the reflexive Banach space 
Y . The set 

{
y ∈ Y : ‖ · ‖′(y) ∈ Z∗

0
}

is contained in the graph of a continuous function 
η : Z0 → Z1.

Proof. The following argument is almost identical to that of [5, Claim 3.7]; we reproduce 
it for completeness and for the readers’ convenience.

Definition of η: Pick a point w ∈ Z0. Note that the function Z1 � v �→ ξw(v) :=
‖w + v‖2 is convex and continuous, and satisfies lim

‖v‖→∞
ξw(v) = ∞, hence, since Z1 is 

reflexive, ξw attains a minimum at some point vw ∈ Z1; in fact this minimum point vw
is unique because the norm ‖ · ‖ is strictly convex. Let us denote

η(w) := vw

and let us prove that

{y ∈ Y : Z1 ⊂ Ker(‖ · ‖′(y))} ⊂ G(η) = {(w, η(w)) : w ∈ Z1}.

Take a point w+v ∈ {y ∈ Y : Z1 ⊂ Ker(‖ ·‖′(y))}, with w ∈ Z1 and v ∈ Z0. In particular 
w + v �= 0 and

‖ · ‖′(w + v)(e) = 0 for every e ∈ Z1.

But this means that v is a critical point for the function ξw : Z1 → R, therefore v = η(w)
by definition of η.

Continuity of η: Now let us see that the function η : Z0 → Z1 is continuous. Suppose 
η is discontinuous at w0 and let v0 := η(w0). Then there exist a sequence {wi}i with 
limi wi = w0 in Z0, a sequence vi := η(wi) in Z1 and a number ε0 > 0 so that

‖vi − v0‖ ≥ ε0 for all i ∈ N. (4.12)

From the previous argument we know that the points vi, v0 ∈ Z1 are characterized as 
being the unique points in Z1 for which we have

‖wi + vi‖ ≤ ‖wi + vi + e‖ for all e ∈ Z1, (4.13)

‖w0 + v0‖ ≤ ‖w0 + v0 + e‖ for all e ∈ Z1. (4.14)

By taking e = −vi in (4.13) we learn that ‖vi‖ − ‖wi‖ ≤ ‖wi + vi‖ ≤ ‖wi‖, hence 
‖vi‖ ≤ 2‖wi‖, and because {‖wi‖}i converges to ‖w0‖ we deduce that {vi}i is bounded. 
Since Z1 is reflexive, this implies that {vi}i has a subsequence that weakly converges to 
a point v′0 ∈ Z1. We keep denoting this subsequence by {vi}i.
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Now, if we take e = −vi + e′ in (4.13), with e′ ∈ Z1, we obtain

‖wi + vi‖ ≤ ‖wi + e′‖ for all e′ ∈ Z1.

This implies (using the facts that {vi}i weakly converges to v′0, {wi}i converges in norm 
to w0, and the weak lower semicontinuity of the norm) that

‖w0 + v′0‖ ≤ lim inf
i→∞

‖wi + vi‖ ≤ lim sup
i→∞

‖wi + vi‖

≤ lim sup
i→∞

‖wi + e′‖ = ‖w0 + e′‖ for all e′ ∈ Z1. (4.15)

That is, we have shown that

‖w0 + v′0‖ ≤ ‖w0 + e′‖ for all e′ ∈ Z1. (4.16)

By taking e′ = v′0 + ξ with ξ ∈ Z1 we conclude that

‖w0 + v′0‖ ≤ ‖w0 + v′0 + ξ‖ for all ξ ∈ Z1.

According to (4.14), v0 is the only point which can satisfy this inequality. Hence v′0 = v0.
But (4.15) tells us even more: by taking e′ = v′0 we also learn that limi ‖wi + vi‖ =

‖w0 + v′0‖. Since we also know that {wi + vi}i weakly converges to w0 + v′0 and the 
norm ‖ · ‖ is LUR (hence ‖ · ‖ has the Kadec-Klee property), this implies that {wi + vi}i
converges to w0+v′0 = w0+v0 in the norm topology as well. As we also have lim

i→∞
wi = w0

in the norm topology, we deduce that lim
i→∞

‖vi − v0‖ = 0, which contradicts (4.12) and 

complete the proof of Lemma 4.5. �
As a consequence of (4.11) and Lemma 4.5 we have that

U(a0,b0) ∩ CPp ⊂ X × {y = (z0, z1) ∈ Z0 ⊕ Z1 : z1 = η(z0)}

for some continuous function η (depending on (a0, b0)). In particular, the function η̃ :
X ⊕ Z0 → Z1 defined by η̃(x, z0) = η(z0) is continuous and we have

U(a0,b0) ∩ Cp ⊂ U(a0,b0) ∩ CPp ⊂ {(x, z0, z1) ∈ X ⊕ Z0 ⊕ Z1 : z1 = η̃(x, z0)}.

Observe that X ⊕ Z0 and Z1 are closed subspaces of X ⊕ Y , X ⊕ Z0 has C1 smooth 
partitions of unity and Z1 is infinite-dimensional and has a C1 smooth norm. Notice 
that, by the construction, the spaces X ⊕ Z0 and Z1 depend on the point (a0, b0).

The last step is to compose p with a deleting diffeomorphism d defined as in the non 
reflexive case (Theorem 1.6) and check that we still keep the uniform control on the 
approximation. By using Theorem 2.9 we define a Ck diffeomorphism d : X ⊕ Y →
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(X ⊕ Y ) \ CPp limited by the open cover {supp0 ψi}i∈Δ, where supp0 ψi = {(x, y) ∈
X ⊕ Y : ψi(x, y) > 0}. Define

g = p ◦ d.

We now verify that g has no critical points. Observe that for all (x, y) ∈ X⊕Y we have 
that d′(x, y) is an isomorphism and since d(x, y) /∈ CPp it follows that (∂p/∂y)(d(x, y))
is a surjective operator from Y onto F , which makes p′(d(x, y)) a surjective operator 
from X ⊕ Y onto F as well. Therefore for every (x, y) ∈ X ⊕ Y

(p ◦ d)′(x, y) = p′(d(x, y)) ◦ d′(x, y)

is a surjective operator from X ⊕ Y onto F .
Finally let us check that ‖f(x, y) − g(x, y)‖ ≤ ε(x, y) for all (x, y) ∈ X ⊕ Y . Indeed, 

for every (x, y) ∈ X ⊕ Y , using (4.4), (4.7) and the fact that d is limited by the open 
cover {supp0 ψi}i∈Δ,

‖f(x, y) − g(x, y)‖ ≤ ‖f(x, y) − f(d(x, y))‖ + ‖f(d(x, y)) − p(d(x, y))‖
≤ ε(x, y)/4 + ε(d(x, y))/2

≤ ε(x, y).

The proof of Theorem 1.5 is now complete. �
5. Results for a finite dimensional target space

As mentioned in the Introduction, before proving the results on approximations by 
Ck smooth functions with no critical points in the case of a finite dimensional target 
space F in Section 5.2, we will show the renorming results stated in Proposition 1.12
and Corollary 1.14 in Section 5.1.

