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Aim

We study equations of the form{
Lu + Vu = f Ω,

u = 0 ∂Ω (resp. Ωc) ,
(PV )

where L is an integro-differential operator, e.g. (−∆)s ,
posed on a bounded domain Ω of Rn, where n ≥ 3 and 0 < s < 1.

V (the potential) is a nonnegative Borel measurable function. It may be
singular.

f is some function or measure. We aim to study the singular cases.
The results correspond to the publications

J. I. D́ıaz, D. Gómez-Castro, and J. L. Vázquez. “The fractional
Schrödinger equation with general nonnegative potentials. The weighted
space approach”. Nonlinear Analysis (2018), pp. 1–36. arXiv:
1804.08398

D. Gómez-Castro and J. L. Vázquez. “The fractional Schrödinger equation
with singular potential and measure data”. (2018). arXiv: 1812.02120
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Fractional Laplacian in Rn

Let 0 < s < 1. The following definitions are equivalent:

Fourier transform F , with simbol |ξ|2s :

(−∆)su = F−1[|ξ|2sF [u]] (1a)

As a singular integral

(−∆)su(x) = cn,s P.V.

∫
Rn

u(x)− (y)

|x − y |n+2s
dy (1b)

Through the heat semigroup

(−∆)su(x) =
1

Γ(−s)

∫ +∞

0

(e∆tu(x)− u(x))
dt

t1+s
(1c)

Probabilistically, where −∆ correspond to Brownian motion, (−∆)s corresponds
to Levy flights.
Clearly (−∆)1 = −∆ and (−∆)0 = Id .
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The fractional Laplacians on bounded domains

The following non-equivalent definitions on bounded domains are common:

The Restricted Fractional Laplacian (RFL):

(−∆)sRFLu(x) = cn,s P.V.

∫
Rn

u(x)− u(y)

|x − y |n+2s
dy (2)

where u is extended by 0 outside Ω

The Spectral Fractional Laplacian (SFL)

(−∆)sSFLu(x) =
1

Γ(−s)

∫ +∞

0

(et∆u(x)− u(x))
dt

t1+s
(3)

This corresponds to computing the spectral decomposition and defining

(−∆)sSFLu(x) =
+∞∑
i=1

uiλ
s
i ϕi .

The Censored (or Regional) Fractional Laplacian (CFL), for 1/2 < s < 1:

(−∆)sCFLu(x) = cn,s P.V.

∫
Ω

u(x)− u(y)

|x − y |n+2s
dy (4)
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The Laplace problem

Homogeneous Dirichlet problem{
Lu = f Ω

u = 0 ∂Ω
L = −∆, (−∆)sSFL, (−∆)sCFL (P0){

Lu = f Ω

u = 0 Ωc L = (−∆)sRFL (P0)

For the operators above and f ∈ C∞c (Ω), there exists a unique classical
solution u ∈ C(Ω) (i.e. satisfying the problem pointwise).

This solution can be represented as

u(x) =

∫
Ω
G(x , y)f (y)dy . (G)

We define the solution operator

G : f 7−→ u. (5)
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Existence of solutions in energy spaces. Weak solutions

The operators in the example satisfy a theory similar to the classical.

RFL: We can write a weak formulation, for f ∈ L2 find u ∈ Hs
0(Ω) such that∫

Rn

∫
Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x − y |n+2s
dxdy =

∫
Ω

f ϕ, ∀ϕ ∈ Hs
0(Ω)

CFL: We can write a weak formulation, for f ∈ L2 find u ∈ Hs
0(Ω) such that∫

Ω

∫
Ω

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x − y |n+2s
dxdy =

∫
Ω

f ϕ, ∀ϕ ∈ Hs
0(Ω)

SFL: Write f ∈ L2 in eigen-decomposition

f =
+∞∑
i=1

fiϕi 7−→ u =
+∞∑
i=1

fiλ
−s
i ϕi .

