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Abstract

Weshow that ifX is a Banach space having an unconditional basis and aC p-smooth Lipschitz
bump function, then for everyC1-smooth functionf from X into a Banach spaceY, and for
every continuous functionε : X → (0, ∞), there exists aC p-smooth functiong : X → Y such
that‖ f − g‖ � ε and‖ f ′ − g′‖ � ε.

1. Introduction

Given a Fŕechet smooth functionf between Banach spaces, we consider in this note the problem
of uniformly approximating both f and its derivative by functions with a higher order of
differentiability. More generally, iff : X → Y is aCk-smooth function between Banach spaces,
andε : X → (0, ∞) acontinuous map, then we say thatf is Ck-fine approximatedby aCp-smooth
functiong : X → Y, wherep > k, if

∥∥ f (i ) (x) − g(i ) (x)
∥∥ < ε (x) holds fori = 0, 1, . . . , k on X

(where the superscripts (i ) on f andg represent thei th Fŕechet derivatives). The finite-dimensional
case was satisfactorily solved in the classical paper of Whitney [11]. The infinite-dimensional
setting has proven to be more difficult, and henceforth in this paper all spaces are taken to be
infinite-dimensional.

The question ofC0-fine approximation, that is, uniform approximation of continuous functions by
smooth functions, has been well investigated over the last several decades and usually relies on the
use of smooth partitions of unity. For a survey of some results in this direction see [2, Chapter VIII;
5]. The problem ofCk-fine approximation whenk > 0 is much less understood and not generally
amenable to a solution by partitions of unity. One of the reasons why the standard partitions of
unity argument fails to give (even when the identity map is concerned!) a fine approximation by

†
E-mail: danielazagra@mat.ucm.es

‡
E-mail: rfry@stfx.ca

§
E-mail: JavierGomez@mat.ucm.es

¶
E-mail: jaramil@mat.ucm.es

Quart. J. Math. 56 (2005), 13–20; doi: 10.1093/qmath/hah020

c© The Author (2005). Published by Oxford University Press. All rights reserved.
For Permissions please email: journals.permissions@oupjournals.org



14 D. AZAGRA et al.

smooth functions in infinite-dimensional spaces is that we cannot find a common bound for all the
derivatives of the functions of the family composing the partition of unity.

The most fundamental work in this direction has been by Moulis [10]. Variations on Moulis’s
results can be found in [7], although there is a gap in the proof of the generalization of [10, Theorem
2] claimed in [8] and announced in [6]. Indeed, in [6, 7] Heble makes a (correct) proof for theCk-
fine approximation ofCk-smooth maps byC∞ maps on a dense subsetD of X, and then he claims
to show that in factD = X, but this last part of the proof is wrong. In [8], he claims that he can
extend the result in [7] from D to all of X; this proof is also flawed and it is not clear at all how one
could mend it.

In fact, to our knowledge the only complete results onCk-fine approximation in infinite-
dimensional Banach spacesX whenk > 0 is the work of Moulis, which considers the case where
X = l p for p ∈ (1, ∞) , or X = c0.

The main result of our note is to extend [10, Theorem 1] onC1-fine approximation byCα-smooth
functions in l p or c0 to any Banach space which admits an unconditional Schauder basis and a
Lipschitz,Cα-smooth bump function. This generalization is sufficient to allow for a characterization
of Banach spaces in whichC1-fine approximation by smoother functions is possible within the class
of Banach spaces with unconditional bases which admit aC1-smooth bump function.

The notation we employ is standard, withX, Y, etc. denoting Banach spaces, andX∗, Y∗, etc.
their (continuous) duals. The collection of all continuous, linear maps between Banach spacesX
andY is denoted byL (X, Y) . Smoothness in this note is meant in the Fréchet sense. ACp-smooth
bump functionon X is aCp-smooth, real-valued function onX with bounded, non-empty support.
Most additional notation is explained as it is introduced in the sequel. For any unexplained terms
we refer the reader to [2, 3].

2. Main results

THEOREM 1 Let X be a Banach space with unconditional basis, and Y be an arbitrary Banach
space. Assume that X has a Cp-smooth, Lipschitz bump function. Let G be an open subset
of X. Then, for every C1-smooth function f : G → Y and for every continuous function
ε : G → (0, ∞), there exists a Cp-smooth function g: G → Y such that‖ f (x) − g(x)‖Y � ε(x)

and‖ f ′(x) − g′(x)‖L(X,Y) � ε(x) for x ∈ G.

