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NONSMOOTH MORSE-SARD THEOREMS

D. AZAGRA, J. FERRERA, AND J. GÓMEZ-GIL

Abstract. We prove that every function f : Rn → R satisfies that the
image of the set of critical points at which the function f has Taylor
expansions of order n − 1 and non-empty subdifferentials of order n is
a Lebesgue-null set. As a by-product of our proof, for the proximal
subdifferential ∂P , we see that for every lower semicontinuous function
f : R2 → R the set f({x ∈ R

2 : 0 ∈ ∂P f(x)}) is L1-null.

1. Introduction and main results

The main purpose of this paper is to provide nonsmooth versions of the
Morse-Sard Theorem for real-valued functions defined on Rn. Recall that
the Morse-Sard theorem [27, 34] states that if f : Rn → Rm is of class Ck,
where k = n−m+1, then the set of critical values of f has measure zero in
Rm. A famous example of Whitney’s [37] shows that this classical result is
sharp within the classes of functions Cj. Nevertheless several generalizations
of the Morse-Sard theorem for other classes of functions have appeared in
the literature; see [3, 5, 6, 8, 9, 13, 15, 18, 22, 21, 28, 30, 23, 31, 32, 33, 38]
and the references therein. We cannot state all of the very interesting results
of the rich litterature concerning this topic; instead, because of its pointwise
character which is closely related to our results, let us only mention that
Bates proved in [5] that if f ∈ Ck−1,1(Rn,Rm) (i.e., if f ∈ Ck−1 and Dk−1f
is Lipschitz) then the conclusion of the Morse-Sard theorem still holds true.
In [1] we gave an abstract version of the Morse-Sard theorem which allows us
to recover a previous result of De Pascale’s for the class of Sobolev functions
[13], as well as a refinement of Bates’s theorem which only requires f to be
k − 1 times continuously differentiable and to satisfy a Stepanoff condition
of order k, namely that

lim sup
h→0

|f(x+ h)− f(x)−Df(x)(h)− ...− 1
(k−1)!D

k−1f(x)(hk−1)|

|h|k
< ∞
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for every x ∈ Rn. As a referee of the present paper pointed out, this result
can also be easily proved, and even generalized, by using some ideas of the
proof of [25, Theorem 1]; see the Appendix below.

In the present paper we will look at the case m = 1 more closely, and
we will study the question as to what extent one-sided Taylor expansions
(that is, viscosity subdifferentials) of order n are sufficient to ensure that a
given function f : Rn → R has the Morse-Sard property. The results that
we obtain generalize many of the previous versions of Morse-Sard Theorem
and do not require that the function f be Cn−1 smooth (nor even two times
differentiable). They are meant to complement the nonsmooth versions of
the Morse-Sard theorem for subanalytic functions and for continuous selec-
tions of compactly indexed countable families of Cn functions on Rn that
were established in [7, 4].

For an integer n ≥ 2, we will say that a function f : RN → Rm has a
Taylor expansion of order n − 1 at x provided there exist k-homogeneous
polynomials P k

x , k = 1, . . . , n− 1, such that

lim
h→0

f(x+ h)− f(x)− P 1
x (h) − P 2

x (h)− · · · − Pn−1
x (h)

|h|n−1
= 0.

If there exist such polynomials then they are unique. Also note that if a
function f has Taylor expansion of order n − 1 at a point x, then it is
differentiable at x and the differential Df(x) equals the linear function P 1

x ;
however Djf(x) does not necessarily exist for j ≥ 2. On the other hand, if f
is n−1 times differentiable at x then f has a Taylor expansion of order n−1
at x, and P k

x = 1
k!D

kf(x) for every k = 1, . . . , n − 1. For more information
on Taylor expansions and its relation with approximate differentiability and
Lusin properties of higher order, see [25, 24].

Let us now explain what we mean by a subdifferential of order n. Prob-
ably, the most natural way to define a subdifferential ∂̃nf(x0) of order n of
a lower semicontinuous function f : RN → R at a point x0 is as the set of
n-tuples (P1, . . . , Pn) ∈ P(1RN )× . . .P(nRN ) such that

lim inf
x→x0

f(x)− f(x0)− P1(x− x0)− · · · − Pn(x− x0)

|x− x0|n
≥ 0.

Here P(kRN ) denotes the space of k-homogeneous polynomials on RN , which
is endowed with the norm

‖P‖ = sup
|v|=1

|P (v)|.

In the case n = 2 this definition agrees with the standard viscosity subdif-
ferential of order 2; see [12] and the references therein. It is easy to see that

if (P1, . . . , Pn) ∈ ∂̃nf(x0) then (P1, . . . , Pn−1) ∈ ∂̃n−1f(x0). It is also clear
that if the polynomial ϕ(x) = f(x0)+P1(x−x0)+ . . . Pn−1(x−x0) satisfies

ϕ ≤ f on a neighbourhood of x0, then (P1, . . . , Pn−1) ∈ ∂̃n−1f(x0). For n
odd, the converse is partially true, in the following sense: if (P1, . . . , Pn−1) ∈
∂̃n−1f(x0) and ε > 0, then the polynomial ϕ(x) = f(x0) + P1(x − x0) +
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. . . Pn−1(x−x0)−ε|x−x0|
n−1 is less than or equal to f on a neighbourhood

of x0 (this is not necessarily true if n is even). Hence, we have the following.

Proposition 1.1. If (ζ, P ) ∈ ∂̃2f(x0) and Pε(h) = P (h) − ε|h|2 then

(ζ, Pε, 0, . . . , 0) ∈ ∂̃nf(x0) for every ε > 0 and every n ≥ 3.

However, this does not imply that (ζ, P, 0) ∈ ∂̃3f(x0). In particular, we

see that the subdifferential ∂̃nf(x0) as a subset of P(1RN )× . . .P(nRN ), is
not necessarily closed for n ≥ 2 (althought it is always closed for n = 1).
Technical problems arise from this fact when one tries to extend the tools of
nonsmooth analysis to higher order subdifferentials. In order to overcome
these problems one could try to introduce limiting subdifferentials of higher
order, but this would not lead us anywhere as far as nonsmooth Morse-Sard
theorems are concerned; see Example 1.12 below. Another important the-
oretical disadvantage of this subdifferential is the fact that there is no gap
between subdifferentiability of the orders 2 and 3 (nor between subdiffer-
entiability of order n − 1 and n more generally). Namely, if n ≥ 3 then
there are no functions with nonempty subdifferential of order n−1 and with
empty subdifferential of order n.

