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SMOOTH CONVEX EXTENSIONS OF CONVEX

FUNCTIONS

DANIEL AZAGRA AND CARLOS MUDARRA

Abstract. Let C be a compact convex subset of Rn, f : C → R be a
convex function, and m ∈ {1, 2, ...,∞}. Assume that, along with f , we
are given a family of polynomials satisfying Whitney’s extension condi-
tion for Cm, and thus that there exists F ∈ Cm(Rn) such that F = f on
C. It is natural to ask for further (necessary and sufficient) conditions
on this family of polynomials which ensure that F can be taken to be
convex as well. We give a satisfactory solution to this problem in the
case m = ∞, and make some remarks about the case of finite m ≥ 2.
For a solution to a similar problem in the case m = 1 (even for C not
necessarily convex), see our preprint arXiv:1507.03931 [math.CA].

1. Introduction and main results

Let C be a closed subset of Rn, and m ∈ N. The famous Whitney Ex-
tension Theorem [27] provides a necessary and sufficient condition (Wm)
for a function f : C → R and a family of polynomials Py : Rn → R of
degree(Py) ≤ m and such Py(y) = f(y) for every y ∈ C (what we might
call the would-be Taylor polynomial of f of order m at y) to admit a Cm

extension F to all of Rn such that Jm
y F = Py for each y ∈ C, where Jmf(x)

denotes the Taylor polynomial of order m of F at y. Whitney’s condition
(Wm) can be reformulated by saying that

(1.1) lim
δ→0+

ρm(K, δ) = 0 for each compact subset K of C,

where we denote

ρm(K, δ) = sup{‖D
jPy(z)−DjPz(z)‖

|y − z|m−j
: j = 0, ...,m, y, z ∈ K, 0 < |y−z| ≤ δ}.

If this condition is met, then Whitney’s theorem provides us with a function
F ∈ Cm(Rn) such that DjF (y) = DjPy(y) for every j = 0, ...,m and y ∈ C;
see [9, Theorem 3.1.14, p. 225] for instance. The converse is trivially true.

In the case m = ∞, Whitney’s theorem states that if we are given a
family of polynomials {Pm

y }y∈C,m∈N∪{0} such that Pm
y (y) = f(y) and for

Date: April 22, 2016.
2010 Mathematics Subject Classification. 54C20, 52A41, 26B05, 53A99, 53C45, 52A20,

58C25, 35J96.
Key words and phrases. extension of functions, convex function, differentiable function.
C. Mudarra was supported by Programa Internacional de Doctorado de la Fundación

La Caixa–Severo Ochoa. Both authors were partially supported by Grant MTM2012-3431.
1

http://arxiv.org/abs/1501.05226v7


2 DANIEL AZAGRA AND CARLOS MUDARRA

every k > j the polynomial P j
y is the Taylor polynomial of order j at y of the

polynomial P k
y (let us call such a family a compatible family of polynomials

for C∞ extension of a function f defined on C), and if for each m ∈ N

the subfamily {Pm
y }y∈C satisfies Whitney’s condition (1.1), then there is a

function F ∈ C∞(Rn) such that Pm
y = Jm

y F ), for every y ∈ C and m ∈ N.
Again, the converse is obviously true.

In recent years there has been great interest in solving Whitney-type
extension theorems for functions rather than jets, in constructing continuous
linear extension operators with nearly optimal norms, and in extending these
results to other spaces of functions such as Sobolev spaces, see [17, 6, 3, 10,
11, 4, 12, 22, 19, 13, 23] and the references therein.

Returning to Whitney’s theorem, it is natural to wonder what further
conditions (if any) on those families of polynomials would be necessary and
sufficient to ensure that F can be taken to be convex whenever f is convex.
Besides its basic character, one should expect that a solution to this problem
would find interesting applications in problems of differential geometry (see
[14] and the references therein, and also [1, Theorem 1.8]), and of partial
differential equations (such as the Monge-Ampère equations).

Let us begin by making a couple of general observations concerning solv-
ability of our extension problem. Firstly, if C is not assumed to be compact,
it is known that our problem has a negative solution. Indeed, there ex-
ists an unbounded closed convex subset C of R2 and a C∞ convex function
f : C → R which has no continuous convex extension to all of R2, see [24,
Example 4]. A modification of this example, which we will present in Section
4 below, shows that the obstruction persists even if we require that f have
a strictly positive Hessian on a neighbourhood of C (such strongly convex
functions f have smooth convex extensions to small open neighborhoods
of C, but no convex extensions to Rn). See also [5, 26], which show that
there are infinite-dimensional Banach spaces X, closed subspaces E ⊂ X and
continuous convex functions f : E → R which have no continuous convex
extensions to X.

Secondly, if we do not require that C be convex, then the problem gets
geometrically complicated, for the following reason. There are several pos-
sible, nonequivalent, definitions of convex functions defined on non-convex
domains (see [28] for a study of three of them) but, no matter how one defines
convexity of such functions, the problem cannot be solved just by adding
further analytical conditions on the would-be Taylor polynomials of f and
disregarding the global geometry of the graph of f . To see why this is so, let
us consider the following example: take any four numbers a, b, c, d ∈ R with
a < b < 0 < c < d, and define C = {a, b, 0, c, d} and f(x) = |x| for x ∈ C.
Since C is a five-point set it is clear that, no matter what polynomials of
degree up to k ≥ 1 are chosen to be the differential data of f on C, the
function f will satisfy Whitney’s extension condition (W k) for every k ∈ N.
Hence there are many C1 (even infinitely many C∞) functions F with F = f
on C. But none of these F can be convex on R, because, as is easily checked,
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any convex extension g of f to R must satisfy g(x) = |x| for every x ∈ [a, d],
and therefore g cannot be differentiable at 0. This example also shows that
the most general forms of the extension problem for smooth convex func-
tions are different in nature from the classical Whitney extension theorem
[27] (for jets) and from the Whitney extension problems (for functions) dealt
with in the mentioned papers [17, 6, 3, 10, 11, 4, 12, 22, 19, 13, 23], which
are all of a local character.

Fortunately, there is evidence that the geometrical obstructions shown
by these examples no longer exist when C is assumed to be compact and
convex. In particular, it is clear that if f is convex on a compact convex set
C and is C1 on a neighbourhood of C then

(1.2) m(f)(x) := max
y∈C

{f(y) + 〈∇f(y), x− y〉}

defines a Lipschitz, convex function on all of Rn which coincides with f on
C (and that, in the case when C has nonempty interior, m(f) happens to
be the minimal convex extension of f to Rn).

Therefore, at least in a first approach to the problem, it seems reasonable
to assume that C is convex and compact, which we will do in the rest of
this paper1, and ask ourselves if our extension problem can always be solved
in this relatively simple case. Extension problems related to the one we are
dealing with have been considered by M. Ghomi [15] and by M. Yan [28].
A consequence of their results is that, under the assumptions that m ≥ 2
and that f has a strictly positive Hessian on the boundary ∂C, there always
exists an F ∈ Cm(Rn) such that F is convex and F = f on C. See also
[14, 16, 7] for related problems. Of course, strict positiveness of the Hessian
is a very strong condition which is far from being necessary, and it would
be desirable to get rid of this requirement altogether, if possible. However,
some other assumptions must be made in its place, at least when m ≥ 3, as
already in one dimension there are examples of C3 convex functions g defined
on compact intervals I which cannot be extended to C3(J) convex functions
for any open interval J containing I. Such an example is g(x) = x2 − x3

defined for x ∈ I := [0, 13 ]. This example obviously generalizes to arbitrary
dimension n by considering for instance

(1.3) f(x1, ..., xn) = x21 + · · ·+ x2n − x31, (x1, ..., xn) ∈ B(0, 1/3).

In particular these examples show that the condition D2f ≥ 0 on C is not
sufficient to ensure the existence of a convex function F ∈ Cm(Rn) such that
F = f on C for any m ≥ 3. Therefore, we should look for conditions on
the derivatives of f on C (beyond D2f ≥ 0 on C) that are necessary and
sufficient to guarantee that f has a Cm convex extension F to all of Rn.

Now, observe that any such function F will satisfy that D2F (x)(v2) ≥ 0
for every x ∈ Rn, v ∈ Sn−1, and therefore, if m ≥ 2 is finite, the Taylor

1 Nonetheless, in the special case m = 1, even for not necessarily convex C, we have
found in [1] two global geometrical conditions which, along with (W 1), are necessary and
sufficient for the existence of convex functions F ∈ C1(Rn) such that F = f on C.
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polynomial of the second derivative D2F at points y ∈ C will also satisfy

0 ≤ D2F (y + tw)(v2) =

D2F (y)(v2) + t D3F (y)(w, v2) + · · · + tm−2

(m− 2)!
DmF (y)(wm−2, v2) +Rm(t, y, v, w),

where

lim
t→0+

Rm(t, y, v, w)

tm−2
= 0 uniformly on y ∈ C,w, v ∈ Sn−1.

Then we will also have

lim inf
t→0+

1

tm−2

(
D2F (y)(v2) + · · ·+ tm−2

(m− 2)!
DmF (y)(wm−2, v2)

)
≥ 0

uniformly on y ∈ C,w, v ∈ Sn−1. This of course means that for every ε > 0
there exists tε > 0 such that

D2F (y)(v2)+ tD3F (y)(w, v2)+ · · ·+ tm−2

(m− 2)!
DmF (y)(wm−2, v2) ≥ −εtm−2

for all y ∈ C, v,w ∈ Sn−1, 0 < t ≤ tε. We will abbreviate this by saying
that

F satisfies condition (CWm) on C.

Therefore we obtain the following necessary condition for the solution of the
convex Cm extension problem.

