
Journal of Functional Analysis 182, 207�226 (2001)

The Failure of Rolle's Theorem in Infinite-Dimensional
Banach Spaces

Daniel Azagra and Mar Jime� nez-Sevilla

Departamento de Ana� lisis Matema� tico, Facultad de Ciencias Matema� ticas,
Universidad Complutense, 28040 Madrid, Spain; and Equipe d 'Analyse,

Universite� Pierre et Marie Curie�Paris 6, 4, Place Jussieu, 75005 Paris, France
E-mail: daniel�sunam1.mat.ucm.es, azagra�ccr.jussieu.fr, marjim�sunam1.mat.ucm.es,

marjim�ccr.jussieu.fr

Communicated by G. Pisier

Received July 18, 2000; revised October 10, 2000; accepted October 25, 2000

We prove the following new characterization of C p (Lipschitz) smoothness in
Banach spaces. An infinite-dimensional Banach space X has a C p smooth (Lipschitz)
bump function if and only if it has another C p smooth (Lipschitz) bump function f such
that its derivative does not vanish at any point in the interior of the support of f (that
is, f does not satisfy Rolle's theorem). Moreover, the support of this bump can be
assumed to be a smooth starlike body. The ``twisted tube'' method we use in the proof
is interesting in itself, as it provides other useful characterizations of C p smoothness
related to the existence of a certain kind of deleting diffeomorphisms, as well as to the
failure of Brouwer's fixed point theorem even for smooth self-mappings of starlike
bodies in all infinite-dimensional spaces. � 2001 Academic Press

1. INTRODUCTION AND MAIN RESULTS

Rolle's theorem in finite-dimensional spaces states that, for every bounded
open subset U of Rn and for every continuous function f : U� � R such that f
is differentiable in U and constant on the boundary �U, there exists a point
x # U such that f $(x)=0. Unfortunately, Rolle's theorem does not remain
valid in infinite dimensions. It was S. A. Shkarin [33] that first showed the
failure of Rolle's theorem in superreflexive infinite-dimensional spaces and
in non-reflexive spaces which have smooth norms. The class of spaces for
which Rolle's theorem fails was substantially enlarged in [6], where it was
also shown that an approximate version of Rolle's theorem remains never-
theless true in all Banach spaces. In fact, as a consequence of the existence
of diffeomorphisms deleting points in infinite-dimensional spaces (see
[1, 5]), it is easy to see that Rolle's theorem fails in all infinite-dimensional
Banach spaces which have smooth norms [7].

doi:10.1006�jfan.2000.3709, available online at http:��www.idealibrary.com on

207
0022-1236�01 �35.00

Copyright � 2001 by Academic Press
All rights of reproduction in any form reserved.



Of course, Rolle's theorem is trivially true in the Banach spaces which do
not have any smooth bumps (if X is such a space then every function on
X satisfying the hypothesis of Rolle's theorem must be a constant). Thus,
in many infinite-dimensional Banach spaces, Rolle's theorem is either false
or trivial, depending on the smoothness properties of the spaces considered.
In this setting, it does not seem too risky to conjecture, as it was done in
[6], that Rolle's theorem should fail in an infinite-dimensional Banach space
if and only if our space has a C1 smooth bump function.

However, none of the results quoted above allows to characterize the
spaces for which Rolle's theorem fails. Indeed, what makes the problem
difficult is that the spaces are not assumed to be separable, nor even to
have smooth norms. As shown by R. Haydon [27], there are Banach
spaces with smooth bump functions which possess no equivalent smooth
norms. Besides, it is natural to demand that the smooth bumps which do
not satisfy Rolle's theorem be Lipschitz whenever smooth Lipschitz bumps
are available in the space considered, and this requirement makes the
problem even more delicate.

In this paper we will prove the above conjecture to be right, thus providing
an interesting new characterization of smoothness in Banach spaces. Our
main result is the following

Theorem 1.1. Let X be an infinite-dimensional Banach space which has
a C p smooth (Lipschitz) bump function. Then there exists another C p smooth
(Lipschitz) bump function f : X � [0, 1] with the property that f $(x){0 for
every x # int(supp f ).

Here, as in the whole paper, 1�p��, and supp f denotes the support
of f, that is, supp f =[x # X : f (x){0]. Let us recall that b: X � R is said
to be a bump function on X provided b is not constantly zero and b has
a bounded support.

From this result it is easily deduced the following

Corollary 1.2. Let X be an infinite-dimensional Banach space. The
following statements are equivalent.

(1) X has a C p smooth (and Lipschitz) bump function.

(2) There exist a bounded contractible open subset U of X and a
continuous function f : U� � R such that f is C p smooth (and Lipschitz) in U,
f =0 on �U, and yet f $(x){0 for all x # U, that is, Rolle's theorem fails
in X.

(3) There exist a C p smooth (and Lipschitz) function f : X � [0, 1]
and a bounded contractible open subset U of X such that f =0 precisely on
X"U and yet f $(x){0 for all x # U.
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Just in order to complete the picture of Rolle's theorem in infinite-dimen-
sional Banach spaces let us quote the two positive results from [3, 6] on
approximate and subdifferential substitutes of Rolle's theorem, which
guarantee the existence of arbitrarily small derivatives (instead of vanishing
ones) for every function satisfying (in an approximate manner) the condi-
tions of the classical Rolle's theorem. Here, Baire category arguments make
up for the lack of compactness, but one has to pay an =, as is usual in such
cases.