For these reasons we introduce in this paper a slightly different subdiffer-
ential which will suit our investigation concerning nonsmooth generalizations
of the Morse-Sard theorem.

Definition 1.2. Let f : RN → R, x0 ∈ RN . If f has a Taylor expansion of
order n− 1 at x0, we define ∂nf(x0) as the set of Q ∈ P(nRN ) such that

lim inf
h→0

f(x0 + h)− f(x0)−Df(x0)(h) − P 2
x0
(h) − · · · − Pn−1

x0
(h)−Q(h)

|h|n
≥ 0.

If either f does not have a Taylor expansion of order n − 1 at x0, or there
does not exist any Q with such property, then we deem ∂nf(x0) to be empty.

In order to illustrate this definition let us have a look at two examples
of functions, both of which are of class C2, but the first one has a big
subdifferential of order 3, while the second one has empty subdifferential of
order 3. For the function f1 : R → R defined by

f1(x) =

{
−x2 if x ≤ 0;
−x2 + x3 otherwise,

we have Df1(0) ≡ 0, D2f1(0)(h) = −2h2, and T ∈ ∂3f1(0)(h) if and only
if T (h) = ah3 with a ∈ [0, 1]. However, for the function f2(x) = −|x|3, we
have Df2(0) ≡ 0, D2f2(0) ≡ 0 and ∂3f2(0) = ∅.

The subdifferential ∂ that we have just introduced is smaller and behaves
better than ∂̃ does. For instance:

Proposition 1.3. The set ∂nf(x0) is convex and closed.

The proof is straightforward.
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However, ∂nf(x0) may still have a complicated structure. The following
example shows that if n ≥ 2 we may have to face the following situation
(which already in the case n = 2 prevents more straightforward strategies
than the one we use from working out):

Df(x0) = 0, sup
|v|=1

P (v) < 0 for every P ∈ ∂2f(x0),

and yet

sup{P (v) : |v| = 1, P ∈ ∂2f(x0)} = 0.

Example 1.4. Define Pn(x, y) = −(nx2 + 1
n
y2). The function f : R2 → R

defined by

f(x, y) = sup
n

Pn(x, y)

satisfies: Df(0̄) = 0̄, Pn ∈ ∂2f(0̄) for every n, and sup|v|=1 P (v) < 0 for

every P ∈ ∂2f(0̄).

Proof. First we observe that f is a 2-homogeneous function and

(1.1) − |(x, y)|2 ≤ f(x, y) ≤ min{−x2,−2|xy|}.

From the first inequality it follows that Df(0̄) = 0̄. On the other hand
Pn ≤ f , hence Pn ∈ ∂2f(0̄).

As f is a 2-homogeneous function, P ∈ ∂2f(0̄) if, and only if P (v) ≤ f(v)
for all v ∈ R2. In this case, by (1.1), if P (x, y) = 0 then x = 0. This
implies that if P (x, y) = −a〈(x, y), e〉2, a > 0 and e = (e1, e2) ∈ S1, then
P /∈ ∂2f(0̄). Indeed, if P ∈ ∂2f(0̄), as P (−e2, e1) = 0 then e2 = 0 and
therefore

P (1, y) = −a ≤ f(1, y) ≤ −2|y|

for all y, which is not possible. This implies that P < 0 for every P ∈
∂2f(0̄). �

If f has a Taylor expansion of order n − 1 at x0, we may also define
the superdifferential of order n as the set ∂n

+f(x0) of all n-homogeneous
polynomials Q satisfying

lim sup
h→0

f(x0 + h)− f(x0)−Df(x0)(h) − P 2
x (h) − · · · − Pn−1

x (h)−Q(h)

|h|n
≤ 0.

It is then clear that if Q ∈ ∂n
+f(x0) ∩ ∂nf(x0) then f has Taylor expansion

of order n and Q is the unique polynomial with this property. We also have
the following result, whose proof is straightforward.

Proposition 1.5. For n an odd integer, a function f has a Taylor ex-
pansion of order n at a point x if and only if it has Taylor expansion of
order n − 1 at x and ∂nf(x) 6= ∅ 6= ∂n

+f(x). In this case we also have
then ∂nf(x) = ∂n

+f(x) = {Pn
x }, where Pn

x is the n-homogeneous part of the
Taylor expansion of order n of f .
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Other interesting properties of this subdifferential can of course be estab-
lished. However, our motivation to introduce the higher order subdifferential
∂n is the fact that with this tool we will be able to obtain the following very
general version of the Morse-Sard theorem for real-valued functions, which
is the main result of this paper.

Theorem 1.6. Let f : Rn → R be a function, n ≥ 2, and let Cf be the set of

points x ∈ Rn such that ∂nf(x) 6= ∅ and Df(x) = 0. Then L1
(
f(Cf )

)
= 0.

The same statement holds true if Rn is replaced with an open subset of Rn.

Here, as in the rest of the paper, LN denotes Lebesgue’s outer measure in
RN . Notice that if ∂nf(x) 6= ∅ and n ≥ 2 then, according to our definition
of ∂nf(x), f has a Taylor expansion of order n − 1 at x, and in particular
Df(x) exists.

Our method of proof will also allow us to establish sharper versions of
Theorem 1.6 in the special cases n = 2, 3. A similar result for the case
n = 1 is easy and probably known, but nonetheless we include a proof for
the reader’s convenience. Perhaps the most interesting one is that of the
case n = 2, for which we obtain the following Morse-Sard theorem for the
proximal subdifferential. Recall that for a lower semicontinuous function
f : Rd → (−∞,∞] the proximal subdifferential of f (at a point x where
f(x) < ∞) is denoted by ∂P f(x) and defined as the set of all ζ ∈ Rd for
which there exist σ, η > 0 such that

f (y) ≥ f (x) + 〈ζ, y − x〉 − σ|y − x|2

for all y ∈ B (x, η). The set ∂P f(x) coincides with {ζ ∈ Rd : ζ = ∇ϕ(x), ϕ ∈
C2(Rd), f − ϕ attains a minimum at x}.

