ANÁLISIS DE FUNCIONES DE VARIABLE COMPLEJA, GRUPO B. EXAMEN FINAL DEL 15/01/2019.

TEST TEÓRICO-PRÁCTICO

Decir si las siguientes afirmaciones son verdaderas o falsas o, en el caso de las preguntas 5 y 10, escribir los números pedidos.

- **1.** Si $f \in C^2(\mathbb{R}^2, \mathbb{R})$ y $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ entonces la función $g = \frac{\partial f}{\partial y} + i \frac{\partial f}{\partial x}$ es holomorfa en \mathbb{C} .
- 2. Si $\sum_{n=0}^{\infty} a_n z^n$ tiene radio de convergencia positivo entonces $\lim_{n\to\infty} a_n = 0$.
- 3. Si $f: \mathbb{R} \to [0, \infty)$ es decreciente y $\int_0^\infty f(x) dx = \infty$ entonces el radio de convergencia de la serie $\sum_{n=0}^\infty f(n)(z-3)^n$ es menor o igual que uno.
- 4. Si f(z) tiene un polo en π entonces $e^{f(z)}$ tiene un polo en π .
- 5. Escribir aquí el valor de la integral $\int_{|z|=1} \frac{\sin z}{z^3 \cos z} dz$.
- 6. La función $f(z) = \sum_{n=1}^{\infty} \operatorname{sen}(z/n^2) e^{-z^2}$ es holomorfa en \mathbb{C} .
- 7. Si f(z) es entera entonces existe $C \geq 0$ tal que $|f^{(k)}(z)| \leq C(k!)$ para todo $k \in \mathbb{N}$.
- 8. La función $f(z) = \frac{z^3}{\cos^2 z + \sin^2 z}$ tiene un polo de orden 2 en ∞ .
- 9. La función $f(z) = \sum_{n=0}^{\infty} \frac{n^3}{(n+1)!} z^{2n+1}$ es entera y no es inyectiva.
- 10. Escribir aquí el número de soluciones complejas de la ecuación $6z^5 + z^2 2z + 1 = 0$.

Este test supone 2,5 puntos de la nota del examen. Cada pregunta acertada suma 0,25 puntos, y cada pregunta fallada resta 0,15. Las preguntas no respondidas ni suman ni restan puntos.