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Heterochrony, evolutionary modifications in the rates and/or the timing of development, is
widely recognized as an important agent of evolutionary change. In this paper, we are
concerned with the detection of this evolutionary mechanism through the analysis of long
bone growth. For this, we provide a function s (t) for the ontogenetic variation of bone shape
by taking the ratio of two Gompertz curves explaining, respectively, the relative contribution
to long bone growth of (a) endochondral ossification and (b) periosteal ossification. The
significance of the fitting of this function to empirical data was tested in Anas platyrhynchos
(Anseriformes). In this function sðtÞ; the time tm at which periosteal growth rate first
equalizes endochondral growth rate was taken as the timing parameter to be compared
between taxa. On the other hand, the maximum rate of ontogenetic change in bone shape
(maximum slope, b) from hatching to tm was taken as the rate parameter to be compared.
Comparisons of these parameters between the plesiomorphic condition and the derived
character state would provide evidence for hypomorphosis (earlier occurrence of tm), hyper-
morphosis (delayed occurrence of tm), deceleration (smaller b) or acceleration (higher b).

Regarding the phylogenetic context, the ancestral condition for the character of interest
should be estimated to polarize the direction of the heterochronic change. We have quantified
the influence of the phylogenetic history on the variation of adult bone shape in a sample of
13 species of Anseriformes and 17 species from other neornithine orders of birds by using
permutational phylogenetic regressions. Phylogenetic effects are significant, and this fact
allows the optimization of bone shape onto a phylogenetic tree of Anseriformes to estimate
the ancestral condition for Anas platyrhynchos.

r 2002 Elsevier Science Ltd.
Introduction

The identification of the evolutionary processes
underlying the generation of phylogenetic pat-
terns is a major goal of comparative biology
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(Eldredge & Cracraft 1980; Pagel, 1997, 1999).
Heterochrony, evolutionary modifications in the
rates and/or the timing of development, is widely
recognized as an important agent of evolution-
ary change (Gould, 1977, 2000; Alberch et al.,
1979). The detection of the incidence of this
evolutionary process in the evolution of a clade
r 2002 Elsevier Science Ltd.
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requires both (A) a phylogenetic hypothesis and
(B) the quantification of growth parameters in
the different taxa (Klingenberg, 1998).

(A) Phylogenetic context: Ancestral character
states should be estimated to polarize the
direction of the heterochronic change (Boughton
et al., 1991).

(B) Quantification of growth. Three variables
are important in heterochronic detection: age,
size (increase in either spatial dimensions or
mass) and shape (a non-dimensional measure-
ment of the proportions of an organ) (Godfrey &
Sutherland, 1995a, b, 1996).

In this paper, we are concerned with the
detection of heterochrony through the analysis
of long bone growth. For this, we use Anas
platyrhynchos (Anseriformes) as an animal mod-
el. First, we estimate ancestral character states
(regarding bone shape) for Anas platyrhynchos.
Afterwards, we develop a function for the
ontogenetic variation of bone shape by taking
the ratio of two Gompertz curves that explain,
respectively, the relative contribution to long
bone growth of (a) endochondral ossification
and (b) periosteal ossification. Then, we test the
significance of the fitting of this function to
empirical data in Anas platyrhynchos. Finally, we
carry out a comparative analysis of these growth
parameters.

Phylogenetic Context

As quoted above, the ancestral condition for
the character of interest (bone shape) should be
estimated to polarize the direction of the
heterochronic change (Boughton et al., 1991).
A number of methods have recently been
proposed to estimate the ancestral character
states for continuous characters (Pagel, 1999).
But, prior to the use of these methods, we should
verify that phylogenetic effects on the variation
of bone shape are significant.

QUANTIFICATION OF PHYLOGENETIC EFFECTS

Bone shape diversity can result from the
phylogenetic legacy of the clade. According to
this hypothesis, closely related species have a
recent last common ancestor, they share a
greater portion of genotype and they might tend
to share similar morphologies than distantly
related species (Harvey & Pagel, 1991). How-
ever, bone shape variation may also be the result
of recent adaptive constraints independent of
higher levels of phylogeny.