Theorem 1.7. Let f : R2 → R be a lower semicontinuous function. Then

L1
(
f
(
{x ∈ R

2 : 0 ∈ ∂P f(x)}
))

= 0.

Note that the above result generalizes [33, Theorem 8]. On the other hand,
the following example shows that there are functions which are not in the
class BV2(R

2) (and therefore cannot be concluded to have the Morse-Sard
property by using the Bourgain-Korobkov-Kristensen Theorem of [8, 9])
but do satisfy the mild assumptions of Theorems 1.7 and 1.6. Recall that
the class BVn(R

n) is defined as the set of all integrable functions whose
distributional derivatives of order n are finite Radon measures; see [14] for
information about differentiability properties of these functions.

Example 1.8. Let C ⊂ [0, 1] be a Cantor-like set of positive measure.
Construct a continuous function g : [0, 1] → R as follows. Set g(x) = 0

for every x ∈ C and, for each of the 2n−1 intervals Ijn of length ln that are
removed from an interval Ikn−1 at step n in the construction of C, consider

a subinterval J j
n of length ln

3 centered at the same point as Ijn. Define g on

Ijn as a differentiable function which is not of bounded variation and such

that 0 ≤ g(x) ≤ l
3
2
n and g(x) = 0 for every x ∈ Ijn \ J j

n. The function
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F : (0, 1)2 → R defined by F (x, y) = f(x) + f(y) with f(x) =
∫ x

0 g(t)dt
satisfies C×C ⊂ CF and has a Taylor expansion of order two at every point,
but it does not have a BV derivative (and in particular g is not C1,1

loc either).
However, F satisfies the hypotheses of Theorem 1.6, and consequently has
the Morse Sard property.

For the case n = 3 we have the following.

Theorem 1.9. Let f : R3 → R be a lower semicontinuous function. Then
L1

(
f(Cf )

)
= 0, where Cf is defined as the set of x ∈ R3 for which Df(x) = 0

and ∂3f(x) is nonempty.

Remark 1.10. It is impossible to have Theorem 1.6 or Theorem 1.9 if we
replace ∂nf(x) with ∂̃nf(x). Indeed, as is well known from Whitney’s [37]
and others’ examples, there exist C2 functions on R3 that fail to have the
Morse-Sard Property; however, as we observed in Proposition 1.1 we have
∂̃3f(x) 6= ∅ for every f ∈ C2(R3) and every x ∈ R3.

In the case n = 1 we also have the following special result.

Proposition 1.11. Let f : R → R be a lower semicontinuous function, and
denote Cf = {x ∈ R : 0 ∈ ∂f(x)}. Then L1

(
f(Cf )

)
= 0.

The following example taken from [11] shows that the preceding propo-
sition is no longer true if we replace ∂f with the ∂Lf , the limiting subdif-
ferential of f (see [11, 12, 17] and the references therein for definitions and
background on various subdifferentials).

Example 1.12. Let C ⊂ [0, 1] be a measurable set such that 0 < L1(C∩I) <
1 for every interval I. Let

f(x) =

∫ x

0
χC(t)dt.

It is easy to see that 0 ∈ ∂Lf(x) for every x ∈ [0, 1]. But f is clearly not
constant.

A referee pointed out that our proofs in a previous version of this paper
could be combined with some ideas of [25] in order to yield the following
generalization of Theorem 1.6. For a set E ⊂ Rn, n ≥ 2, let us say that

f ∈ C̃n−1,1(E) if f has a Taylor expansion Tn−1(x; ·) of order n− 1 at every
x ∈ E and

(1.2) lim inf
y→x

f(y)− Tn−1(x; y)

|x− y|n
> −∞

for all x ∈ E (in particular note that Df(x) exists and f is continuous at x
for every x ∈ E).

Theorem 1.13. Let E ⊂ Rn be a set, n ≥ 2 and f ∈ C̃n−1,1(E). Suppose
that Df(x) = 0 for all x ∈ E. Then L1

(
f(E)

)
= 0.

The same statement holds true if Rn is replaced with an open subset of Rn.
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Observe that if f has a nonempty subdifferential of order n at every x ∈ E,

then f ∈ C̃n−1,1(E). Therefore the above result clearly generalizes Theorem
1.6.

The rest of the paper is organized as follows. In Section 2 we will recall the
Ck−1,1 version of the Whitney Extension Theorem (see [37, 19, 35]), which

will be a fundamental tool in all of our proofs, as well as a Ck−1,1
loc version of

the Kneser-Glaeser Rough Composition Theorem, and a theorem of Liu and
Tai [25] connecting Taylor expansions and Lusin properties of order k, which
will be instrumental in establishing our results for the higher dimensional
case (n ≥ 4). We will use these results in Section 3, where we will provide the
proofs of Theorem 1.13, 1.7, 1.9, and Proposition 1.11. Finally, we include
an Appendix which clarifies what is known, or at least relatively easy to get
to know, about the Morse-Sard properties of vector-valued functions with
Taylor expansions.

2. Auxiliary results

One very important tool in our proofs will be the following version of the
classical Whitney Extension Theorem for functions of class Cm,1 (see [19, 35]
for instance). Recall that Cm,1(Rn,Rk) denotes the set of Cm functions from
Rn to Rk whose partial derivatives of order m are Lipschitz.

Theorem 2.1. Let C be a closed subset of Rn and {fα}|α|≤m be a family of
functions defined on C and satisfying

(2.1) fα(x) =
∑

|β|≤m−|α|

fα+β(y)

β!
(x− y)β +Rα(x, y)

for all x, y ∈ C and all multi-indices α with |α| ≤ m. Suppose that for some
constant M > 0 we have
(2.2)

|fα(x)| ≤ M, and |Rα(x, y)| ≤ M |x− y|m+1−|α| for all x, y ∈ C

and all |α| ≤ m. Then there exists a function F : Rn −→ R such that:

(i) F ∈ Cm,1(Rn,R).
(ii) DαF = fα on C for all |α| ≤ m.