Theorem 1.3 (Azagra�Go� mez�Jaramillo). Let U be a bounded connected
open subset of a Banach space X. Let f : U� � R be a bounded continuous function
which is (Gâteaux) differentiable in U. Let R>0 and x0 # U be such that
dist(x0 , �U)=R. Suppose that f (�U)�[&=, =] for some =>0. Then there
exists some x= # U such that & f $(x=)&� =

R .

Theorem 1.4 (Azagra�Deville). Let U be a bounded connected open
subset of a Banach space X which has a C1 smooth Lipschitz bump function.
Let f : U� � R be a bounded continuous function, and let R>0 and x0 # U be
such that dist(x0 , �U)=R. Suppose that f (�U)�[&=, =] for some =>0.
Then

inf[&p&: p # D&f (x) _ D+f (x), x # U]�
2=
R

.

(Here D&f (x) and D+f (x) denote the subdifferential and superdifferen-
tial sets of f at x, respectively; see [17, p. 339] for the definitions.)

In [16, 22], some results are shown which are related to Theorem 1.4;
in these papers R. Deville and G. Godefroy provide mean value inequalities
for non-differentiable functions.

The ``twisted tube'' method that we develop in Section 2 in order to prove
Theorem 1.1 is interesting in itself and, with little more work, provides a useful
characterization of C p smoothness in infinite-dimensional Banach spaces
related to the existence of a certain kind of deleting diffeomorphisms. Namely,
we have the following

Theorem 1.5. Let X be an infinite-dimensional Banach space. The following
assertions are equivalent.

(1) X has a C p smooth bump function.

(2) There exists a nonempty contractible closed subset D of the unit
ball BX and a C p diffeomorphism f : X � X"D so that f restricts to the identity
outside BX .
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When X has a (not necessarily equivalent) C p smooth norm this result
was already known [1, 5, 7] and, moreover, one can take for D a single
point, or a small ball. Theorem 1.5 provides a new result in the case when
X possesses a C p smooth bump but has no equivalent C p smooth norm.
Unfortunately, it is still unknown whether Theorem 1.5 is true in full
generality when D is a single point. The proof we give here does not clarify
this question (in our proof D is nothing but a small ``twisted tube'' inside
BX). Nevertheless, some important applications of smooth negligibility do
not require such accurate instruments as a diffeomorphism deleting just a
single point, and it is often enough to use diffeomorphisms which remove
a small bounded set, as in the statement of Theorem 1.5. Indeed, this theorem
will allow us to deduce two interesting corollaries.

First, the celebrated Brouwer's fixed point theorem fails even for smooth
self-mappings of balls or starlike bodies in all infinite-dimensional Banach
spaces. Let us recall that Brouwer's theorem states that every continuous
self-map of the unit ball of a finite-dimensional normed space admits a
fixed point. This is the same as saying that there is no continuous retrac-
tion from the unit ball onto the unit sphere, or that the unit sphere is not
contractible (the identity map on the sphere is not homotopic to a constant
map). In infinite dimensions the situation is completely different and
Brouwer's theorem is no longer true (see [2, 8, 9, 13, 24, 31, 32]). Theorem
1.5 yields a trivial proof that Brouwer's theorem is false in infinite dimen-
sions even for smooth self-mappings of balls or starlike bodies; this is a
particular case (the non-Lipschitz one) of the main result in [2].

Second, we deduce from the above characterization that the support of
the bump functions which violate Rolle's theorem can always be assumed
to be a smooth starlike body. This is all shown in Section 3.

In Section 2 we give the proofs of Theorems 1.1 and 1.5. A much simpler
proof of Theorem 1.1 for the non-Lipschitz case is included in this section
too.

2. THE PROOFS

The idea behind the proof of Theorem 1.1 is as simple as this. First we
build a twisted tube T of infinite length in the interior of the unit ball BX ,
with a beginning but with no end. This twisted tube can be thought of as
directed by an ever-winding infinite path p that gets lost in the infinitely
many dimensions of our space X. In technical words, one can construct a
diffeomorphism ? between a straight (unbounded) half-cylinder C and a
twisted (bounded) tube T contained in BX . The tube T is going to be the
support of a smooth bump function f that does not satisfy Rolle's theorem.
In order to define such a function f we only have to make it strictly
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increase in the direction which is tangent to the leading path p at each
point of the tube T. The graph of f would thus represent an ever-ascending
stairway built upon our twisted tube, with a beginning but no end.

The spirit of the proof that (1) implies (2) in Theorem 1.5 is not very
different. We will make use of the diffeomorphism ? between a straight
(unbounded) half-cylinder C and a bounded twisted tube T contained in BX .
If we consider a straight closed half-cylinder C$ contained in the interior of C
and directed by the same line as C, it is elementary that there is a diffeo-
morphism g: X � X"C$ so that g restricts to the identity outside C. In fact
this is true even in the plane. Now, by composing this diffeomorphism g
with the diffeomorphisms ? and ?&1 that give us an appropriate coordinate
system in the twisted tube T=?(C), we get a diffeomorphism f : X � X"T $,
where T $=?(C$) is a smaller closed twisted tube inside T, and f restricts
to the identity outside the unit ball. The precise definition of f would be
f (x)=?(g(?&1(x))) if x # T, and f (x)=x if x # X"T. If we take D=T $ we
are done.