5.1. Residuality of certain norms in Banach spaces

Let us denote by (NY , ρ) the metric space of all norms on the Banach space Y which 
are equivalent to the given norm ‖ · ‖ on Y , endowed with the metric defined for p, q ∈
(NY , ρ) by

ρ(p, q) = sup{|p(x) − q(x)| : x ∈ B‖·‖}. (5.1)

The set NY is an open subset in the space (QY , ρ) of all continuous seminorms on Y
with the metric defined for p, q ∈ QY by the same expression (5.1). It is well known that 
(QY , ρ) is a complete metric space and thus (NY , ρ) is a Baire space (i.e. the intersection 
of countably many open dense subsets of NY is dense in NY ). Analogously, (N ∗

Y ∗ , ρ∗)
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denotes the metric space of all dual norms on Y ∗ which are equivalent to ‖ · ‖∗ (the dual 
norm of ‖ · ‖) with the metric ρ∗ for p∗, q∗ ∈ N ∗

Y ∗ defined by

ρ∗(p∗, q∗) = sup{|p∗(x∗) − q∗(x∗)| : x∗ ∈ B‖·‖∗}. (5.2)

Also, it is well known that the mapping

Φ : (NY , ρ) → (N ∗
Y ∗ , ρ∗), Φ(p) = p∗, (5.3)

where p∗ is the dual norm from p is an homeomorphism of (NY , ρ) onto (N ∗
Y ∗ , ρ∗). So 

(N ∗
Y ∗ , ρ∗) is a Baire space as well. See [20] and [17] for more details about the above 

facts.
Recall that a subset A of a metric space M is called Gδ if it is a countable intersection 

of open sets, and it is called Kσ if it is a countable union of compact sets. Additionally, 
A is called residual if A contains a Gδ dense subset of M . A subset C of a Banach space 
Y is called a cone if λx ∈ C for all λ ≥ 0 whenever x ∈ C. For a set V in a Banach space 
Y , cone(V ) denotes the cone generated by V , that is cone(V ) = {λx : x ∈ V, λ ≥ 0}. 
For a norm p ∈ NY , we denote by NAp the set of elements x∗ ∈ Y ∗ such that x∗ attains 
its p∗-norm, that is, there is x ∈ Sp = {x ∈ Y : p(x) = 1} satisfying p∗(x∗) = x∗(x).

Proof of Proposition 1.12. Step 1. Firstly, let us prove that for any compact set W ⊂
S‖·‖∗ , the set of norms p ∈ NY such that its dual norm p∗ is Fréchet differentiable at the 
points of W is residual in (NY , ρ). Let us consider, for every n ∈ N, the sets Fn ⊂ N ∗

Y ∗

of dual norms p∗ ∈ N ∗
Y ∗ such that there is δ > 0 satisfying

sup
{
p∗(x∗ + h∗) + p∗(x∗ − h∗) − 2p∗(x∗)

‖h∗‖∗ : h∗ ∈ Y ∗, ‖h∗‖∗ ≤ δ; x∗ ∈ W

}
<

1
n
.

Because of the convexity of p∗, if 0 < |t| ≤ 1

p∗(x∗ + th∗) + p∗(x∗ − th∗) − 2p∗(x∗)
‖th∗‖∗ ≤ p∗(x∗ + h∗) + p∗(x∗ − h∗) − 2p∗(x∗)

‖h∗‖∗ ,

so Fn is the set of dual norms p∗ ∈ N ∗
Y ∗ such that there is δ ∈ (0, 1) satisfying

sup
{
p∗(x∗ + h∗) + p∗(x∗ − h∗) − 2p∗(x∗)

‖h∗‖∗ : h∗ ∈ Y ∗, ‖h∗‖∗ = δ; x∗ ∈ W

}
<

1
n
.

Clearly if p∗ ∈ ∩nFn, then p∗ is Fréchet differentiable at each point x∗ ∈ W and by 
homogeneity of the norm at each point of cone(W ) \ {0}. It remains to check that Fn is 
open and dense in (P ∗, ρ∗).

(i) Fn is open. Let us consider p∗ ∈ Fn, δ ∈ (0, 1) and m ∈ N satisfying that

sup
{
p∗(x∗ + h∗) + p∗(x∗ − h∗) − 2p∗(x∗)

∗ ∗ : h∗ ∈ Y ∗, ‖h∗‖∗ = δ; x∗ ∈ W

}

‖h ‖
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<
1
n
− 1

m
.

Now, if q∗ ∈ N ∗
Y ∗ satisfies ρ∗(q∗, p∗) ≤ δ

12m then for every x∗ ∈ W and ‖h∗‖∗ = δ

we have that ‖x∗ ± h∗‖∗ ≤ 2 and, by (5.2), |(q∗ − p∗)(x∗ ± h∗)| ≤ 2ρ∗(q∗, p∗) and 
|(q∗ − p∗)(x∗)| ≤ ρ∗(q∗, p∗) so

q∗(x∗ + h∗) + q∗(x∗ − h∗) − 2q∗(x∗)
‖h∗‖∗ ≤

≤ p∗(x∗ + h∗) + p∗(x∗ − h∗) − 2p∗(x∗)
‖h∗‖∗

+ (q∗ − p∗)(x∗ + h∗) + (q∗ − p∗)(x∗ − h∗) − 2(q∗ − p∗)(x∗)
‖h∗‖∗ ≤

≤ 1
n
− 1

m
+ 2ρ∗(q∗, p∗) + 2ρ∗(q∗, p∗) + 2ρ∗(q∗, p∗)

δ

<
1
n
− 1

m
+ 6δ

12mδ
= 1

n
− 1

2m <
1
n
.

We have then proved that B(p∗, δ
12m ), the closed ball of center p∗ and radius δ

12m in 
(N ∗

Y ∗ , ρ∗), is contained in Fn.
(ii) Fn is dense in (N ∗

Y ∗ , ρ∗). Indeed, we will directly prove that ∩nFn is dense. The 
proof follows some ideas of [22] and [14]. Let us consider p∗ ∈ N ∗

Y ∗ and ε ∈ (0, 1).
Denote by Bp∗ and Sp∗ the closed unit ball and unit sphere respectively of Y ∗ for the 

norm p∗. Let us keep using standard notation: denote by p the predual norm of p∗ on 
Y , and let Bp and Sp stand for the closed unit ball and unit sphere respectively of Y
for the norm p. Let us denote V := cone(W ). For every x∗ ∈ Sp∗ ∩ V , we select x ∈ Sp, 
which we shall denote by ψ(x∗), such that x∗(ψ(x∗)) > 1 − ε

2 . Let us consider the slices 
of Bp∗ ,

S
(
Bp∗ , ψ(x∗), ε2

)
:=
{
y∗ ∈ Bp∗ : y∗(ψ(x∗)) > 1 − ε

2
}
, for all x∗ ∈ Sp∗ ∩ V.

Now, the union of the slices

⋃
x∗∈Sp∗∩V

S
(
Bp∗ , ψ(x∗), ε2

)
is a relatively open set in Bp∗ and a covering of the compact set Sp∗ ∩ V (notice that 
Sp∗ ∩ V is homeomorphic to W because p∗ and ‖ · ‖∗ are equivalent), so there is a finite 
family {S(Bp∗ , ψ(x∗

k), ε2 )}mk=1 such that

Sp∗ ∩ V ⊂
m⋃

S
(
Bp∗ , ψ(x∗

k),
ε

2
)
.

k=1
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We may assume without loss of generality that the set {ψ(x∗
k)}mk=1 is symmetric (other-

wise we consider the union of slices (∪m
k=1S(Bp∗ , ψ(x∗

k), ε2 )) ∪ (∪m
k=1S(Bp∗ , −ψ(x∗

k), ε2 ))). 
Thus, the set

C = Bp∗ \
( m⋃

k=1

S
(
Bp∗ , ψ(x∗

k),
ε

2
))

= Bp∗
⋂( m⋂

k=1

{
x∗ ∈ Y ∗ : x∗(ψ(x∗

k)) ≤ 1 − ε

2
})

is bounded, weak* closed, symmetric and

(1 − ε

2)Bp∗ ⊂ C ⊂ Bp∗ .