Definition 1.1. Let m ∈ N, m ≥ 2. We will say that f , together with a
family of polynomials {Pm

y }y∈C of degree up to m such that Pm
y (y) = f(y),

satisfy the condition (CWm) provided that for every ε > 0 there exists tε > 0
such that

D2Pm
y (y)(v2)+tD3Pm

y (y)(w, v2)+· · ·+ tm−2

(m− 2)!
DmPm

y (y)(wm−2, v2) ≥ −εtm−2

for all y ∈ C, v,w ∈ Sn−1, 0 < t ≤ tε.
We will also say that f and {Pm

y }y∈C satisfy (CWm) with a strict in-
equality if there are some η > 0 and t0 > 0 such that

D2Pm
y (y)(v2)+tD3Pm

y (y)(w, v2)+· · ·+ tm−2

(m− 2)!
DmPm

y (y)(wm−2, v2) ≥ ηtm−2

for all y ∈ C, v,w ∈ Sn−1, 0 < t ≤ t0.

In the case that C has nonempty interior, the polynomials Pm
y are uniquely

determined (even at the boundary points of C) by the values of f on C, and
the above condition may be reformulated as follows

lim inf
t→0+

1

tm−2

(
D2f(y)(v2) + · · ·+ tm−2

(m− 2)!
Dmf(y)(wm−2, v2)

)
≥ 0

(CWm)
uniformly on y ∈ C,w, v ∈ Sn−1, understanding that Djf denotes the de-
rivative of order j at y of any Cm extension of f to Rn.
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One might then think that for our convex extension problem, by consider-
ing the relative interior of the convex compact set C, there would be no loss
of generality in assuming that C has nonempty interior (and thereforem con-
sidering that (CWm) holds only for v,w in the linear span of the directions
y − y′ with y, y′ ∈ C). However, since we are looking for convex analogues
of the classical Whitney’s extension theorem (which deals with prescribing
differential data as well as extending functions) such an approach would
make us lose some valuable insight about the question as to what extent one
can prescribe values and derivatives of convex functions on a given compact
convex set with empty interior. Indeed, for a convex compact set C with
empty interior and a convex function f : C → R, there are infinitely many
convex functions F : C → R with very different derivatives on C and such
that F = f on C. Let us look, for instance, at the extreme situation in
which C is a singleton, say C = {0}. One of our main results in this paper
(see Theorem 1.3 below) implies that, for any given family of polynomials
Pm of degree up to m, m ∈ N, such that Jk

0P
m = P k whenever k ≤ m and,

for each m ≥ 2,

lim inf
t→0+

D2Pm(0)(v2) + · · ·+ tm−2

(m−2)!D
mPm(0)(wm−2, v2)

tm−2
≥ 0

uniformly on |v| = |w| = 1, there exists a convex function F of class C∞

such that the Taylor polynomial of F at 0 is Pm. Consequently, there
are infinitely many degrees of freedom in prescribing derivatives of convex
functions at a given point.

On the other hand, if C is a convex compact set with nonempty interior
(what is usually called a convex body) and f : C → R is a convex function
which has a (not necessarily convex) Cm extension to an open neighbourhood
of C, then it is clear that f automatically satisfies (CWm) on the interior of
C. Conversely, if f satisfies (CWm) on the interior of C then it immediately
follows, using Taylor’s theorem, that D2f(x) ≥ 0 for all x in the open convex
set int(C), hence f is convex on int(C), and by continuity we infer that f is
also convex on C. These observations show that if C is a convex compact
subset of Rn, m ∈ N,m ≥ 2, and f : C → R is a function then:

(1) A necessary condition for f to have a Cm convex extension to all of
Rn is that f satisfies both (Wm) and (CWm) on C.

(2) In the event that one can show that this requirement is sufficient as
well, then one also has that a necessary and sufficient condition for
a convex function f : C → R to have a Cm convex extension to all of
Rn is that f satisfy (Wm) on C, and (CWm) on the boundary ∂C.

One can also easily show the following.

Remark 1.2. Let f and {Pm+1
y }y∈C satisfy (CWm+1) for some m ≥ 2.

Then f and {Pm
y }y∈C satisfy (CWm) too, where each Pm

y is obtained from

Pm+1
y by discarding its (m+ 1)-homogeneous terms.

Our first main result is as follows.
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Theorem 1.3. Let C be a compact convex subset of Rn. Let f : C → R be
a function, and let {Pm

y }y∈C,m∈N be a compatible family of polynomials for
C∞ extension of f . Then f has a convex, C∞ extension F to all of Rn, with
Jm
y F = Pm

y for every y ∈ C and m ∈ N, if and only if {Pm
y }y∈C satisfies

(Wm) and (CWm) on C, for every m ∈ N, m ≥ 2.
Moreover, if C has nonempty interior and f : C → R is convex, then f

has a convex, C∞ extension F to all of Rn, with Jm
y F = Pm

y for every y ∈ C
and m ∈ N, if and only if {Pm

y }y∈C satisfies (Wm) on C, and (CWm) on
∂C, for every m ∈ N, m ≥ 2.

If m ≥ 2 finite and n ≥ 2, if C has empty interior then conditions (CWm)
and (Wm) are not sufficient for a convex function f : C → R to have a Cm

convex extension to Rn; see Example 4.2 in section 4 below. However, it is
conceivable that these conditions might be sufficient in the case when C has
nonempty interior. As of now, we only know that in dimension n = 1 this
is indeed so, and moreover, since in this case the boundary of C has only
two points and there are only two directions in which to differentiate, the
condition (CWm) can be very much simplified.

Proposition 1.4. Let I be a closed interval in R, and m ∈ N with m ≥ 2.
Let f : I → R be a convex function of class Cm in the interior of I, and as-
sume that f has one-sided derivatives of order up to m, denoted by f (k)(a+)

or f (k)(b−), at the extreme points of I. Then f has a convex extension of
class Cm(R) if and only if the first (if any) non-zero derivative which occurs

in the finite sequence {f (2)(b−), f (3)(b−), ..., f (m)(b−)} is positive and of even
order, and similarly for {f (2)(a+), f (3)(a+), ..., f (m)(a+)}.
The easy proof is left to the reader’s care.

In the special case when condition (CW k) is satisfied with a strict in-
equality for some k, the problem also becomes much easier to solve, because
in this situation f must be convex on a neighbourhood of C, and then we
may use the following by-product of our proof of Theorem 1.3

Proposition 1.5. Let m ∈ N. If C ⊂ Rn is compact, and if there exists an
open convex neighbourhood U of C such that f : U → R is Cm and convex,
then there exists a convex function F ∈ Cm(Rn) such that F = f on C.

See subsection 2.9 below for more information. Let us also note that in
this case f automatically satisfies (CW p) for all the rest of p’s.

Proposition 1.6. Let m ∈ N∪{∞}, m ≥ 2. If f ∈ Cm(Rn) satisfies (CW k)
with a strict inequality on ∂C for some k ≥ 2, then f satisfies (CW p) on
∂C for every p ∈ {2, ...,m}, if m is finite, and for every p ∈ N with p ≥ 2,
if m = ∞.

We leave the easy verification to the reader’s care. As a straightforward
consequence of Proposition 1.5 we will obtain the following.
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Corollary 1.7. Let m ∈ N∪{∞}, m ≥ 2. Let C be a convex compact subset
of Rn, and let f : C → R be a convex function having a (not necessarily
convex) Cm extension to an open neighbourhood of C. If f and its derivatives
satisfy (CW k) with a strict inequality on C for some 2 ≤ k ≤ m, then there
exists a convex function F ∈ Cm(Rn) such that F = f on C.

The easiest instance of application of this Corollary is of course when f
has a strictly positive Hessian on ∂C, in which case we recover the afore-
mentioned consequence of the results of M. Ghomi’s [15] and M. Yan’s [28].

In the case m ≥ 2 with m finite, the method of proof of Theorem 1.3 does
not allow us to obtain sufficiency of the conditions (Wm) and (CWm) for
a function f to have a convex Cm extension. The best we can obtain with
this method is the following.

Theorem 1.8. Let C be a compact convex subset of Rn. Let f : C → R

be a function, m ∈ N with m ≥ n + 3, and let {Pm
y }y∈C be a family of

polynomials of degree less than or equal to m and Pm
y (y) = f(y) for every

y ∈ C. Assume that {Pm
y }y∈C satisfies (Wm) and (CWm). Then f has a

convex extension F ∈ Cm−n−1(Rn) such that Jm−n−1
y F = Pm−n−1

y for every
y ∈ C.

The above result is probably not optimal, at least in the case when C
has nonempty interior. However, Example 4.2 below will show that if C has
empty interior then one cannot expect to find smooth convex extensions of
jets satisfying (Wm) and (CWm) on C without losing at least two orders of
smoothness. On the positive side, there is a class of relatively nice convex
bodies for which Theorem 1.8 can be very much improved.

Definition 1.9 (FIO bodies of class m). Given an integer m ≥ 2, we will
say that a subset C of Rn is an ovaloid of class Cm if there exist M > 0 and
a function ψ : Rn → R such that

(i) ψ is of class Cm(Rn).
(ii) D2ψ(x)(v2) ≥M for all x ∈ Rn and for all v ∈ Sn−1.
(iii) C = ψ−1(−∞, 1].

We will also say that a set C is (FIOm), or an FIO body of class Cm, if C
is the intersection of a finite family of ovaloids of class Cm.

By restricting our attention to the class of FIO bodies, we can find convex
extensions of functions satisfying (Wm) and (CWm) with a loss of just one
order of smoothness.

Theorem 1.10. Let C be a convex subset of Rn. Let f : C → R be a
function, m ∈ N with m ≥ 3, and let {Pm

y }y∈C be a family of polynomials of
degree less than or equal to m and Pm

y (y) = f(y) for every y ∈ C. Assume

that {Pm
y }y∈C satisfies (Wm) and (CWm), and that C is (FIOm−1). Then

f has a convex extension F ∈ Cm−1(Rn) such that Jm−1
y F = Pm−1

y for
every y ∈ C.
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Let us conclude this introduction with an important remark: one might
wonder whether the conditions (CWm) could be deduced from the condition
D2f ≥ 0 on C, at least in the case that C has nonempty interior. The answer
is negative: in view of Theorem 1.10 and the example given in equation (1.3)
above, the condition D2f ≥ 0 on a convex body C does not imply condition
(CWm) on C for any m ≥ 4. Furthermore, by making some straightforward
calculations on can show that the function f defined in (1.3) does not satisfy
condition (CW 3) either.

