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Abstract

We show that ifX is a Banach space having an unconditional basis a®8-amooth Lipschitz
bump function, then for ever¢-smooth functionf from X into a Banach spac, and for
every continuous function : X — (0, oo), there exists & P-smooth functiorg : X — Y such
that| f —gll < eand| f' —g'| <e.

1. Introduction

Given a Fechet smooth functiorf between Banach spaces, we consider in this note the problem
of uniformly approximating bothf and its derivative by functions with a higher order of
differentiability. More generally, iff : X — Y is aCK-smooth function between Banach spaces,
ands : X — (0, o) acontinuous map, then we say thiats CX-fine approximatedy aCP-smooth
functiong : X — Y, wherep > k, if | f® (x) —g® (x)|| < & (x) holds fori =0, 1,...,konX

(where the superscripts)(on f andg represent théth Frechet derivatives). The finite-dimensional
case was satisfactorily solved in the classical paper of Whita&ly [The infinite-dimensional
setting has proven to be more difficult, and henceforth in this paper all spaces are taken to be
infinite-dimensional.

The question o€°-fine approximation, that is, uniform approximation of continuous functions by
smooth functions, has been well investigated over the last several decades and usually relies on the
use of smooth partitions of unity. For a survey of some results in this directio? s€bdpter VII;

5]. The problem ofCX-fine approximation whek > 0 is much less understood and not generally
amenable to a solution by partitions of unity. One of the reasons why the standard partitions of
unity argument fails to give (even when the identity map is concerned!) a fine approximation by
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smooth functions in infinite-dimensional spaces is that we cannot find a common bound for all the
derivatives of the functions of the family composing the partition of unity.

The most fundamental work in this direction has been by MoW@§. [ Variations on Moulis’s
results can be found ir¥], although there is a gap in the proof of the generalizatiod@fTheorem
2] claimed in B] and announced irf]. Indeed, in p, 7] Heble makes a (correct) proof for tia-
fine approximation o€X-smooth maps b maps on a dense sub€2bof X, and then he claims
to show that in facD = X, but this last part of the proof is wrong. 18], he claims that he can
extend the result inq] from D to all of X; this proof is also flawed and it is not clear at all how one
could mend it.

In fact, to our knowledge the only complete results Gk-fine approximation in infinite-
dimensional Banach spac&swhenk > 0 is the work of Moulis, which considers the case where
X =lpforpe(,00),orX=cp.

The main result of our note is to exteritd] Theorem 1] orC-fine approximation by *-smooth
functions inl, or ¢o to any Banach space which admits an unconditional Schauder basis and a
Lipschitz,C*-smooth bump function. This generalization is sufficient to allow for a characterization
of Banach spaces in whig!-fine approximation by smoother functions is possible within the class
of Banach spaces with unconditional bases which adi@it-amooth bump function.

The notation we employ is standard, with Y, etc. denoting Banach spaces, axtl Y*, etc.
their (continuous) duals. The collection of all continuous, linear maps between Banach Xpaces
andY is denoted by (X, Y) . Smoothness in this note is meant in thé¢kret sense. &P-smooth
bump functioron X is aCP-smooth, real-valued function oX with bounded, non-empty support.
Most additional notation is explained as it is introduced in the sequel. For any unexplained terms
we refer the reader t@][ 3].

2. Main results

THEOREM1 Let X be a Banach space with unconditional basis, and Y be an arbitrary Banach
space. Assume that X has &-Gmooth, Lipschitz bump function. Let G be an open subset
of X. Then, for every &Esmooth function f: G — Y and for every continuous function

¢ : G — (0, 00), there exists a €-smooth function g G — Y such that| f (X) — g(X)|ly < &(X)

and|[| f'(x) — g’ llgx.y) < e(x) forx e G.

Here, as throughout the paper,e N U {oc}, p > 1. We will say that the mag is aC*-fine
approximation off . Asnoted in the Introduction, this result provides a characterization, within the
class of Banach spaces possessing unconditional base3!asehooth bump functions, of those
spaces in whictC!-fine approximation by smoother functions occurs. Specifically we have the
following.

COROLLARY 2 Let X be a Banach space with an unconditional basis and'ass@ooth bump
function, GC X anopen set, and Y a Banach space. The following statements are equivalent:

(1) X has a @°-smooth Lipschitz bump function;

(2) every Cl-smooth function £ G — Y can be C-finely approximated by &smooth functions
g:G—>Y.