Here, as throughout the paper,p ∈ N ∪ {∞}, p � 1. We will say that the mapg is a C1-fine
approximation off . Asnoted in the Introduction, this result provides a characterization, within the
class of Banach spaces possessing unconditional bases andC1 -smooth bump functions, of those
spaces in whichC1-fine approximation by smoother functions occurs. Specifically we have the
following.

COROLLARY 2 Let X be a Banach space with an unconditional basis and a C1-smooth bump
function, G⊆ X an open set, and Y a Banach space. The following statements are equivalent:

(1) X has a Cp-smooth Lipschitz bump function;

(2) every C1-smooth function f: G → Y can be C1-finely approximated by Cp-smooth functions
g : G → Y .

Proof. (1)⇒ (2) is Theorem 1. The proof of (2)⇒ (1) is very simple and does not require fine
approximation; it is enough to know that the composition of aC1 smooth equivalent norm of
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X (which always exists under these assumptions) with a suitable real function can be uniformly
approximated by aCp smooth function with a bounded derivative. We leave the details to the
reader.

REMARK 3 We do not know whether a Banach spaceX with no C1-smooth bump function (for
instance,X = �1) might have the property that everyC1-smooth functionf : X → R can be
C1-finely approximated byCp-smooth functions, withp � 2. Some results on approximation in
Banach spaces with noC1-smooth bump functions can be found in [4].

2.1. Proof of Theorem1

We will need to use the following result, which is implicitly proved in [2, Proposition II.5.1]; see
also [9].

PROPOSITION 4 Let Z be a Banach space. The following assertions are equivalent.

(1) Z admits a Cp-smooth Lipschitz bump function.

(2) There exist numbers a, b > 0 and a Lipschitz functionψ : Z → [0, ∞) which is Cp-smooth
on Z \ {0}, homogeneous(that is ψ(t x) = |t |ψ(x) for all t ∈ R, x ∈ Z), and such that
a‖ · ‖ � ψ � b‖ · ‖.

For such a functionψ , the setA = {z ∈ Z : ψ(z) � 1} is what we call aCp-smooth Lipschitz
starlike body, and the Minkowski functional of this body,µA(z) = inf{t > 0 : (1/t)z ∈ A},
is precisely the functionψ (see [1] and the references therein for further information on starlike
bodies and their Minkowski functionals).

We will denote the open (resp. closed) ball of centrex and radiusr , with respect to the norm
‖ · ‖ of X, by B(x, r ) (resp. B(x, r )). If A is a bounded starlike body ofX, we define theopen
A-pseudoballof centrex and radiusr as

BA(x, r ) := B(x, r ; µA) := {y ∈ X : µA(y − x) < r },
and we defineBA(x, r ) to be the closure ofBA(x, r ).

According to Proposition 4 and the preceding remarks, becauseX has aCp-smooth Lipschitz
bump function, there is a bounded starlike bodyA ⊂ X whose Minkowski functionalµA = ψ is
Lipschitz andCp-smooth onX \{0}, and there is a numberM � 1 such that(1/M)‖x‖ � µA(x) �
M‖x‖ for all x ∈ X, and‖µ′

A(x)‖ � M for all x ∈ X \ {0}. Notice that in this case we have that

B

(
x,

r

M

)
⊆ BA(x, r ) ⊆ B(x, Mr )

for everyx ∈ X, r > 0.
We next introduce some other notation used throughout the proof. Let{ej , e∗

j } be an
unconditional Schauder basis onX, and Pn : X → X the canonical projections given by

Pn (x) = Pn

(∑∞
j =1 xj ej

)
= ∑n

j =1 xj ej . Let the unconditional basis constant beC1 � 1.

Following Moulis [10], we put En = Pn (X) , and E∞ = ∪nEn, noting that dimEn = n and
E∞ = X.

In the sequel the symbol‖ · ‖ stands for any of the different norms of the spacesX, X∗, and
L(X, Y).

The following lemma gives us the key to proving Theorem 1.
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LEMMA 5 Let X, Y, G be as in the statement of Theorem1. There exists a constant C> 0,
depending only on the space X and the basis constant, such that, for every open ball B0 = B(z0, r0)

with B(z0, 3r0) ⊆ G, and for every C1 function f : G → Y and numbersε, η > 0 with
supx∈B(z0,2r0)

∥∥ f ′(x)
∥∥ < η, there exists a Cp-smooth map g: G → Y such that

sup
x∈B0

‖ f (x) − g(x)‖ < Cε and sup
x∈B0

∥∥g′(x)
∥∥ < Cη.