In the rest of this section we will be involved in the task of formalizing
these ideas.

The following lemma guarantees the existence of bounded infinite twisted
tubes in all infinite-dimensional Banach spaces.

Lemma 2.1. There are universal constants M>0 (large) and =>0 (small)
such that, for every infinite-dimensional Banach space X, if we consider the
decomposition X=H�[z] (where H=Ker z* for some z* # X* with
z*(z)=&z*&=&z&=1) and the open half-cylinder C of diameter 2=, directed
by z, and with base on H, C=[x+tz # X : &x&<=, t>0], then there exists
an injection ?: C � BX which is a C� diffeomorphism onto its image. The
image T=?(C) is thus a bounded open set which we will call a bounded open
infinitely twisted tube in X. Moreover, the first derivatives of the mappings
?: C � T and ?&1: T � C are both uniformly bounded by M.

Assume for a while that Lemma 2.1 is already established and let us
explain how Theorems 1.1 and 1.5 can be deduced.

Proof of Theorem 1.1. Consider the diffeomorphism ?: C � T/BX from
Lemma 2.1. Take a C p smooth (Lipschitz) non-negative bump function . on
H so that the support of . is contained in the base of C, that is, .(x)=0
whenever &x&� =

2 , for instance. Pick a C� smooth real function +: R �
[0, 1] such that +(t)=0 for t�1, 0<+(t)<1 for t>1 and 0<+$(t)<1 for
all t>1. Then define g : X=H�[z] � R by

g(x, t)=.(x) +(t).
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It is plain that g is a C p smooth (Lipschitz) function such that g$(x, t){0
for every (x, t) # int(supp g), that is, for every (x, t) such that g(x, t){0
(take into account that the interior of the support of g coincides in this case
with the open support of g, that is the set of points at which g does not
vanish). Indeed,

g$(x, t)(0, 1)=
�g
�t

(x, t)=.(x) +$(t)

and therefore g$(x, t)(0, 1)=0 if and only if .(x)=0 or +$(t)=0, which
happens if and only if .(x)=0 or +(t)=0, that is to say, g(x, t)=0. Now
let us define f : X � R by

f ( y)={g(?&1( y))
0

if y # T ;
if y � T.

It is clear that f is a well defined C p smooth (Lipschitz) function, and
supp( f )=?(supp(g))/T, from which it follows that f has a bounded
support. We claim that f $( y){0 whenever y # int(supp f ), that is, f does
not satisfy Rolle's theorem. Indeed, if y # int(supp f ) then ?&1( y)=(x, t) #
int(supp g) and therefore g$(x, t)(0, 1){0. But then

f $( y)= g$(x, t) b D?&1( y){0,

because D?&1( y) is a linear isomorphism. K

Now we will turn our attention to the proof of Theorem 1.5. Before
proceeding with the proof, let us fix some standard terminology and nota-
tion used throughout this section and the following one. A closed subset A
of a Banach space X is said to be a starlike body provided A has a non-
empty interior and there exists a point x0 # int A such that each ray
emanating from x0 meets the boundary of A at most once. In this case we
will say that A is starlike with respect to x0 . When dealing with starlike
bodies, we can always assume that they are starlike with respect to the
origin (up to a suitable translation), and we will do so unless otherwise
stated.

For a starlike body A, the characteristic cone of A is defined as

ccA=[x # X | rx # A for all r>0],

and the Minkowski functional of A as

qA(x)=inf {*>0 } 1
*

x # A=
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for all x # X. It is easily seen that for every starlike body A its Minkowski
functional qA is a continuous function which satisfies qA(rx)=rqA(x) for
every r�0 and q&1

A (0)=ccA. Moreover, A=[x # X | qA(x)�1], and �A=
[x # X | qA(x)=1], where �A stands for the boundary of A. Conversely, if
�: X � [0, �) is continuous and satisfies �(*x)=*�(x) for all *�0, then
A�=[x # X | �(x)�1] is a starlike body. Convex bodies (that is, closed
convex sets with nonempty interior) are an important kind of starlike bodies.
We will say that A is a C p smooth (Lipschitz) starlike body provided its
Minkowski functional qA is C p smooth (and Lipschitz) on the set X"q&1

A (0).
It is worth noting that for every Banach space (X, &.&) with a C p smooth

(Lipschitz) bump function there exist a functional � and constants a, b>0
such that � is C p smooth (Lipschitz) away from the origin, �(*x)=
|*| �(x) for every x # X and * # R, and a &x&��(x)�b &x& for every x # X
(see [17, Proposition II.5.1]). The level sets of this function are precisely
the boundaries of the smooth bounded starlike bodies Ac=[x # X | �(x)�c],
c # R. This shows in particular that every Banach space having a C p smooth
(Lipschitz) bump function has a C p smooth (Lipschitz) bounded starlike body
as well. The converse is clearly true.