Proof. (1)= (2) is Theorem 1. The proof of (2> (1) is very simple and does not require fine
approximation; it is enough to know that the composition o€ smooth equivalent norm of
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X (which always exists under these assumptions) with a suitable real function can be uniformly
approximated by &P smooth function with a bounded derivative. We leave the details to the
reader.

REMARK 3 We b not know whether a Banach spa¥ewith no Ct-smooth bump function (for
instance,X = ¢1) might have the property that eveGt-smooth functionf : X — R can be
Clfinely approximated by P-smooth functions, wittp > 2. Some results on approximation in
Banach spaces with m@!-smooth bump functions can be found #.[

2.1. Proof of Theoren

We will need to use the following result, which is implicitly proved i, [Proposition 11.5.1]; see
also Q).

PrROPOSITION 4 Let Z be a Banach space. The following assertions are equivalent.
(1) Z admits a @-smooth Lipschitz bump function.

(2) There exist numbers, & > 0 and a Lipschitz functiony : Z — [0, oco) which is CP-smooth
on Z\ {0}, homogeneousthat is ¢ (tx) = |t|¥(X) forallt € R,x € Z), and such that
al- Il <y <bl-].

For such a function/, the setA = {z € Z : ¥(2) < 1} is what we call 2&€P-smooth Lipschitz
starlike body and the Minkowski functional of this bodya(z) = inf{t > 0 : (1/t)z € A},
is precisely the functions (see [l] and the references therein for further information on starlike
bodies and their Minkowski functionals).

We will denote the open (resp. closed) ball of cemtrand radius, with respect to the norm
| - |l of X, by B(x,r) (resp. B(x,r)). If Ais a bounded starlike body of, we define theopen
A-pseudobalbf centrex and radiug as

Ba(X, 1) := B(X,r; up) :={y € X:pualy —Xx) <r},

and we defindB (X, r) to be the closure oBa(X, ).

According to Proposition 4 and the preceding remarks, becXusas aCP-smooth Lipschitz
bump function, there is a bounded starlike bolyc X whose Minkowski functionala = ¥ is
Lipschitz andCP-smooth onX \ {0}, and there is a numbevl > 1 such thail/M)| x| < ua(X) <
M| x| forall x € X, and||u/s(x)|I < M forall x € X\ {0}. Notice that in this case we have that

B(x, rﬁ) C Ba(x,r) € B(x, Mr)

for everyx € X,r > 0.

We next introduce some other notation used throughout the proof. {da,-ete]?‘} be an
unconditional Schauder basis ot and P, : X — X the canonical projections given by
P (X) = Py (Zjoo:l X ej> = ZTzl x;je;j. Let the unconditional basis constant®@e > 1.
_Following Moulis [10], we putE, = P, (X), andE* = U,Ep, noting that dimE, = n and
E> = X.

In the sequel the symbdil - || stands for any of the different norms of the spaggsx*, and
L(X,Y).

The following lemma gives us the key to proving Theorem 1.
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LEMMA 5 Let X Y, G be & in the statement of Theorefin There exists a constant G 0,
depending only on the space X and the basis constant, such that, for every opesnbal B, ro)
with B(zo,3rg) € G, and for every C function f : G — Y and numberss, > 0 with
SUReB(z.2rg) | T/ (X)] < n. there exists a €-smooth map g G — Y such that

sup || f(x) —g(x)| <Ce and sup[|g'(x)| < Cn.
xeBp

XeBg
Proof. Wemay assume thay = 0and 29 < 1. Choose > Owithr < min{e/C1Mn, ro/C1M}.
Lety : R — [0, 1] be aC*-smooth function such that (t) = 1 if |t| < % o) =0if |t] > 1,
¢ (R) € [—3, 0]. We now constructC-fine smooth approximations tb on the finite-dimensional
subspace&,. This classical integral-convolution method already appears in Whitt8ylut we

follow Moulis [10] for consistency.
Consider the mag, : G — Y, defined by

(@n)"

fa(x) =
A Ch JEn

f(X — y)o(anua(y)dy,

where we understand th&tx —y) =0if x —y ¢ G, ¢y = fEn ¢ (na(y)) dy, and we have chosen
the constants,, > 0 large enough so thdt, is C1-smooth onB(z, 2ro), and