As a matter of fact this version of the Whitney extension theorem also
holds for arbitrary sets C, because an obvious modification of the usual
argument showing that a Lipschitz function defined on a set D has a unique
Lipschitz extension to the closure D of D, together with conditions (2.1)
and (2.2), easily imply that if C is not closed then the functions fα have
unique extensions to C that also satisfy (2.1) and (2.2) on C. Bearing this
in mind, considering the particular case in which we have fα = 0 for |α| ≥ 1,
and applying the corresponding extension result to each coordinate function
f j of a vector-valued function f = (f1, ..., fk) from a subset of Rn to Rk we
immediately obtain the following.



8 D. AZAGRA, J. FERRERA, AND J. GÓMEZ-GIL

Corollary 2.1. Let C be a (not necessarily closed) subset of Rn and f :
C → Rk be a function such that for some constant M > 0 we have

|f(x)| ≤ M, and |f(x)− f(y)| ≤ M |x− y|m+1 for all x, y ∈ C.

Then there exists a function F ∈ Cm,1(Rn,Rk) such that F = f on C and
DαF = 0 on C for all 1 ≤ |α| ≤ m.

We will also need to use a Ck,1
loc version of the Kneser-Glaeser Theorem.

Recall that the usual Kneser-Glaeser Theorem (see [2] or [26, II.6.1] for
instance), whose proof relies on an application of the classical Whitney Ex-
tension Theorem, tells us that a composition of the form f ◦g, with f of class
Cr and g of less smoothness Cr−s, can be extended from a set C to a func-
tion of class Cr provided that the derivatives of g up to the order s-th vanish

on C. This kind of result also holds true for the classes Ck,1
loc . Recall that a

function f belongs to Ck,1
loc provided f is k times continuously differentiable

and the partial derivatives Dαf are locally Lipschitz for all multi-indices α
of order k (or equivalently for all multi-indices α with |α| ≤ k).

Theorem 2.2 (Kneser-Glaeser). Let W ⊂ Rm and V ⊂ Rn be open sets;

A∗ ⊂ W and A ⊂ V , with A closed relative to V , f : V → Rp of class Cr,1
loc

on V and s-flat on A, g : W → V of class Cr−s,1
loc

with g(A∗) ⊂ A. Then

there is a map H : W → Rp of class Cr,1
loc

satisfying:

(1) H(x) = f(g(x)) for x ∈ A∗;
(2) H is s-flat on A∗.

Sketch of proof. We will follow the proof of the classical version of the
Kneser-Glaeser theorem that appears in [2, pages 35-37], explaining what
small additions we need to make in order to obtain the present version.
We may assume that A∗ and A are compact (the general case follows from
this particular situation via standard arguments with partitions of unity).
Our starting point is the Composite Mapping Formula: if suppose for the
moment that g is Cr, then we would have

Dj(f ◦ g)(x) =

j∑

q=1

∑

i1,...,iq

σj(i1, . . . , iq)D
qf(g(x)) ◦

(
Di1g(x), . . . ,Diqg(x)

)

for every j ≤ r, where i1, . . . , iq are positive integers satisfying i1+ · · ·+ iq =
j. If x ∈ A∗, then g(x) ∈ A and we have that Dqf(g(x)) = 0 provided
that q ≤ s, since f is s-flat. Hence the sum runs from q = s + 1 to j, and
i1, . . . , iq ≤ r − s necessarily. This implies that Di1g(x), . . . ,Diqg(x), and
consequently

Dqf(g(x)) ◦
(
Di1g(x), . . . ,Diqg(x)

)
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are well defined. This allows us to define, if x ∈ A∗, h0(x) = (f ◦ g)(x),
hk(x) = 0 if k ≤ s and

hk(x) =

k∑

q=s+1

∑

i1,...,iq

σj(i1, . . . , iq)D
qf(g(x)) ◦

(
Di1g(x), . . . ,Diqg(x)

)

if s+ 1 ≤ k ≤ r.
Now, for k < r, the Taylor Formula with integral remainder

F (x) =
m∑

i=0

1

i!
DiF (y)(x− y)i+

+
(∫ 1

0

(1− t)m−1

(m− 1)!
[DmF (y + t(x− y))−DmF (y)]dt

)
(x− y)m =

:=

m∑

i=0

1

i!
DiF (y)(x− y)i +Rm

F (x, y)(x− y)m,

applied to f , g and their derivatives, allows one to deduce the following
Taylor-like formula for the functions hk:

hk(x) =

r−k∑

j=0

1

j!
hk+j(y)(x− y)j +Rk(x, y)

(see [2, pages 35-37] for details), where Rk(x, y) is a sum of terms of the
forms:

(1) A(x− y)j , with A j-linear, j > r − k.
(2) Rm

Dqf (g(x), g(y))(g(x) − g(y))m
(
. . .

)
, m = r − q.

(3) Dqf(g(x))
(
. . . ,Rr−s−il

Dilg
(x, y)(x − y)r−s−il, . . .

)
, il ≤ k − q + 1

The terms of type (1) are obviously O(|x− y|r−k+1):

|A(x− y)j | ≤ ||A|||y − x|j ≤ ||A|||x − y|r−k+1.

The terms of type (2) satisfy
∣∣∣Rm

Dqf (g(x), g(y))(g(x) − g(y))m
(
. . .

)∣∣∣ ≤

≤ K0

∣∣∣
∣∣∣Rm

Dqf (g(x), g(y))(g(x) − g(y))m
∣∣∣
∣∣∣

(because the hidden arguments are uniformly bounded, recall that g is Cr−s

and A∗ is compact), which we can join with the inequalities

K0

∣∣∣
∣∣∣Rm

Dqf (g(x), g(y))(g(x) − g(y))m
∣∣∣
∣∣∣ ≤

≤ K0

∫ 1

0

(1− t)m−1

(m− 1)!

∣∣∣∣Drf(g(y)+t(g(x)−g(y)))−Drfg((y))
∣∣∣∣dt|x−y|r−q ≤

≤ K0

∫ 1

0

(1− t)m−1

(m− 1)!
tK1|g(x)− g(y)|dt|x − y|r−q ≤
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≤ K0

∫ 1

0

(1− t)m−1

(m− 1)!
tK1K2|x− y|dt|x− y|r−q ≤

≤ K|x− y|r−q+1 ≤ K|x− y|r−k+1

since Drf is K1-Lipschitz for some constant K1, g s K2-Lipschitz for some
constant K2, and q ≤ k.