So C is the unit ball of a dual equivalent norm on Y ∗ (see [17, Fact 5.4]).
Now, let us consider

α(x∗) = max{x∗(ψ(x∗
k)) : k = 1, . . . ,m} = max{|x∗(ψ(x∗

k))| : k = 1, . . . ,m} =

= ‖(x∗(ψ(x∗
1)), . . . , x∗(ψ(x∗

m)))‖∞, for all x∗ ∈ Y ∗, (5.4)

where ‖ · ‖∞ is the infinity norm in Rm (the second identity in (5.4) is due to the fact 
that the set {ψ(x∗

k)}mk=1 is symmetric). Since ‖ · ‖∞ may be approximated uniformly 
on bounded sets of Rm by the C∞ norms ‖ · ‖s with s even integer for s → ∞, being 
‖w‖s = (

∑m
i=1 |wi|s)1/s for w = (w1, · · · , wm) ∈ Rm, we may select an even integer s

large enough so that

0 ≤ ‖w‖s − ‖w‖∞ ≤ ε

2 , whenever w ∈ Rm and ‖w‖∞ ≤ 2. (5.5)

Let us define

β(x∗) := ‖(x∗(ψ(x∗
1)), . . . , x∗(ψ(x∗

m)))‖s, for x∗ ∈ Y ∗

and

B = Bp∗ ∩
{
x∗ ∈ Y ∗ : β(x∗) ≤ 1 − ε

2
}
. (5.6)

The set B is bounded, weak* closed and symmetric. Moreover,

(1 − ε)Bp∗ ⊂ B ⊂ Bp∗ . (5.7)

Indeed, if x∗ ∈ (1 − ε)Bp∗ then |x∗(ψ(x∗
k))| ≤ (1 − ε) for all k = 1, . . . , m, so by (5.5), 

we have β(x∗) = α(x∗) + (β(x∗) − α(x∗)) ≤ (1 − ε) + ε
2 = 1 − ε

2 . Therefore, B is the 
unit ball of a dual equivalent norm, which we shall denote by q∗, defined on Y ∗ (see [17, 
Fact 5.4]). In fact, from (5.6) we have

q∗(x∗) = max
{
p∗(x∗), (1 − ε )−1β(x∗)

}
, for x∗ ∈ Y ∗.
2
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Our candidate for approximating p∗ in (N ∗
Y ∗ , ρ∗) is the norm q∗. We now prove that 

q∗ ∈ ∩nFn. The norm q∗ is Fréchet differentiable at every point x∗ ∈ Sp∗ ∩ V (and 
thus, by homogeneity of the norm, at every point of V \ {0}). This is a consequence of 
the fact that for every x∗ ∈ Sp∗ ∩ V there is an open neighbourhood Ux∗ of x∗ where 
the norm q∗ satisfies q∗(y∗) = (1 − ε

2 )−1β(y∗) > p∗(y∗) for all y∗ ∈ Ux∗ . Let us check 
this assertion: if x∗ ∈ Sp∗ ∩ V there is k ∈ {1, . . . , m} such that x∗ ∈ S(Bp∗ , ψ(x∗

k), ε2 )
and thus x∗(ψ(x∗

k)) > 1 − ε
2 . Therefore, β(x∗) ≥ α(x∗) > 1 − ε

2 and (1 − ε
2 )−1β(x∗) >

1 = p∗(x∗). By continuity there is an open neighbourhood Ux∗ of x∗ in Y ∗ satisfying 
(1 − ε

2)−1β(y∗) > p∗(y∗) > 0 for all y∗ ∈ Ux∗ . So q∗(y∗) = (1 − ε
2 )−1β(y∗) > 0 for all 

y∗ ∈ Ux∗ . Since β is Fréchet differentiable at the points y∗ ∈ Y ∗ such that β(y∗) > 0, 
we get that q∗ is Fréchet differentiable at every point of Ux∗ .

Since norms are positively homogeneous, the fact that q∗ is Fréchet differentiable on 
Sp∗ ∩ V implies that it is so in V \ {0} and therefore on the compact set W . Now, 
by standard arguments it can be checked that the Fréchet differentiability of q∗ on the 
compact set W yields

lim
δ→0

sup
{
q∗(x∗ + h∗) + q∗(x∗ − h∗) − 2q∗(x∗)

‖h∗‖∗ : h∗ ∈ Y ∗, ‖h∗‖∗ = δ; x∗ ∈ W

}
= 0,

(5.8)
which is equivalent to the uniform Fréchet differentiability of q∗ on W . Now, (5.8) implies 
that q∗ ∈ ∩nFn. Moreover, because of (5.7) we have that

p∗(x∗) ≤ q∗(x∗) ≤ 1
1 − ε

p∗(x∗), for all x∗ ∈ Y ∗.

Thus

0 ≤ q∗(x∗) − p∗(x∗) ≤ ε

1 − ε
p∗(x∗) ≤ ε

1 − ε
Kp, for all x∗ ∈ B‖·‖∗ ,

being Kp = sup{p∗(x∗) : x∗ ∈ B‖·‖∗}. Since ε varies over (0, 1) we get that p∗ can be 
approximated in (N ∗

Y ∗ , ρ∗) by norms in ∩nFn. Since p∗ ∈ N ∗
Y ∗ is arbitrary we get the 

denseness of ∩nFn in (N ∗
Y ∗ , ρ∗). If we combine (i) and (ii) we obtain the residuality in 

(N ∗
Y ∗ , ρ∗) of the set of dual norms which are Fréchet differentiable at the points of W

(and, by the homogeneity of the norm, at the points of V \ {0}). Now, because of the 
homeomorphism (5.3) we get that the set of norms in NY whose dual norms are Fréchet 
differentiable at the points of V \ {0} is residual in (NY , ρ).

Step 2. Now, if W is a Kσ subset of S‖·‖∗ , then W = ∪nWn where each Wn is a 
compact set of S‖·‖∗ . We apply Step 1 to every compact subset Wn to get the residuality 
in (NY , ρ) of the set of norms whose dual norms are Fréchet differentiable at the points 
of cone(Wn) \ {0}. Hence, because (NY , ρ) is a Baire space, we get the residuality in 
(NY , ρ) of the set of norms whose dual norms are Fréchet differentiable at the points of 
cone(W ) \ {0}.



36 D. Azagra et al. / Journal of Functional Analysis 287 (2024) 110488
Finally, let us check the assertion related to the norm attaining set NAp. It is well 
known that if a dual norm p∗ is Fréchet differentiable at a point x∗ ∈ Y ∗ \ {0}, then in 
particular, x∗ attains its p∗-norm. Let us prove it here for the sake of completeness. We 
may assume that p∗(x∗) = 1 and let us take x∗∗ ∈ Y ∗∗ such that (p∗)′(x∗) = x∗∗ and in 
particular x∗∗(x∗) = 1 = p∗∗(x∗∗) (by a standard notation, p∗∗ is the dual norm of p∗). 
Also, let us take a sequence {xn}n ⊂ Y with p(xn) = 1 for all n, being p the predual 
norm of p∗, and limn x

∗(xn) = 1. Since p∗ is Fréchet differentiable at x∗, by the Smulyan 
Lemma, limn p

∗∗(xn−x∗∗) = 0. Since p∗∗ and ‖ ·‖∗∗ are equivalent, limn ‖xn−x∗∗‖∗∗ = 0
and x∗∗ ∈ Y , so x∗ attains its p∗-norm at x∗∗ ∈ Y . �

The next corollary is a consequence of Proposition 1.12 and the well-known theorem 
of Fabian, Zajicek and Zizler [20] (see also [17, Page 53]) stating that the set of LUR 
norms (LUR dual norms) in a Banach space Y (Y ∗) is empty or residual in (NY , ρ)
((N ∗

Y ∗ , ρ∗), respectively).

Corollary 1.14. Let Y be a Banach space with a LUR norm ‖ · ‖ whose dual norm ‖ · ‖∗ is 
LUR. Let W ⊂ S‖·‖∗ be a Kσ subset. Then the set of norms p ∈ NY such that both p and 
its dual norm p∗ are LUR and p∗ is Fréchet differentiable at the points of cone(W ) \ {0}
is residual in (NY , ρ). In particular, the set of norms p ∈ NY such that both p and its 
dual norm p∗ are LUR and cone(W ) ⊂ NAp is residual in (NY , ρ).