To quantify the influence of the phylogenetic
history on the variation of bone shape in adults,
we measured the ratio bone length (the result of
endochondral ossification)/bone diameter (the
result of periosteal ossification) in a sample of
humeri and femora of 13 anseriform species and
17 species from other neornithine orders of birds
(see Appendix C). For each pair of species, their
morphological dissimilarity (regarding bone
shape) is compared with their phylogenetic
distance. To quantify the phylogenetic distances,
we have used a consensual phylogeny of birds.
Recent molecular (van Tuinen & Hedges, 2001)
and palaeontological (Cracraft, 2001) studies
have reached similar conclusions regarding the
relationships among major groups of modern
birds (Neornithes) : Palaeognathae (ratites and
tinamous) and Neognathae (all other modern
birds) are sister-groups; within Neognathae,
Galliformes and Anseriformes are each other’s
closest relative, and they are grouped in Gal-
loanserae; Galloanserae and Neoaves (all other
neognath birds) are sister-groups. Most phylo-
genetic relationships among and within different
orders of Neoaves are unresolved. Regarding
Anseriformes and Ratites, we have used trees
modified, respectively, from McCracken et al.,
1999 and van Tuinen & Hedges, 2001. Both
molecular clock data (van Tuinen & Hedges,
2001) and the fossil record (Cracraft, 2001, and
references herein) were used to estimate diver-
gence times between avian clades. Both studies
agree in that modern birds (Neornithes) arose
and radiated prior to the Cretaceous-Tertiary
extinction event. Divergence times used for
the split between major groups of birds
were: Palaeognathae–Neognathae : 118.6MYA,
Galloanserae–Neoaves : 104.2MYA, Galliformes–
Anseriformes : 89.8MYA, basal Neoaves : 89.3 -
MYA (van Tuinen & Hedges, 2001). In general,
no divergence times are available for within
order comparisons. In these cases, the first
occurrence in the fossil record of each order
(the geological age of the oldest fossil of each
order, see Cracraft, 2001, and references herein)



Fig. 1. Optimization of femur shape, the ratio bone
length (the result of endochondral ossification)/bone
diameter (the result of periosteal ossification), onto a
phylogenetic tree of Anseriformes (modified from
McCracken et al., 1999). The estimation of ancestral
character states was carried out through squared-change
parsimony, a method that minimizes the sum of squared
changes along the branches (Maddison, 1991). ( ) 8.741 –
8.889; ( ) 8.889 – 9.038; ( ) 9.038 – 9.186; ( ) 9.186 –
9.334; ( ) 9.334 – 9.483; ( ) 9.483 – 9.631; ( ) 9.631 –
9.779; ( ) 9.779 – 9.927; ( ) 9.927 – 10.076; ( ) 10.078
– 10.224.
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was tentatively used as the age of divergence
between the different species of this order. Two
matrices were constructed with the comparisons
for each pair of species: the morphological
dissimilarity matrix (regarding bone shape) and
the phylogenetic distance matrix (divergence
times). Phylogenetic effects were quantified by
using permutational phylogenetic regressions
(Legendre et al., 1994): the morphological
dissimilarity matrix was regressed to the phylo-
genetic distance matrix and the significance of
this regression was tested by using the Mantel
test (Böhning-Gaese & Oberrath, 1999).

Phylogenetic effects were significant: phylo-
geny explains 18.35% ( p=0.001) of the varia-
tion of humerus shape and 20.69% ( p=0.001) of
the variation of femur shape. Regarding bone
shape, closely related species are more similar
than distantly related species, and this fact
allows the optimization of these characters onto
a phylogenetic tree and the estimation of
ancestral character states.