Finally, for the terms of type (3), we have
∣∣∣Dqf(g(x))

(
. . . ,Rr−s−il

Dilg
(x, y)(x − y)r−s−il, . . .

)∣∣∣ ≤

K̃0

∣∣∣
∣∣∣Rr−s−il

Dilg
(x, y)(x− y)r−s−il

∣∣∣
∣∣∣ ≤

≤ K̃0

(∫ 1

0

(1− t)r−s−il−1

(r − s− il − 1)!
tK̃|x− y|dt

)
|x− y|r−s−il =

= K|x− y|r−s−il+1 ≤ K|x− y|r−k+1

since Dr−sg is K̃-Lipschitz for some constant K̃, and s+ il ≤ k. Here K̃0 is
an uniform bound forDqf(g(x)), and the derivatives and integral remainders
of g, near x).

Summing up, we have

Rk(x, y) = O
(
|x− y|r−k+1

)
for all x, y ∈ A∗,

and consequently by Theorem 2.1 there exists a Cr,1 function H : Rm → Rp,
such that DkH(x) = hk(x) for every x ∈ A∗. In particular H(x) = f(g(x))
for every x ∈ A∗, and H is s-flat on A∗. �

In the proof of Theorem 1.13, in order to deal with a case which will
only be present in dimensions n ≥ 4 (see Lemma 3.5 below), we will need
to combine the preceding version of the Kneser-Glaeser theorem with the
following important result of Liu and Tai about Taylor polynomials and
Lusin properties of order k.

Theorem 2.3 (Liu-Tai, see [25]). For a measurable function u defined on
a measurable set D of Rn, the following statements are equivalent:

(1) u has the Lusin property of order k on D.
(2) u has an approximate (k−1)-Taylor polynomial at almost every point

of D.
(3) u is approximately differentiable of order k at almost every point of

D.

Recall that u is said to have the Lusin property of order k provided that
for every ε > 0 there exists a function g ∈ Ck(Rn) such that

Ln ({x ∈ D : u(x) 6= g(x)}) < ε.

Also recall that aplimy→xv(y) = α means that the set {y ∈ D : |v(y)−α| ≤
ε} has density one at x for every ε > 0, and that aplimsupy→xv(y) is the
infimum of all β ∈ R such that the set {y ∈ D : u(y) > β} has density zero
at x. Then one says that u has an approximate Taylor polynomial of order
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k − 1 at x if there exists a polynomial p(x; y) of order at most k − 1 such
that

aplimsupy→x

|u(y)− p(x; y)|

|y − x|k
< ∞.

Similarly, u is said to be approximately differentiable of order k at x provided
there exists a polynomial p(x; y) of order at most k such that

aplimy→x

|u(y) − p(x; y)|

|y − x|k
= 0.

Observe that, according to the definitions above, if ∂nf(x) 6= ∅ then f is
approximately differentiable of order n− 1 at x, and in particular f has an
approximate (n−2)-Taylor polynomial (but not necessarily an approximate
(n− 1)-Taylor polynomial) at x.

3. Proofs of the main results

Let us start by giving the easy Proof of Proposition 1.11. We may
assume that Cf ⊂ I, where I is an interval of length 1. Given ε > 0, we
define for every j the closed set

Dj = {x ∈ R : f(x+ t) ≥ f(x)− ε|t|, for every |t| <
1

j
}.

The sequence {Dj} is increasing and satisfies Cf ⊂ ∪jDj since

lim inf
t→0

f(x+ t)− f(x)

|t|
≥ 0

for every x ∈ Cf .

We split the interval I into j intervals Ik of length 1
j
. For every x, y ∈

Dj ∩ Ik we have

|f(x)− f(y)| ≤ ε|x− y| ≤
ε

j
,

hence
L1

(
f(Dj ∩ Ik)

)
≤

ε

j
,

and consequently L1
(
f(Dj)

)
≤ ε. We deduce that

L1
(
f(Cf )

)
≤ L1

(
∪jf(Dj)

)
= lim

j
L1

(
f(Dj)

)
≤ ε,

and therefore L1
(
f(Cf )

)
= 0. �

Let us now proceed with the Proof of Theorem 1.13. For every x ∈ E
we will also denote Tn−1(x; ·), the Taylor expansion of order n − 1 of the
function f at x, by f(x) + Px, with Px = P 1

x + . . . Pn−1
x , where P k

x is the
k-homogeneous part of Px. Recall that, by assumption, Df(x) = 0 for every
x ∈ E. We consider the following decomposition

E = A ∪B ∪
(
E \ (B ∪A)

)
,

where
A = {x ∈ E : Px ≡ 0}, B = {x ∈ E : Px = Pn−1

x 6≡ 0}.
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Our first goal is proving the following.

Lemma 3.1. We have L1
(
f(A)

)
= 0.

Proof. It is clear that

A =

∞⋃

m=0

Am,

where

Am = {x ∈ A : lim inf
y→x

f(y)− Tn−1(x; y)

|x− y|n
≥ −m}.

Therefore it is enough to prove that L1(f(Am)) = 0. We denote

Am
k = {x ∈ A : f(x+ h) ≥ f(x)− (m+ 1)|h|n if |h| <

1

k
} ∩ B̄(0, k).

It is clear that

Am ⊂
∞⋃

k=1

Am
k .

Hence it is enough to prove L1
(
f(Am

k )
)
= 0. We cover Am

k by a countable

collection of closed cubes Q of diameter less or equal than 1
k
. Let us de-

note D = Q ∩ Am
k in the rest of the argument. Our aim is to prove that

L1(f(D)) = 0. We have

(3.1) |f(x)− f(y)| ≤ (m+ 1)|x− y|n

for every x, y ∈ D. By using this inequality and regarding f for a moment as
a function defined just on the set D, we may extend it to a Cn−1,1 function
f̃ = Rn → R, with Dlf̃(x) = 0 for x ∈ D, l = 0, 1, . . . , n − 1, by means of
Corollary 2.1. By Bates’s version [5] of the Morse-Sard theorem for functions
in the class Cn−1,1(Rn) (or by any of its generalizations [13], [9], [22] and [1,

Theorem 1.2]) we then have L1(f̃(D)) = 0, hence L1(f(D)) = 0 too. �

Let us observe that Lemma 3.1 has the following consequence.