The rest of the paper is organized as follows. In Section 2 we will prove
Theorem 1.3 and Corollary 1.7. In Section 3 we will prove Theorem 1.10.
Finally, in Section 4 we will make some remarks and present some coun-
terexamples related to extension problems for convex functions.

2. C∞ convex extensions

In this section we will prove Theorem 1.3. By using Whitney’s extension
theorem we may and do assume that f ∈ C∞(Rn), with Jm

y f = Pm
y for all

m ∈ N and all y ∈ C, and that f satisfies condition (CWm) on C for every
m ∈ N. We may also assume that f has a compact support contained in
C +B(0, 2).

2.1. Idea of the proof. Let us give a rough sketch of the proof so as to
guide the reader through the inevitable technicalities. We warn the reader,
however, that what we now say we are going to do is not exactly what we will
actually do. Our proof could be rewritten to match this sketch exactly, but
at the cost of adding further technicalities, which we do not feel would be per-
tinent. This proof has two main parts. In the first part we will estimate the
possible lack of convexity of f outside C: by using the conditions (CWm),
a Whitney partition of unity, and some ideas from the proof of the Whitney
extension theorem in the C∞ case, we will construct a function η ∈ C∞(R)
such that η ≥ 0, η−1(0) = (−∞, 0], and min|v|=1D

2f(x)(v2) ≥ −η (d(x,C))
for every x ∈ Rn. In the second part of the proof we will compensate the lack
of convexity of f outside C with the construction of a function ψ ∈ C∞(Rn)
such that ψ ≥ 0, ψ−1(0) = C, and min|v|=1D

2ψ(x)(v2) ≥ 2η (d(x,C)).
Then, by setting F := f + ψ we will conclude the proof of Theorem 1.3.

There are many ways to construct such a function ψ. The essential point
is to write C as an intersection of a family of half-spaces, and then to make a
weighted sum, or an integral, of suitable convex functions composed with the
linear forms that provide those half-spaces. If the sequence of linear forms
is equi-distributed, in the weighted sum approach, or if one uses a measure
equivalent to the standard measure on Sn−1, in the integral approach, then
the different functions ψ produced by these methods will have equivalent
convexity properties. See [2] for an instance of the weighted sum approach,
and [16, Proposition 2.1] for the integral approach. Of course our situation
is more complicated than that of these references, as we need to find quanti-
tative estimations of the convexity of ψ outside C which are good enough to
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outweigh our previous estimations of the lack of convexity of f outside C. It
turns out that, in the present C∞ case, this goal can be achieved with either
method of construction of ψ. Here we will follow the integral approach of
Ghomi’s in [16, Proposition 2.1], as it will lead us to easier calculations.

2.2. First lower estimates for the Hessian of f : the numbers {rm}m.
We next show how the assumption of conditions (CWm) for every m ≥ 2
implies a lower bound for the Hessian of f in terms of the distance to C.

Lemma 2.1. Given m ∈ N if f ∈ Cm(Rn) and f satisfies (CWm) then
there is a number rm > 0 such that, whenever d(x,C) ≤ rm, we have

D2f(x)(v2) ≥ −d(x,C)m−2, for all v ∈ Sn−1.

Proof. Given x ∈ Rn \ C, |v| = 1, t := d(x,C), let y be the unique point of
C with the property that d(x,C) = |x − y|. Take w = (x − y)/|x − y|. We
have y = x+ tw. By Taylor’s Theorem, we can write

D2f(x)(v2) =D2f(y)(v2) + t D3f(y)(w, v2) + · · · + tm−2

(m− 2)!
Dmf(y)(wm−2, v2)

+
tm−2

(m− 2)!

[
Dmf(y + sw)(wm−2, v2)−Dmf(y)(wm−2, v2)

]
,

for some s ∈ [0, t]. Since f satisfies the condition (CW )m, there exists a
positive number rm, independent of y, v and w, for which

inf
0<r≤rm




D2f(y)(v2) + rD3f(y)(w, v2) + · · ·+ rm−2

(m−2)!D
mf(y)(wm−2, v2)

rm−2



 ≥ −1

2
.

Thus, for 0 < t ≤ rm,

D2f(x)(v2) ≥ − t
m−2

2
+

tm−2

(m− 2)!

[
Dmf(y + sw)(wm−2, v2)−Dmf(y)(wm−2, v2)

]
.

On the other hand, if s ∈ [0, t], we can write

Dmf(y+ sw)(wm−2, v2)−Dmf(y)(wm−2, v2) ≤ ‖Dmf(x+ sw)−Dmf(y)‖,
where we denote ‖A‖ := supui∈Sn−1 |A(u1, . . . , um)|, for every m-linear form
A on Rn. Moreover, the above expression is smaller than or equal to

εm(t) := sup
{z∈Rn, z′∈∂C, |z−z′|≤t}

‖Dmf(z)−Dmf(z′)‖.

Since Dmf is uniformly continuous, there is r′m > 0 such that if 0 < r ≤ r′m,
then εm(r) ≤ 1

2 (in fact we have limr→0+ εm(r) = 0). Therefore, if we
suppose 0 < t ≤ min{rm, r′m}, we obtain

D2f(x)(v)2 ≥ − t
m−2

2
− tm−2

(m− 2)!
εm(t) ≥ −tm−2.

�
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2.3. A Whitney partition of unity on (0,+∞). For all k ∈ Z, we define
the closed intervals

Ik = [2k, 2k+1], I∗k =

[
3

4
2k,

9

8
2k+1

]
.

Obviously (0,+∞) =
⋃

k∈Z Ik. We note that Ik and I∗k have the same mid-

point and ℓ(I∗k) =
3
2ℓ(Ik), where ℓ(Ik) = 2k denotes the length of Ik. In other

words, the interval I∗k is Ik expanded by the factor 3/2.

Proposition 2.2. The intervals Ik, I
∗
k satisfy:

1. If t ∈ I∗k , then
3

4
ℓ(Ik) ≤ t ≤ 9

4
ℓ(Ik).

2. If I∗k and I∗j are not disjoint, then

1

2
ℓ(Ik) ≤ ℓ(Ij) ≤ 2ℓ(Ik).

3. Given any t > 0, there exists an open neighbourhood Ut ⊂ (0,+∞) of
t such that Ut intersects at most 2 intervals of the collection {I∗k}k∈Z.

This is a special case of the decomposition of an open set in Whitney’s
cubes, see [25, Chapter VI] for instance. In the one dimensional case things
are much simpler and, for instance, it is easy to see that one may replace
the number N = 12 in [25, Proposition VI.1.2, p. 169] with the number 2.
Anyhow, dealing with the number 12 instead of 2 would have no harmful
effect in our proof.

We now relabel the families {Ik}k and {I∗k}k, k ∈ Z, as sequences
indexed by k ∈ N, so we will write {Ik}k≥1 and {I∗k}k≥1. For every k ≥ 1,
we will denote by tk and ℓk the midpoint and the length of Ik, respectively.

Next we recall how to define a Whitney partition of unity subordinated
to the intervals I∗k . Let us take a bump function θ0 ∈ C∞(R) with 0 ≤ θ0 ≤
1, θ0 = 1 on [−1/2, 1/2]; and θ0 = 0 on R \ (−3

4 ,
3
4). For every k, we define

the function θk by

θk(t) = θ0

(
t− tk
ℓk

)
, t ∈ R.

It is clear that θk ∈ C∞(R), that 0 ≤ θk ≤ 1, that θk = 1 on Ik, and that
θk = 0 outside int(I∗k).
Now we consider the function Φ =

∑
k≥1 θk defined on (0,+∞). Using

Proposition 2.2, every point t > 0 has an open neighbourhood which is con-
tained in (0,+∞) and intersects at most two of the intervals {I∗k}k. Since
supp(θk) ⊂ I∗k , the sum defining Φ has only two terms and therefore Φ is of
class C∞. For the same reason, Φ(t) =

∑
I∗k∋t

θk(t) ≤ 2, for t > 0. On the

other hand, every t > 0 must be contained in some Ik, where the function
θk takes the constant value 1, so we have 1 ≤ Φ ≤ 2. These properties allow
us to define, on (0,∞), the functions θ∗k = θk

Φ . These are C∞ functions
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satisfying
∑

k θ
∗
k = 1, 0 ≤ θ∗k ≤ 1, and supp(θ∗k) ⊆ I∗k . Less elementary, but

crucial, is the following property; see [27, 25] for a proof.

Proposition 2.3. For every j ∈ N ∪ {0}, there is a positive constant Aj

such that

|(θ∗k)(j)(t)| ≤ Ajℓ
−j
k for every t > 0, k ∈ N.

2.4. The sequence {δp}p and the function ε. Let us consider the num-
bers rm of Lemma 2.1. We can easily construct a sequence {δp}p of positive
numbers satisfying

δp ≤min{rp+2,
1

(p+ 2)!
}, for p ≥ 1

δp <
δp−1

2
, for p ≥ 2.

Of course the sequence {δp}p is strictly decreasing to 0. Now, for every k
we define a positive integer γk as follows. In the case that ℓk ≥ δ1, we set
γk = 1. In the opposite case, ℓk < δ1, we take γk as the unique positive
integer for which

δγk+1 ≤ ℓk < δγk .

Finally let us define:

ε(t) =

{ ∑
k≥1 t

γkθ∗k(t) if t > 0,

0 if t ≤ 0.

In the following Lemma we show that ε is of class C∞ on R and satisfies an
additional property which will be important in Subsection 2.7.

Lemma 2.4. The function ε satisfies the following properties.

1. ε is of class C∞(R) and satisfies ε(j)(0) = 0 for every j ∈ N ∪ {0}.
2. If 0 < t ≤ δ4 and q ∈ N are such that δq+1 ≤ t < δq and t

2 ≤ s ≤ t,

then ε(2s) ≥ tq+2.