Proof. Wemay assume thatz0 = 0 and 2r0 < 1. Chooser > 0 with r < min{ε/C1Mη, r0/C1M}.
Let ϕ : R → [0, 1] be aC∞-smooth function such thatϕ (t) = 1 if |t | < 1

2, ϕ (t) = 0 if |t | > 1,

ϕ′(R) ⊆ [−3, 0]. We now constructC1-fine smooth approximations tof on the finite-dimensional
subspacesEn. This classical integral-convolution method already appears in Whitney [11], but we
follow Moulis [10] for consistency.

Consider the map̂fn : G → Y, defined by

f̂n(x) = (an)
n

cn

∫
En

f (x − y)ϕ(anµA(y))dy,

where we understand thatf (x − y) = 0 if x − y /∈ G, cn = ∫
En

ϕ (µA(y)) dy, and we have chosen

the constantsan > 0 large enough so that̂fn is C1-smooth onB(z0, 2r0), and

sup
x∈B(z0,2r0)∩En

∥∥∥ f̂n (x) − f (x)

∥∥∥ <
ε

2n
, sup

x∈B(z0,2r0)∩En

∥∥∥ f̂ ′
n (x) − f ′ (x)

∥∥∥ <
η

2n
.

With these choices one can also check that restrictingf̂n to En gives rise to aCp-smooth map.
We next define a sequence of functionsf n : X → Y as follows. Putf̄0 = f (0), and supposing

that f 0, . . . , f n−1 have been defined, we set

f̄n (x) = f̂n (x) + f̄n−1 (Pn−1 (x)) − f̂n (Pn−1 (x)) .

One can verify by induction that

(i) the restriction of f̄n to En is Cp-smooth andf̄n is an extension off̄n−1;

(ii) supx∈En∩B(z0,2r0)

∥∥ f̄n (x) − f (x)
∥∥ < 2ε (1 − 1/2n);

(iii) supx∈En∩B(z0,2r0)

∥∥ f̄ ′
n (x) − f ′ (x)

∥∥ < 2η (1 − 1/2n).

Wenow define the map̄f : E∞ → Y by

f̄ (x) = lim
n→∞ f̄n (x) .

FACT 6 The functionf̄ has the following properties:

(i) the restriction off̄ to every subspace En is Cp -smooth;

(ii) supx∈E∞∩B(z0,2r0)

∥∥ f̄ (x) − f (x)
∥∥ < 2ε;

(iii) supx∈E∞∩B(z0,2r0)

∥∥ f̄ ′ (x) − f ′ (x)
∥∥ < 2η.
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This is easily checked by using properties (i)–(iii) above.
Next, let us writex = ∑

n xnen ∈ X, and define the map

χn (x) = 1 − ϕ

[
µA (x − Pn−1 (x))

r

]
(here we use the convention thatP0 = 0), and now set

� (x) =
∑

n

χn (x) xnen.

FACT 7 The mapping� : X → E∞ is well defined, Cp-smooth on X, and has the following
properties:

(1) ‖� ′(x)‖ � 4M2C1(1 + C1) for all x ∈ X;

(2) ‖x − �(x)‖ � C1Mr for all x ∈ X;

(3) �(B0) ⊆ B(z0, 2r0).

Proof. For any x0, becausePn (x0) → x0 and the‖Pn‖ are uniformly bounded, there exist a
neighbourhoodN0 of x0 and ann0 such thatχn (x) = 0 for all x ∈ N0 and n � n0, and so
� (N0) ⊂ En0. Thus,� : X → E∞ is a well-definedCp-smooth map. We next estimate its
derivative.

Wehave that

(χn (x) xn)
′ = χ ′

n (x) xn + χn (x) e∗
n.

Now, since|ϕ′(t)| � 3, ‖µ′
A (x) ‖ � M and‖(I − Pn−1)

′(x)‖ � 1 + C1 for all x, t , we get that,
for anyn,

∥∥χ ′
n (x)

∥∥ �
∣∣∣∣ϕ′

(
µA (x − Pn−1 (x))

r

)∣∣∣∣ · r −1
∥∥µ′

A (x − Pn−1 (x))
∥∥ · ∥∥(I − Pn−1)

′(x)
∥∥

� 3M(1 + C1)r
−1.

