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We study equations of the form

{Lu+ Vu=f Q,

p
u=0 0Q (resp. Q°), (Pv)

where L is an integro-differential operator, e.g. (—A)2,
posed on a bounded domain Q of R”, where n >3 and 0 < s < 1.

V (the potential) is a nonnegative Borel measurable function. It may be
singular.

f is some function or measure. We aim to study the singular cases.
The results correspond to the publications

J. I. Diaz, D. Gémez-Castro, and J. L. Vazquez. “The fractional
Schrodinger equation with general nonnegative potentials. The weighted
space approach”. Nonlinear Analysis (2018), pp. 1-36. arXiv:
1804.08398
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Structure of the talk

@ Fractional operators

© The Laplace equation (V = 0)

© Problem (Py) for V € L}

@ Data measures

© Potentials singular at interior points

@ Singular potentials at the boundary: V € L} . The RFL

loc*
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@ Fractional operators
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Fractional Laplacian in R”

Let 0 < s < 1. The following definitions are equivalent:

@ Fourier transform F, with simbol |¢|25:

(—A)u=F g Flu]] (1a)
@ As a singular integral
(—A)u(x) = cns P.V. /]R n Mdy (1b)
@ Through the heat semigroup
+oo
Coru) = g [ -

Probabilistically, where —A correspond to Brownian motion, (—A)® corresponds
to Levy flights.
Clearly (—A)! = —A and (—-A)° = /d.
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The fractional Laplacians on bounded domains

The following non-equivalent definitions on bounded domains are common:
@ The Restricted Fractional Laplacian (RFL):
u(x) — u(y)
(~B)hnel) = cns PV, [ Sy @
where u is extended by 0 outside

@ The Spectral Fractional Laplacian (SFL)

(— D)5 u(x) = r% ot

+o0o
S Eu-wgn @

This corresponds to computing the spectral decomposition and defining
+o0o
(=A)rLu(x) = Z UiA i
i=1

@ The Censored (or Regional) Fractional Laplacian (CFL), for 1/2 < s < 1:

(—A)&pLu(x) = cps P.V. / Mdy (4)

Q |x—y|m2s
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© The Laplace equation (V = 0)
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The Laplace problem

Homogeneous Dirichlet problem

Lu=f Q

{u -0 99 L=—A,(-A)spL: (—A)erL (Po)
Lu=f Q

{u —0 Qc L= (=A)kpL (Po)

For the operators above and f € C2°(€2), there exists a unique classical
solution u € C(Q2) (i.e. satisfying the problem pointwise).

This solution can be represented as
ulx) = [ G (©)

We define the solution operator

G:fr—u. (5)
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Existence of solutions in energy spaces. Weak solutions

The operators in the example satisfy a theory similar to the classical.

@ RFL: We can write a weak formulation, for f € L2 find u € H5(2) such that
x) = u)e(x) =) | o
/n/n X = y|meee dxdy = Qfgo, Yo € H3(Q)
@ CFL: We can write a weak formulation, for f € L2 find u € H5(2) such that

I

@ SFL: Write f € L? in eigen-decomposition

+o0 +oo
F=Y fio; +— u=> f\ i
i=1 i=1

Problems for the RFL and CFL can be solved by minimization of energy. Also by
using the standard Lax-Milgram theorem.
For fractional sobolev spaces: Di Nezza, Palatucci, and Valdinoci 2012.
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Kernel representation

We assume that L is an operator such that, for f € L*>°(Q)

G0 = [ Blx.y)fl)dy. (©)
such that G satisfies properties:

(i) G is symmetric and self-adjoint in the sense that

G(x,y) = G(y, x). (G1)

(i) We assume n > 3 and we have the estimate

Glx,y) = — ( LCILICON 1)W . (G2)

Tx =yl Ux —yP?
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The examples covered by our theory

The elliptic problem has been widely studied, specially for data f € L°°(Q). Also,
two-sided kernel estimates are known:
@ The classical Laplacian —A:
(G2) holds with s =1 and v = 1.
@ Restricted Fractional Laplacian (—A)jp
(G2) holds with 0 < s < 1 and v =s. See Chen and Song 1998.