Proof of Theorem 1.5. First of all let us choose a number =>0, a cylinder
C, a bounded twisted tube T, and a diffeomorphism ?: C � T from Lemma 2.1.

Let B be a C� smooth convex body in the plane R2 whose boundary
contains the set

{(s, t): t=&1, |s|�
=
4=_ {(s, t): |s|=

=
2

, t�&1+
=
4= ,

and let qB be the Minkowski functional of B. Define B$= 1
2 B=[(s, t):

qB(s, t)� 1
2]. Let %: ( 1

2 , �) � [0, �) be a C � smooth real function so that
%$(t)<0 for 1

2<t<1, %(t)=0 for t�1, and limt � 1�2+ %(t)=+�. Now
define .: R2"B$ � R2 by

.(s, t)=(.1(s, t), .2(s, t))=(s, t+%(qB(s, t))).

It is elementary to check that . is a C� diffeomorphism from R2"B$ onto
R2 so that . restricts to the identity outside the band B.

Next, recall that since X has a C p smooth bump then it has a C p bounded
starlike body A as well. If X=H�[z], take W=A & H, which is a C p

bounded starlike body in H, and denote by qW its Minkowski functional.
We can assume that W�B(0, 1), that is, &x&�qW (x) for all x # H. Let us
define

�(x, t)=qB(qW (x), t)
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for all (x, t) # X=H�[z]. It is clear that � is a continuous function which
is positive-homogeneous and C p smooth away from the half-line L=
[(x, t) # X : x=0, t�0]. Then the sets

U=[(x, t) # X : �(x, t)�1], U$=[(x, t) # X : �(x, t)� 1
2]

are cylindrical C p starlike bodies whose characteristic cones are the half-
line L. If we define

h(x, t)=(x, (.&1)2 (qW (x), t))

for (x, t) # X=H�[z], it is not difficult to realize that h is a C p diffeo-
morphism from X onto X"U$ so that h restricts to the identity outside U.
The inverse of h is given by

h&1(x, t)=(x, t+%(�(x, t))).

Now consider the point p0=(0, 2) # X=H�[z] and the cylindrical
bodies V :=p0+U and V$ :=p0+U$, and put g(x, t)=h(x, t&2). Then
g: X � X"V$ is a C p diffeomorphism such that g is the identity outside V.
Note that, since W�B(0, 1), we have that V$/V/C=[(x, t) # X :
&x&<=, t>0]. Let us define

f (x)={?(g(?&1(x)))
x

if x # T;
otherwise.

It is then clear that f is a C p diffeomorphism from X onto X"T $, where
T $=?(V$) is a smaller closed twisted tube inside ?(V)�T, and f restricts
to the identity outside the larger tube ?(V)/T, which is contained in BX .
This completes the proof that (1) implies (2).

Conversely, if there is such an f as in (2), we can assume that f (0){0
and take x* # X* so that x*( f (0)){0; then the function b: X � R defined
by b(x)=x*(x& f (x)) is a C p smooth bump on X. K

Proof of Lemma 2.1. We will make use of the following lemma, which
guarantees the existence of an appropriate path of linear isomorphisms.
Here Isom(X) stands for the set of linear isomorphisms of X, which is
regarded as a subset of L(X, X), the linear continuous mappings of X
into X.

Lemma 2.2. There is a universal constant K>0 such that for every
infinite-dimensional Banach space X there are paths ;: [0, �) � Isom(X)
and p: [0, �) � X with the following properties:
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(i) Both ; and p are C� smooth, as well as the path of inverse
isomorphisms ;&1 : [0, �) � Isom(X), ;&1(t)=[;(t)]&1.

(ii) 1�&;(t)&�K and 1�&;&1(t)&�K for all t # [0, �).

(iii) supt�0 &;$(t)&�K and supt�0 &(;&1)$ (t)&�K.

(iv) There exists a certain v # X, with 1�&v&� 1
K , such that p$(t)=

;(t)(v) for all t�0.

(v) For every t, s # [0, �) we have that &p(t)& p(s)&� 1
K min[1, |t&s|].

Proof. Let (xn)�
n=0 be a normalized basic sequence in X with biorthogonal

functionals (xn*)�
n=0 /X* (that is, xn*(xk)=$n, k=1 if n=k, and 0 otherwise)

satisfying &xn*&�3 (one can always take such sequences, see [15, p. 93; 18,
p. 39]). For n�1 set vn=xn&xn&1 . Let %: R � R be a C� function with
the following properties:

(a) %(t)=0 whenever t�&1
2 or t�1;

(b) %(t)=1 for t # [0, 1
2];

(c) %$(t)>0 for t # (&1
2 , 0);

(d) %(t)=1&%(t&1) for t # [ 1
2 , 1];

(e) supt # R |%$(t)|�3.