Corollary 3.1. Theorem 1.6 is true for n = 2.

Proof. Note that Cf = A for n = 2. �

We also note that exactly the same argument as in the proof of Lemma

3.1 provides a proof of Theorem 1.7. Since the case n = 2 is already
dealt with, from now we will assume that n ≥ 3.

In the following two lemmas we will show that L1
(
f(B)

)
= 0. Recall that

if x ∈ B then Px = Pn−1
x 6≡ 0.

Lemma 3.2. For n ≥ 3 odd, we have L1
(
f(B)

)
= 0.

Proof. We may assume that for every x ∈ B there exists ex ∈ Sn−1 such
that Pn−1

x (ex) < 0. Let {ei}i∈N be dense in Sn−1. If we define

Bi,m = {x ∈ B : Pn−1
x (ei) ≤ −

1

m
, ||Pn−1

x || ≤ m}
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we have that

B =
∞⋃

i,m=1

Bi,m.

Thus it is enough to prove L1
(
f(Bi,m)

)
= 0. Let 0 < ε < 1

m
. We define

Dj = {x ∈ E : |f(x+ h)− f(x)− Pn−1
x (h)| ≤ ε|h|n−1 if |h| <

1

j
}.

The sequence {Dj} is increasing. For every x ∈ Bi,m, we have that

lim
h→0

f(x+ h)− f(x)− Pn−1
x (h)

|h|n−1
= 0,

and consequently there exists j such that x ∈ Dj. Hence Bi,m ⊂ ∪jDj .

If x ∈ Dj and t ∈ (−1
j
, 1
j
), t 6= 0, then

(3.2) f(x+ tei) ≤ f(x) + tn−1(Px(ei) + ε) ≤ f(x) + tn−1(−
1

m
+ ε) < f(x).

(Note that if Pn−1
x (ex) > 0 instead of Pn−1

x (ex) < 0, we will have local
minima instead of local maxima, and the subsequent arguments work as
well.)

Let {Cj
r}r be a covering of Dj by closed cubes with one edge parallel to

ei and length equal to 1√
nj
. For every line L parallel to ei, equation (3.2)

implies that
♯
(
Dj ∩ Cj

r ∩ L
)
≤ 1

and if x ∈ Dj ∩Cj
r ∩L then f|

L∩C
j
r

attains a strict maximum at x. Let F j
r =

π(Cj
r ∩Dj) the projection of Cj

r ∩Dj on [ei]
⊥ (the orthogonal complement

of the line spanned by ei). Define g : F j
r → R by g(x̄) = max{f(x̄ + tei) :

x̄ + tei ∈ Cj
r}. Now, by means of Corollary 2.1, we may extend g as a

Cn−2,1 function to the whole Rn−1 (we are identifying [ei]
⊥ and Rn−1), with

derivatives Dlg(x̄) = 0, l = 1, . . . n − 2, for every x̄ ∈ F j
r . Indeed, we have,

for every x̄, ȳ ∈ F j
r , that

g(x̄)− g(ȳ) = f(x)− g(ȳ) ≤ f(x)− f(z) ≤

≤ |f(z)− f(x)| ≤ (m+ 1)|x − z|n−1 = (m+ 1)|x̄− ȳ|n−1

where z satisfy π(z) = ȳ and x̄− ȳ = x− z, because

|f(x+ h)− f(x)| ≤ (m+ 1)|h|n−1

for every x ∈ Dj provided that |h| < 1
j
. Hence it is clear that the conditions

of Corollary 2.1 are met. Therefore, by Bates’s version of the Morse-Sard

theorem we have L1(
(
g(F j

k )
)
= 0, and since f(Dj∩Cj

k) = g(F j
k ) we conclude

that L1
((

f(Dj ∩ Cj
k)
))

= 0 too. �

On the other hand, we have

Lemma 3.3. If n ≥ 4 is even, then L1
(
f(B)

)
= 0.
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Proof. Recall that every x ∈ B satisfies

lim
h→0

f(x+ h)− f(x)− Pn−1
x (h)

|h|n−1
= 0

with Pn−1
x 6≡ 0. By considering B =

⋃∞
j=1{x ∈ B : ‖Pn−1

x ‖ ≥ 1/j}, we may
assume without loss of generality that for every x ∈ B, the corresponding
Pn−1
x satisfy ‖Pn−1

x ‖ ≥ 2c for a fixed positive constant c.
Let {Ti} be a dense sequence in the space of (n − 1)-homogeneous poly-

nomials on Rn. Let 0 < ε < c
2 . We define

Bj,i = {x ∈ R
n : |f(x+ h)− f(x)− Ti(h)| ≤ ε|h|n−1, |h| ≤

1

j
}.

For every x ∈ B, there exist j and T ∈ P(n−1Rn) such that

|f(x+ h)− f(x)− T (h)| ≤
ε

2
|h|n−1

if |h| ≤ 1
j
. Let Ti be such that ||Ti − T || < ε

2 ; note that ||Ti|| > 2c − ε
2

necessarily. We have

|f(x+ h)− f(x)− Ti(h)| ≤
ε

2
|h|n−1 + |T (h)− Ti(h)| ≤ ε|h|n−1

if |h| ≤ 1
j
, hence x ∈ Bj,i. That is

B ⊂
∞⋃

j,i=1

Bj,i.

Consequently, it is enough to prove that

L1
(
f(Bj,i)

)
= 0 for every i, j.

In the rest of the argument we denote by D one of such Bj,i, that is

D = {x ∈ R
n : |f(x+ h)− f(x)− Ti(h)| ≤ ε|h|k if |h| ≤

1

j
}.

It is clear that D is closed. Find ei ∈ Sn−1 such that Ti(ei) =
3
2c, and let

L be a line parallel to ei. We may split D in a countable collection of sets
with diameter less than or equal to 1

j
, and thus we may assume that D itself

has diameter less or equal than 1
j
. For every e ∈ Sn−1 satisfying Ti(e) ≥ c,

we consider lines Le parallel to e.