@ Spectral Fractional Laplacian (—A)gp:
(G2) holds with 0 <s <1and y=1.
See Bonforte, Figalli, and Vazquez 2018.

@ Censored Fractional Laplacian (—A)gp;:
(G2) holds with % < s<1land~vy=2s—1. See Chen, Kim, and Song 2009.
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Weak and weak-dual formulations

Since L is self-adjoint, we can define very weak solutions

/uch—/fap Voe? (6)
Q Q

Different operators require different sets of test functions. Some authors
use weak solutions for the RFL Chen and Véron 2014; Diaz,
Gomez-Castro, and Vazquez 2018.

Letting ¢ = G(v) we can simply write
/ up :/ fG(v) Vi € L>(Q) (Po-WD)
Q Q

This kind of solutions are known as weak-dual solutions.
Since L is self-adjoint, G is self-adjoint and so

/ G(F)) = / FG(E), V€ L¥(Q) (7)
Q Q

Hence, classical solutions for f € L>°(2) are weak-dual solutions.
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Estimates for some simple functions

Theorem
Assume (G2). Then, we have that:
e For K € Q: G(xk) <97
@ For AC Q: we have |G(xa)| < C|A
C = C(B).

From now on we assume (G1)—(G2).

B for any < 2—”5 where
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Uniqueness of weak-dual solutions

Theorem
Let f € L1(Q). Then there exists, at most, one solution u € L1(Q) of

/ u :/ fG(y) Vi € L(Q) (Po-WD)
Q Q

| A\

Proof.

Let u1, up € LY(Q) be two solutions. Taking 1 = sign(u; — up) € L°(Q)
we deduce

/Q |up — wo| = /Q(U1 — up)sign(ur — w2) = /Q(f — f)G(sign(u1 — up)) = 0.

(8)
0

v

Remark
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From the positive cone to the whole space

Lemma

Let p,q > 1 be two normed function spaces, and let T : LP — L9 be linear
and continuous. If

IT(Olle < Cllffler, YOS FeX

Then the same holds for any f € X.

Let f € X. We split f =f, +f_. Then

IT(Elg = I1THE)=T(E)llg < ITEaHIT(E)g < Cliflp+ClIE

(9)
0
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Regularization

Theorem

n

felP(Q) — G(f el V1<q<Qp)=—7

p.

Furthermore G : LP(Q2) — L9(R2) is continuous.

| A\

Proof.

The L}(Q) and L>=(Q) result follow by direct computation.
The intermediate case by Riesz-Thorin lemma. O
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Dunford-Pettis property

The aim of this section is to prove that
Theorem

2
We have that, for any 0 < 3 < =

/A G < CIAP Il VF € LX(Q). (10)
for some C > 0.

Hence, if f, € L}(Q) is a bounded sequence, then G(f,) is uniformly
integrable.

In particular, there exists a weakly convergent subsequence G(f,, ) — u in
L1(9).
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Extension to L!

Through duality and approximation we prove that:
Theorem
Let G satisfy (G1)—G2). Then, there exists an extension
G:L[HQ) — LYQ). (11)

which is linear and continuous.
Furthermore, this extension is unique and self-adjoint.
The function u = G(f) is the unique function such that u € L}(Q) and

[ww= [ cwr. (Po-WD)

This solution can be represented as

u(x) = /Q G(x, y)F(y)dy. (12)
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Optimal set of data f

Due to the duality, it is easy to check that

/QG(f):/QfG(l).

G: LY, G(1) = ().
On the other hand, for K € (,

| )= | 6.

For this operators G(xk) =< 07, and hence
G:LNR,0) = LL(Q).
For f > 0 we have, due to (G2)
G = [ Blen)fy)dy > i [ £
If f67 ¢ L} = G(f) = +oo.

