PROBLEMAS DE ANÁLISIS DE VARIABLE REAL. HOJA 6.

- 1. Definamos $f(x) = x^2 \sin(1/x)$ para $x \neq 0$, y f(0) = 0. Supongamos también que h y k son dos funciones tales que $h'(x) = \sin^2(\sin(x+1)), h(0) = 3, k'(x) = f(x+1), y k(0) = 0$. Hallar $(f \circ h)'(0), (k \circ f)'(0), y$ $\alpha'(x^2)$, donde $\alpha(x) = h(x^2)$.
- **2.** Hallar f'(0) si

$$f(x) = \begin{cases} g(x)\sin\frac{1}{x} & \text{si } x \neq 0, \\ 0 & \text{si } x = 0, \end{cases}$$

donde g es una función que cumple g(0) = g'(0) = 0.

3. Para cada una de las siguientes funciones, encontrar los extremos locales, y los intervalos de crecimiento y de decrecimiento:

$$f(x) = x^2 - 3x + 5 f(x) = x^3 - 3x - 4 f(x) = 3x - 4x^2$$

$$f(x) = x^4 + 2x^2 - 4 f(x) = x + \frac{1}{x} f(x) = \frac{x}{1+x^2}$$

$$f(x) = \sqrt{x} - 2\sqrt{x+2} f(x) = 2x + \frac{1}{x^2} f(x) = \sin x^2$$

- **4.** Hallar los extremos absolutos y los extremos locales de las funciones f en los intervalos indicados:
 - a) $f(x) = |x^2 1|, x \in [-4, 4];$
 - b) $f(x) = 1 (x 1)^{2/3}, x \in [0, 2];$

 - c) $f(x) = x|x^2 12|, x \in [-2, 3];$ d) $f(x) = \frac{x+7}{(x-1)(x-2)(x-3)}, x \in [0, 5].$
- 5. Usar el teorema del valor medio para demostrar que las funciones sin y cos son 1-Lipschitz.
- **6.** Usar el teorema del valor medio para demostrar que $\frac{x-1}{x} < \log x < x 1$ para todo x > 1.
- 7. Sea $f:(a,b)\to\mathbb{R}$ una función continua en (a,b) y derivable en $(a,b)\setminus\{x_0\}$, donde $x_0\in(a,b)$. Supongamos que existe $\lim_{x\to x_0} f'(x) = \alpha$. Demostrar que entonces f es también derivable en x_0 , y que $f'(x_0) = \alpha$.
- **8.** Sea $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 2x^4 + x^4 \sin(\frac{1}{x}) & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

Probar que f tiene un mínimo absoluto en 0, pero que su derivada f' toma valores estrictamente positivos y estrictamente negativos en cualquier intervalo de la forma $(0, \varepsilon)$ con $\varepsilon > 0$, es decir, f no es creciente en ningún intervalo de la forma $(0, \varepsilon)$.

9. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \frac{x}{2} + x^2 \sin(\frac{1}{x}) & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

Probar que f es derivable en todos los puntos, f'(0) > 0, y que f no es creciente en ningún intervalo abierto que contenga a 0.

10. Demostrar que si f es derivable en (a,b), y su derivada f' es continua en un punto c de (a,b) tal que f'(c) > 0, entonces existe $\delta > 0$ tal que f es estrictamente creciente en $(c - \delta, c + \delta)$.

2 HOJA 6

- 11. Sea $f:(a,+\infty)\to\mathbb{R}$ derivable en $(a,+\infty)$ y tal que existe $\lim_{x\to+\infty}f'(x)=\alpha$. Demostrar que:
 - a) $\lim_{x\to+\infty} \frac{f(x+t)-f(x)}{t} = \alpha$ para todo t>0.
 - b) Si existe $\lim_{x\to +\infty} f(x)$ y es finito, entonces $\alpha=0$.
 - c) $\lim_{x\to\infty} \frac{f(x)}{x} = \alpha$.
- **12.** Sean f y g derivables, y supongamos que f(a) = g(a) y $f'(x) \le g'(x)$ para todo $x \ge a$. Probar que $f(x) \le g(x)$ para todo $x \ge 0$.
- 13. Demostrar que la suma de un número positivo y su inverso es al menos dos.
- **14.** Demostrar que si $f'(x) \ge M$ para todo $x \in (a,b)$ entonces $f(b) \ge f(a) + M(b-a)$.
- **15.** Supóngase que $f'(x) \ge M > 0$ para todo $x \in [0, 1]$. Demostrar que existe un intervalo de longitud 1/4 en el que se cumple que $|f| \ge M/4$.
- **16.** Demostrar que si f'(c) > 0 entonces existe $\delta > 0$ tal que f(x) > f(c) para todo $x \in (c, c + \delta)$. Demostrar también que si se supone f'(c) < 0 entonces puede encontrarse $\delta > 0$ tal que f(x) > f(c) para todo $x \in (c \delta, c)$.
- 17. Utilizar el problema anterior para demostrar el *Teorema de Darboux*: Si $f:[a,b] \to \mathbb{R}$ es derivable y ζ es un número entre f'(a) y f'(b) entonces existe $c \in (a,b)$ tal que $f'(c) = \zeta$ (es decir, toda derivada f' tiene la propiedad de los valores intermedios incluso cuando f' no sea continua). Indicación: analizar la función $g(x) := \zeta(x-a) f(x)$, aplicándole el problema anterior para concluir que g alcanza su máximo en un punto c del interior de (a,b).
- 18. Utilizar la regla de l'Hôpital para calcular los siguientes límites:

$$\begin{array}{lll} & \lim_{x\to 0^+} (1+\frac{3}{x})^x, & \lim_{x\to 0} \frac{x}{\tan x}, & \lim_{x\to 0} \frac{\cos^2 x - 1}{x^2}, & \lim_{x\to 0} \frac{\log(x+1)}{\sin x}, \\ & \lim_{x\to \infty} \frac{\log x}{x^2}, & \lim_{x\to 0} \frac{\log(\cos x)}{x}, & \lim_{x\to 0} \frac{\tan x - x}{x^3}, & \lim_{x\to 0} \frac{\arctan x}{x}, \\ & \lim_{x\to \infty} \frac{\log x}{\sqrt{x}}, & \lim_{x\to 0^+} \frac{1}{x \log^2 x}, & \lim_{x\to 0^+} x^3 \log x, & \lim_{x\to 0^+} x^{2x}, \\ & \lim_{x\to \infty} x^{1/x}, & \lim_{x\to 0^+} x^{\sin x}, & \lim_{x\to 0^+} (\sin x)^x, & \lim_{x\to 0^+} (\frac{1}{x} - \frac{1}{\sin x}). \end{array}$$

- **19.** Sea $f(0,\infty) \to \mathbb{R}$ derivable, y supongamos que $\lim_{x\to\infty} f(x) + f'(x) = L$. Probar que debe ser $\lim_{x\to\infty} f(x) = L$ y $\lim_{x\to\infty} f'(x) = 0$. *Indicación:* Escribir $f(x) = e^x f(x)/e^x$.
- **20.** Sean $f(x) = x^2 \sin(1/x)$ para $x \neq 0$, f(0) = 0, y $g(x) = \sin x$. Probar que existen $\lim_{x\to 0} f(x)$, $\lim_{x\to 0} g(x)$ y $\lim_{x\to 0} f(x)/g(x)$ y son todos cero, pero que $\lim_{x\to 0} f'(x)/g'(x)$ no existe.
- **21.** Demostrar que si f y g son convexas y g es creciente, entonces la composición $g \circ f$ es también convexa.
- **22.** Representar gráficamente las siguientes funciones, hallando los intervalos en los que son convexas o cóncavas:

$$f(x) = \frac{x+1}{x^2+1}, \quad g(x) = \frac{x}{x^2-1}, \quad h(x) = x + \frac{3}{x^2},$$

$$\varphi(x) = \frac{x^2}{x^2-1}, \quad \psi(x) = \frac{x^2+1}{x}, \quad u(x) = x \log x.$$

- **23.** Si $f: \mathbb{R} \to \mathbb{R}$ es convexa y no constante, probar que $\lim_{x \to +\infty} f(x) = +\infty$ o $\lim_{x \to -\infty} f(x) = +\infty$.
- 24. Dibujar la gráfica de la función

$$f(x) = \begin{cases} \frac{7}{x^2 + 1} & \text{si } x \le 1, \\ \frac{1}{(1 - x)(5 - x)} & \text{si } 1 < x < 5, \\ \cos(5x - 7) & \text{si } x \ge 5. \end{cases}$$

- **25.** Demostrar que si $f: \mathbb{R} \to \mathbb{R}$ es derivable y acotada entonces existe una sucesión (x_n) tal que:
 - a) $\lim_{n\to\infty} x_n = \infty$, y

HOJA 6 3

- b) $\lim_{n\to\infty} f'(x_n) = 0$.
- **26.** Dar un ejemplo de función derivable y acotada $f: \mathbb{R} \to \mathbb{R}$ para la que no se tenga que $\lim_{x \to \infty} f'(x) = 0$, pero sí que $\lim_{x \to \infty} f(x) = 0$.
- 27. El paracaidista Felix Baumgartner sube en un globo a 39.000 metros de altitud y se deja caer libremente. Sabiendo que en los primeros 46,8 segundos de la caída recorre 10.000 metros, y que la aceleración de la gravedad a dicha altitud es de 9,7 m/seg², demostrar que en algún instante entre t=0 y t=46,8 su velocidad es mayor que 340 m/seg.