Problems for the RFL and CFL can be solved by minimization of energy. Also by
using the standard Lax-Milgram theorem.
For fractional sobolev spaces: Di Nezza, Palatucci, and Valdinoci 2012.
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Kernel representation

We assume that L is an operator such that, for f ∈ L∞(Ω)

G(f )(x) =

∫
Ω

G(x , y)f (y)dy . (G)

such that G satisfies properties:

(i) G is symmetric and self-adjoint in the sense that

G(x , y) = G(y , x). (G1)

(ii) We assume n ≥ 3 and we have the estimate

G(x , y) � 1

|x − y |n−2s

(
δ(x)δ(y)

|x − y |2
∧ 1

)γ
. (G2)
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The examples covered by our theory

The elliptic problem has been widely studied, specially for data f ∈ L∞(Ω). Also,
two-sided kernel estimates are known:

The classical Laplacian −∆:

(G2) holds with s = 1 and γ = 1.

Restricted Fractional Laplacian (−∆)sRFL:

(G2) holds with 0 < s < 1 and γ = s. See Chen and Song 1998.

Spectral Fractional Laplacian (−∆)sSFL:

(G2) holds with 0 < s < 1 and γ = 1.

See Bonforte, Figalli, and Vázquez 2018.

Censored Fractional Laplacian (−∆)sCFL:

(G2) holds with 1
2 < s < 1 and γ = 2s − 1. See Chen, Kim, and Song 2009.
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Weak and weak-dual formulations

Since L is self-adjoint, we can define very weak solutions∫
Ω
uLϕ =

∫
Ω
f ϕ ∀ϕ ∈ ? (6)

Different operators require different sets of test functions. Some authors
use weak solutions for the RFL Chen and Véron 2014; D́ıaz,
Gómez-Castro, and Vázquez 2018.

Letting ϕ = G(ψ) we can simply write∫
Ω
uψ =

∫
Ω
fG(ψ) ∀ψ ∈ L∞(Ω) (P0-WD)

This kind of solutions are known as weak-dual solutions.
Since L is self-adjoint, G is self-adjoint and so∫

Ω
G(f )ψ =

∫
Ω
fG(ψ), ∀f , ψ ∈ L∞(Ω) (7)

Hence, classical solutions for f ∈ L∞(Ω) are weak-dual solutions.
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Estimates for some simple functions

Theorem

Assume (G2). Then, we have that:

For K b Ω: G(χK ) � δγ

For A ⊂ Ω: we have |G(χA)| ≤ C |A|β, for any β < 2s
n , where

C = C (β).

From now on we assume (G1)–(G2).
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Uniqueness of weak-dual solutions

Theorem

Let f ∈ L1(Ω). Then there exists, at most, one solution u ∈ L1(Ω) of∫
Ω
uψ =

∫
Ω
fG(ψ) ∀ψ ∈ L∞(Ω) (P0-WD)

Proof.

Let u1, u2 ∈ L1(Ω) be two solutions. Taking ψ = sign(u1 − u2) ∈ L∞(Ω)
we deduce∫

Ω
|u1− u2| =

∫
Ω

(u1− u2) sign(u1− u2) =

∫
Ω

(f − f )G(sign(u1− u2)) = 0.

(8)

Remark

Notice that, in fact, ∀ψ ∈ L∞c (Ω) is enough, taking ψ = sign(u1 − u2)χK .David Gómez-Castro (UCM) Fractional Schrödinger January 22, 2019 11 / 47
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From the positive cone to the whole space

Lemma

Let p, q > 1 be two normed function spaces, and let T : Lp → Lq be linear
and continuous. If

‖T (f )‖Lq ≤ C‖f ‖Lp , ∀0 ≤ f ∈ X

Then the same holds for any f ∈ X.

Proof.

Let f ∈ X . We split f = f+ + f−. Then

‖T (f )‖q = ‖T (f+)−T (f−)‖q ≤ ‖T (f+)‖q+‖T (f−)‖q ≤ C‖f+‖p+C‖f−‖p = C‖f ‖p.
(9)
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Regularization

Theorem

f ∈ Lp(Ω) =⇒ G(f ) ∈ Lq(Ω) ∀1 ≤ q < Q(p) =
n

n − 2s
p.

Furthermore G : Lp(Ω)→ Lq(Ω) is continuous.

Proof.

The L1(Ω) and L∞(Ω) result follow by direct computation.
The intermediate case by Riesz-Thorin lemma.
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Dunford-Pettis property

The aim of this section is to prove that

Theorem

We have that, for any 0 < β < 2s
n∫

A
|G(f )| ≤ C |A|β‖f ‖L1(Ω), ∀f ∈ L1(Ω). (10)

for some C > 0.