For n�1 let us define %n : R � R by %n(t)=%(t&n+1). It is clear that
the functions %n are all C � smooth and have Lipschitz constant less than
or equal to 3, %n=0 on (&�, n&1& 1

2] _ [n, �), %n=1 on [n&1, n& 1
2],

and %n(t)=1&%n+1(t) for all t # [n&1, n+ 1
2]. Note that the %n form a

partition of unity.
Our path ; of linear isomorphisms is going to be of the form

;(t)= :
�

n=1

%n(t) Sn ,

where each Sn # Isom(X) takes the vector v1 into vn and for every * #
[0, 1] the mapping Ln, *=(1&*) Sn+*Sn+1 is still a linear isomorphism
and, moreover, the families of isomorphisms [Ln, *]n # N, * # [0, 1] and
[L&1

n, *]n # N, * # [0, 1] are uniformly bounded. Let us define the isomorphisms
Sn . They are going to be of the form

Sn(x)=x+ fn(x)(vn&v1),

where fn # X* satisfies fn(v1)=1= fn(vn), and & fn&�18 (the exact definition
of fn will be given later). Their inverses S &1

n will be

S &1
n ( y)= y& fn( y)(vn&v1).
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We want the linear mappings Ln, *=(1&*) Sn+*Sn+1 to be linear iso-
morphisms. We have

y=Ln, *(x)=x+(1&*) fn(x)(vn&v1)+*fn+1(x)(vn+1&v1), (1)

from which

x= y&[(1&*) fn(x)(vn&v1)+*fn+1(x)(vn+1&v1)], (2)

and we need to write fn(x) and fn+1(x) as linear functions of y. If we apply
the functionals fn and fn+1 successively to Eq. (1), we denote An= fn(x),
Bn= fn+1(x), Cn= fn( y), Dn= fn+1( y), and we take into account that
1= fn(v1)= fn(vn)= fn+1(v1), then we obtain the system

{An+*[ fn(vn+1)&1] Bn=Cn

(1&*)[ fn+1(vn)&1] An+Bn=Dn ,
(3)

which we want to have a unique solution for An , Bn . The determinant of
this system is

2n, *=1&*(1&*)[ fn+1(vn)&1][ fn(vn+1)&1],

and we want 2n, * to be bounded below by a strictly positive number, and
this bound has to be uniform in n, *. For n�3 this can easily be done by
setting

fn=x1*&x*n&1

(so that fn(vn)=1= fn(v1), fn(vn+1)=0, fn+1(vn)=&1, and therefore
2n, *=(1&*)2+*2� 1

2 for all * # [0, 1]). For n=1, 2, put

f2=x1*+2x2*+ 7
3 x3* , and f1=x1*;

then f2(v3)= 1
3 , f2(v2)=1, f2(v1)=1, f3(v2)=&2, f1(v2)=&1, f1(v1)=1,

and everything is fine (indeed, 21, *=1 and 22, *=(1&*)2+*2� 1
2 for all

* # [0, 1]).
Therefore, with these definitions, the linear system (3) has a unique

solution for An , Bn , which can be easily calculated and estimated by
Cramer's rule, of the form

An( y)=
1

2n, *
( fn( y)&*[ fn(vn+1)&1] fn+1( y))

Bn( y)=
1

2n, *
( fn+1( y)&(1&*)[ fn+1(vn)&1] fn( y)).
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The linear forms y [ An( y), y [ Bn( y) satisfy that &An&�144 and &Bn &�
144 for all n, as is easily checked. Now, by substituting fn(x)=An( y) and
fn+1(x)=Bn( y) in (2) we get the expression for the inverse of Ln, * , that is,

x=L&1
n, *( y)= y&[(1&*) An( y)(vn&v1)+*Bn( y)(vn+1&v1)]. (4)

By taking into account that &An&�144, &Bn&�144, & fn&�18 and &vn&v1&
�4 for all n, one can estimate that 1�&Ln, *&�73 and 1�&L&1

n, *&�577
for all n # N, * # [0, 1].

So let us define ;: [0, �) � Isom(X) by

;(t)= :
�

n=1

%n(t) Sn . (5)

This path is well defined because the sum is locally finite; in fact, from the
definition of %n it is clear that, for a given t0 # [0, �) there exist some $>0
and N=N(t0) # N such that ;(t)=%N(t) SN+%N+1(t) SN+1 for all t #
(t0&$, t0+$), that is, ; is locally of the form ;(t)=Ln, *(t) , where *(t)=%n(t).
This implies that the ;(t) are really linear isomorphisms and that the path
is C� smooth.

On the other hand, the path ;&1(t)=[;(t)]&1 # Isom(X) is C� smooth
as well, because it is the composition of our path ; with the mapping
.: Isom(X) � Isom(X), .(U)=U&1, which is C � smooth and whose
derivative is given by .$(U)(S)=&U&1 b S b U &1 for every S # L(X, X)
(see [14, Theorem 5.4.3]). This proves condition (i) of the lemma.

Next, by bearing in mind the local expression of ; and the above estima-
tions for &Ln, *& and &L&1

n, *&, we deduce that

1�&;(t)&�R and 1�&;&1(t)&�R

for all t # [0, �), where R�577 will be fixed later. This shows condition
(ii). Now, if t0 # [0, �) and we write ;(t)=%N(t) SN+%N+1(t) SN+1 for
t # (t0&$, t0+$) as above, then it is clear that ;$ is locally of the form

;$(t)=%$N(t) SN+%$N+1(t) SN+1

and therefore

&;$(t)&�|%$N(t)| &SN&+|%$N+1(t)| &SN+1 &�3(73+73)=438,

from which we get supt�0 &;$(t)&�438�R. Moreover, we have

(;&1)$ (t)=&(;(t))&1 b ;$(t) b (;(t))&1
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and therefore

&(;&1)$ (t)&�&;(t)&1&2 &;$(t)&�(577)2 438,

from which supt�0 &(;&1)$ (t)&�R and condition (iii) is satisfied as well
provided we fix R=(577)2 438.