Consider now the derivative of the map�. We have

� ′ (x) (·) =
∑

n

χ ′
n (x) (·)xnen +

∑
n

χn (x) e∗
n(·).

For a fixedx, definen0 = n0(x) to be the smallest integer withµA
(
x − Pn0−1 (x)

)
� r. Then for

all m < n0, χm (x) = 1, χ ′
m (x) = 0, and so, using [3, Lemma 6.33] since{en} is unconditional

with basis constantC1, and our estimate above, we have that for everyh ∈ BX ,

∥∥� ′ (x) (h)
∥∥ �

∥∥∥∥∥
∑

n

χ ′
n (x) (h) xnen

∥∥∥∥∥ +
∥∥∥∥∥
∑

n

χn (x) hnen

∥∥∥∥∥
=

∥∥∥∥∥
∑

n�n0

χ ′
n (x) (h) xnen

∥∥∥∥∥ +
∥∥∥∥∥
∑

n

χn (x) hnen

∥∥∥∥∥
� C1 sup

n

∣∣χ ′
n (x) (h)

∣∣ ∥∥∥∥∥
∑

n�n0

xnen

∥∥∥∥∥ + C1 sup
n

|χn (x)|
∥∥∥∥∥
∑

n

hnen

∥∥∥∥∥
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� 3C1M(1 + C1)r
−1 ‖h‖

∥∥∥∥∥
∑

n�n0

xnen

∥∥∥∥∥ + C1 ‖h‖

= 3C1M(1 + C1)r
−1 ‖h‖ ∥∥x − Pn0−1(x)

∥∥ + C1 ‖h‖
� 3C1M(1 + C1)r

−1 ‖h‖ MµA
(
x − Pn0−1(x)

) + C1 ‖h‖
� 3C1M(1 + C1)r

−1 ‖h‖ Mr + C1 ‖h‖ � 4M2C1(1 + C1) ‖h‖ ,

which yields(1).
Wenext estimate‖x − � (x)‖ . Wehave, again using [3, Lemma 6.33] since{en} is unconditional

with basis constantC1, and withn0 = n0(x) as above,

‖x − � (x)‖ =
∥∥∥∥∥

∑
n�n0

xn (1 − χn (x)) en

∥∥∥∥∥ � C1 sup
n

|1 − χn (x)|
∥∥∥∥∥

∑
n�n0

xnen

∥∥∥∥∥
� C1

∥∥∥∥∥
∑

n�n0

xnen

∥∥∥∥∥ � C1MµA
(
x − Pn0−1(x)

)
� C1Mr,

which proves(2). Lastly, property(3) is immediate from(2) and the choice ofr .

To end the proof of the lemma, we define

g (x) = f̄ (� (x)) .

Note thatg is Cp-smooth onG, being the composition ofCp-smooth maps. Also we have that, for
every x ∈ B0, according to Facts 6, 7 and the choice ofr ,

‖ f (x) − g (x)‖ � ‖ f (x) − f (� (x))‖ + ∥∥ f̄ (� (x)) − f (� (x))
∥∥

� η ‖x − � (x)‖ + ∥∥ f̄ (� (x)) − f (� (x))
∥∥

� ηC1Mr + 2ε < 3ε.

Lastly, we have, again using Facts 6 and 7, that, forx ∈ B0,∥∥g′ (x)
∥∥ �

∥∥ f̄ ′ (� (x))
∥∥ ∥∥� ′ (x)

∥∥
�

(∥∥ f ′ (� (x))
∥∥ + 2η

)
4M2C1(1 + C1) � 12M2C1(1 + C1)η.

This establishes the lemma withC = 12M2C1(1 + C1).

Now we finish the proof of Theorem 1. Using separability and openness ofG, as well as
continuity of the functionsf ′ andε, we let

{
B(xj , r j /M)

}∞
j =1 be a covering ofG by open balls

with centresxj and radiir j /M , with B(xj , 3Mr j ) ⊂ G, and such that‖T ′
j (x) − f ′(x)‖ < ε j /8C

andε(x) � ε j /2 for all x ∈ B(xj , 2Mr j ), whereTj is the first-order Taylor polynomial tof at xj

andε j = ε(xj ) (note in particular thatT ′
j (x) is simply f ′(xj )).