In Section 5.2, we will need the following property of the duality mapping ‖ · ‖′ :
S‖·‖ → S‖·‖∗ , whenever we work with a Banach space Y with C1 norm ‖ · ‖. Note that 
‖ · ‖∗ being LUR implies the C1 smoothness of ‖ · ‖ ([18, Page 344]).

Claim 5.1. Let Y be a Banach space with a LUR norm ‖ · ‖ whose dual norm ‖ · ‖∗ is 
LUR. Then the duality mapping ‖ · ‖′ : S‖·‖ → S‖·‖∗ ∩NA‖·‖ is a homeomorphism, where 
NA‖·‖ is the set of norm attaining functionals of Y ∗.

Proof. Firstly, the function ‖ · ‖′ : S‖·‖ → S‖·‖∗ is one-to-one because of the rotundity of 
the norm ‖ · ‖ and ‖ · ‖′ is continuous because of the C1 smoothness of the norm ‖ · ‖.

If Y is reflexive then NA‖·‖ = Y ∗ and ‖ · ‖′ is surjective. The continuity of the inverse 
function is a consequence of the C1 smoothness property of the dual norm ‖ · ‖∗.

If Y is not reflexive, then NA‖·‖ �= Y ∗. So ‖ · ‖′ : S‖·‖ → S‖·‖∗ is not surjective. Thus, 
we should consider the bijection ‖ · ‖′ : S‖·‖ → S‖·‖∗ ∩NA‖·‖. In this case the dual norm 
‖ · ‖∗ is Fréchet differentiable at every point of the set NA‖·‖ \{0}. Indeed, recall that a 
dual norm ‖ · ‖∗ is Fréchet differentiable at a point x∗ ∈ S‖·‖∗ if and only if x∗ strongly 
exposes B‖·‖ (at some point x ∈ S‖·‖) [18, Corollary 7.21]. Now, if x∗ attains its norm 
(at some point x ∈ S‖·‖), it is straightforward to verify that the LUR condition of the 
norm ‖ · ‖ (at the point x) yields limε→0 diam(S(B‖·‖, x∗, ε)) = 0, that is x∗ strongly 
exposes B‖·‖ (at x). So ‖ · ‖∗ is Fréchet differentiable at x∗ (with (‖ · ‖∗)′(x∗) = x) and 
thus the subdifferential ∂‖ · ‖∗ : S‖·‖∗ → 2S‖·‖∗∗ is ‖ · ‖∗−‖ · ‖∗∗ upper semicontinuous at 
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x∗ and, in particular, the restriction ∂‖ · ‖∗|S‖·‖∗∩NA‖·‖∗ : S‖·‖∗ ∩NA‖·‖∗ → S‖·‖, which is 
univaluated, is ‖ · ‖∗−‖ · ‖ continuous at x∗ (see [35, Corollary 2.6 and Proposition 2.8]). 
Notice that this restriction is the inverse of ‖ · ‖′ : S‖·‖ → S‖·‖∗ ∩NA‖·‖∗ , so the claim is 
proved. �
Remark 5.2. Notice that the conclusion of Claim 5.1 also holds under the weaker condi-
tions that the norm ‖ · ‖ on Y is LUR and C1 smooth since the proof given above is also 
valid for this case.

5.2. Approximation for the case of a finite dimensional target space

Firstly, we note that our proof below will show that, for the case k = 1, we can 
take the space Y to just be Asplund and WCG because then Y has automatically a C1

smooth and LUR norm [17].
First of all, let us see how Theorem 1.8 yields Corollary 1.9 and Corollary 1.10.

Proof of Corollary 1.9. Since E = X ⊕ Y for some closed subspace X and the property 
of having C1-partitions of unity is hereditary, X and Y have C1-partitions of unity as 
well. In particular Y is a separable infinite dimensional Asplund space (see [17, Page 58]). 
Thus Y has a C1 smooth and LUR norm and Theorem 1.8 applies to X ⊕ Y . �
Proof of Corollary 1.10. The assumptions given in the statement of Corollary 1.10 for 
k = 1 state that Y is a WCG Banach space. This yields that Y has the 1-Separable 
Complementation Property (1-SCP, for short), that is every closed separable subspace 
of Y is contained in a closed separable and 1-complemented subspace of Y (see [27, 
Theorem 3.42 and Proposition 3.43, pages. 105-106]; here we are using that a WCG 
Banach space is WLD, that is, Weakly Lindelöf Determined). In particular, there is 
a separable infinite dimensional closed and complemented subspace Z1 of Y . Thus Y
can be decomposed into a direct sum of the form Y = Z0 ⊕ Z1 for a suitable closed 
subspace Z0 of Y . Now, since Y has a C1 smooth norm, it is Asplund. Recall that being 
Asplund WCG is an hereditary property (see [17, Corollary VI.4.4], where we are using 
that a WCG Banach space is WCD, that is, Weakly Countably Determined, which is 
an hereditary property too). In particular, Z0 is Asplund and WCG as well. Since Z0 is 
WCG and has a C1 smooth norm, by [17, Theorem VIII.3.2] Z0 has C1 smooth partitions 
of unity. Therefore, the Banach space X̃ = X ⊕ Z0 has C1 smooth partitions of unity. 
So we can apply Theorem 1.8 to the direct sum X̃ ⊕ Ỹ , where Ỹ = Z1 is a separable 
space with a C1 smooth and LUR norm.

Now, the assumptions given in the statement of Corollary 1.10 for k > 1 imply that 
Y is a suppereflexive space as it was mentioned in the introduction (see [19] or [17, 
Chapter V, Proposition 1.3]). So in particular Y is an Asplund WCG Banach space. 
Following the reasoning of case k = 1 we can decompose Y into Y = Z0 ⊕ Z1, where Z0
is a superreflexive Banach space and has a Ck smooth norm (thus Z0 has Ck smooth 
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partitions of unity) and Z1 is a separable and superreflexive Banach space with a Ck

smooth and LUR norm. Again, we can apply Theorem 1.8 to the direct sum X̃ ⊕ Ỹ , 
where X̃ = X ⊕Z0 has Ck smooth partition of unity and Ỹ = Z1 is a separable Banach 
space with a Ck smooth and LUR norm. �
Proof of Theorem 1.8. Since we are assuming that Y is a separable Banach space with a 
Ck smooth norm, in particular Y is a separable Asplund space so Y admits a shrinking 
M-basis {ui, u∗

i }i∈N ⊂ Y × Y ∗ (see, for example, [27, Theorem 6.3]). We may assume 
without loss of generality that ‖u∗

i ‖ = 1 for all i ∈ N. In addition, let us choose any 
sequence of normalized vectors {v∗i : i ∈ N} ⊂ Y ∗ such that {v∗i , u∗

i : i ∈ N} are linearly 
independent.

Next, we will renorm Y for the case k = 1 and Y non reflexive: since Y is a separable 
Asplund space, Y has an equivalent LUR norm whose dual norm is LUR (see, for exam-
ple, [17]). Thus, we may assume, by applying Corollary 1.14 and renorming Y , that the 
initial norm ‖ · ‖ on Y is LUR, its dual norm ‖ · ‖∗ is LUR (thus ‖ · ‖ is C1 smooth) and 
the norm ‖ · ‖∗ is Fréchet differentiable at the non zero points of the space

V = span({v∗i : i ∈ N} ∪ {u∗
i : i ∈ N}),

and thus V ⊂ NA‖·‖ (where NA‖·‖ is the set of norm attaining functionals of Y ∗ for the 
norm ‖ · ‖). Notice that we apply Corollary 1.14 to W = V ∩ S‖·‖∗ because W can be 
written as the union W = ∪n∈NWn, where Wn = span({v∗i , u∗

i : i = 1, . . . , n}) ∩ S‖·‖∗

is a compact set for every n, thus W ⊂ S‖·‖∗ is a Kσ subset and cone(W ) = V . For the 
remaining cases it is not necessary to renorm Y .