Now let us define the path p: [0, �) � X by

p(t)=|
t

&�
;(s)(v1) ds=|

t

&� \ :
�

n=1

%n(s) Sn(v1)+ ds.

It is clear that p is a C� smooth path in X, and p$(t)=;(t)(v1) for all t�0
(from which it follows that p is Lipschitz). Let us see that p is bounded.
For a given t>0 there exists N=N(t) # N so that N&1& 1

2�t�N& 1
2 and

therefore, taking into account the definition of %n and the fact that Sn(v1)=
vn=xn&xn&1 for all n, we have that

&p(t)&="|
t

&�
:
�

n=1

%n(s) Sn(v1) ds"=" :
�

n=1
\|

t

&�
%n(s) ds+ vn"

="\|
�

&�
%(s) ds+ :

N&1

n=1

vn+\|
t

&�
%N(s) ds+ vN "

�\|
�

&�
%(s) ds+ " :

N&1

n=1

vn"+\|
�

&�
%(s) ds+ &vN&

=\|
�

&�
%(s) ds+\&xN&1&x0&+&xN&xN&1&+� 3

2 (2+2)=6.

This shows that the image of p is contained in the ball B(0, 6) and p is
bounded. Let us also remark that 2�&v1&�x1*(x1&x0)�&x1*&� 1

4 .
Finally, let us check that p satisfies the separation condition (v). Let

0�t<r and take N # N so that N&1& 1
2<r�N& 1

2 ; then we have

p(r)& p(t)= :
�

n=1
\|

r

t
%n(s) ds+ vn= :

�

n=1
\|

r

t
%n(s) ds+ (xn&xn&1)

=&\|
r

t
%1(s) ds+ x0+ :

N&1

k=1 \|
r

t
%k(s) ds&|

r

t
%k+1(s) ds+ xk

+\|
r

t
%N(s) ds+ xN .
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By observing that max[1&s, 2s&1]� 1
3 for all s # R and taking into

account the definition of the %n , it is not difficult to see that

max {|
r

t
%N(s) ds, |

r

t
%N&1(s) ds&|

r

t
%N(s) ds=�min {1

3
|t&r| , a= , (6)

where a=�0
&1�2 %(s) ds>0. Then, by applying either x*N or x*N&1 to the

expression for p(r)& p(t) above, depending on which the maximum in (6)
is, and bearing in mind that xn*(xk)=$n, k and &xn*&�3 for all n, k, we get
that

max[x*N( p(r)& p(t)), x*N&1( p(r)& p(t))]�min[ 1
3 |t&r|, a],

and it follows that &p(r)& p(t)&�min[ 1
9 |t&r|, a

3]. Since a=�0
&1�2 %(s) ds

�1�8 and R=(577)2 438, this clearly implies that

&p(r)& p(t)&�
1
R

min[1, |t&r|]

for all t, r�0.
In order to get paths ; and p and a vector v with properties (i)�(v) and

such that p is contained in the unit ball, it is enough to multiply them all
by 1

6 . K

We now proceed with the proof of Lemma 2.1. Consider X=H�[z]=
H_R and C==[x+tz # X : &x&<=, t>0], where H=Ker z* for some
z* # X* with z*(z)=&z*&=&z&=1, and =>0 is to be fixed later. Let ; and
p be the paths from Lemma 2.2. There is no loss of generality if we assume
that v # [z], z*(v)� 1

K . Let us define ?: C= � X by

?(x, t)=;(t)(x)+ p(t).

It is clear that ? is C� smooth and has a bounded derivative. We are going
to show that ? is a diffeomorphism onto its image, T= , and ?&1 : T= � C=

has a bounded derivative as well. To this end let us define the path
:: [0, �) � X* by

:(t)= ft=z* b ;&1(t).

This is a C� smooth and Lipschitz path in X*, and :(t)= ft satisfies that
Ker ft=;(t)(H). It is clear from this definition and the properties of ; and
p that

(i) &:$(t)&�K, and

(ii) :(t)( p$(t))=z*(v)� 1
K
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for all t�0. Now, for a fixed (but arbitrary) y # T==?(C=), let us introduce
the auxiliary function F=Fy : [0, �) � R defined by

F(t)=:(t)( y& p(t)).

We have that

F$y(r)=:$(r)( y& p(r))&:(r)( p$(r))

�&:$(r)& &y& p(r)&&:(r)( p$(r))

�K &y& p(r)&&
1
K

for all r�0. If we choose =>0 smaller than 1�6K5 this implies that ? is a
C� diffeomorphism onto its image, as we next see.