ESTIMATION OF ANCESTRAL CHARACTER

STATES

According to Boughton et al. (1991), to
polarize the direction of the heterochronic
change the ancestral condition for the character
of interest should be estimated (in our case
study, the ancestral femur shape for Anas
platyrhynchos). For this, we have used squared-
change parsimony, a method that minimizes the
sum of squared changes along the branches of
the phylogenetic tree (Maddison, 1991). The
information required to use this method is: (A)
data for the phenotypic variation of the trait
under analysis (bone shape) in species closely
related to the species of interest (Anas platyr-
hynchos) and (B) a dichotomous tree with the
cladistic relationships among these species (mod-
ified from McCracken et al., 1999). We have
used femur shape of 11 Anseriformes (tips of the
phylogenetic tree) to estimate ancestral values
(internal nodes of the tree) through squared-
change parsimony (Fig. 1). Femora of the out-
groups of the clade {[(Bucephala-Somateria)
Tachyeres]Anas} are robuster than femora of
the species of this clade. Next, we will develop a
function which would allow to determine
whether an heterochronic mechanism was in-
volved in this morphological change.

Quantification of Growth

BONE SIZE

The first step to deduce a function for the
variation of bone shape with age should be the
search for a good descriptor of the ontogenetic
variation of bone size. The Gompertz equation is
recommended for modelling both body general
growth and bone growth because it has provided
the best fit to the empirical data in birds (Laird,
1965; Ricklefs, 1973; Ricklefs & Marks, 1985) as
well as in mammals (Maunz & German, 1997;
Fiorello & German, 1997). The Gompertz law
states that the growth of a structure is the
outcome of the interaction of two opposing
processes: (a) an initial exponential proliferation
of the system and (b) an ulterior exponential
decay of this primary exponential growth rate
(Laird, 1965, 1966; Laird et al., 1965). In the case
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of long bones, endochondral ossification ac-
counts for bone growth in length (Cubo et al.,
2000), and it has been shown that bone growth
rates in length decay exponentially with age
(Cubo, 2000). On the other hand, periosteal
ossification is responsible for bone growth in
diameter (Castanet et al., 1996). In periosteal
ossification, mitotic frequency also decays ex-
ponentially with age at mouse mid-diaphyseal
femoral periosteum (R2=0.972, po0.001, n=5;
empirical data have been calculated with data
taken from Tonna, 1961). The mathematical
expression of the Gompertz law is as follows:

y ¼ w exp ½ðl=kÞð1� eð�ktÞÞ�; ð1Þ

where y is the size of the structure under
analysis, w is its initial size, l is the initial growth
rate, k is the rate of exponential decay of the
initial growth rate and t is the time (Laird et al.,
1965, Maunz & German, 1997).

We have chosen the mallard (Anas platyr-
hynchos) as a model, on the basis that significant
information is available on the growth dynamics
of the appendicular bones of this species
(Castanet et al., 1996). Unfortunately, such
information is not available for closely related
species of Anas platyrhynchos. Firstly, we will
test the hypothesis that the Gompertz equation
is a good descriptor of bone growth in the
mallard. For this, we will check whether this
equation explains a reasonable amount of
variance of scatter plots of bone size vs. age.
Tabl

Statistics of the nonlinear regressions of bone size (l
equation. Abbreviations :

n

Humerus L 46
D 49

Radius L 50
D 50

Carpometacarpus L 43
D 45

Femur L 57
D 57

Tibiotarsus L 60
D 62

Tarsometatarsus L 63
D 63
To test our hypothesis, the Gompertz general
equation should be tailored to bone growth:

L ¼ wl exp½ðll=klÞð1� eð�kl tÞÞ�; ð2Þ

D ¼ wd exp½ðld=kd Þð1� eð�kd tÞÞ�; ð3Þ

where L is the bone length, D is the bone
diameter, wl and wd are the initial bone length
and the initial bone diameter, ll and ld are the
initial endochondral and periosteal growth rates
and kl and kd are the rates of exponential decay
of the initial endochondral and periosteal growth
rates, respectively.