Proof. For the first statement, we inmediately see that ε−1(0) = (−∞, 0],
that ε > 0 on (0,+∞) and that ε ∈ C∞(R \ {0}). In order to prove the
differentiability of ε at t = 0 and that all the derivatives of ε at t = 0 are 0,
it is sufficient to prove that for all j ∈ N ∪ {0},

lim
t→0+

|ε(j)(t)|
t

= 0.

To check this, fix j ∈ N ∪ {0} and η > 0 and take

t̃j := min{ η

2Bj4j(j + 1)!
, δj+5}, where Bj = max{Al : 0 ≤ l ≤ j}.

Recall that the numbers Al are those given by Proposition 2.3. Let 0 < t ≤
t̃j. Due to the fact that {δp}p is strictly decreasing, we can find a unique
positive integer q such that δq+1 ≤ t < δq, and because t ≤ δj+5 < δ1, we
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must have q ≥ j + 4. Now, if k is such that t ∈ I∗k , Proposition 2.2 tells us
that

ℓk ≤ 4

3
t < 2t ≤ 2δj+5 < δ1,

and using the definition of γk, we have

δγk+1 ≤ ℓk ≤ 4

3
t < 2t < 2δq < δq−1.

The above inequalities imply that γk + 1 > q − 1, that is γk ≥ q − 1. In
particular γk ≥ j + 3. On the other hand, using Proposition 2.2 again, we
obtain:

δγk > ℓk ≥ 4t

9
≥ t

4
≥ δq+1

4
> δq+3,

so γk ≤ q + 2.
If we use Leibnitz’s Rule, we obtain

ε(j)(t) =
∑

k≥1

j∑

l=0

(
j

l

)
dl

dtl
(tγk)(θ∗k)

(j−l)(t),

and since γk ≥ j + 3 for those k such that t ∈ I∗k , we can write

|ε(j)(t)|
t

=
∣∣∑

I∗
k
∋t

j∑

l=0

(
j

l

)
γk!

(γk − l)!
tγk−l−1(θ∗k)

(j−l)(t)
∣∣ ≤

∑

I∗
k
∋t

j∑

l=0

j!γk!t
γk−l−1Aj−lℓ

l−j
k .

Now, by Proposition 2.2 we know that ℓk ≥ 4
9t ≥ 1

4t. Moreover, because
γk ≤ q + 2, we have γk! ≤ (q + 2)! and the last sum is smaller than or equal
to

∑

I∗k∋t

j∑

l=0

j! (q + 2)! tγk−l−1 Aj−l
tl−j

4l−j
.

Writing tγk−l−1 = t2tγk−l−3 ≤ t δq t
γk−l−3, this sum is smaller than or equal

to

∑

I∗k∋t

j∑

l=0

j! (q+2)! tδq t
γk−l−3Aj−l

tl−j

4l−j
≤


4jj!Bj

∑

I∗k∋t

j∑

l=0

(q + 2)!δq t
γk−j−3


 t.

Noting that t ≤ δj+5 < 1 and γk ≥ j + 3, we must have tγk−j−3 ≤ 1. By
construction of the sequence {δp}p we have that (q + 2)! δq ≤ 1, and using
that the sum

∑
I∗
k
∋t has at most 2 terms, we obtain

|ε(j)(t)|
t

≤ 4j(j + 1)j! 2Bjt ≤ 4j(j + 1)! 2Bj t̃j ≤ η.

This completes the proof of statement 1.
Now we prove the second statement. First of all, we note that δq+1 ≤ t ≤
2s ≤ 2t < 2δq < δq−1, and in particular q ≥ 3. Let us suppose that 2s ∈ I∗k .
Using Proposition 2.2,

δγk+1 ≤ ℓk ≤ 4

3
(2s) < 2(2s) < 2δq−1 < δq−2,
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that is γk ≥ q − 2. If we use Proposition 2.2 again,

δγk > ℓk ≥ 4(2s)

9
≥ (2s)

4
≥ δq+1

4
> δq+3,

and then γk ≤ q + 2.
Finally, note that 2s ≤ 2t < δq−1 < δ1 < 1, and due to the fact that
γk ≤ q + 2 for those k such that 2s ∈ I∗k , we have that (2s)q+2 ≤ (2s)γk .
Therefore we easily obtain the desired inequality:

tq+2 ≤ (2s)q+2 =
∑

I∗
k
∋2s

(2s)q+2θ∗k(2s) ≤
∑

I∗
k
∋2s

(2s)γkθ∗k(2s) = ε(2s).

�

2.5. The function ϕ. Next, we will first adapt the function constructed by
Ghomi in [16, Proposition 2.1] to suit our purposes, and then we will find
quantitative estimates for its Hessian. We begin by defining

ε̃(t) =

{
ε(2t)

tn+3
if t > 0

0 if t ≤ 0.

Since ε ∈ C∞(R), with ε(j)(0) = 0 for all j ∈ N ∪ {0}, we have that ε̃ ∈
C∞(R) and ε̃(j)(0) = 0 for all j ∈ N ∪ {0} as well. Now, let us consider the
function

g(t) =

{ ∫ t
0

∫ s
0 ε̃(r)dr ds if t > 0

0 if t ≤ 0.

It is clear that g ∈ C∞(R) and g(j)(0) = 0 for all j ∈ N ∪ {0}. In addition,
g−1(0) = (−∞, 0] and g′′(t) = ε̃(t) > 0 for all t > 0. In particular, g is convex
on R and positive, with a strictly positive second derivative, on (0,+∞).
We may assume that 0 ∈ C. Now, for every vector w ∈ Sn−1, define h(w) =
maxz∈C〈z, w〉, the support function of C (for information about support
functions of convex sets, see [21] for instance). We also define the function

φ : Sn−1 × Rn −→ R

(w, x) 7−→ φ(w, x) = g(〈x,w〉 − h(w)).

It is easy to see that, for every w ∈ Sn−1 and every multi-index α, we have

∂α

∂xα
φ(w, x) = g(|α|)(〈x,w〉 − h(w))wα,

where wα = wα1

1 · · ·wαn
n . In addition, we note that when x ∈ C, we have

〈x,w〉 ≤ h(w) for every w ∈ Sn−1. Therefore, the properties of g and its
derivatives imply that φ(w, ·) is a function of class C∞(Rn) whose derivatives
of every order and itself vanish on C for every w ∈ Sn−1. It is also easy to
check that the function φ(w, ·), being a composition of a convex function
with a non-decreasing convex function, is convex as well.
Finally, we define the function ϕ : Rn −→ R as follows:

ϕ(x) =

∫

Sn−1

φ(w, x) dw for every x ∈ Rn.
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Again it is easy to check that ϕ−1(0) = C and ϕ is convex. Because φ(w, ·)
is in C∞(Rn), the derivatives (w, x) 7→ ∂α

∂xαφ(w, x) are continuous for every

multi-index α, and Sn−1 is compact, it follows from standard results on
differentiation under the integral sign that the function ϕ is of class C∞(Rn)
as well and that Dαϕ(x) = 0 for every x ∈ C and every multi-index α. In
other words, Jm

x ϕ = 0 for all m ∈ N∪{0} and all x ∈ C. One can also check
easily that

D2ϕ(x)(v2) =

∫

Sn−1

g′′(〈x,w〉 − h(w))〈w, v〉2 dw.

2.6. Selection of angles and directions. For given x ∈ Rn \ C and v ∈
Sn−1 we will now find a region W = W (x, v) of Sn−1 of sufficient volume
(depending only, and conveniently, on d(x,C)) on which we have good lower
estimates for g′′(〈x,w〉 − h(w))〈w, v〉2 . This will involve a careful selection
of angles and directions.

Fix a point x ∈ Rn \ C, let xC be the metric projection of x onto the
compact convex C, and set

ux =
1

|x− xC |
(x− xC),

and

αx =
d(x,C)

d(x,C) + diam(C)
.

Lemma 2.5. With the above notation we have 〈x, ux〉 − h(ux) = d(x,C)
and

d(x,C) ≥ 〈x,w〉 − h(w) ≥ 1

2
d(x,C)

for all w ∈ Sn−1 such that ŵ ux ∈
[
αx

3 ,
αx

2

]
.

Here ŵ ux denotes the length of the shortest geodesic (or angle) between w
and ux in Sn−1.

Proof. The fact that 〈x, ux〉 − h(ux) = d(x,C) is a straightforward conse-
quence of the definition of h and ux. For the second part, given w ∈ Sn−1

with ŵ ux ∈
[
αx

3 ,
αx

2

]
, let us denote θ = ŵ ux. Since C is compact, we can

find ξ ∈ C such that h(w) = 〈ξ, w〉. Using that 〈x, ux〉 − h(ux) = |x − xC |
and |w − ux| ≤ θ, we have

〈x,w〉 − h(w) = 〈x,w − ux〉+ |x− xC |+ h(ux)− h(w)

≥ 〈x,w − ux〉+ |x− xC |+ 〈ξ, ux − w〉
= 〈x− ξ, w − ux〉+ |x− xC |
≥ − (diam(C) + |x− xC |) θ + |x− xC |
≥ − (diam(C) + |x− xC |)

αx

2
+ |x− xC |

=
1

2
|x− xC |.
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The other inequality, d(x,C) ≥ 〈x,w〉 − h(w), is straightforward. �

Next we find the region W we need.

Lemma 2.6. Given any v ∈ Sn−1 with 〈ux, v〉 ≥ 0, there exists a vector
w0 = w0(x, v) ∈ Sn−1 such that if we define

W = {w ∈ Sn−1 : ŵ w0 ∈ [0,
αx

12
]},

then:

1. For every w ∈W, we have ûx w ∈
[
αx

3 ,
αx

2

]
.

2. For every w ∈W, we have 〈w, v〉 ≥ sin(αx

3 ).

3. volSn−1(W ) ≥ V (n)αn−1
x , where V (n) > 0 is a constant depending

only on the dimension n.