Indeed, let us first prove that ? is an injection. Assume that y=?(x, t)=
?(w, s) for some (x, t), (w, s) # C= . Then we have y& p(t)=;(t)(x) and
y& p(s)=;(s)(w), so that x=;&1(t)( y& p(t)) and w=;&1(s)( y& p(s)),
and, in order to conclude that (x, t)=(w, s), it is enough to see that t=s.
Note that ;(t)(x)&;(s)(w)= p(s)& p(t) and therefore, by (v) of Lemma 2.2,

1
K

min[1, |t&s|]�&p(s)& p(t)&=&;(t)(x)&;(s)(w)&

�&;(t)(x)&+&;(s)(w)&�K(&x&+&w&)�2K=�
1

3K4 ,

so that |t&s|�2K2=�1�3K3. Now, since p and ; are both K-Lipschitz, for
every r # [t, s] we have that

&y& p(r)&�&y& p(t)&+&p(t)& p(r)&=&;(t)(x)&+&p(t)& p(r)&

�K &x&+K |t&r|�K=+2K3=�3K 3=.

By combining this with the above estimation for F$y(r) we get

F$y(r)�K &y& p(r)&&
1
K

�3K4=&
1
K

�&
1

2K
(7)

for every r # [t, s]. Now suppose that t{s. Then, since x=;&1(t)( y& p(t))
and w=;&1(s)( y& p(s)) are both in H we have that 0=z*(x)=z*(w)=
Fy(t)=Fy(s), so that, by the classical Rolle's theorem, there should exist some
r # (t, s) with F$y(r)=0. But this contradicts (7). Therefore t=s and ? is an
injection.
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If, for a given y # ?(C=), we denote by t( y) the unique t=t( y) such that
y=?(;&1(t)( y& p(t)), t) then it is clear that the inverse ?&1: T= � C= is
defined by

?&1( y)=(;&1(t( y))( y& p(t( y))), t( y)). (8)

For each y the number t( y) is uniquely determined by the equation

G( y, t) :=Fy(t)=0,

and the argument above shows that

�G
�t

( y, t)=F$y(t)�&
1

2K
(9)

for every y # T= and t in a neighbourhood of t( y). Then, according to the
implicit function theorem we get that the function y [ t( y) is C� smooth.
Furthermore, we have that

t$( y)=
&(�G��y)( y, t( y))

(�G��t)( y, t( y))
=

&z* b ;&1(t( y))
F$y(t( y))

,

and therefore, according to the above estimations,

&t$( y)&�&z* b ;&1(t( y))&
1

|F$y(t( y))|
�2K2,

which shows that y [ t( y) has a bounded derivative as well. Then it is
clear that ?&1 is C� and has a bounded derivative (all the functions
involved in (8) have been proved to have bounded derivatives). This
concludes the proof of Lemma 2.1. K

We will finish this section with a simple alternative proof of the failure
of Rolle's theorem in the non-Lipschitz case.

Remark 2.3. If we drop the Lipschitz condition from the statement of
Theorem 1.1, a much simpler proof based on the same idea is available. Let
us make a sketch of this proof.

Consider the decomposition X=H_R and pick a non-negative C p

smooth bump function . on H whose support is contained on the ball
BH(0, 1�16). First, we construct a C� smooth path q: [0, �) � BH , where
BH stands for the unit ball of the hyperplane H, with the property that q
has no accumulation points at the infinity, that is, limn � � q(tn) does not
exist for any (tn) going to �. This can easily be done by having q lost in
the infinitely many dimensions of H. For instance, take a biorthogonal
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sequence [xn , xn*]�H_H* so that &xn&=1 and &xn*&�3, and consider
a C� function %: R � [0, 1] so that supp %�[&1, 1], %(0)=1, %$(t)<0
for t # (0, 1), and %(t&1)=1&%(t) for t # [0, 1]. The path q may be
defined as

q(t)= :
�

n=1

%(t&n+1) xn

for t�0. Now we reparametrize q and define p: [0, 1) � BH by

p(t)=q \ t
1&t+ .

Let :: R � [0, 1] be a C� smooth function so that :(t)=0 for all t�0,
and :$(t)>0 for all t>0. Then the function g: X=H_R � R defined by

g(x, t)={.(x& p(t)) :(t)
0

if t # [0, 1);
otherwise

is a C p smooth bump function which does not satisfy Rolle's theorem.
Indeed, it is easy to see that

g$(x, t)( p$(t), 1)=.(x& p(t)) :$(t)>0,

and in particular g$(x, t){0, for all (x, t) in the interior of the support
of g.

3. KILLING SINGULARITIES: THE FAILURE OF BROUWER'S
FIXED POINT THEOREM IN INFINITE DIMENSIONS

Here we will present two applications of Theorem 1.5, both of which
have in common the following principle: if you have a mapping with a
single singular point or an isolated set of singularities that bother you, you
can just kill them by composing your map with some deleting diffeo-
morphisms. In this way you obtain a new map which is as close as you
want to the old one but does not have the adverse properties created by the
singular points you eliminate.