Claim 3.4. We have ♯(D ∩ Le) ≤ 1, and in particular ♯(D ∩ L) ≤ 1.

Assume for a moment that the Claim is true. Let F = π(D) the projection
of D on [ei]

⊥. Note that π : D → F is a homeomorphism since D is compact
and we are assuming the Claim. We define g : F → R by g(x̄) = f(π−1(x̄)).

Again, we are going to extend g to a Cn−2,1 function on Rn−1 with deriva-
tives Dlg(x̄) = 0, l = 1, . . . , n − 2. Let x̄, ȳ ∈ F , x = x̄ + txei ∈ D and
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y = ȳ + tyei ∈ D, and let α > 0 be such that Ti(e) ≥ c provided that the
angle ê, ei between e and ei satisfies ê, ei < α. We have that

|x̄− ȳ| ≥ sinα|x− y|.

Indeed, otherwise êi, exy < α, or ̂ei,−exy < α, for exy = y−x
|y−x| , which im-

plies x = y (by the Claim and the fact that x, y belong to the line Lexy).
Consequently, we have

|g(x̄)− g(ȳ)| = |f(x)− f(y)| ≤ (||Ti||+ ε)|x− y|n−1 ≤
(||Ti||+ ε)

(sinα)n−1
|x̄− ȳ|n−1

for every x̄, ȳ ∈ F . This inequality and Corollary 2.1 allow us to extend g
to Rn−1 as a Cn−2,1 function, with null derivatives up to the order n− 2 at
the points of F , and we may then conclude the proof as in Lemma 3.2.

It only remains to prove the Claim. First, we observe that for every x ∈ D
and |t| ≤ 1

j
, we have

|f(x+ te)− f(x)− Ti(e)t
n−1| ≤ ε|t|n−1,

or equivalently

−ε|t|n−1 ≤ f(x+ te)− f(x)− Ti(e)t
n−1 ≤ ε|t|n−1.

Hence

f(x+ te) ∈
(
f(x) + (Ti(e)− ε)tn−1, f(x) + (Ti(e) + ε)tn−1

)

for t ∈ (0, 1/j), while

f(x+ te) ∈
(
f(x) + (Ti(e) + ε)tn−1, f(x) + (Ti(e)− ε)tn−1

)

for t ∈ (−1/j, 0). Now suppose, seeking a contradiction, that we had x, y ∈
D∩L, x 6= y and r = |y−x| > 0. Then we may assume that y = x+ |y−x|e
(and x = −|y − x|e). Set z = x+ r

2e = y − r
2e. We have

f(z) < f(x) + (Ti(e) + ε)(
r

2
)n−1 < f(x) +

3

2

rn−1

2n−1
Ti(e),

f(z) > f(y)− (Ti(e) + ε)(
r

2
)n−1, and

f(y) > f(x) + (Ti(e)− ε)rn−1 > f(x) +
Ti(e)

2
rn−1.

From these inequalities we obtain

f(x) +
Ti(e)

2
rn−1 − (Ti(e) + ε)(

r

2
)n−1 < f(z) < f(x) +

3

2

rn−1

2n−1
Ti(e),

which implies

Ti(e)

2
rn−1 < 3

rn−1

2n−1
Ti(e).

Hence 1 < 6
2n−1 , which is impossible since n ≥ 4. �
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Observe that for n = 3 we have Cf = B ∪A, and consequently the same
proof as above establishes Theorem 1.9.

It only remains to show that L1
(
f
(
E \ (B ∪A)

))
= 0. Note that if n ≤ 3

then E = A ∪ B and this is trivially true. Therefore in the sequel we will
assume that n ≥ 4.

Lemma 3.5. We have that L1
(
f
(
E \ (B ∪A)

))
= 0.

Proof. We will make use of the arguments in the proof of Liu-Tai’s Theorem
2.3 given in [25, pages 193-194], which in turn employ the following lemma
(see [10, Lemma 2.1] for a proof).

Lemma 3.6 (De Giorgi). Let V be a measurable subset of the ball B(x, r) of
Rn such that Ln(V ) ≥ Arn for some constant A > 0. Then for each k ∈ N

there exists a constant C = C(n, k,A) > 0 (depending only on n, k and A)
such that

|Dαp(x)| ≤
C

rn+|α|

∫

V

|p(y)|dy

for all polynomials p of degree at most k.

Let Tn−2(x; ·) be the Taylor polynomial of order n − 2 of f , centered at
x; of course, Tn−2(x; ·) is obtained from Tn−1(x; ·) by discarding Pn−1

x , the
(n−1)-homogeneous term of Tn−1(x; ·). Since every ordinary limit is also an
approximate limit, the proof of [25, Theorem 1] shows that the coefficients of
the polynomials Tn−1(x; y), which keeping Liu-Tai’s notation we will denote
by fα(x), are measurable functions of x whenever E is measurable (this can
also be deduced from the statement of Liu-Tai’s theorem). As a matter of
fact, we will not need to use measurability of the coefficients fα(x); we just
mention that this is so because it may be an interesting and useful fact to
know for those readers who are not already acquainted with the arguments
of [25].

Because f has a Taylor expansion of order n− 1 at each point x of E, we
can write

E =

∞⋃

j=1

Ej ,

where

Ej :=

{
x ∈ E :

|f(y)− Tn−2(x; y)|

|y − x|n−1
≤ j for all y with 0 < |y − x| ≤

1

j

}
∩Dj,

with
Dj = {x ∈ E : |fα(x)| ≤ j, |α| ≤ k − 2} .

We claim that the arguments of Liu and Tai’s in [25, page 193] imply that

|Dαf(y)−DαTn−2(x; y)| ≤ Mj|y − x|n−1−|α| (∗)

for all x, y ∈ Ej with |x−y| ≤ 1/j and all multi-indices α of order |α| ≤ n−2,
where M is a constant depending only on n.
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Assume for the moment that this claim is true, and let us see how the
proof of Lemma 3.5 can be completed. Then can apply Theorem 2.1 (for not
necessarily closed sets, see the remark after its statement) in order to find a
function gj ∈ Cn−2,1(Rn) such that the restriction of gj to Ej coincides with
f , and the restriction of each partial derivative Dαgj to Ej coincides with
∂αf , for all multi-indices α of the order |α| ≤ n− 2. This obviously implies
(denoting the set of critical points of a function ϕ by Cϕ) that

f(E) ⊆
∞⋃

j=1

gj(Cgj ).