Hence, if fn ∈ L1(Ω) is a bounded sequence, then G(fn) is uniformly
integrable.

In particular, there exists a weakly convergent subsequence G(fnk ) ⇀ u in
L1(Ω).
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Extension to L1

Through duality and approximation we prove that:

Theorem

Let G satisfy (G1)–(G2). Then, there exists an extension

G : L1(Ω)→ L1(Ω). (11)

which is linear and continuous.
Furthermore, this extension is unique and self-adjoint.
The function u = G(f ) is the unique function such that u ∈ L1(Ω) and∫

Ω

uψ =

∫
Ω

G(ψ)f . (P0-WD)

This solution can be represented as

u(x) =

∫
Ω

G(x , y)f (y)dy . (12)
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Optimal set of data f

Due to the duality, it is easy to check that∫
Ω
G(f ) =

∫
Ω
fG(1).

Therefore
G : L1(Ω,G(1))→ L1(Ω).

On the other hand, for K b Ω,∫
K
G(f ) =

∫
Ω
fG(χK ).

For this operators G(χK ) � δγ , and hence

G : L1(Ω, δγ)→ L1
loc(Ω).

For f ≥ 0 we have, due to (G2)

G(f )(x) =

∫
Ω
G(x , y)f (y)dy ≥ cδ(x)γ

∫
Ω
f (y)δ(y)γ

If f δγ /∈ L1 =⇒ G(f ) ≡ +∞.
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Back to the Schrödinger problem

We can rewrite {
Lu + Vu = f Ω,

u = 0 ∂Ω (resp. Ωc) ,
(PV )

We write the problem as a fixed point:

u = G(f − Vu) (PV -D)

We call this dual formulation.

This is equivalent to the weak-dual formulation∫
Ω
uψ +

∫
Ω
VuG(ψ) =

∫
Ω
fG(ψ) ∀ψ ∈ L∞(Ω). (PV -WD)
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Existence for (f ,V ) ∈ L1(Ω)× L∞+ (Ω)

Here we show the following

Theorem

Let f ∈ L1(Ω) and V ∈ L∞+ (Ω). Then, there exists a solution u of (PV -D)
and it satisfies

|u| ≤ G(|f |)

Furthermore,
f ≥ 0 =⇒ u ≥ 0.

We have
|GV (f )| ≤ G(|f |). (13)
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Proof for f ≥ 0.
We construct the following sequence. u0 = 0, u1 = G(f ) ≥ 0,

u2 = G

((
f − Vu1

)
+

)
, ui = G(f − Vui−1), i > 2. (14)

Step a. We prove that
u0 ≤ u2 ≤ u3 ≤ u1. (15)

Step b. We show, by induction, that

u2i ≤ u2i+2 ≤ u2i+3 ≤ u2i+1, ∀i ≥ 0. (16)

Step c. By the monotone convergence theorem u2i ↗ u in L1(Ω) where u2i+1 ↘ u in
L1(Ω). We have

u = G(f − Vu), u = G(f − Vu). (17)

Therefore u = 1
2
(u + u) is a solution of (PV -D).
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Uniqueness for (f ,V ) ∈ L1(Ω)× L∞+ (Ω)

In order to prove uniqueness we to assume

(iii) Furthermore, we need positivity in the sense that∫
Ω

fG(f ) ≥ 0 ∀f ∈ L2(Ω) (G3)

This is true for the examples.

Theorem

V ∈ L∞(Ω). There exists at most one solution u ∈ L1(Ω) of (PV -D).

Proof.

The difference of two solutions u = u1 − u2 ∈ L1(Ω) satisfies u = −G(Vu).
We have that Vu2 = −VuG(Vu) ∈ L2(Ω). We deduce

0 ≤
∫

Ω

Vu2 = −
∫

Ω

VuG(Vu) ≤︸︷︷︸
(G3)

0.

Hence Vu2 = 0 so u = −G(0) = 0.
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Solution operator

Corollary

Let V ∈ L∞+ (Ω). We consider the solution operator

GV : f ∈ L1(Ω) 7→ u ∈ L1(Ω) ,

where u is the unique solution of u = G(f − Vu). It is well-defined, linear and
continuous.