The length and the diameter of humerus,
radius, carpometacarpus, femur, tibiotarsus and
tarsometatarsus of 63 mallards were measured
with a caliper (ROCH, France) to the nearest
0.01mm. These mallards ranged from 11 pre-
hatching to 200 post-hatching days, and the used
bones formed part of a pre-existing collection
(see Castanet et al., 1996, for additional infor-
mation). Bone length and bone diameter were
regressed to age through eqns (2) and (3),
respectively. The significance of the nonlinear
regression coefficients was tested through the
calculation of the F value and the corresponding
probability (Table 1). The regression coefficients
were highly significant for all bones analysed in
this study. These results support our hypothesis
that the Gompertz law is a good descriptor
of periosteal and endochondral bone growth in
the mallard. See Figs 2 and 3 for a graphic
e 1
ength and diameter) to age through the Gompertz
D, diameter; L, length

R2 F p

0.896 385.95 po0.001
0.858 284.00 po0.001
0.898 428.54 po0.001
0.836 242.51 po0.001
0.894 353.39 po0.001
0.884 324.15 po0.001
0.957 1276.18 po0.001
0.932 775.92 po0.001
0.963 1552.05 po0.001
0.885 492.07 po0.001
0.963 1631.00 po0.001
0.923 740.40 po0.001
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representation as an example of the ontogenetic
variations of radius length and radius diameter,
respectively.

BONE SHAPE

The mathematical expression of the variation
of bone shape over time can be obtained by
dividing the function that accounts for bone
endochondral growth by the function that
explains bone periosteal growth. Assuming the
Gompertz function, a mathematical expression
for the ontogenetic variation of bone shape (s)
can be obtained by dividing eqn (2) by eqn (3):

s ¼ðwl=wdÞexp ðll=klÞð1� eð�kl tÞÞ
�

� ðld=kdÞð1� eð�kd tÞÞ
� ��

:
ð4Þ
Fig. 2. Graphic representation of the ontogenetic
variation of radius length in mallards. The scatter plot
radius length vs. age has been fitted with the Gompertz
function: L=0.046 exp [(0.755/0.103)(1�e(�0.103t))], n=50,
R2=0.898, F=428.54, po0.001, where L is bone length
and t is time.

Fig. 3. Graphic representation of the ontogenetic var-
iation of radius diameter in mallards. The scatter plot
radius diameter vs. age has been fitted with the Gompertz
function: D=0.351exp[(0.109/0.051)(1�e(�0.051t))], n=50,
R2=0.836, F=242.51, po0.001, where D is the bone
diameter and t is the time.
Operating

s ¼ðwl=wdÞexp ll=kl
� �

� ðll=klÞeð�kl tÞ
� ��

� ld=kd
� �

þ ðld=kd Þeð�kl tÞ
� ��

:
ð5Þ

Regrouping exponential terms

s ¼ðwl=wdÞexp ll=kl
� �

� ld=kd
� �� �

exp ðld=kd Þeð�kl tÞ
� �

� ðll=klÞeð�kl tÞ
� �� �

:
ð6Þ

We shall denote

a ¼ ðwl=wdÞexp ll=kl
� �

� ld=kd
� �� �

ð7Þ

for short. We have then

s ¼ a exp ðld=kdÞeð�kd tÞ
� �

� ðll=klÞeð�kl tÞ
� �� �

; ð8Þ

where ‘‘a’’ is a constant.
The next step will be to test whether eqn (8) is

a good descriptor of the variation of bone shape
with age in our animal model (Anas platy-
rhynchos). For this, nonlinear regressions be-
tween bone shape and age were carried out
through eqn (8) (see Fig. 4 for a graphic
representation of the ontogenetic variation of
radius shape). The regression coefficients were
highly significant for all the bones studied in
mallards (Table 2) and, therefore, these results
validate eqn (8) as a good descriptor of the
ontogenetic variation of bone shape. In general,
it could be stated that our function holds for the
development of those bones whose growth is
explained by the Gompertz function.