Now, we can apply Lemma 4.1 and Lemma 4.3 to obtain Sk-partitions of unity on 
X⊕Y , where the family Sk is given in Definition 4.2, that is, Sk is the family of functions 
ψ : X ⊕ Y → R satisfying:

(i) ψ ∈ Ck(X ⊕ Y, R).
(ii) ψ is locally of the form ψ(x, y) = ϕ(x, ϕk1(‖y‖), . . . , ϕkm

(‖y‖), u∗
i1

(y), . . . , u∗
in

(y))
for certain indexes i1, . . . , in ∈ I, k1, . . . , km ∈ N and certain Ck smooth function 
ϕ ∈ Ck(X ⊕ Rm+n). Here {ϕn}n denotes the family of C∞ functions defined in 
Lemma 4.1.

(iii) If Ψ ∈ C∞(Rn) and ψ1, . . . , ψn ∈ Sk, then Ψ(ψ1, . . . , ψn) ∈ Sk.

In order to clarify the ideas, let us split the proof into two steps: the real-valued case 
and the general finite dimensional case.

Step 1. The real-valued case. Let us consider a continuous function f : X ⊕ Y → R

and a continuous function ε : X⊕Y → (0, ∞). Let us consider in X⊕Y an open covering 
of the form {Ui := B̊X(xi, ri) × B̊Y (yi, ri)}i∈Δ (with B̊X(xi, ri) ⊂ X the open ball in X
centered at xi and radius ri > 0 and B̊Y (yi, ri) ⊂ Y the open ball in Y centered at yi
and radius ri > 0 for all i ∈ Δ) such that
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|f(x, y) − f(x′, y′)| < ε(x, y)
4 for all (x, y), (x′y′) ∈ Ui and i ∈ Δ, (5.9)

|ε(x, y) − ε(x′, y′)| < ε(x, y)
8 for all (x, y), (x′y′) ∈ Ui and i ∈ Δ,

and ri <
ε(xi, yi)

8 for every i ∈ Δ.

Then, there exists a partition of unity {ψi}i∈Δ ⊂ Sk satisfying supp0 ψi ⊂ Ui for all 
i ∈ Δ. Let us define the function

p(x, y) =
∑
i∈Δ

(f(xi, yi) + v∗1(y − yi))ψi(x, y), for all (x, y) ∈ X ⊕ Y . (5.10)

A simple calculation shows that

|p(x, y) − f(x, y)| ≤
∑
i∈Δ

(|f(xi, yi) − f(x, y)| + |v∗1(y − yi)|)ψi(x, y) (5.11)

<
∑
i∈Δ

(ε(x, y)/4 + ‖y − yi‖)ψi(x, y)

<
∑
i∈Δ

(ε(x, y)/4 + ε(xi, yi)/8)ψi(x, y)

<
∑
i∈Δ

(ε(x, y)/4 + ε(x, y)/4)ψi(x, y) ≤ ε(x, y)/2.

Since the sum over all i ∈ Δ in (5.10) is locally finite and each ψi(x, y) locally depends 
on x, on ϕk(‖y‖) for finitely many indexes k and on the ‘coordinates’ u∗

j (y) of y ∈ Y

for finitely many indexes j, for every (a0, b0) ∈ X ⊕ Y there is an open and bounded 
neighbourhood U(a0,b0) and two finite number of indexes Δ(a0, b0) ⊂ Δ, I(a0, b0) ⊂ N, 
depending on (a0, b0), such that

p(x, y) =
∑

i∈Δ(a0,b0)

(f(xi, yi) + v∗1(y − yi))ψi(x, y), for (x, y) ∈ U(a0,b0)

and

∂p

∂y
(x, y) =

∑
i∈Δ(a0,b0)

ψi(x, y) v∗1 +
∑

i∈Δ(a0,b0)

(f(xi, yi) + v∗1(y − yi))
∂ψi

∂y
(x, y)

= v∗1 +
∑

i∈Δ(a0,b0)

(f(xi, yi) + v∗1(y − yi))
∂ψi

∂y
(x, y), for (x, y) ∈ U(a0,b0).

Let us call for every (x, y) ∈ U(a0,b0),

k(x, y) =
∑

(f(xi, yi) + v∗1(y − yi))
∂ψi

∂y
(x, y) =
i∈Δ(a0,b0)
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= z(x, y) ‖ · ‖′(y) +
∑

j∈I(a0,b0)

wj(x, y)u∗
j ∈ span({‖ · ‖′(y), u∗

j : j ∈ I(a0, b0)}),

where z(x, y), wj(x, y) ∈ R for all (x, y) ∈ U(a0,b0) and all j ∈ I(a0, b0) and we may 
assume that z(x, 0) = 0 for (x, 0) ∈ U(a0,b0). The latter fact is explained because the 
functions ϕn(t) are zero locally around t = 0. In particular, for every ψ ∈ Sk we have 
∂ψ
∂y (x, 0) ∈ span{u∗

i : i ∈ N}. Now we consider the following cases:
� If (x, y) ∈ U(a0,b0) and z(x, y) = 0, then

∂p

∂y
(x, y) = v∗1 + k(x, y) = v∗1 +

∑
j∈I(a0,b0)

wj(x, y)u∗
j �= 0

because {v∗1 , u∗
j : j ∈ N} are linearly independent.

� If (x, y) ∈ U(a0,b0), z(x, y) �= 0 and 
∂p

∂y
(x, y) = 0, then

‖ · ‖′(y) = − 1
z(x, y)v

∗
1 −

∑
j∈I(a0,b0)

wj(x, y)
z(x, y) u∗

j

so

‖ · ‖′(y) ∈ span({v∗1 , u∗
j : j ∈ I(a0, b0)}) ∩ S‖·‖∗ := K.

Notice that K is compact and K ⊂ S‖·‖∗∩NA‖·‖ because of the properties of the norm 
considered in Y . Recall that, by Claim 5.1 and Remark 5.2, ‖ · ‖′ : S‖·‖ → S‖·‖∗ ∩NA‖·‖
is a homeomorphism. So the set (‖ · ‖′)−1(K) is compact, where we denote by (‖ · ‖′)−1

the inverse function of ‖ · ‖′ : S‖·‖ → S‖·‖∗ ∩NA‖·‖. Also,

y = ‖y‖

⎛⎝(‖ · ‖′)−1
(
− 1
z(x, y)v

∗
1 −

∑
j∈I(a0,b0)

wj(x, y)
z(x, y) u∗

j

)⎞⎠ ∈ ‖y‖ · (‖ · ‖′)−1(K).

(5.12)

Call A := (‖ · ‖′)−1(K) and

A′ :=
⋃
λ≥0

λA.

Next we will show that A′ ⊂ Y is the graph of a continuous function η : Y0 → Y1 where 
Y0, Y1 are closed subspaces of Y , Y0 has finite dimension, Y1 has infinite dimension and 
Y0 ⊕ Y1 = Y . Therefore by (5.12) we would get that

{y ∈ Y : (x, y) ∈ U(a0,b0) and ∂p (x, y) = 0}

∂y
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⊂
{
y ∈ Y : (x, y) ∈ U(a0,b0) and y

‖y‖ ∈ A

}
⊂
{
y ∈ Y : (x, y) ∈ U(a0,b0) and y ∈ A′}

is contained in the graph of η.
Define Y1 = span({v∗1 , u∗

j : j ∈ I(a0, b0)})⊥, that is the annihilator of span({v∗1 , u∗
j :

j ∈ I(a0, b0)}) in Y . Since the dimension of span({v∗1 , u∗
j : j ∈ I(a0, b0)}) is finite, we 

have that the codimension of Y1 is finite so there is a subspace Y0 ⊂ Y of finite dimension 
such that Y = Y0 ⊕Y1. Then, we can identify Y ∗ = Y ∗

0 ⊕Y ∗
1 = Y ⊥

1 ⊕Y ⊥
0 with Y ∗

1 = Y ⊥
0

and

Y ∗
0 = Y ⊥

1 = ((span({v∗1 , u∗
j : j ∈ I(a0, b0)}))⊥)⊥ = span({v∗1 , u∗

j : j ∈ I(a0, b0)}).