Corollary

We have, for any 0 ≤ β < 2s/n,∫
A

|GV (f )| ≤ C |A|β‖f ‖L1(Ω), ∀f ∈ L1(Ω).

where C = C (β).

In particular, fn ∈ L1(Ω) bounded =⇒ G(fn) uniformly integrable.
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Notion of solution when V /∈ L∞+
In order for (PV -D) to be well defined, we need to require something extra.
We extend the definition by setting that Vu in the admissible class{

u = G(f − Vu)

Vu ∈ L1(Ω, δγ)
(PV -D)

Theorem
For any dual solution we have that:∫

Ω

|u| ≤ C

∫
Ω

|f | and

∫
Ω

V |u|δγ ≤ C

∫
Ω

|f |δγ . (18)

where C does not depend on V , f .

Proof in the case f ≥ 0.
Setting ψ = 1 we get, since∫

Ω

u +

∫
Ω

VuG(1) ≤ ‖G(1)‖∞
∫

Ω

f .

Taking ψ = χK for any K b Ω, since
G(χK ) � δγ :∫

K

u +

∫
Ω

Vuδγ ≤ C

∫
Ω

f δγ .
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Uniqueness for general V ≥ 0

Theorem

Assume |{V = +∞}| = 0.
There exists, at most, one solution u ∈ L1(Ω) of (PV -D).
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Proof.

Let u1, u2 ∈ L1(Ω) be two solutions. Then u = u1 − u2 satisfies
u = −G(Vu).
For k ∈ N we define Vk = V ∧ k ∈ L∞+ (Ω).
We write

u = G((Vk − V )u − Vku) = G(fk − Vku) (19)

where fk = (Vk − V )u ∈ L1(Ω).
Hence, due to Theorem 3.2, u is the unique solution of
u + G(Vku) = G(fk) and

‖u‖L1(Ω) ≤ C‖fk‖L1(Ω). (20)

On the other hand, we have that

|fk | = |(V − Vk)u| ≤ |V − Vk ||u| ≤ V |u| ∈ L1(Ω).

Then

Vk → V a.e. =⇒ fk = (Vk − V )u → 0 a.e.
DCT
=⇒ fk → 0 in L1(Ω).

Hence ‖u‖ → 0. In particular, u = 0.
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Existence for (f ,V ) ∈ L1(Ω)× L1
+(Ω)

Theorem

If (f ,V ) ∈ L1(Ω)× L1
+(Ω), there exists a solution.

Lemma (Monotonicity)

If V1 ≤ V2 and f1 ≥ f2 then GV1(f1) ≥ GV2(f2).
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Proof for f ≥ 0.
We define

Vk = V ∧ k , fm = f ∧m.

We define uk,m = GVk
(fm) ∈ L∞(Ω). Let Um = G(fm) ∈ L∞(Ω). Clearly

uk,m ≤ Um

Step a. k → +∞. Vk ↗ =⇒ 0 ≤ uk,m ↘
MCT
=⇒ uk,m → um in L1(Ω). On the

other hand {
Vkuk,m ≤ VUm ∈ L1(Ω)

Vkuk,m → Vum a.e. Ω

DCT
=⇒ Vkuk,m → Vum in L1(Ω). (21)

Hence
um = lim

k
uk,m = lim

k
G(fm − Vkuk,m) = G(fm − Vum) (22)

and um is the solution corresponding to (fm,V ).
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Proof (cont.)

We define
Vk = V ∧ k, fm = f ∧m. (23)

We define uk,m = GVk
(fm) ∈ L∞(Ω). Let Um = G(fm) ∈ L∞(Ω).

Step a. k → +∞. As Vk ↗ V we have uk,m ↘ um = G(fm − Vum).

Step b. m→ +∞. Since fm ↗ =⇒ um ↗.∫
Ω
um ≤ C

MCT
=⇒ um → u in L1(Ω).

Analogously Vumδ
γ ↗ Vuδγ in L1(Ω).