Proof. We prove 1 and 2 at the same time by studying two cases separately.
Case (i): ux 6= v. Take an w0 in the unit circle of the plane spanned by the
vectors ux and v, in such a way that ŵ0 ux = 5αx

12 , and that the arc in that
circle joining ux with w0 has the same orientation as the arc joining ux with
v. Set W = {w ∈ Sn−1 : ŵ w0 ∈ [0, αx

12 ]} and let w ∈W .
First, recalling that the angles shorter than π give the usual distance between
points of Sn−1, we may use the triangle inequality to estimate

ûx w ≤ ûx w0 + ŵ0 w ≤ 5αx

12
+
αx

12
=
αx

2

and

ûx w ≥ ûx w0 − ŵ0 w ≥ 5αx

12
− αx

12
=
αx

3
,

that is ûx w ∈
[
αx

3 ,
αx

2

]
. It only remains to see that 〈w, v〉 ≥ sin(αx/3) for

all w ∈W. First, we easily check that v̂ w0 ≤ π
2 − 5αx

12 . Now, for an arbitrary
w ∈W, we have

v̂ w ≤ v̂ w0 + ŵ0 w ≤ π

2
− 5αx

12
+
αx

12
=
π

2
− αx

3
.

Therefore 〈v,w〉 = cos(v̂ w) ≥ cos(π2 − αx

3 ) = sin αx

3 .

Case (ii): ux = v. Take w0 in the sphere Sn−1 such that ŵ0 ux = 5αx

12 . If we

define W = {w ∈ Sn−1 : ŵ w0 ∈ [0, αx

12 ]}, following the same estimations as

in Case (i) we obtain ûx w ∈ [αx

3 ,
αx

2 ] for every w ∈ W. And we easily have
〈w, v〉 = 〈w, ux〉 ≥ sin αx

3 .

We now prove 3. Since the standard measure on Sn−1 is invariant under
isometries we may assume that W = {w ∈ Sn−1 : ŵ e1 ∈ [0, αx

12 ]}, where
e1 = (1, 0, ..., 0). The set W is a hyperspherical cap, and its volume is given
by

volSn−1(W ) = vol(Sn−2)

∫ αx/12

0
sinn−2(β)dβ,



16 DANIEL AZAGRA AND CARLOS MUDARRA

where vol(Sn−2) = 1 in the special case n = 2. But for angles β such that
0 ≤ β ≤ αx

12 ≤ π
3 , it is clear that sin β ≥ 1

2β, and therefore

volSn−1(W ) ≥ vol(Sn−2)

∫ αx/12

0
(
1

2
β)n−2dβ = V (n)αn−1

x ,

where

V (n) =
vol(Sn−2)

12(n − 1)(24)n−2

for n ≥ 2. �

2.7. Convexity of f + ψ on a neighbourhood of C. Now, using the
constant V (n) obtained in Lemma 2.6, define

C(n) =
V (n)

36(1 + diam(C))n+1
.

Lemma 2.7. With the notation of Subsection 2.4, consider the function
H = f + 2

C(n)ϕ defined on Rn, and take r = δ4. Then, for every x ∈ Rn \ C
such that t := d(x,C) ≤ r, and for every v ∈ Sn−1, we have

D2H(x)(v2) ≥ tq,

where q is the unique positive integer such that δq+1 ≤ t < δq.

Proof. Fix x, t, v, q as in the statement. SinceD2H(x)(v2) = D2H(x)((−v)2),
we may suppose that 〈v, ux〉 ≥ 0, where ux = (x−xC)/|x−xC | and xC is the
metric projection of x onto C. Take the angle αx and the set W = W (x, v)
as in Lemmas 2.5 and 2.6 respectively. By the construction of ϕ, we have

(2.1) D2ϕ(x)(v2) =

∫

Sn−1

ε̃(〈x,w〉 − h(w))〈w, v〉2 dw

≥
∫

W
ε̃(〈x,w〉 − h(w))〈w, v〉2 dw > 0,

and for w ∈W, Lemma 2.6 gives us that ŵ ux ∈
[
αx

3 ,
αx

2

]
; on the other hand

Lemma 2.5 says that, in this case,

t

2
≤ 〈x,w〉 − h(w) ≤ t ≤ δ4.

Using the second property of Lemma 2.4 we obtain

ε̃(〈x,w〉−h(w)) = ε(2(〈x,w〉 − h(w)))

(〈x,w〉 − h(w))n+3
≥ tq+2

(〈x,w〉 − h(w))n+3
≥ tq+2

tn+3
=

tq

tn+1
.

On the other hand, due to Lemma 2.6 the product 〈v,w〉 is greater than or
equal to sin(αx

3 ) for all w ∈W. By combining the preceding inequalities, we
get

D2ϕ(x)(v2) ≥ tq

tn+1
sin2(

αx

3
) volSn−1(W ).
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By the third part of Lemma 2.6, the last term is greater or equal than

tq

tn+1
sin2(

αx

3
)V (n)αn−1

x .

Since αx ≤ 1, we have that sin(αx

3 ) ≥ 1
2
αx

3 , so we obtain

D2ϕ(x)(v2) ≥ tq

tn+1

α2
x

36
V (n)αn−1

x =
tq

tn+1

αn+1
x

36
V (n).

Moreover, we have

αx =
t

t+ diam(C)
≥ t

1 + diam(C)
,

because t ≤ r = δ4 < 1. Gathering these inequalities, we get

D2ϕ(x)(v2) ≥ tq

tn+1

tn+1

36(1 + diam(C))n+1
V (n) = C(n)tq.

Finally, due to the construction of the sequence {δp}p, (see Subsection 2.4)
we have d(x,C) = t < δq ≤ rq+2, hence Lemma 2.1 ensures that

D2f(x)(v2) ≥ −tq.
Therefore

D2H(x)(v2) = D2f(x)(v2) +
2

C(n)
D2ϕ(x)(v2) ≥ −tq + 2tq = tq.

�

Since Jm
y ϕ = 0 for y ∈ C and each m ∈ N ∪ {0}, we have proved that H

is of class C∞(Rn), H = f on C, Jm
y H = Jm

y f = Pm
y for every y ∈ C and

every m ∈ N, and H has a strictly positive Hessian on the set {x ∈ Rn : 0 <
d(x,C) ≤ r}.
2.8. Conclusion of the proof: convexity of f + ψ on Rn. To complete
the proof of Theorem 1.3 we only have to change the funcion H slightly.

Lemma 2.8. There exists a number a > 0 such that the function F := f+aϕ
is of class C∞(Rn), concides with f on C, satisfies Jm

y F = Pm
y for every

y ∈ C, m ∈ N, is convex on Rn, and has a strictly positive Hessian on
Rn \ C.

Proof. Let us denote ψ = 2
C(n)ϕ. We recall that f = 0 outside C + B(0, 2).

Take r > 0 as in Lemma 2.7. Since Cr := {x : r ≤ d(x,C) ≤ 2} is a compact
subset where ψ has a strictly positive Hessian (cf. (2.1)), and using again
that f has compact support, we can find M ≥ 1 such that

sup
x∈Rn, v∈Sn−1

|D2f(x)(v2)| ≤M and inf
x∈Cr , v∈Sn−1

D2ψ(x)(v2) ≥ 1

M
.

Let us take A = 2M2 and F = f + Aψ. If d(x,C) ≤ r and v ∈ Sn−1 we
have, by Lemma 2.7, that

D2F (x)(v2) = 2M2D2ψ(x)(v2)+D2f(x)(v2) > D2ψ(x)(v2)+D2f(x)(v2) > 0.
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In the case when d(x,C) ∈ [r, 2], given any |v| = 1, we easily see that

D2F (x)(v2) = 2M2D2ψ(x)(v2) +D2f(x)(v2) ≥ 2M −M =M > 0.

Finally, in the region {x : d(x,C) > 2}, we have that f = 0. Hence

D2F (x)(v2) = 2M2D2ψ(x)(v2) > 0.

Therefore, in any case, by setting a = 2A/C(n), we get that F = f +Aψ =
f + aϕ is of class C∞(Rn) satisfies F (y) = f(y) and Jm

y F = Pm
y for every

y ∈ C, m ∈ N, and has a positive Hessian on Rn \ C. Since f is convex on
C and F is differentiable, this is easily seen to imply that F is convex on all
of Rn. �

2.9. Proof of Corollary 1.7. An obvious variation of the proof of the
above Lemma shows Proposition 1.5. On the other hand Proposition 1.5
can easily be used to show Corollary 1.7. Indeed, we have

D2f(y)(v2) + t D3f(y)(w, v2) + · · ·+ tk−2

(k − 2)!
Dkf(y)(wk−2, v2) ≥ ηtk−2

for all y ∈ C, w, v ∈ Sn−1, 0 < t ≤ t0 and, on the other hand, by Taylor’s
theorem and uniform continuity of Dmf ,

D2f(y + tw)(v2) =

D2f(y)(v2) + t D3f(y)(w, v2) + · · ·+ tm−2

(m− 2)!
Dmf(y)(wm−2, v2) +Rm(t, y, v, w),

where

lim
t→0+

Rm(t, y, v, w)

tm−2
= 0 uniformly on y ∈ C,w, v ∈ Sn−1.

We may assume t0 ≤ 1. Then we may also find t′0 ∈ (0, t0) such that
Rm(t, y, v, w) ≥ −η

2 t
m−2 for all y ∈ C, w, v ∈ Sn−1, 0 < t ≤ t′0, and it

follows that

D2f(y + tw)(v2) ≥ η

2
tm−2

for all y ∈ C, w, v ∈ Sn−1, 0 < t ≤ t′0. This implies that D2f(x) ≥ 0
whenever d(x,C) ≤ t′0, and therefore that f is convex on U := {x ∈ Rn :
d(x,C) < t′0}. Corollary 1.7 then follows from Proposition 1.5.