Define the canonical projections

πi : Y = Y0 ⊕ Y1 → Yi as π(y = y0 + y1) = yi where y ∈ Y, yi ∈ Yi for i = 0, 1.

Let us consider the restriction

(‖ · ‖′)−1|K : K = S‖·‖∗ ∩ Y ⊥
1 → A ⊂ S‖·‖

and the composition

π0 ◦ (‖ · ‖′)−1|K : K → Y0.

Lemma 5.3. Under the previous assumptions:

(i) π0 ◦ (‖ · ‖′)−1|K is one-to-one;
(ii) thus π0|A : A → Y0 is one-to-one;
(iii) π0(A) ⊂ Y0 is closed;
(iv) (π0|A)−1 : π0(A) → A is continuous;
(v) thus π1 ◦ (π0|A)−1 : π0(A) ⊂ Y0 → Y1 is continuous;
(vi) A is the graph of a continuous function, that is

A = {(y0, π1 ◦ (π0|A)−1(y0)) : y0 ∈ π0(A)}.

Proof. (i) Let us take y∗, z∗ ∈ K and y = (‖ · ‖′)−1(y∗) ∈ A, z = (‖ · ‖′)−1(z∗) ∈ A, such 
that π0 ◦ (‖ · ‖′)−1(y∗) = π0 ◦ (‖ · ‖′)−1(z∗) and thus π0(y) = π0(z). Now, if y = y0 + y1
and z = z0 + z1 with y0, z0 ∈ Y0 and y1, z1 ∈ Y1, we have that π0(y) = y0 = z0 = π0(z). 
Since y∗ = ‖ · ‖′(y), z∗ = ‖ · ‖′(z) and z∗ ∈ Y ⊥

1 , we have

1 = y∗(y) and 1 = z∗(z) = z∗(z0) = z∗(y0) = z∗(y0 + y1) = z∗(y).
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Since the norm ‖ · ‖ is Gâteaux differentiable at y, we get that y∗ = z∗ and thus 
π0 ◦ (‖ · ‖′)−1|K is one-to-one.

(ii) Assertion (i) yields π0|A : A → Y0 is one-to-one.

(iii) Since π0 : Y → Y0 is continuous and A is compact we have that π0(A) is compact 
(thus closed) in Y0.

(iv) Since π0|A : A → π0(A) is a continuous bijection between the compact (Hausdorff) 
sets A and π0(A), we have that π0|A is a homeomorphism between A and π0(A), so 
(π0|A)−1 : π0(A) → A is continuous.

(v) Now, it is enough to compose (π0|A)−1 with the (continuous) canonical projection 
π1 from Y onto Y1 to get the continuity of π1 ◦ (π0|A)−1 : π0(A) ⊂ Y0 → Y1.

(vi) Finally, we can write A as the graph of the continuous function π1 ◦(π0|A)−1 defined 
in the closed subset π0(A) of Y0 with values in Y1:

A = {(y0, π1 ◦ (π0|A)−1(y0)) : y0 ∈ π0(A)}. �
In fact, the previous function π1◦(π0|A)−1 : π0(A) → Y1 can be extended continuously 

to Y0 by defining

η : Y0 → Y1, η(λy0) := λπ1 ◦ (π0|A)−1(y0) for every λ ≥ 0 and y0 ∈ π0(A).

� The function η is well defined:

∗ First, suppose that λy0 = λ′y′0 ∈ Y0 with λ, λ′ ≥ 0 and y0, y′0 ∈ π0(A). Notice that 
0 �∈ π0(A) because for every y0 ∈ π0(A) there is y∗ ∈ K such that y∗(y0) = 1. Thus, 
if λ = 0 then λ′ = 0 and η(λy0) = η(λ′y′0) = 0. If λ �= 0, then y0 = λ′

λ y′0. Since there 
are y∗ ∈ K ⊂ Y ⊥

1 and y′ = y′0 + y′1 ∈ A (with y′1 ∈ Y1) satisfying

1 = y∗(y0) = λ′

λ
y∗(y′0) = λ′

λ
y∗(y′) ≤ λ′

λ

we get that λ ≤ λ′. Replacing y0 by y′0 in the preceding argument we get λ′ ≤ λ and 
thus y0 = y′0 so η(λy0) = η(λ′y′0).

∗ The function η is defined in the entire space Y0. In order to prove this, let us check 
that for every z0 ∈ Y0 \ {0} there is λ0 > 0 such that z0λ0

∈ π0(A). Indeed, since the 
set K is symmetric and compact, sup{z∗(z0) : z∗ ∈ K} is attained at some point 
y∗ ∈ K and satisfies sup{z∗(z0) : z∗ ∈ K} = y∗(z0) > 0 so sup{z∗( z0

y∗(z0) ) : z∗ ∈
K} = y∗( z0

y∗(z0) ) = 1. On the one hand, there is y = y0 + y1 ∈ A (with yi ∈ Yi, 
i = 0, 1) such that (‖ · ‖′)−1(y∗) = y. Thus, the points y0 and z0

y∗(z0) considered 

as functionals (i.e. as elements of Y ∗∗) and restricted to Y ⊥
1 verify that y0|Y ⊥

1
and 

z0
∗ |Y ⊥ are supporting functionals of B‖·‖∗ ∩ Y ⊥

1 at the point y∗ with
y (z0) 1
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z∗(y0) ≤ 1 = y∗(y0) and z∗( z0

y∗(z0)
) ≤ 1 = y∗( z0

y∗(z0)
) for all z∗ ∈ K.

Since the norm ‖ · ‖∗|Y ⊥
1

is Gâteaux differentiable at y∗ we have necessarily y0|Y ⊥
1

=
z0

y∗(z0) |Y ⊥
1

. Since y0 and z0
y∗(z0) are points in Y0 we have that y0|Y ⊥

0
= z0

y∗(z0) |Y ⊥
0

= 0
and thus y0 = z0

y∗(z0) because Y ∗ = Y ⊥
0 ⊕Y ⊥

1 and z∗(y0) = z∗( z0
y∗(z0) ) for all z∗ ∈ Y ∗. 

So for λ0 = y∗(z0) > 0, we have z0λ0
= y0 ∈ π0(A).

� The function η is continuous: Assume that λny0,n
n−→ λy0 with λ, λn ≥ 0 for all 

n and y0, y0,n ∈ π0(A). Notice that for every z0 ∈ π0(A) there is z∗ ∈ K such that 
z∗(z0) = 1 so ‖z0‖ ≥ 1. Also, π0(A) and π1(A) are bounded sets because A is bounded 
and π0 and π1 are linear and continuous operators. Now, if λ = 0 then {λny0,n}n n−→ 0
and |λn| ≤ ‖λny0,n‖ n−→ 0 so η(λny0,n) = λnη(y0,n) n−→ 0 = λη(y0) (because {η(y0,n)}n
is bounded) and η is continuous at 0. Next, if λ > 0, we may assume without loss of 
generality that λn > 0 for all n. Since λn

λ y0,n
n−→ y0, in order to prove the continuity 

of η at λy0 it is enough to prove that λn

λ

n−→ 1 and thus y0,n
n−→ y0. This together 

with the continuity of π1 ◦ (π0|A)−1 at y0 ∈ π0(A) and the definition of η will provide 
η(λny0,n) = λnη(y0,n) n−→ λη(y0) = η(λy0) and the continuity of η at λy0. Let us denote 
λn

λ = tn for all n. Let us take y, y∗n ∈ K such that y∗(y0) = 1, y∗n(y0,n) = 1 for all n. 
Also, let us take y1, y1,n ∈ Y1 such that y0 + y1 ∈ A and y0,1 + y1,n ∈ A. On the one 
hand,

tn =tny
∗
n(y0,n) − y∗n(y0) + y∗n(y0)

=y∗n(tny0,n − y0) + y∗n(y0 + y1) ≤ ‖tny0,n − y0‖ + 1

so lim supn tn ≤ 1. On the other hand,

tn ≥ tny
∗(y0,n + y1,n) = tny

∗(y0,n) = y∗(y0) + y∗(tny0,n − y0) ≥ 1 − ‖tny0,n − y0‖

and thus lim infn tn ≥ 1. So limn tn = 1 and the proof of the continuity of η is finished.
Now, consider the set

A′ =
⋃
λ≥0

λA = {(λy0, λη(y0)) : y0 ∈ π0(A), λ ≥ 0} = {(z, η(z)) : z ∈ Y0}.