Furthermore um = G(fm − Vmum)→ G(f − Vu).
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Regularization and measure data

(iv) Assume G is regularizing in the sense that

G : L∞(Ω)→ C(Ω). (G4)

Then

Theorem

Let G satisfy (G1)–(G4). Then, there exists a extension

G :M(Ω)→ L1(Ω).

which is linear and continuous. Furthermore, this extension is unique and self-adjoint.
The function u = G(µ) is the unique function such that u ∈ L1(Ω) and∫

Ω

uψ =

∫
Ω

G(ψ)dµ.

This solution can be represented as

u(x) =

∫
Ω

G(x , y)dµ(y).
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The examples

−∆: (G4) is a classical result. See, e.g., Evans 1998; Gilbarg and
Trudinger 2001.

(−∆)sRFL: (G4) is proven via Hörmander theory. See, e.g. Grubb
2015; Ros-Oton and Serra 2014.

(−∆)sSFL: (G4) can be found in Caffarelli and Stinga 2016.
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CSOLAs

We prove the following, where δx is the Dirac measure at x ∈ Ω,

Theorem

Assume that V ≥ 0 such that

V : Ω→ [0,+∞] is measurable and L∞ (Ω \ Bρ(S)) for all ρ > 0, (V1)

for a finite set S, and let µ ≥ 0 be a nonnegative Radon measure. Then, there exist an
integrable function u ≥ 0 and constants (αx

µ)x∈S ∈ R such that:

i) GVk
(µ) = uk ↘ u in L1(Ω)

ii) Vkuk → Vu in L1(Ω \ Bρ(S), δγ) for any ρ > 0

iii) Vkuk ⇀ Vu +
∑

x∈S α
x
µδx weakly in M(Ω, δγ).

iv) The limit satisfies the equation, for the reduced measure µr = µ−
∑

x∈S α
x
µδx .

u + G(Vu) = G(µr ), (24)
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If a solution exists it is the limit

It is easy to prove, that :

Lemma

If there exists u = G(µ− Vu), then u = u.

Proof.

Assume f ≥ 0. Let wk = uk − u. Then

wk = G(µ− Vkuk)−G(µ− Vu) (25)

= G(Vu − Vkuk) (26)

= G((V − Vk)u︸ ︷︷ ︸
fk

−Vkwk) (27)

Hence ‖wk‖L1 ≤ C‖(V − Vk)u‖L1 .
Via MCT (V − Vk)u ↘ 0 in L1(Ω). Hence

wk → 0 in L1(Ω). (28)
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Data µ = δx

In this case we have
(δx)r = (1− αx)δx (29)

There are only two options

1 (1− αx) 6= 0. Then u
1−αx is a solution. Then, it is easy to prove that

αx = 0.

2 1− αx = 0. By uniqueness, then u = 0.

There exists a set

Z = {x ∈ Ω : there is no solution of (PV ) with data δx} ⊂ S . (30)
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Necessary and sufficient condition for existence

Through scaling, one can characterize

µr = µ−
∑
x∈Z

µ({x})δx . (31)

where, we recall

Z = {x ∈ Ω : there is no solution of (PV ) with data δx}. (32)

One can prove that

Theorem

Let µ ∈M(Ω).
There exists a dual solution of (PV ) with data µ ⇐⇒ |µ|(Z ) = 0.

This is compatible for the results for the usual laplacian given in Orsina
and Ponce 2018.
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The CSOLA operator

Let us define

G̃V :M(Ω) −→ L1(Ω)

µ 7−→ GV (µr ).

Then G̃V is the unique self-adjoint extension of GV to M(Ω). This operator
admits a kernel representation

GV (f )(x) = 〈GV (f ), δx〉 = 〈G̃V (f ), δx〉 = 〈f ,GV (δx)〉

=

∫
Ω

G̃V (δx)(y)f (y)dy .

hence
GV (x , y) = G̃V (δx)(y). (33)
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The maximum principle

Notice that, amongst the previous computation, we showed that, for
x ∈ Ω,

GV (f )(x)= 〈f , .G̃V (δx)〉

We also recall that

G̃V (δx) = GV ((δx)r ) = 0 ∀x ∈ Z .

But then,
G(f )(x) = 0 ∀x ∈ Z .