3. Cm convex extensions for m ≥ 2 finite

We start this section with the proof of Theorem 1.8. We may assume that
C is a compact convex subset of Rn and f : Rn → R is of class Cm(Rn),m ≥
n + 3, with support contained on C + B(0, 2), and such that f satisfies
condition (CWm) on C. We will split the proof into several subsections.
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3.1. The function ω.

Lemma 3.1. Let us denote

Qm(t, y, v, w) =
D2f(y)(v2) + · · ·+ tm−2

(m−2)!D
mf(y)(wm−2, v2)

tm−2

for all t > 0, y ∈ C, v,w ∈ Sn−1. There exists a non decreasing continuous
function ω : [0,+∞) → [0,+∞) with ω(0) = 0 such that

D2f(x)(v2) ≥ −ω(d(x,C))d(x,C)m−2 for all x ∈ Rn, v ∈ Sn−1.

Proof. We start with the following easy remark. If Qm is as above and

εm(t) = sup
{z∈Rn, z′∈∂C, |z−z′|≤t}

‖Dmf(z)−Dmf(z′)‖,

by using (CWm) and uniform continuity of Dmf , given a positive integer p,
there exists rp > 0 such that

(3.1) Qm(t, y, v, w) ≥ − 1

2p
and εm(t) ≤ 1

2p

for every y ∈ ∂C, v,w ∈ Sn−1 and 0 < t ≤ rp. We may suppose that this
sequence {rp}p≥1 is strictly decreasing to 0. Since the derivatives of f up to
order m are bounded on Rn we can find a constant M > 1 such that

(3.2) εm(t)−Qm(t, y, v, w) ≤M for all y ∈ ∂C, v,w ∈ Sn−1, t ≥ r1.

Now, given x ∈ Rn\C and v ∈ Sn−1, we denote by y the metric projection
of x onto C, w = (x− y)/|x− y| and t = d(x,C). By Taylor’s theorem and
the definition of Qm and εm, we have

D2f(x)(v2) ≥ tm−2Qm(t, y, v, w)−tm−2εm(t) = −tm−2 (εm(t)−Qm(t, y, v, w)) .

We define ω : [0,+∞) → [0,+∞) by setting

ω(0) = 0, ω(rp) =
1

p− 1
p ≥ 2, ω(r1) =M,

ω affine on each [rp+1, rp] p ≥ 1, ω(t) =M t ≥ r1.

It is easy to check that ω is a non decreasing continuous function such that
ω(t) ≥ 1

p for every t ≥ rp+1 and every p ≥ 2, and that ω(t) ≥ 1 for every

t ≥ r2. Using inequalities (3.1) and (3.2) we deduce that

D2f(x)(v2) ≥ −Mtm−2 for t ≥ r1

D2f(x)(v2) ≥ −1

p
tm−2 for t ≤ rp, p ∈ N

and by the properties of ω we conclude

D2f(x)(v2) ≥ −ω(d(x,C))d(x,C)m−2 for every x ∈ Rn, v ∈ Sn−1.

�
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3.2. The function ϕ. Using the function ω defined in Lemma 3.1, we in-
troduce two new functions

g(t) =

{ ∫ t
0

∫ t2
0 · · ·

∫ tm−n−1

0 ω(2m−n−2s)ds dtm−n−1 · · · dt2 if t > 0
0 if t ≤ 0,

ϕ(x) =

∫

Sn−1

g(〈x,w〉 − h(w)) dw, x ∈ Rn.

Since ω is continuous, the function g is of class Cm−n−1(R) with g(k)(0) = 0
for every 1 ≤ k ≤ m−n−1. The same arguments and calculations of Section
2.5 allow us to deduce that ϕ is of class Cm−n−1(Rn) with ϕ−1(0) = C and
Jm−n−1
x ϕ = 0 for all x ∈ C. It is also easy to see

D2ϕ(x)(v2) =

∫

Sn−1

g′′(〈x,w〉 − h(w))〈v,w〉2dw,

for all x ∈ Rn and all v ∈ Sn−1.

3.3. Conclusion of the proof of Theorem 1.8. Suppose that x ∈ Rn \C
with d(x,C) ≤ 1 and denote t := d(x,C). Fix also a direction v ∈ Sn−1.
If we consider the angle α = αx and the subset W = Wx,v of Sn−1 as in
Section 2.6 we obtain

D2ϕ(x)(v2) ≥
∫

W
g′′(〈x,w〉 − h(w)) sin2

(α
3

)
dw.

Recall that, since t ≤ 1, the angle α satisfies

α =
t

t+ diam(C)
≥ t

1 + diam(C)
.

Combining Lemmas 2.5 and 2.6, we deduce that t
2 ≤ 〈x,w〉 − h(w) ≤ t for

every w ∈W. Because g′′ is non decreasing, we have that

g′′(〈x,w〉 − h(w)) ≥ g′′(t/2) for all w ∈W.

These estimations lead us to

D2ϕ(x)(v2) ≥ volSn−1(W )g′′ (t/2) sin2 (α/3) .

Note that Lemma 2.6 also shows that there exists a positive constant V (n)

only depending on n such that volSn−1(W ) = V (n)αn−1. Since sin2
(
α
3

)
≥ α2

36 ,
the Hessian of ϕ at x on the direction v satisfies

(3.3) D2ϕ(x)(v2) ≥ V (n)

36

(
t

1 + diam(C)

)n+1

g′′(t/2).

Now we give a lower bound for g′′(t/2). By the construction of g we have

g′′(t/2) =

∫ t/2

0

∫ t2

0
· · ·

∫ tm−n−3

0
ω(2m−n−2s)ds dtm−n−3 · · · dt2,
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where, in the special case m = n+3, the above expression means g′′(t/2) =
ω(t). Using that ω is nonnegative and nondecreasing we may estimate:

g′′(t/2) ≥
∫ t/2

t/4

∫ t2

0
· · ·

∫ tm−n−3

0
ω(2m−n−2s)ds dtm−n−3 · · · dt2

≥ t

4

∫ t/4

0

∫ t2

0
· · ·

∫ tm−n−4

0
ω(2m−n−2s)ds dtm−n−4 · · · dt2

≥ t

4
· t
8

∫ t/8

0

∫ t2

0
· · ·

∫ tm−n−5

0
ω(2m−n−2s)ds dtm−n−5 · · · dt2

≥ t

4
· t
8
· · · t

2m−n−3
· t

2m−n−2
ω(t) =

tm−n−3

22+3+···+(m−n−2)
ω(t).

By plugging this estimation in (3.3), we obtain that

D2ϕ(x)(v2) ≥ k(n,m,C)tm−2ω(t),

where

k(n,m,C) =
V (n)

36 · 22+3+···+(m−n−2)(1 + diam(C))n+1
.

On the other hand, Lemma 3.1 implies that

D2f(x)(v2) ≥ −ω(t)tm−2.

Therefore, the function ψ = f + 2
k(n,m,C)ϕ satisfies D2ψ(x)(v2) ≥ 0 on

the neighbourhood {x ∈ Rn : d(x,C) ≤ 1} of C with strict inequality
whenever 0 < d(x,C) ≤ 1. We also have that the function ψ is of class
Cm−n−1(Rn) with f = ψ on C and Jm−n−1

y ψ = Jm−n−1
y f for all y ∈ C.

Finally, using the same argument of Section 2.8 we can construct a convex
function F ∈ Cm−n−1(Rn) with F = f on C and Jm−n−1

y F = Jm−n−1
y f for

all y ∈ C. The proof of Theorem 1.8 is complete.

In the rest of this section we will give the proof of Theorem 1.10.

3.4. Sublevel sets of strongly convex functions. Here we gather some
elementary properties of ovaloids and Minkowski functionals that we will
need in the proof of Theorem 1.10.

Proposition 3.2. Suppose that ψ : Rn → R is a convex function of class
Cm(Rn), withm ≥ 2, such that there exists a constantM > 0 with D2ψ(x)(v2) ≥
M for all x ∈ Rn and for all v ∈ Sn−1. If we denote C = ψ−1(−∞, 1], then
the following is true.

(i) C is a convex compact set.
(ii) ∂C = {x ∈ Rn : ψ(x) = 1}.
(iii) If int(C) = ∅, then C is a singleton.

If we further assume that int(C) 6= ∅ then we also have:

(iv) ψ attains a unique minimum in int(C).
(v) ∂C is a one-codimensional manifold of class Cm.
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(vi) If x /∈ C and xC ∈ ∂C is such that |x− xC | = d(x,C), then ∇ψ(xC)
and x−xC are paralell and outwardly normal to ∂C at the point xC .

(vii) There is a constant β > 0 such that

ψ(x)− 1 ≥ βd(x,C) for every x ∈ Rn \ C.
Proof. Properties (i)-(vi) are well known facts about strongly convex func-
tions of class Cm. Perhaps only property (vii) requires an explanation. Due
to the compactness of ∂C and the continuity of ∇ψ, we can find β > 0
such that |∇ψ(x)| ≥ β for all x ∈ ∂C. If x /∈ C, by taking xC ∈ ∂C with
|x− xC | = d(x,C), by convexity of ψ we have

ψ(x) − 1 = ψ(x) − ψ(xC) ≥ 〈∇ψ(xC), x− xC〉,
and by (vi), the last product coincides with |∇ψ(xC)||x−xC | ≥ βd(x,C). �

Given any subset C of a normed space (X, | · |) the Minkowski functional
of C is defined by

µC(x) = inf{t ≥ 0 : x ∈ tC}, x ∈ X.

The following Proposition sums up some well known properties of gauges
asociated to convex bodies and also shows other properties that are crucial
to our purposes and are not so well known.

Proposition 3.3. If C ⊆ X is convex with 0 ∈ int(C) we have:

(i) 0 ≤ µC(x) < +∞ for all x ∈ X, and µC(0) = 0.
(ii) µC = µint(C) = µC .
(iii) If 0 < t <∞, then µC(x) < t if and only if x ∈ t int(C) = int(tC).
(iv) µC is positively homogeneous subadditive functional.
(v) {x ∈ X : µC(x) < 1} = int(C) ⊂ C ⊂ C = {x ∈ X : µC(x) ≤ 1},
(vi) If r > 0 is such that B(0, r) ⊂ C, then µC(x) ≤ r−1|x| for all x ∈ X.