We trivially have that A′ is the graph of η. Moreover, recall that (5.12) yields

{y ∈ Y : (x, y) ∈ U(a0,b0) and ∂p

∂y
(x, y) = 0}

⊂ {y ∈ Y : (x, y) ∈ U(a0,b0) and y

‖y‖ ∈ A}

⊂ {y ∈ Y : (x, y) ∈ U(a0,b0) and y ∈ A′}. (5.13)



44 D. Azagra et al. / Journal of Functional Analysis 287 (2024) 110488
Thus {y ∈ Y : (x, y) ∈ U(a0,b0) and ∂p
∂y (x, y) = 0} is contained in the graph of η, as we 

wanted. Recall that there is an alternate proof for the construction of the function η by 
using some of the ideas of Lemma 4.5.

As a conclusion of (5.13), if we denote by Cp the closed set of X ⊕Y of critical points 
of p and consider the closed set of X ⊕ Y

CPp :=
{
(x, y) ∈ X ⊕ Y : ∂p

∂y
(x, y) = 0

}
,

we have that

U(a0,b0) ∩ Cp ⊂ U(a0,b0) ∩ CPp ⊂ X × {(z, η(z)) : z ∈ Y0} =

= {(x, z, z′) ∈ X ⊕ Y0 ⊕ Y1 : z′ = η(z) := η̃(x, z)},

where η̃ : X ⊕ Y0 → Y1 is a continuous function with X ⊕ Y0 a Banach space with 
Ck smooth partitions of unity and Y1 an infinite dimensional Banach space with a Ck

smooth norm. Notice that, by the construction, the spaces X ⊕ Y0, Y1 and the function 
η̃ depend on the point (a0, b0).

Therefore, we may apply Theorem 2.9 and define a diffeomorphism

d : X ⊕ Y →
(
X ⊕ Y

)
\ CPp

limited by the open cover {supp0 ψi}i∈Δ, where supp0 ψi = {(x, y) ∈ X ⊕Y : ψi(x, y) >
0}.

Let us define the composition g = p ◦ d, which is clearly Ck smooth. Let us check 
that g has no critical points. On the one hand, for all (x, y) ∈ X ⊕ Y we have that 
d(x, y) �∈ CPp and thus ∂p

∂y (d(x, y)) �= 0 which makes p′(d(x, y)) �= 0 as well. On the 
other hand, d′(x, y) is an isomorphism on X ⊕ Y for all (x, y) ∈ X ⊕ Y . So we have that 
(p ◦ d)′(x, y) = p′(d(x, y)) ◦ d′(x, y) �= 0 for all (x, y) ∈ X ⊕ Y .

In addition, it can be checked that |f(x, y) − g(x, y)| < ε(x, y) for all (x, y) ∈ X ⊕ Y . 
Indeed, since for all (x, y) there is i0 ∈ Δ (depending on (x, y)) with {(x, y), d(x, y)} ⊂
supp0 ψi0 ⊂ Ui0 , by using the upper bounds given in (5.9) and (5.11) we have

|f(x, y) − g(x, y)| ≤ |f(x, y) − f(d(x, y))| + |f(d(x, y)) − p(d(x, y))| ≤ (5.14)

≤ ε(x, y)
4 + ε(d(x, y))

2 < ε(x, y).

Step 2. The general case of a finite dimensional target space F . If the space F has 
dimension n, we consider the n linearly independent vectors {v∗m}nm=1 ⊂ S‖·‖ given at 
the beginning of the proof such that {v∗m : m = 1, · · · , n} ∪ {u∗

i : i ∈ N} are linearly 
independent. Without loss of generality we may assume that F = Rn with the euclidean 
norm. Let us consider a continuous a function f : X ⊕ Y → Rn and a continuous 
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function ε : X ⊕ Y → (0, ∞). Let us consider a covering of X ⊕ Y given by {Ui :=
B̊X(xi, ri) × B̊Y (yi, ri)}i∈Δ (with B̊X(xi, ri) ⊂ X and B̊Y (yi, ri) ⊂ Y ) such that

‖f(x, y) − f(x′, y′)‖ <
ε(x, y)
4
√
n

for all (x, y), (x′y′) ∈ Ui and i ∈ Δ, (5.15)

|ε(x, y) − ε(x′, y′)| < ε(x, y)
8 for all (x, y), (x′, y′) ∈ Ui and i ∈ Δ,

and ri <
ε(xi, yi)

8
√
n

for every i ∈ Δ.

Then, there exists a partition of unity {ψi}i∈Δ ⊂ Sk satisfying supp0 ψi ⊂ Ui for 
all i ∈ Δ. We proceed in a similar way to Step 1 for each component fm of f and get 
functions pm ∈ Ck(X ⊕ Y, R) for m = 1, . . . , n defined by

pm(x, y) =
∑
i∈Δ

(fm(xi, yi) + v∗m(y − yi))ψi(x, y),

for all (x, y) ∈ X ⊕ Y and m = 1, . . . , n. (5.16)

Similarly to (5.11) we can check that

|fm(x, y) − pm(x, y)| < ε(x, y)
2
√
n

for all (x, y) ∈ X ⊕ Y, and m = 1, . . . , n.

If we define

p : X ⊕ Y → Rn, p(x, y) = (p1(x, y), . . . , pn(x, y)), for all (x, y) ∈ X ⊕ Y,

then p ∈ Ck(X ⊕ Y, Rn) and

‖f(x, y) − p(x, y)‖ <
ε(x, y)

2 for all (x, y) ∈ X ⊕ Y. (5.17)

Also, reasoning as in the preceding step, for every (a0, b0) ∈ X ⊕ Y there is an open 
and bounded neighbourhood U(a0,b0) of (a0, b0), a finite number of indexes I(a0, b0) ⊂ N

(depending on (a0, b0)) such that

∂pm
∂y

(x, y) = v∗m + zm(x, y)‖ · ‖′(y) +
∑

j∈I(a0,b0)

wm,j(x, y)u∗
j , for all (x, y) ∈ U(a0,b0),

where zm(x, y) ∈ R, wm,j(x, y) ∈ R for all (x, y) ∈ U(a0,b0), all m = 1, . . . , n and all 
j ∈ I(a0, b0), where zm(x, 0) = 0 for all (x, 0) ∈ U(a0,b0) and all m = 1, . . . , n. Now, we 
consider the following cases:
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� If (x, y) ∈ U(a0,b0) and zm(x, y) = 0 for all m = 1, . . . , n, then

∂pm
∂y

(x, y) = v∗m +
∑

j∈I(a0,b0)

wm,j(x, y)u∗
j , for all m = 1, . . . , n,

so 
{
∂pm
∂y

(x, y)
}n

m=1
are linearly independent and thus ∂p∂y (x, y) is surjective.