Therefore we may and do assume in the sequel that f is of class Cn−2,1.
Now, for each x ∈ C := E \ (B ∪A), let kx be the smallest index such that
P kx+1
x 6≡ 0 but P l

x ≡ 0 for l = 1, . . . , kx. Note that 1 ≤ kx ≤ n−3 necessarily.
We may thus split C into n− 3 subsets on each of which kx is constant, and
then assume without loss of generality that kx = k, a constant, for every
x ∈ C. In particular, f is k-flat on C. By the implicit function theorem and
local compactness, we may write

C ⊆
∞⋃

j=1

Mj ,

where the Mj are manifolds of dimension n − 1 parametrized by functions

hj : Wj ⊂ Rn−1 of class Cn−2−k,1
loc . Hence we may further assume that

C is just one of these manifolds, say C = h(W ), W ⊆ Rn−1, with h ∈

Cn−2−k,1
loc (Rn−1). Let us denote C∗ = g−1(C). Then, by Theorem 2.2, there

exists H ∈ Cn−2,1
loc (Rn−1) such that H(x) = f(h(x)) for every x ∈ C∗ and H

is k-flat on C∗, and in particular DH = 0 on C∗. This means that

f(C) ⊂ H({x : DH(x) = 0}).

But, according to Bates’s theorem,

L1 (H({x : DH(x) = 0})) = 0.

Therefore L1(f(C)) = 0 as well, and we are done.
Now let us see how Liu and Tai’s arguments in [25, page 193] allow us to

establish (∗). Denote

ρ =
Ln(B(x, |y − x|) ∩B(y, |y − x|))

|y − x|n
, x, y ∈ R

n, x 6= y,

and observe that ρ is independent of x, y. Now fix j ∈ N and consider two
different points x, y ∈ Ej with |x− y| ≤ 1/j, and define

V (x, y, j) = B(x, |x− y|) ∩B(y, |x− y|).
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If z ∈ V (x, y, j) we have, for the polynomial q(z) = Tn−2(y; z)− Tn−2(x; z),
that

|q(z)| ≤ |Tn−2(x; z)− f(z)|+ |f(z)− Tn−2(y; z)|

≤ j
(
|z − x|n−1 + |y − z|n−1

)
≤ 2j|x − y|n−1.

Then we can apply De Giorgi’s Lemma, with V = V (x, y, j) and r = |x−y|,
to obtain

|Dαq(y)| = |fα(y)−DαTn−2(x; y)| ≤
C

rn+|α|

∫

V (x,y,j)
|q(z)|dz ≤ 2jρCrn−1−|α|.

This shows (∗). �

Appendix

In a preliminary version of this paper we included a short proof of the
following result.

Theorem 3.7. Let n ≥ m be positive integers, k := n − m + 1 and let
f : Rn → Rm be such that

(1) f ∈ Ck−1(Rn,Rm);

(2) lim suph→0

|f(x+h)−f(x)−Df(x)(h)−...− 1
(k−1)!

Dk−1f(x)(hk−1)|
|h|k < ∞ for ev-

ery x ∈ Rn.

Then Lm (f(Cf )) = 0, where Cf := {x ∈ Rn : rank (Df(x)) < m}.
The same statement holds true if Rn is replaced with an open subset of Rn.

(In the special case n = m and k = 1, the above statement simply says
that a Stepanoff function has the Morse-Sard property, a fact which is well
known.)

An equivalent version of this result was established in [1] as a corollary to
an abstract version of the Morse-Sard Theorem; note that the assumptions
of the above result are equivalent to those of [1, Theorem 1.1] thanks to a
result of Liu and Tai [25, Theorem 2].

A referee of this paper pointed out that a very short proof of Theorem
3.7 can be obtained by using some ideas of the proof of [25, Theorem 1]. We
next offer the gist of his argument.

Under the standing hypothesis, one can write

R
n =

∞⋃

j=1

Ej ,

where

Ej :=

{
x ∈ R

n :
|f(y)− Tk−1(x; y)|

|y − x|k
≤ j for all y with 0 < |y − x| ≤

1

j

}
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and Tk−1(x; ·) is the Taylor polynomial of order k − 1 of f , centered at x.
Each set Ej is closed, and by following the lines of the proof of [25, Theorem
1] it can be shown that

|∂αf(y)− ∂αTk−1(x; y)| ≤ Cj|y − x|k−|α|

for all x, y ∈ Ej with |x − y| ≤ 1/j and all multi-indices α of order |α| ≤
k− 1. Then one can apply Theorem 2.1 (the Ck−1,1 version of the Whitney
Extension Theorem) to find a function gj ∈ Ck−1,1(Rn,Rm) such that the
restriction of gj to Ej coincides with f , and the restriction of each partial
derivative ∂αgj to Ej coincides with ∂αf , for all multi-indices α of the order
|α| ≤ k − 1. This obviously implies (denoting the set of critical points of a
function ϕ by Cϕ) that

f(Cf ) ⊆
∞⋃

j=1

gj(Cgj ).

However, according to Bates’s theorem [5] the sets gj(Cgj ) are of measure 0
in Rm. Therefore so is f(Cf ). �

In fact, because the Ck−1,k version of Whitney’s extension theorem holds
for not necessarily closed sets as well (see the remark after Theorem 2.1
above), the preceding argument can also be arranged to show that condition
(1) of Theorem 3.7 can be dispensed with: namely, one also has the following.

Theorem 3.8. Let n ≥ m be positive integers, k := n − m + 1 and let
f : Rn → Rm be such that for every x there exists a polynomial P (x; ·)
centered at x such that

lim sup
y→x

|f(y)− P (x; y)|

|y − x|k
< ∞

for every x ∈ Rn. Then Lm (f(Cf )) = 0, where Cf is defined as the set
{x ∈ Rn : rank (DP (x; ·)(x)) < m}.
The same statement holds true if Rn is replaced with an open subset of Rn.
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