sup ‘ £ (x) — f’(x)” < 2—71

XeB(zp,2rg)NEn

~ &
faco—foo| <o sup
2 xeB(zp,2rg)NEn

With these choices one can also check that restricting En gives rise to & P-smooth map.
We next define a sequence of functiohs : X — Y as follows. Putfp = f(0), and supposing

that o, ..., f,_; have been defined, we set
fo 00 = fo 0 + fa_1 (Pa-1. ) = fa (Pa-1 () .
One can verify by induction that
(i) the restriction offy, to Ep, is CP-smooth andf,, is an extension of,_1;
(i) SUBcE,nB(zo.2r) || fn ) — T OO < 26 (1 —1/2);
(i) SUPyeE,nB(zo.2r0) || Fr 00 — T/ 00| < 27 (1 —1/2M.
We now define the mag : E>* — Y by
f(x)= im fn (X).

FACT 6 The functionf has the following properties:

(i) the restriction off to every subspace [Eis CP -smooth;

(il) SUPcExnB(z.2r) | T 0 = F (O] < 2¢;

(iii) SUPyeEnB@,2r) | F/ 0 = /(0| < 2n.
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This is easily checked by using properties (i)—(iii) above.
Next, let us writex = )" Xnen € X, and define the map

ma (X — Paoq (X))]

Xn(X)=1—<p[ ;

(here we use the convention tHag = 0), and now set

W (X) =D xn (X) Xn€n.
n
FACT 7 The mapping¥ : X — EX is well defined, ®-smooth on X, and has the following
properties:
(1) ¥ (x)|| < 4M2C1(1+ Cy) forall x € X;
(2) X —¥X)| < CiMr forall x € X;

(3) W(Bo) € B(zo, 2rp).

Proof. For anyXxg, becauseP, (xg) — Xo and the| Py| are uniformly bounded, there exist a
neighbourhood\p of xg and anng such thaty, (x) = 0 for all x € Ng andn > ng, and so
¥ (Ng) C Ep,. Thus,¥ : X — E* is a well-definedCP-smooth map. We next estimate its
derivative.

We have that

(Xn () Xn)" = xp (X) Xn + xn (X) €.

Now, sincel¢’(t)| < 3, [|[1/a (X) || < M and||(I — Ph—1)'(¥)|| < 1+ Cy for all x, t, we get that,
for anyn,

g = Pact )| (1 = Pa 0

— Pz
”Xr/1 (X)” < gD/(MA(X n 1(X))>

r
<3M@A+CprL,

Consider now the derivative of the mdp We have
W) () =D xp () ()Xt + Y xn (X) E4().
n n
For a fixedx, defineng = ng(x) to be the smallest integer witla (x — Pno—1 (x)) < r. Then for

allm < ng, xm(X) = L, xm (X) = 0, and so, usingd, Lemma 6.33] sincéey} is unconditional
with basis constar;, and our estimate above, we have that for every By,

19" 00 M < > xn 00 () xnen|| + me)hnen‘
n n

=D xn 00 () xnen | + > xn (x)hnenH
n>ng n

< Cusup|x () ()|

> Xnen

n=ng

+ C1suplxn (X)|
n

Z hn%H
n
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< 3CiM(@1+ Cpr~hy

> Xnén

nznop
= 3CiM(L+ Cor 1 ih]l [|x — Png—100] + Ca IIh]|

< 3CIM(@L+ Cyr | M (X — Prg—1(x)) + Cy [Ih]]

< 3C1M(L+ Cpr 1 {h| Mr + Cq [|h]| < 4M?Cy(1+ Cy) |Ih]],

+ Ca [Ih]l

which yields(1).
Wenext estimatgx — W (x)| . We have, again usingd] Lemma 6.33] sincé¢e,} is unconditional
with basis constant,, and withng = ng(x) as above,

Ix =W OOl = | Y Xn (L= xn () en| < CasUpIl— xn (I || D xnenH
nzng n nzng
<Ci1 | Y Xnen| < CiMpua (X = Pog-1(x) < CiMr,
n>=ng

which proveg2). Lastly, property(3) is immediate from2) and the choice af.

To end the proof of the lemma, we define

gx)=f (¥ x).

Note thatg is CP-smooth onG, being the composition dE P-smooth maps. Also we have that, for
ewery x € By, according to Facts 6, 7 and the choice pf

100 =gl I = F WD+ [ ) - f )|

nlIx— WO+ | f ) —f @)

<
< nNCiMr 4 2¢ < 3e.