Also,
(vii) µC is 1

r -Lipschitz, and

(viii) µC(x)− 1 ≤ r−1d(x,C) for all x ∈ X.

(ix) If C =
⋂N

k=1Ck, where each Ck is a convex subset with 0 ∈ intC
then µC = max1≤k≤N µCk

.

Suppose in addition that C ⊂ X is bounded.

(x) There is R > 0 such that µC(x) ≥ R−1|x| for all x ∈ X.
(xi) For all x ∈ X, we have d(x, ∂C) ≤ R|µC(x) − 1|. In particular

d(x,C) ≤ R(µC(x)− 1) if x ∈ X \ C.
(xii) If C =

⋂N
k=1Ck, where each Ck is convex and bounded with 0 ∈

int(C), we have

max
1≤k≤N

d(x,Ck) ≤ d(x,C) ≤ R

r
max

1≤k≤N
d(x,Ck) for all x ∈ X,

whenever r,R > 0 are such that B(0, r) ⊆ C ⊆ B(0, R).
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(xiii) If C =
⋂N

k=1Ck, where each Ck is convex and bounded with int(C) 6=
∅, but not necessarily 0 ∈ int(C), we have

max
1≤k≤N

d(x,Ck) ≤ d(x,C) ≤ R

r
max

1≤k≤N
d(x,Ck) for all x ∈ X,

where r,R > 0 are such that B(x0, r) ⊆ C ⊆ B(x0, R) and x0 ∈
int(C).

Proof. Properties (i)-(viii),(x),(xi) are all well known properties about Minkowski
functional. See [8, Chapter (II)] for details. Now we check the rest of the
properties.
(ix) It is an easy consequence of (iii).
(xii) When x ∈ C there is nothing to prove. If x /∈ C, using (ix) and (xi) we
obtain

d(x,C) ≤ R[µC(x)− 1] = R[ max
1≤k≤N

µCk
(x)− 1] = R[ max

1≤k≤N
(µCk

(x)− 1)].

By (viii), the last term is less than or equal to R
r max1≤k≤N d(x,Ck).

(xiii) After a translation, the same proof as in (xii) holds. �

3.5. Proof of Theorem 1.10. First of all, let us make an small remark: If
a set C is (FIOm), (see Definition 1.9), then either C has nonempty interior
or C is a single point. We may thus suppose that C has nonempty interior,
as the result follows immediately from Theorem 1.3 in the case that C is a
singleton.

Fix m ∈ N with m ≥ 3. Suppose that C is (FIOm−1) with nonempty
interior and f ∈ Cm(Rn) a function satisfying (CWm) on C. According

to Definition 1.9, we can write C =
⋂N

j=1Cj , where for each 1 ≤ j ≤ N

there are Mj > 0 and a function ψj : R
n → R of class Cm−1(Rn) such that

Cj = ψ−1
j (−∞, 1] and D2ψj(x)(v

2) ≥ Mj for all x ∈ Rn and v ∈ Sn−1.

Let us denote M = min{Mj : 1 ≤ j ≤ N}. By Proposition 3.2, for each
j ∈ {1, . . . , N}, the set Cj is a convex compactum and there is a constant
βj > 0 with ψj(x) − 1 ≥ βjd(x,Cj) whenever x /∈ Cj. Set β = min{βj :
j = 1, . . . , N}. Using Proposition 3.3 (xiii), we obtain L > 0 with d(x,C) ≤
Lmax1≤j≤N d(x,Cj) for all x ∈ Rn. To sum up, we have found L, β,M are
positive constants satisfying

(3.4) d(x,C) ≤ L max
1≤j≤N

d(x,Cj) for all x ∈ Rn;

(3.5) ψj(x)− 1 ≥ βd(x,Cj) for all x /∈ Cj , 1 ≤ j ≤ N ;

(3.6) D2ψj(x)(v
2) ≥M for all x ∈ Rn, v ∈ Sn−1, 1 ≤ j ≤ N.

Since f : Rn → R satisfies (CWm) on C, the estimation given in Lemma
3.1 holds for f. For these positive constants L, β > 0, we define the following
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functions

g(t) =

{ ∫ t
0

∫ t2
0 · · ·

∫ tm−1

0 ω
(
2m−2s

)
ds dtm−1 · · · dt2 if t > 0

0 if t ≤ 0,

h(t) = g(Lβ−1t), t ∈ R,

and

ϕ(x) =

N∑

j=1

h(ψj(x)− 1), x ∈ Rn.

It is clear that g ∈ Cm−1(R) with g(k)(0) = 0 for all 0 ≤ k ≤ m− 1. By the
definition of the ψ’s and g, we have that ϕ−1(0) = C and ϕ ∈ Cm−1(Rn).
It is routine to check that ∂αϕ(x) = 0 for all x ∈ C and |α| ≤ m − 1, that
is, Jm−1

x ϕ = 0 for all x ∈ C. A simple calculation and the fact that g′′ ≥ 0
lead us to

D2ϕ(x)(v2) =
N∑

j=1

h′′(ψj(x)− 1)〈∇ψj(x), v〉2 +
N∑

j=1

h′(ψj(x)− 1)D2ψj(x)(v
2)

≥
N∑

j=1

h′(ψj(x)− 1)D2ψj(x)(v
2),

for every x ∈ Rn and every v ∈ Sn−1. Now, we study the convexity of ϕ
outside of C. Fix x ∈ Rn \ C and v ∈ Sn−1. From (3.6) we deduce

D2ϕ(x)(v2) ≥
N∑

j=1

h′(ψj(x)− 1)D2ψj(x)(v
2) ≥M

N∑

j=1

h′(ψj(x)− 1).

But the above sum is greater than or equal to Mh′(ψj(x) − 1), where we
consider an index j := jx with d(x,Cj) = max1≤i≤N d(x,Ci). Of course, for
this index j, we have that x /∈ Cj. This implies ψj(x) > 1 and therefore

D2ϕ(x)(v2) ≥Mh′(ψj(x)− 1) =MLβ−1g′(Lβ−1(ψj(x)− 1)).

Using inequalities (3.5) and (3.4) and the choice of j, we obtain

ψj(x)− 1 ≥ βd(x,Cj) ≥ βL−1d(x,C).

The above inequality and the fact that g′ is non decreasing imply that

g′(Lβ−1(ψj(x)− 1)) ≥ g′(d(x,C)) = g′(t),
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where t := d(x,C). Recalling that ω is nonnegative and nondecreasing, we
obtain

g′(t) =

∫ t

0

∫ t2

0
· · ·

∫ tm−2

0
ω
(
2m−2s

)
ds dtm−2 · · · dt2

≥
∫ t

t/2

∫ t2

0
· · ·

∫ tm−2

0
ω(2m−2s)ds dtm−2 · · · dt2

≥ t

2

∫ t/2

0

∫ t2

0
· · ·

∫ tm−3

0
ω(2m−2s)ds dtm−3 · · · dt2

≥ t

2
· t
4

∫ t/4

0

∫ t2

0
· · ·

∫ tm−4

0
ω(2m−2s)ds dtm−4 · · · dt2

≥ t

2
· t
4
· · · t

2m−3

∫ t/2m−3

0
ω(2m−2s)ds

≥ t

2
· t
4
· · · t

2m−3
· t

2m−2
ω(t) =

tm−2

21+2+3+···+(m−2)
ω(t).

Therefore

D2ϕ(x)(v2) ≥MLβ−1g′(t) = k(n,m,C)tm−2ω(t),

where

k(n,m,C) =
MLβ−1

21+2+3+···+(m−2)
.

On the other hand, Lemma 3.1 gives us the following inequality:

D2f(x)(v2) ≥ −ω(t)tm−2.

Hence F := f + 2
k(n,m,C)ϕ has a strictly positive Hessian on Rn \ C, is of

class Cm−1(Rn) and coincides with f on C. Since Jm−1
x ϕ = 0 for all x ∈ C,

we have that Jm−1
x F = Jm−1

x f for all x ∈ C. Because f is convex on C and
the extension F is differentiable, we have that F is convex in Rn. The proof
of Theorem 1.10 is complete.

4. Remarks and Counterexamples

The following example is a variation of [24, Example 4] and shows that
our main result fails if we drop the assumption that C be compact, even in
the presence of strictly positive Hessians.

Example 4.1. Let C = {(x, y) ∈ R2 : x > 0, xy ≥ 1}, and define

f(x, y) = −2
√
xy +

1

x+ 1
+

1

y + 1

for every (x, y) ∈ C. The set C is convex and closed, with a nonempty
interior, and it is routine to verify that f has a strictly positive Hessian on
C. We also have

∇f(x, y) =
(
−x− 1

2 y
1

2 − 1

(x+ 1)2
, −x 1

2 y−
1

2 − 1

(y + 1)2

)
.



26 DANIEL AZAGRA AND CARLOS MUDARRA

We claim that f does not have any convex extension to all of R2. In order to
prove this it is sufficient to see that, for instance, m(f)(−1,−1) = ∞, where
m(f) is the minimal convex extension of f defined in Section 2. Considering
the curve γ(t) = (t, 1t ), t > 0, which parameterizes the boundary of C, we
have

m(f)(−1,−1) ≥ f(t,
1

t
) + 〈∇f(t, 1

t
), (−1 − t,−1− 1

t
)〉 = 2 + t+

1

t
,

so by letting either t → ∞ or t → 0+ we obtain m(f)(−1, 1) = ∞. As
a matter of fact, it is not difficult to see that m(f)(x, y) = ∞ for every
(x, y) ∈ R2 such that x < 0 or y < 0.

The following example shows that if C has empty interior then one cannot
expect to find smooth convex extensions (of functions satisfying (Wm) and
(CWm) on C) without experiencing a certain loss of differentiability. The
example also shows that in R2 this loss amounts to at least two orders of
smoothness, and that the situation does not improve asm grows large (unless
m = ∞, of course).