David Gémez-Castro (UCM)
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© Problem (Py) for V € L}
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Back to the Schrodinger problem

We can rewrite

Lu+Vu=1Ff Q,
c (Pv)
u=0 0Q (resp. Q°),
We write the problem as a fixed point:
u=G(f — W) (Pv-D)

We call this dual formulation.

This is equivalent to the weak-dual formulation

/Q i+ /Q VUG (4) = /Q ) Vo el®Q).  (Py-WD)
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Existence for (f, V) € L}(Q) x L(Q)

Here we show the following
Theorem

Let f € [}(Q) and V € LL(Q). Then, there exists a solution u of (P\-D)
and it satisfies
|ul < G(|f])

Furthermore,
f>0 = u>0.

We have
(G (f)] < G(|f]). (13)

David Gémez-Castro (UCM) Fractional Schrédinger January 22, 2019 18 / 47


http://blogs.mat.ucm.es/dgcastro

Proof for f > 0.

We construct the following sequence. ug =0, u1 = G(f) > 0,

up = G((f = VU1)+>, up = G(f — Vu,-_l), i > 2. (14)

Step a. We prove that
up < up < w3 <y (15)

Step b. We show, by induction, that
i < iy < i3 < Wy, Vi > 0. (16)

Step c. By the monotone convergence theorem w; * u in L*(Q) where w1 \, T in
L'(Q2). We have

u=G(f — Vu), u=G(f — Vo). (17)

Therefore u = %(u + 1) is a solution of (Py-D). O

V.
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Uniqueness for (f, V) € LY(Q) x L(Q)

In order to prove uniqueness we to assume

(iii) Furthermore, we need positivity in the sense that

/Q FG(F) >0 VF e 2(Q) (G3)
This is true for the examples.
Theorem

V € L>°(). There exists at most one solution u € L*(Q) of (Py-D).

Proof.

The difference of two solutions u = u; — up € L1(Q) satisfies u = —G(Vu).
We have that Vu? = —VuG(Vu) € L?(2). We deduce

| A\

0< [ Vw?P=— [ WG(W) < 0.
Q Q v
(63)
He 2 — 0co = —C(0) =

nce — [
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Solution operator

Corollary
Let V € L(Q2). We consider the solution operator

Gy : fel'(Q)—uec X)),

where u is the unique solution of u = G(f — Vu). It is well-defined, linear and
continuous.

Corollary

We have, for any 0 < 8 < 2s/n,
/ Gv(F)] < CIAPIFlum,  ¥F € L),
A

where C = C(f).

In particular, f, € L}(Q) bounded = G(f,) uniformly integrable.
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Notion of solution when V' ¢ L°°

In order for (Py-D) to be well defined, we need to require something extra.
We extend the definition by setting that Vu in the admissible class

{uz G(f — W)

Py-D
Vu e LY(Q,87) (Pv-D)

Theorem

For any dual solution we have that:

/|u| < c/ Ifl  and /V|u\m < c/ IF|67. (18)
Q Q Q Q

where C does not depend on V, f.

v

Proof in the case f > 0.
Setting ¢ = 1 we get, since Taking 1) = xk for any K € €, since
G(XK) = (57:
/ u+/ VuG(1) < ||G(1)||oo/ f.
Q Q Q

/u—i—/VuéVgC/fd"’.
K Q Q
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Uniqueness for general V >0

Theorem
Assume |[{V = +oo}| = 0.
There exists, at most, one solution u € [*(Q) of (Py-D).
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Proof.

Let ug, up € LY(Q) be two solutions. Then u = u; — up satisfies
u=—G(Wu).
For k € N we define Vi = V A k € LT(Q).
We write
u= G((Vk — V)u — Vku) = G(fk — Vku) (19)
where fi = (Vi — V)u € L1(Q).
Hence, due to Theorem 3.2, u is the unique solution of
u~+ G(Viu) = G(fx) and

lulli@)y < Clifellr(q)- (20)
On the other hand, we have that
[fil = 1(V = Viu| < |V — Vil[u| < V]u| € LY(Q).
Then

Vi = Vae = fi=(Vi—V)u—0ae 2L £ —0inL}(Q).
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Existence for (f, V) € L}(Q) x LL(Q)

Theorem

If (f,V) € LY(Q) x L1 (Q), there exists a solution.