Heterochronic Detection

As it has been shown above, sðtÞ [eqn (8)] is an
accurate tool to quantify the ontogenetic varia-
tion of bone shape. Since heterochrony involves
evolutionary changes in timing and/or rates of
development, the use of the function sðtÞ in
heterochronic detection requires the definition of
timing and rate parameters on it.

TIMING PARAMETER

According to Klingenberg (1998), evolution-
ary modifications in ontogeny can affect the size,
shape and age at which the organism attains any
particular developmental stage. We used the



Fig. 4. Graphic representation of the ontogenetic var-
iation of radius shape, measured as the ratio length/
diameter, in mallards. The scatter plot radius shape vs.
age has been fitted with eqn (8): s(t)=23.587 ex-
p[(2.137e�0.051t )�(7.330e�0.103t )], n=50, R2=0.725,
F=127.49, po0.001, where s is the bone shape and t is
the time.

Table 2
Statistics of the nonlinear regressions of bone
shape (measured as the ratio bone length/bone

diameter) to age through eqn (8), sðtÞ

n R2 F p

Humerus 46 0.602 66.75 po0.001
Radius 50 0.725 127.49 po0.001
Carpometacarpus 43 0.695 93.73 po0.001
Femur 57 0.416 40.02 po0.001
Tibiotarsus 59 0.714 143.00 po0.001
Tarsometatarsus 63 0.615 98.51 po0.001

Fig. 5. Graphic representation of the time (tm) at which
the function sðtÞ for the ontogenetic variation of bone
shape attains its maximum (M) in the radius of mallard.
The mathematical definition of this discrete stage is the time
(tm) at which the slope of the function sðtÞ is zero.
Therefore, to calculate the parameter tm, we shall consider
the derivative of sðtÞ and calculate its zeros: s0(t)=s(t)
[0.755e(�0.103t)�0.109e(�0.051t)]. The unique zero of s0ðtÞ is:
tm=[log (Id/Il)]/(kd� kl)=37.219. At this time, the function
sðtÞ for the ontogenetic variation of bone shape has its
maximum: M=s(tm)=27.715.
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shape at which periosteal growth rate first
equalizes endochondral growth rate as the
developmental stage to be compared between
the plesiomorphic and apomorphic conditions.
The mathematical definition of this discrete stage
is the time at which the slope of the function sðtÞ
is zero (that means, the time at which the
function has either a maximum or a minimum,
tm). See Appendix A for a deduction of the
timing parameter tm.

Figure 5 shows a graphic representation of the
time (tm) at which the function sðtÞ attains its
maximum in the case of the radius of mallards.
This time corresponds to the shape (M) at which
periosteal growth rate first equalizes endochon-
dral growth rate. Comparisons between the
plesiomorphic time and the derived time at this
ontogenetic stage (tm) would provide evidence
for timing heterochrony. The cases of apo-
morphic tm significantly lower than plesio-
morphic tm would be the evidence for
hypomorphosis (terminology from Reilly et al.,
1997). On the contrary, the cases of apomorphic
tm significantly higher than plesiomorphic tm
would be the evidence for hypermorphosis.

RATE PARAMETER

The maximum rate of ontogenetic change in
shape will be calculated as the maximum slope
(b) of the function sðtÞ in the period that spans
from hatching (t0) to the time at which the
function attains its maximum (tm). See Appendix
B for a deduction of the rate parameter b:

Figure 6 shows the calculation of the max-
imum slope b in the radius of mallard. Compar-
isons of the plesiomorphic and the derived
maximum rate of ontogenetic change in shape
(b) would provide evidence for rate hetero-
chrony. The cases of apomorphic b smaller than
plesiomorphic b would be the evidence for
deceleration (terminology from Reilly et al.,
1997). On the contrary, the cases of apomorphic
b higher than plesiomorphic b would be the
evidence for acceleration.