Example 4.2. Consider the function θ(y) = 1−cos(2πy)
2π , y ∈ R. Clearly,

θ ∈ C∞(R), with θ(0) = θ(1) = 0, θ(1/2) = 1
π and θ′(y) = sin(2πy). Define

h(x, y) = θ(y)xm, (x, y) ∈ R2. Let C := {0} × [0, 1]. We have Dkh = 0 on C
for all k ∈ {0, . . . ,m− 1}, and

Dmh(x, y) = m!θ(y)

m︷ ︸︸ ︷
e∗1 ⊗ · · · ⊗ e∗1 for (x, y) ∈ C

(here e∗1 denotes the linear function (x1, x2) 7→ x1). Therefore Dmh(0, 0) =

Dmh(0, 1) = 0, and Dmh(0, 12 ) =
m!
π e

∗
1 ⊗ · · · ⊗ e∗1. We claim that if m ≥ 2 is

even then there is no convex function F ∈ Cm(R2) such that DkF = Dkh
on C for k ∈ {0, . . . ,m}. We also claim that h satisfies conditions (W∞)
and (CWm+1) (and in particular (CWm) too) on C.

The first claim immediately follows from the following.

Remark 4.3. If m ≥ 2, there exists no convex function f ∈ Cm(R2) such
that Dkf(0, y) = 0 for all k ∈ {0, . . . ,m − 1}, y ∈ [0, 1], and such that
Dmf(0, 0) = Dmf(0, 1) = 0 and Dmf(0, 12) = Ae∗1 ⊗ · · · ⊗ e∗1, where A > 0
is a constant.

Proof. For the sake of contradiction, suppose there is such an f . Using
Taylor’s theorem we have

f(x, y) =
1

m!
Dmf(0, y0)(x, y − y0)

m +R(x, y, y0) (x, y) ∈ R2, y0 ∈ [0, 1],

where
R(x, y)

|(x, y − y0)|m
→ 0 as (x, y) → (0, y0), uniformly on y0 ∈ [0, 1]. Fix

0 < ε < A
2m! , and take δ = δ(ε) > 0 such that if y0 ∈ [0, 1] and (x, y) ∈ R2
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satisfy (x2 + (y − y0)
2)1/2 ≤ δ then

∣∣f(x, y)− 1

m!
Dmf(0, y0)(x, y − y0)

m
∣∣ = |R(x, y)| ≤ ε(x2 + (y − y0)

2)
m
2 .

Evaluating for y = y0 = 1/2 we obtain

∣∣f(x, 12)−A
xm

m!

∣∣ ≤ ε|x|m, if |x| ≤ δ.

For y = y0 ∈ {0, 1} and |x| ≤ δ we get

max{|f(x, 0)|, |f(x, 1)|} ≤ ε|x|m.
Fix x0 > 0 with x0 ≤ δ. We then have

f(x0,
1
2) ≥ A

xm0
m!

− εxm0 > 2εxm0 − εxm0 = εxm0 ≥ max{f(x0, 0), f(x0, 1)}.

This implies that [0, 1] ∋ t 7→ ϕ(t) = f(x0, t) satisfies ϕ(
1
2 ) >

1
2ϕ(0)+

1
2ϕ(1),

and in particular f cannot be convex. �

Let us now prove our second claim. It is obvious that h satisfies (W k) for
every k. We only have to check that h satisfies (CWm+1) on C. We must
see that, given ε > 0 there exists tε > 0 such that

Qm+1(y, t, v, w) =

1
(m−2)!D

mh(0, y)(v2, wm−2) + t
(m−1)!D

m+1h(0, y)(v2, wm−1)

t
≥ −ε,

for every y ∈ [0, 1], v, w ∈ S1, 0 < t ≤ tε. It is not difficult to check that

Dm+1h(0, y)(v2, wm−1) =
∂m+1h

∂xm∂y
(0, y)

[
(m− 1)v21w

m−2
1 w2 + 2v1v2w

m−1
1

]

= m! θ′(y)
[
(m− 1)v21w

m−2
1 v2 + 2v1v2w

m−1
1

]
.

On the other hand Dmh(0, y)(v2, wm−2) = m! θ(y)v21w
m−2
1 . For our given

ε > 0, let us fix tε such that

0 < tε ≤ min

(
1,

ε

4π(2m+ 3)(m+ 1)m(m− 1)

)
.

Take y ∈ [0, 1], v, w ∈ S1 and 0 < t ≤ tε. We have

Qm+1(y, t, v, w) =
1

t

[
m!

(m− 2)!
θ(y)v21w

m−2
1 +

m!

(m− 1)!
tθ′(y)

(
(m− 1)v21w

m−2
1 w2 + 2v1v2w

m−1
1

)]
.

Since m is even, we have wm−2
1 ≥ 0, and it is not difficult to estimate

Qm+1(y, t, v, w) ≥
m(m− 1)|v1||w1|m−2

t

(
θ(y)|v1| − (m+ 1)t|θ′(y)|

)
.

(4.1)

Let us now distinguish the following cases.
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Case 1: Assume y ∈ [14 ,
3
4 ]. Then 2πy ∈ [π2 ,

3π
2 ]. Therefore cos(2πy) ≤ 0,

which implies θ(y) ≥ 1
2π . Since we always have |θ′(y)| = | sin(2πy)| ≤ 1, it

follows from (4.1) that

Qm+1(y, t, v, w) ≥
m(m− 1)|v1||w1|m−2

t

( |v1|
2π

− (m+ 1)t

)
.

Subcase 1.1: Assume |v1| ≥ 2π(m+1)t. Then it is clear thatQm+1(y, t, v, w) ≥
0 ≥ −ε.
Subcase 1.2: Assume 2π(m + 1)t2 ≤ |v1| ≤ 2π(m + 1)t. Then, since
|w1|, t, 1 − t ≤ 1, we obtain

Qm+1(y, t, v, w) ≥
m(m− 1)|v1||w1|m−2

t

(
(m+ 1)t2 − (m+ 1)t

)

= (m+ 1)m(m− 1)|v1||w1|m−2(t− 1) ≥ −2π(m+ 1)2m(m− 1)t|w1|m−2(1− t)

≥ −2πt(m+ 1)2m(m− 1) ≥ −2πtε(m+ 1)2m(m− 1) ≥ −ε.
Subcase 1.3: Assume |v1| ≤ 2π(m+ 1)t2. We have

Qm+1(y, t, v, w) ≥ −m(m− 1)|v1||w1|m−2

t

(
(m+ 1)t− |v1|

2π

)

≥ −2πm(m− 1)(m+ 1)t2|w1|m−2

t

(
m+ 1 +

1

2π

)
≥ −2π(m+ 1)m(m− 1)(m+ 2) t

≥ −2π(m+ 1)m(m− 1)(m+ 2) tε ≥ −ε.
Case 2: Assume y ∈ [0, 14). Then πy ∈ [0, π4 ) and 2πy ∈ [0, π2 ). We have

θ(y) =
1− cos(2πy)

2π
=

sin2(πy)

π
.

On the other hand,

|θ′(y)| = | sin(2πy)| = sin(2πy) = 2 sin(πy) cos(πy).

By substituting in (4.1), we get

Qm+1(y, t, v, w) ≥
m(m− 1)|v1||w1|m−2

t

(
sin2(πy)|v1|

π
− (m+ 1) sin(2πy)t

)

=
m(m− 1)|v1||w1|m−2 sin(πy)

t

(
sin(πy)|v1|

π
− 2(m+ 1) cos(πy)t

)

Subcase 2.1: Assume sin(πy)|v1| ≥ 2π(m + 1) cos(πy)t. Then obviously
Qm+1(y, t, v, w) ≥ 0 ≥ −ε.
Subcase 2.2: Assume 2π(m+1) cos(πy)t2 ≤ sin(πy)|v1| ≤ 2π(m+1) cos(πy)t.
We have

Qm+1(y, t, v, w) ≥ m(m− 1)|v1||w1|m−2 sin(πy)2(m + 1) cos(πy)(t− 1),

whose modulus is less than or equal to

2(m+ 1)m(m− 1)|v1| sin(πy) ≤ 4π(m+ 1)2m(m− 1) cos(πy)t

≤ 4π(m+ 1)2m(m− 1)t ≤ 4π(m+ 1)2m(m− 1)tε ≤ ε.
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This shows that Qm+1(y, t, v, w) ≥ −ε.
Subcase 2.3: Assume sin(πy)|v1| ≤ 2π(m+ 1) cos(πy)t2. Recall that

Qm+1(y, t, v, w) ≥
m(m− 1)|v1||w1|m−2 sin(πy)

t

(
sin(πy)|v1|

π
− 2(m+ 1) cos(πy)t

)
.

The modulus of the last term is less than or equal to

m(m− 1)|v1| sin(πy)
(
1
π + 2(m+ 1)

)

t
≤ m(m− 1)2π(m + 1) cos(πy)t2(1 + 2(m+ 1))

t
≤ 2π(m+ 1)m(m− 1)(2m+ 3)t ≤ 2π(2m+ 3)(m+ 1)m(m− 1)tε ≤ ε.

Hence Qm+1(y, t, v, w) ≥ −ε.
Case 3: Assume finally that y ∈ (34 , 1]. Take z = 1− y. Clearly cos(2πz) =
cos(2πy), and sin(2πz) = − sin(2πy). Therefore θ(z) = θ(y) and |θ′(y)| =
|θ′(z)|, hence

Qm+1(y, t, v, w) ≥
m(m− 1)|v1||w1|m−2

t

(
θ(y)|v1| − (m+ 1)t|θ′(y)|

)

=
m(m− 1)|v1||w1|m−2

t

(
θ(z)|v1| − (m+ 1)t|θ′(z)|

)
,

and since z ∈ [0, 14), we can apply Case 2 with z instead of y to obtain
Qm+1(y, t, v, w) ≥ −ε.
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