Lemma (Monotonicity)
If Vi < V5 and f1 > f> then le(fl) > sz(f2)

David Gémez-Castro (UCM) Fractional Schroédinger
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Proof for f > 0.
We define
Vik=V Ak, fm="fAm.

We define ui,m = Gy, (fm) € L2(Q). Let U = G(fn) € L°(Q2). Clearly
Uk,m < Um

Step a. k = +oo. Vi /= 0< uym \MZC;P Uk.m — U in L2(). On the
other hand

Victiym < VU € L1(Q
e = @) pex v i 12(9), (21)
Viugm — Vupy, ae. Q ’
Hence
Um = Iilr;n Wl g = Iilr<n G(fm — Vkukm) = G(fn — Vum) (22)
and up, is the solution corresponding to (f, V). O
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Proof (cont.)

We define
Vi =V Ak, fm="FfAm. (23)

We define ug m = Gy, (fn) € L®(Q). Let Uy = G(f) € L>(Q).
Step a. k — +00. As Vi 7V we have uym N\, Um = G(fy — Vup).

Step b. m — +oc0. Since f,, ' = um

/umgCM:Cr>rum—>uinL1(Q).
Q

Analogously Vu,6Y 7 VusY in L1(Q).
Furthermore up, = G(fr — Vinum) — G(f — Vu). O]
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@ Data measures
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Regularization and measure data

(iv) Assume G is regularizing in the sense that
G:L2(Q) - C(Q). (G4)
Then
Theorem
Let G satisfy (G1)—(G4). Then, there exists a extension
G: M(Q) — L(Q).

which is linear and continuous. Furthermore, this extension is unique and self-adjoint.
The function u = G(u) is the unique function such that u € L'(Q) and

| ww= [ cwin

This solution can be represented as

u(x) = / G(x, y)dply).
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The examples

o —A: (G4) is a classical result. See, e.g., Evans 1998; Gilbarg and
Trudinger 2001.

o (—A)jpr: (G4) is proven via Hormander theory. See, e.g. Grubb
2015; Ros-Oton and Serra 2014.

@ (—A)ipy: (G4) can be found in Caffarelli and Stinga 2016.
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© Potentials singular at interior points
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CSOLAs

We prove the following, where Jx is the Dirac measure at x € Q,

Theorem

Assume that V > 0 such that

V :Q — [0, +00] is measurable and L* (Q2\ By(S)) for all p >0, (V1)

for a finite set S, and let u > 0 be a nonnegative Radon measure. Then, there exist an
integrable function u > 0 and constants (o}, )xes € R such that:

) Gy () = ue e in LY(Q)
i) Viug — Vu in LX(Q\ B,(S),87) for any p >0
i) Vieug = Vu+3 cs aj 0x weakly in M(Q,57).

iv) The limit satisfies the equation, for the reduced measure pr = p — ers a;iéx.

u+G(Va) = G(r), (24)

David Gémez-Castro (UCM)
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If a solution exists it is the limit

It is easy to prove, that :

If there exists u= G(u — Vu), then u = u.

Proof.

Assume f > 0. Let wy = u, — u. Then
wk = G(p — Viug) — G(p — V) (25)
= G(Vu — Viug) (26)
=G((V — Vi)u —Viewy) (27)
~—_———
fi
Hence [|wk |1 < C|[(V — Vi)ul| 1.
Via MCT (V — Vi )u N\, 0 in L1(Q). Hence
we — 0 in L1(Q). (28)
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In this case we have
(0x)r = (1 — &™)dx (29)
There are only two options

@ (1—0aX)#0. Then = is a solution. Then, it is easy to prove that
o =0.