Discussion

COMPARATIVE ANALYSIS OF GROWTH PARAMETERS

IN A PHYLOGENETIC CONTEXT

As quoted above, adult femora of the out-
groups of the clade {[(Bucephala-Somateria)



Fig. 6. Graphic representation of the maximum slope
(b; the maximum rate of ontogenetic change in shape ) of
the function sðtÞ in the period that spans from hatching (t0)
to the time at which the function attains its maximum (tm)
in mallards. In order to calculate the time tb at which the
maximum slope b is attained, we must find the first zero of
the second derivative of sðtÞ: s00ðtÞ ¼ sðtÞ
½ð0:570e�0:206tÞ þ ð0:012e�0:102tÞ � ð0:165e�0:154tÞþ
ð0:006e�0:051tÞ � ð0:078e�0:103tÞ�: The first zero of the second
derivative s00ðtÞ can be approximated by using any standard
computer program: tb=13.998. Then, we can find the
maximum slope b by substituting t ¼ tb in the expression
for s0ðtÞ : b ¼ s0ðtbÞ ¼ s0ð13:998Þ ¼ 1:489: The equation of
the tangent line to the graph of the function sðtÞ at the time
tb is of the form: y ¼ bðt� tbÞ þ b; where b is the value of
sðtÞ at tb; that is, b ¼ sðtbÞ:
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Tachyeres]Anas} are robuster than femora of the
species of this clade. According to Boughton
et al. (1991), the ancestral condition for the
character of interest should be estimated to
determine the direction of the heterochronic
change. The optimization of femur shape onto
the phylogenetic tree of Anseriformes (modified
from McCracken et al., 1999) shows that, as
expected, the femur of the last common ancestor
of Anas platyrhynchos and Bucephala clangula is
also robuster than the femur of Anas platy-
rhynchos (Fig. 1). Either an apomorphic tm
significantly higher than plesiomorphic tm (hy-
permorphosis) or an apomorphic b significantly
higher than plesiomorphic b (acceleration)
would explain the derived character state found
in Anas platyrhynchos. Future quantification on
the growth parameters of the function developed
in this paper (tm and b) in species closely related
to Anas platyrhynchos and the estimation of
ancestral states would allow to test these
hypotheses.

Related questions to this problem are
the following. Considering that heterochrony
often leads to a whole array of derived, but
otherwise unrelated, character states (Cubo &
Arthur, 2001), do particular developmental
changes in other parts of the body of Anas
platyrhynchos co-occur with femoral peramor-
phosis? In other words, is femoral peramorpho-
sis linked by correlated development with
peramorphosis in other structures of Anas
platyrhynchos?

Finally, it has been shown that bone cortical
thickness is an important parameter from the
point of view of natural selection (Currey &
Alexander, 1985; Cubo & Casinos, 2000). Both
periosteal ossification and endosteal resorption/
endosteal ossification determine bone cortical
thickness (Ricqles et al., 2000). The development
of a mathematical function for the ontogenetic
variation of bone cortical thickness would be an
useful tool to complete the analysis of the
evolution of bone growth.
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Appendix A

Deduction of the Timing Parameter tm
To calculate the timing parameter tm, we shall
consider the first derivative of sðtÞ and calculate
its zeros, that is,

s0ðtÞ ¼ sðtÞ ll e
ð�kl tÞ

� �
� ld e

ð�kd tÞ
� �� �

: ðA:1Þ

Since s0ðtÞ is a product of two functions and the
first function, sðtÞ; is strictly positive for all t, it is
quite clear that s0ðtÞ ¼ 0 if and only if the second
of these functions vanishes. That is to say,
s0ðtÞ ¼ 0 if and only if

ll e
ð�kl tÞ

� �
� ld e

ð�kd tÞ
� �

¼ 0; ðA:2Þ

which is equivalent to

ll e
ð�kl tÞ ¼ ld e

ð�kd tÞ ðA:3Þ

or

ld=ll ¼ eðkd�klÞt ðA:4Þ

By taking logarithms on both sides, this expres-
sion yields

log ld � log ll ¼ ðkd � klÞt ðA:5Þ
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that is