The Support of the Bumps That Violate Rolle's Theorem. The bump
function constructed in the proof of Theorem 1.1 has a weird support,
namely a twisted tube. Some readers might judge this fact rather unpleasant
and wonder whether it is possible to construct a bump function which does
not satisfy Rolle's theorem and whose support is a nicer set, such as a ball or
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a starlike body. To comfort those readers let us first recall that in infinite
dimensions there is no topological difference between a tube (whether it is
twisted or not) and a ball or a starlike body (see Theorem 3.1 in [5]). Further-
more, as we said above, Theorem 1.5 allows us to show that for a given C p

smooth bounded starlike body A in an infinite-dimensional Banach space X,
it is always possible to construct a C p smooth bump function on X which
does not satisfy Rolle's theorem and whose support is precisely the body A.

Corollary 3.1. Let X be an infinite-dimensional Banach space with a
C p smooth bounded starlike body A. Then there exists a C p smooth bump
function g on X whose support is precisely the body A, and with the property
that g$(x){0 for all x in the interior of A (that is, g does not satisfy Rolle's
theorem).

Proof. Let qA be the Minkowski functional of A. We may assume that
BX �A. By Theorem 1.5 there is a closed subset D of A and a C p diffeo-
morphism f : X � X"D which is the identity outside A. It can be assumed
that the origin belongs to D. Then the function h: X � R defined by

h(x)=qA( f (x))

is C p smooth on X, restricts to the gauge qA outside A, and has the
remarkable property that h$(x){0 for all x # X (indeed, h$(x)=q$A( f (x)) }
f $(x) is non-zero everywhere because q$A( y){0 whenever y{0, 0 � f (X),
and f $(x) is a linear isomorphism at each point x).

Now, take a C� real function %: R � [0, 1] such that %(t)>0 for
t # (&1, 1), %=0 outside [&1, 1], %(t)=%(&t), %(0)=1, and %$(t)<0 for
all t # (0, 1). Then, if we define g: X � R by

g(x)=%(h(x)),

it is immediately checked that g is a C p smooth bump on X which does not
satisfy Rolle's theorem and whose support is precisely the body A. K

The Failure of Brouwer's Fixed Point Theorem in Infinite Dimensions. The
celebrated Brouwer's fixed point theorem tells us that every continuous self-
map of the unit ball of a finite-dimensional normed space admits a fixed
point. This is the same as saying that there is no continuous retraction
from the unit ball onto the unit sphere, or that the unit sphere is not
contractible (the identity map on the sphere is not homotopic to a constant
map). However, none of the above forms of Brouwer's fixed point theorem
remains valid in infinite dimensions. A nice counterexample was given by
the pioneering results of Klee's on topological negligibility of points
[29, 30]: for every infinite-dimensional Banach space X there always exists
a homeomorphism h: X � X"[0] so that h restricts to the identity outside
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the unit ball BX . The required retraction of BX onto the unit sphere SX is
then given by R(x)=h(x)�&h(x)& for x # BX . By taking into account the
subsequent progress on topological negligibility of subsets made by C. Bessaga,
T. Dobrowolski and the first-named author among others (see [1, 5, 11,
13, 19, 20]), this mapping h may even be assumed C p smooth provided
that the sphere SX is C p smooth. In [32] B. Nowak showed that for
several infinite-dimensional Banach spaces Brouwer's theorem fails even for
Lipschitz mappings (that is, under the strongest uniform-continuity condi-
tion), and in [9] Y. Benyamini and Y. Sternfeld generalized Nowak's result
for all infinite-dimensional normed spaces. More recently, M. Cepedello
and the first-named author showed that these results hold for the smooth
Lipschitz category as well (see [2]).

The proof of these results in the general case is somewhat involved, but
if we drop the Lipschitz condition then the fact that Brouwer's theorem
is false in infinite dimensions even for smooth self-mappings of balls or
starlike bodies is a trivial consequence of Theorem 1.5. The Lipschitz case
is much harder to handle because the known diffeomorphisms which
remove points or small balls from infinite-dimensional Banach spaces are
not Lipschitz, so that the above ``deleting diffeomorphisms approach'' does
not work in this case. For a better insight into these topics the reader
should have a look at [8, Chaps. 3, 4, and 10].

Corollary 3.2 (Azagra�Cepedello). Let X be an infinite-dimensional
Banach space and let A be a C p smooth bounded starlike body. Then:

(1) The boundary �A is C p contractible.

(2) There is a C p smooth retraction from A onto �A.

(3) There exists a C p smooth mapping .: A � A without approximate
fixed points.

Proof. Let f : X � X"D be the diffeomorphism from Theorem 1.5. We
may assume that the origin belongs to the deleted set D and that BX �A,
so that f restricts to the identity outside A. Then the formula

R(x)=
f (x)

qA( f (x))
,

where qA is the Minkowski functional of A, defines a C p smooth retraction
from A onto the boundary �A. This proves (2).

Once we have such a retraction it is easy to prove parts (1) and (3): the
formula .(x)=&R(x) defines a C p smooth self-mapping of A without
approximate fixed points. On the other hand, if we pick a non-decreasing
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C� function `: R � R so that `(t)=0 for t� 1
4 and `(t)=1 for t� 3

4 , then
the formula

H(t, x)=R((1&`(t)) x),

for t # [0, 1], x # �A, defines a C p homotopy joining the identity to a
constant on �A, that is, H contracts the pseudosphere �A to a point. K
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