Q@ 1— o =0. By uniqueness, then u = 0.
There exists a set

Z = {x € Q: there is no solution of (Py) with data dx} C S.  (30)
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Necessary and sufficient condition for existence

Through scaling, one can characterize

pr == > p({x})x. (31)
xeZ
where, we recall
Z = {x € Q : there is no solution of (Py) with data d}. (32)

One can prove that

Theorem
Let p € M(Q).
There exists a dual solution of (P\/) with data p < |u|(Z) =0.

This is compatible for the results for the usual laplacian given in Orsina
and Ponce 2018.
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The CSOLA operator

Let us define

Gy : M(Q) — LY(Q)
o Gy(pr).

Then Gy is the unique self-adjoint extension of Gy to M(). This operator
admits a kernel representation

Gu(f)(x) = (Gu(f),0e) = (Gy(f), 0x) = (F, Gv(6x))
/Gv y)f(y)dy

Gy (x,y) = Gu(d:)(»)- (33)

hence
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The maximum principle

Notice that, amongst the previous computation, we showed that, for
x €,

Gy (F)(x)= (f,.Gu(5x)
We also recall that

Gv(0x) = Gv((6),) =0  Vxe Z

But then,
G(f)(x)=0 Vx e Z.

No maximum principle on Z.
For the usual laplacian: Orsina and Ponce 2018.
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Characterization of Z

Theorem

Assume (V1). Then

x¢ 7 <= / |325dy < +00. for some p > 0. (34)

(x) |X_

In particular, Z C S. The second condition is VG(&o) € L*(B,(x))

Proof of <

| \

We may take x = 0 for convenience. Let U = G(&) € L}(9).
(i) Assume first VU € L}(Q2). Approximate by uy = Gy, (do). We have

Vit < VU € LY(B,(x)) 2= Viuk — Vu € LX(By(x)) = % =0
= (do)r = do
— There exists a solution for u = dg
= 0¢Z
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@ Singular potentials at the boundary: V € L} . The RFL
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In this section we discuss the results in

J. I. Diaz, D. Gémez-Castro, and J. L. Vazquez. “The fractional Schrodinger
equation with general nonnegative potentials. The weighted space approach”.
Nonlinear Analysis (2018), pp. 1-36. arXiv: 1804.08398

We study the case of the RFL. The aim is to extend previous results for the
classical case given in

J. I. Diaz, D. Gémez-Castro, J.-M. Rakotoson, and R. Temam. “Linear diffusion
with singular absorption potential and/or unbounded convective flow: The
weighted space approach”. Discrete and Continuous Dynamical Systems 38.2
(2018), pp. 509-546. arXiv: 1710.07048

J. I. Diaz, D. Gémez-Castro, and J.-M. Rakotoson. “Existence and uniqueness of
solutions of Schrodinger type stationary equations with very singular potentials
without prescribing boundary conditions and some applications”. Differential
Equations & Applications 10.1 (2018), pp. 47-74. arXiv: 1710.06679
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Optimal set of data f for the RFL

For the RFL we have s = v and
G(1) < o°.

Hence
G: LY, 6% — LYQ).

and
0<f¢LHQ6°) = G(f) = +oo.
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Weak dual solutions

In order for
= G(f — W) (Py-D)

we will require

Vus® € L1(Q). (Py-D-b)
Let us look at this in W-D:

/ ub + / e / FG().

Consider f > 0. Then u > 0 hence

|1l [ viaca) = [ feq)

Therefore, since G(1) < §°
/Vu55§/f65.
Q Q

For f changing sign

V0ulos < [ |f]6°.

David Gémez-Castro (UCM) Fractional Schrédinger
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Assume V € L} .
Going back to ux,m = Gy, (fmn) with f, > 0:
As Vi 'V = 0< ugm \y Uy in Lt

We have, taking ¢ = 1.