� If (x, y) ∈ U(a0,b0) and zm(x, y) �= 0 for at least one m ∈ {1, . . . , n} and {∂pm
∂y

(x, y)
}n
m=1 are linearly dependent, then there is a non trivial linear combination

0 =
n∑

m=1
λm

∂pm
∂y

(x, y) =
n∑

m=1
λm v∗m +

( n∑
m=1

λmzm(x, y)
)
‖ · ‖′(y)

+
n∑

m=1
λm

( ∑
j∈I(a0,b0)

wm,j(x, y)u∗
j

)
,

with {λm}nm=1 ⊂ R and at least one λm �= 0. Denote λ(x, y) := − 
∑n

m=1 λmzm(x, y). 
Notice that, in this case, λ(x, y) �= 0. Otherwise,

n∑
m=1

λm v∗m = −
n∑

m=1
λm

( ∑
j∈I(a0,b0)

wm,j(x, y)u∗
j

)
,

which is impossible because the first sum is in span({v∗m : m = 1, . . . , n}) \ {0} and 
the second sum is in span({u∗

j : j ∈ I(a0, b0)}) and the intersection span({v∗m : m =
1, . . . , n}) ∩ span({u∗

j : j ∈ I(a0, b0)}) = {0}. Then,

‖ · ‖′(y) =
n∑

m=1

λm

λ(x, y) v
∗
m +

n∑
m=1

λm

λ(x, y)

( ∑
j∈I(a0,b0)

wm,j(x, y)u∗
j

)
,

where

b1(x, y) :=
n∑

m=1

λm

λ(x, y) v
∗
m ∈ span({v∗m : m = 1, . . . , n}) \ {0}

and

b2(x, y) :=
n∑

m=1

λm

λ(x, y)

( ∑
j∈I(a0,b0)

wm,j(x, y)u∗
j

)
∈ span({u∗

j : j ∈ I(a0, b0)}).

Thus we have

‖ · ‖′(y) ∈ span({v∗m, u∗
j : j ∈ I(a0, b0) and m ∈ {1, . . . , n}}) ∩ S‖·‖∗ := K
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with K ⊂ NA‖·‖ compact and thus

y ∈ ‖y‖ (‖ · ‖′)−1(K).

Next, we follow Step 1 and define the infinite dimensional closed subspace of Y

Y1 = span({v∗m, u∗
j : j ∈ I(a0, b0) and m ∈ {1, . . . , n}})⊥

and a finite dimensional subspace Y0 such that Y = Y0 ⊕ Y1 (both Y0 and Y1 depending 
on (a0, b0)) to get subsets A and A′ satisfying{

y ∈ Y : (x, y) ∈ U(a0,b0) and
{
∂pm
∂y

(x, y)
}n

m=1
are linearly dependent

}
⊂

⊂
{
y ∈ Y : (x, y) ∈ U(a0,b0) and y

‖y‖ ∈ A
}
⊂

⊂ {y ∈ Y : (x, y) ∈ U(a0,b0) and y ∈ A′},

being A′ the graph of a continuous function η : Y0 → Y1. Therefore, if we denote by Cp
the closed set of X ⊕ Y of critical points of p and consider the closed set of X ⊕ Y

CPp = {(x, y) ∈ X ⊕ Y : ∂p

∂y
(x, y) is not surjective },

then

U(a0,b0) ∩ Cp ⊂ U(a0,b0) ∩ CPp ⊂ {(x, z, z′) ∈ X ⊕ Y0 ⊕ Y1 : z′ = η(z) := η̃(x, z)},

with η̃ : X⊕Y0 → Y1 a continuous function. Notice that Y0, Y1, and η̃ depend on (a0, b0).
As in Step 1, we apply Theorem 2.9 and compose p with a Ck diffeomorphism d :

X ⊕ Y → (X ⊕ Y ) \ CPp limited by the open cover {supp0 ψi}i∈Δ. The composition 
g := p ◦d, which is Ck smooth, does not have critical points: We have that d(x, y) �∈ CPp

for all (x, y) ∈ X ⊕ Y and thus ∂p
∂y

(d(x, y)) is a surjective operator from Y onto Rn, 

which also makes p′(d(x, y)) a surjective operator from X ⊕ Y onto Rn for all (x, y) ∈
X ⊕ Y . Since d′(x, y) is an isomorphism on X ⊕ Y for all (x, y) ∈ X ⊕ Y , we have that 
(p ◦ d)′(x, y) = p′(d(x, y)) ◦ d′(x, y) is a surjective operator from X ⊕ Y onto Rn for all 
(x, y) ∈ X ⊕ Y .

In addition, it can be checked that ‖f(x, y) − g(x, y)‖ < ε(x, y) for all (x, y) ∈ X ⊕Y . 
Indeed, since for all (x, y) there is i0 ∈ Δ with {(x, y), d(x, y)} ⊂ supp0 ψi0 ⊂ Ui0 , by 
using the upper bounds in (5.15) and (5.17) we have ε(d(x, y)) < 9

8ε(x, y) and

‖f(x, y) − g(x, y)‖ ≤ ‖f(x, y) − f(d(x, y))‖ + ‖f(d(x, y)) − p(d(x, y))‖

≤ ε(x, y)√ + ε(d(x, y))
< ε(x, y). �
4 n 2
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6. Final comments and conclusions

As we mention in the introduction, when proving the existence of Ck smooth approx-
imations without critical points of continuous functions from a Banach space X to any 
quotient F of X it is enough to consider F = X as we stated in Fact 1.15, which we 
shall now prove.

Proof of Fact 1.15. It is enough to prove (2) ⇒ (1). Consider a quotient F of X, a 
continuous mapping f : X → F and a continuous function ε : X → (0, ∞). Let us denote 
by π : X → F the canonical quotient mapping taking every point x to its equivalence 
class in F . Let us consider a Bartle-Graves continuous selection mapping S : F → X, 
i.e. a continuous mapping S : F → X such that π ◦ S = Id, being Id : F → F

the identity mapping (see [8] or [17, Chapter VII, Lemma 3.2]). Let us consider the 
continuous composition S ◦ f : X → X. By assumption, there exists g ∈ Ck(X, X)
such that ‖S ◦ f(x) − g(x)‖ < ε(x) for all x ∈ X and g has no critical points. Then, 
‖(π ◦S ◦f)(x) −π ◦g(x)‖ < ε(x) and thus ‖f(x) −π ◦g(x)‖ < ε(x) for all x ∈ X. Clearly 
π ◦ g ∈ Ck(X, F ) and D(π ◦ g)(x) = π ◦ Dg(x) is the composition of surjective linear 
mappings, thus surjective for all x ∈ X. �

Finally, let us mention, that, as in the separable case given in [7], the existence of 
Ck smooth approximations without critical points to real-valued continuous functions 
defined on a Banach space X provides the following corollaries.

Corollary 6.1. (A non linear Ck smooth Hahn-Banach separation result). Let X and Y
be any pair of Banach spaces considered in Theorem 1.8, Corollary 1.9 or Corollary 1.10. 
Then for every two disjoint closed subsets C1 and C2 of X ⊕ Y there is a Ck smooth 
function ϕ : X⊕Y → R with no critical points, such that the level set A = ϕ−1(0) is a 1-
codimensional Ck smooth submanifold of X⊕Y that separates C1 from C2, that is to say, 
the open and disjoint sets U1 = {z ∈ X⊕Y : ϕ(z) > 0} and U2 = {z ∈ X⊕Y : ϕ(z) < 0}
have a common boundary A = ∂U1 = ∂U2 and Ci ⊂ Ui for i = 1, 2.

Corollary 6.2. (Ck smooth approximations of closed sets). Let X and Y be any pair of 
Banach spaces considered in Theorem 1.8, Corollary 1.9 or Corollary 1.10. Then, every 
closed subset of X ⊕ Y can be approximated by Ck smooth open subsets, that is to say, 
for every closed subset C ⊂ X ⊕ Y and every open subset W ⊂ X ⊕ Y such that C ⊂ W

there is a Ck smooth open set U ⊂ X ⊕ Y (i.e. ∂U is a 1-codimensional Ck smooth 
submanifold of X ⊕ Y ) such that C ⊂ U ⊂ W .
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