SinceB(x, r/M) ⊆ BA(x, r ) ⊆ B(x, Mr ) for everyx, r , we have that

G =
∞⋃
j =1

BA(xj , r j ), and
∥∥∥T ′

j (x) − f ′ (x)

∥∥∥ <
ε j

8C
on BA(xj , 2r j ).
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Next, letϕ j ∈ Cp (X, [0, 1]) with bounded derivative so thatϕ j = 1 on BA(xj , r j ) andϕ j = 0
outsideBA(xj , 2r j ) (such a function can easily be defined asϕ j (x) = θ j (µA(x − xj )), whereθ j is
asuitable smooth real function). Now, via Lemma 5, we may chooseCp-smooth mapsδ j : G → Y
such that on each ballB(xj , 2Mr j ) we have both‖Tj (x) − f (x) − δ j (x)‖ < 2− j −2ε j M−1

j , and∥∥δ′
j (x)

∥∥ < ε j /8, whereM j = ∑ j
k=1 M̃k andM̃k = supx∈B(xk,2Mrk)

∥∥ϕ′
k (x)

∥∥. Then we also have∥∥∥T ′
j (x) − f ′ (x) − δ′

j (x)

∥∥∥ �
∥∥∥T ′

j (x) − f ′ (x)

∥∥∥ +
∥∥∥δ′

j (x)

∥∥∥ < ε j /8C + ε j /8 � ε j /4.

Next, we define

h j = ϕ j

∏
k< j

(1 − ϕk) and g (x) =
∑

j

h j (x)
(
Tj (x) − δ j (x)

)
.

Note that for eachx, if n := n (x) := min {m : x ∈ BA(xm, rm)} then, because 1− ϕn (x) = 0
and BA(xn, rn) is open, it follows from the definition of theh j that there is a neighbourhoodN
of x such that fory ∈ N, g (y) = ∑

j �n h j (y)
(
Tj (y) − δ j (y)

)
, and

∑
j h j (y) = ∑

j �n h j (y).
Also, by a straightforward calculation, again using the fact thatϕn = 1 on BA(xn, rn), we have that∑

j h j (y) = 1 for y ∈ BA(xn, rn) (hence for everyy ∈ G).
Now, fix anyx0 ∈ G, and letn0 = n (x0) and a neighbourhoodN0 of x0 be as above. Then for

anyx ∈ N0, since supp
(
h j

) ⊆ BA(xj , 2r j ) ⊆ B(xj , 2Mr j ),

‖g (x) − f (x)‖ =
∥∥∥∥∥∥

∑
j �n0

h j (x)
(
Tj (x) − δ j (x)

) − f (x)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j �n0

h j (x)
(
Tj (x) − δ j (x)

) −
∑
j �n0

h j (x) f (x)

∥∥∥∥∥∥
�

∑
j �n0

h j (x)
∥∥(

Tj (x) − f (x) − δ j (x)
)∥∥

<
∑
j �n0

h j (x)
ε j

4
� ε(x).

A straightforward calculation shows that
∥∥∥h′

j (x)

∥∥∥ � M j , and so we have∥∥g′ (x) − f ′ (x)
∥∥

=
∥∥∥∥∥∥

∑
j �n0

h′
j (x)

(
Tj (x) − f (x) − δ j (x)

) + h j (x)
(
Tj (x) − f (x) − δ j (x)

)′
∥∥∥∥∥∥

�
∑
j �n0

∥∥∥h′
j (x)

∥∥∥ ∥∥Tj (x) − f (x) − δ j (x)
∥∥ +

∑
j �n0

h j (x)

∥∥∥(
Tj (x) − f (x) − δ j (x)

)′∥∥∥
<

∑
j �n0, x∈BA(x j ,2r j )

M j

(
2− j −2ε j M−1

j

)
+

∑
j �n0

h j (x)
ε j

4

�
∑

j �n0, x∈B(x j ,2Mr j )

2− j ε j

4
+ ε(x)

2
� ε(x).
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REMARK 8 By using Moulis’s ideas [10] and some refinements of the techniques deployed above,
one can also show the following result: ifX is a Banach space with an unconditional basis and
a C∞ smooth bump function with bounded derivatives, then everyC2k−1-smooth function can be
Ck-finely approximated byC∞-smooth functions. We do not feel that this statement justifies the
inclusion of its (necessarily technically involved) proof in this note. It is also worth recalling that
the assumption that the second derivative of a bump function is bounded is very strong and implies
super-reflexivity of the space.

Of course, the natural problem as to whetherCk functions can beCk-finely approximated byC∞
functions on such spacesX remains open, even in the case whereX = �2.
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