/Uk,m+/ Vkuk7m55§ C/ find°. (35)
Q Q Q

Vitkm <V G(fn) € L1,o(Q)

Lie L=

Also

This implies, together with the a.e. convergence,
Vit m — Vi € Lo (Q). (36)

loc

However, this does not seem to implies L! convergence. We have

/ Vi * < / f6° (37)
Q Q
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Difficulties of the case V & L,loc

We showed
Vit m — Vum € Lo (Q). (36)
We would need, in the weak formulation,

G(v) € LZ(9Q).
This does not happen for i) € L>°. We go back to the very weak

formulation
/ Ug,m(—A)RrLY +/ Vi, mp = / fme
Q Q Q
forall o € X° = {p € C°(R") : (=Q)jpLe € L=(Q)}.

If we multiply by a cut-off function 7. € C2°(Q2) we get, formally

[ skinl=BYer(10) + [ Vi = [ e
Q Q Q

Now, we do have
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Approximation of test functions

Let  be a C?(R) function such that 0 <7 < 1 and

0 t<0
t) = - 38
() {1 o, (38)
We define the functions
x)—¢e®
) = (2022, (39)

where ¢y is the first eigenfunction of (—A)f;p;,- Notice that 1 < §°. We
prove the following approximation result:

For ¢ € X* we have that n.p € X° N C.(QQ) and
0°(=A)(pne) = 0°(=A)¢ (40)
Plle ¥
o (4D
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Approximation of test functions

There exists a sequence

Lemma
For ¢ € X° we have that n.p € X°* N C.(2) and
0°(=A)(pne) = 0°(=A)¢ (40)
s )
in L*°-weak-x as ¢ — 0. )

We can now use
k
/Vkukm UE% _>/ Vumnep
Qw—’v Q
L, LEQ)

Since uy m/6° < G(fm)/6° € L>(Q2) we have

Uk7
o 5sm5s( JrrrL(#7e) —>/ *55 A)gpr (M=)

—~

42)
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Recovering the set of test functions

Since uy m/6° < G(fm)/6° € L>(Q2) we have

uk, S s Um S s
/:75 (—A)ker(ene) —>/ — 0 (—A)krLy (43)
Q 0 Q0
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Existence for (f, V) € L® x (L} )+

Theorem
Let f € L°°(Q) and 0 < V € Lj,.(Q). Then, there exists a unique u € L'(Q) such that

Vué® € L and
/U(—A)EFLWr/ pr:/fso Vo € X°.
Q Q Q

Proof

We have ux = Gy, (f) and using 7. as a test function we get:

/ RFL(776<)0)+/ VkUk5sn§@ /fneso

As k — 400, we get ux \, u < G(f). Hence u/6° < G(f)/6° € L*°. As above

/*55( A)rrL(n:-¢) + /V“(SS?%@ /fﬁssé’
Q Q

/6—“555(—A)%FL¢+/ vuds”;f /fgp.
Q Q

| A\

Again, ase — 0
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Existence for (f, V) € L}(Q,§°

Theorem
Let f € L'(Q,6°) and 0 < V € L,.(Q). Then, there exists a unique solution of

/U(—A)%mer/ pr:/fso Vo € X°.
Q Q Q

Proof

Letting um = Gv/(fm) we have

/ tm(—AYarr e + / Vi £ = / L.
Q Q

| \

As
fo A = Up S U = Vup® A Vud® ae. 225 Vupd® 7 Vus® in L
11
Thus

/ u(—A)irLe + / Viné* 2 = / fnd* 2.
Q Q 4 Q g
O
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A comment on boundary behaviour

When V > Cy§72%¢ then solutions are flatter than the usual estimate:

Theorem

Let0<e<s, 0<fel® V(x)> Cyd(x)"2 >0 with Cy > —7sie.
Then,

u o0
Sore € L*(Q). (44)
This means that u
g(x) — 0, as x — 0. (45)

Singular potential give flatter boundary behaviour.
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Thank you for you attention.
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