t ¼ logðld=llÞ
� �

=ðkd � klÞ: ðA:6Þ

Note that, since kl>kd, and Il>Id, this
number t=tm is well defined and positive.
Therefore, the function sðtÞ has a unique critical
point. Moreover, it is immediately checked that
s0ðtÞo0 if t is large enough, while the first
derivative at hatching ½s0ðt0Þ > 0�: Since tm is the
only point at which s0ðtÞ vanishes, this implies
that sðtÞ attains its maximum at the point tm:

tm ¼ logðld=llÞ
� �

=ðkd � klÞ: ðA:7Þ

Appendix B

Deduction of the Rate Parameter b

For any t, the function s0ðtÞ provides the slope of
s at t. Therefore, in order to calculate the time tb
at which the maximum slope b is attained, we
must find the first zero of the second derivative
of sðtÞ; that is

s00ðtÞ ¼ s0ðtÞ ll e
ð�kl tÞ

� �
� ld e

ð�kd tÞ
� �� �

þ sðtÞ ld kd e
ð�kd tÞ

� ��
� ll kl e

ð�kl tÞ
� ��

ðB:1Þ

By substituting in this equality the expression
for s0ðtÞ calculated above, we get

s00ðtÞ ¼ sðtÞ ll e
ð�kl tÞ

� �
� ld e

ð�kd tÞ
� �� �2þs0t

ld kd e
ð�kd tÞ

� ��
� ll kl e

ð�kl tÞ
� �� ðB:2Þ

that is

s00ðtÞ ¼ sðtÞ l2l e
ð�2kl tÞ

� ��
þ l2d e

ð�2kd tÞ
� �

� 2ll ld e
�ðklþkd Þt

� �

þ ld kd e
ð�kd tÞ

� �
� ll kl e

ð�kl tÞ
� ��

:
ðB:3Þ

We shall denote

jðtÞ ¼ l2l e
�2kl tð Þ� �

þ l2d e
ð�2kd tÞ

� ��

� 2ll ld e
�ðklþkd Þt

� �
þ ld kd e

ð�kd tÞ
� �

� ll kl e
ð�kl tÞ

� ��
; ðB:4Þ
so that

s00ðtÞ ¼ sðtÞjðtÞ: ðB:5Þ

Since the function sðtÞ is strictly positive, we
have that s00ðtÞ ¼ 0 if and only if jðtÞ ¼ 0:
Therefore, the parameter tb; the time at max-
imum slope (maximum rate of ontogenetic
change in shape) can be found by solving the
equation:

jðtÞ ¼ 0: ðB:6Þ

Unfortunately, it is a difficult task to find a
general expression for the solutions of this
equation, but for any particular empirical values
of the parameters Il, Id, kl, kd, it is not difficult to
approximate the zeros of jðtÞ by using a
standard computer program. Figure 6 provides
a particular example: the calculation of the time
at maximum slope (tb) in the radius of mallard.
Once the first zero (tb) of jðtÞ has been
calculated we can find the maximum slope b
simply by substituting t ¼ tb into the expression
for s0ðtÞ above [eqn (9)]. That is

b ¼ s0ðtbÞ: ðB:7Þ

Appendix C

List of the Species Studied

Order Anseriformes
Alopochen aegyptiaca
Anas platyrhynchos
Anser anser
Branta leucopsis
Bucephala clangula
Cairina mostacha
Chloephaga picta
Cygnus cygnus
Cygnus olor
Pleptropterus gambensis
Somateria mollissima
Tachyeres pteneres
Tadorna tadorna

Order Charadriiformes
Larus argentatus
Tringa erythropus

Order Galliformes
Alectoris rufa
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Coturnix coturnix
Phasianus colchicus

Order Palaeognathiformes
Casuarius casuarius
Casuarius unappendiculatus
Dromaius novaehollandidae
Pterocnemia pennata
Rhea americana
Struthio camelus
Order Passeriformes
Corvus corone

Order Sphenisciformes
Aptenodytes patagonicus
Eudyptes chrysocome
Eudyptes chrysolophus
Pygoscelis papua
Spheniscus magellanicus
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