Lastly, we have, again using Facts 6 and 7, thatxfer By,

lg"coll < [ cw o) [ o

(] £ (¥ 00| + 24) 4MZCy(1 + C1) < 12M>Cy(1+ Co).

NN

This establishes the lemma with= 12M2C4 (1 + C1).

Now we finish the proof of Theorem 1. Using separability and openness, ais well as
continuity of the functionsf’ ande, we let {B(Xj , r,-/M)}‘I.’i1 be a covering ofc by open balls
with centresx; and radiirj /M, with B(xj, 3Mrj) C G, and such thalTj’(x) — ') < ¢j/8C
ande(x) > gj/2for all x € B(xj, 2Mr}), whereT; is the first-order Taylor polynomial té at x;
andej = e(x;) (note in particular thaTJf(x) is simply f'(x;j)).

SinceB(x,r/M) C Ba(x,r) C B(x, Mr) for everyx, r, we have that

o0
.
G = Baxxj. 1)), and’Tj’ ) — f/(x)H < o ONBA(K;, 21)).
=1
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Next, letg; € CP (X, [0, 1]) with bounded derivative so that; = 1 on Ba(xj,rj) andg; = 0
outsideBa(Xj, 2r) (such a function can easily be definedgsx) = 6 (ua(x — Xj)), whereg; is
asuitable smooth real function). Now, via Lemma 5, we may ch@smooth maps; : G — Y

such that on each baB(xj, 2Mr ) we have both|T;(x) — f(x) — §;(X)| < 2_j_28j Mjfl, and
185 00 || < &j/8, whereM; =374, Mk and My = SUBcpx,.2mry) |9k |- Then we also have

T 00 — (0 H +

[T 00 = 100 =8 00| <| 5 00| <&/8C +e;/B< e)/4.

Next, we define
hj = ¢j ]’[ 1—¢ and gx) = Zhj ) (Tj (X) = 8j (x)) .
i

k<j

Note that for eaclx, if n := n(x) := min{m: X € Ba(Xm, 'm)} then, because 4+ ¢, (xX) = 0
and Ba(xn, rn) is open, it follows from the definition of thk; that there is a neighbourhodd
of x such that fory € N, g(y) = > ;< hj (V) (T () = 8j (V). and}’; hj(y) = > ;<n hj(y).
Also, by a straightforward calculation, again using the factghat 1 on Bao(Xn, rn), we have that
Zj hj (y) = 1fory € Ba(xn, 'n) (hence for every € G).

Now, fix anyxg € G, and lethg = n (xp) and a neighbourhooblp of xg be as above. Then for
anyx € Np, since supfh;j) € Ba(xj, 2rj) < B(x;j, 2Mr}),

lg o) — FO0ll= | D hj 00 (T 00 =8 () — f ()

i<no

= > hj 00 (Tj 00 =8 00) = Y hj () f(x)

j<no i<no
< D hi 0 f(T o0 = f00 =8 (0)]
i<no
<Y hi 0 <o,
i<no

A straightforward calculation shows th%h/j (X) H < Mj, and so we have

lg" 00—t 0

D h 00 (T 00 = F.00 =85 () +hj 0 (T 00 = F () =85 (%)

i<no

>

h, (x)H 1T 00 = £ 00 =85 00 + 3 hj %) ”(T,- x) — f(x) =8 ()

i<ng j<no
o—i-2,. -1 . £j
j<no, xeBa(xj,2rj) j<no
_j€i , e(x)
< 271 4 20 Cex).
> 2t (x)

j<no, xeB(xj,2Mrj)
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REMARK 8 By using Moulis’s ideas]0] and some refinements of the techniques deployed above,
one can also show the following result: Xf is a Banach space with an unconditional basis and
a C> smooth bump function with bounded derivatives, then e@#1-smooth function can be
CK-finely approximated by >°-smooth functions. We do not feel that this statement justifies the
inclusion of its (necessarily technically involved) proof in this note. It is also worth recalling that
the assumption that the second derivative of a bump function is bounded is very strong and implies
super-reflexivity of the space.

Of course, the natural problem as to whetB&rfunctions can b€K-finely approximated b >
functions on such space§remains open, even in the case whire- £;.
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