No maximum principle on Z .
For the usual laplacian: Orsina and Ponce 2018.
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Characterization of Z

Theorem

Assume (V1). Then

x /∈ Z ⇐⇒
∫
Bρ(x)

V (y)

|x − y |n−2s
dy < +∞. for some ρ > 0. (34)

In particular, Z ⊂ S. The second condition is VG(δ0) ∈ L1(Bρ(x)).

Proof of ⇐= .

We may take x = 0 for convenience. Let U = G(δ0) ∈ L1(Ω).
(i) Assume first VU ∈ L1(Ω). Approximate by uk = GVk

(δ0). We have

Vkuk ≤ VU ∈ L1(Bρ(x))
DCT
=⇒ Vkuk → Vu ∈ L1(Bρ(x)) =⇒ α0

µ = 0

=⇒ (δ0)r = δ0

=⇒ There exists a solution for µ = δ0

=⇒ 0 /∈ Z
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In this section we discuss the results in

J. I. D́ıaz, D. Gómez-Castro, and J. L. Vázquez. “The fractional Schrödinger
equation with general nonnegative potentials. The weighted space approach”.
Nonlinear Analysis (2018), pp. 1–36. arXiv: 1804.08398

We study the case of the RFL. The aim is to extend previous results for the
classical case given in

J. I. D́ıaz, D. Gómez-Castro, J.-M. Rakotoson, and R. Temam. “Linear diffusion
with singular absorption potential and/or unbounded convective flow: The
weighted space approach”. Discrete and Continuous Dynamical Systems 38.2
(2018), pp. 509–546. arXiv: 1710.07048

J. I. D́ıaz, D. Gómez-Castro, and J.-M. Rakotoson. “Existence and uniqueness of
solutions of Schrödinger type stationary equations with very singular potentials
without prescribing boundary conditions and some applications”. Differential
Equations & Applications 10.1 (2018), pp. 47–74. arXiv: 1710.06679
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Optimal set of data f for the RFL

For the RFL we have s = γ and

G(1) � δs .

Hence
G : L1(Ω, δs)→ L1(Ω).

and
0 ≤ f /∈ L1(Ω, δs) =⇒ G(f ) ≡ +∞.
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Weak dual solutions

In order for
u = G(f − Vu) (PV -D)

we will require
Vuδs ∈ L1(Ω). (PV -D-b)

Let us look at this in W-D:∫
Ω
uψ +

∫
Ω
VuG(ψ) =

∫
Ω
fG(ψ).

Consider f ≥ 0. Then u ≥ 0 hence∫
Ω
|u|+

∫
Ω
V |u|G(1) =

∫
Ω
fG(1).

Therefore, since G(1) � δs ∫
Ω
Vuδs ≤

∫
Ω
f δs .

For f changing sign ∫
Ω
V |u|δs ≤

∫
Ω
|f |δs .
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Approximation

Assume V ∈ L1
loc .

Going back to uk,m = GVk
(fm) with fm ≥ 0:

As Vk ↗ V =⇒ 0 ≤ uk,m ↘ um in L1.

We have, taking ψ = 1.∫
Ω

uk,m +

∫
Ω

Vkuk,mδ
s ≤ C

∫
Ω

fmδ
s . (35)

Also
Vkuk,m ≤ V︸︷︷︸

L1
loc

G(fm)︸ ︷︷ ︸
L∞

∈ L1
loc(Ω)

This implies, together with the a.e. convergence,

Vkuk,m → Vum ∈ L1
loc(Ω). (36)

However, this does not seem to implies L1 convergence. We have∫
Ω

Vumδ
s ≤

∫
Ω

fmδ
s (37)
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Difficulties of the case V ∈ L1
loc

We showed
Vkuk,m → Vum ∈ L1

loc(Ω). (36)

We would need, in the weak formulation,

G(ψ) ∈ L∞c (Ω).

This does not happen for ψ ∈ L∞. We go back to the very weak
formulation ∫

Ω
uk,m(−∆)sRFLϕ+

∫
Ω
Vkuk,mϕ =

∫
Ω
fmϕ

for all ϕ ∈ Xs = {ϕ ∈ C s(Rn) : (−∆)sRFLϕ ∈ L∞(Ω)}.

If we multiply by a cut-off function ηε ∈ C∞c (Ω) we get, formally∫
Ω
uk,m(−∆)sRFL(ηεϕ) +

∫
Ω
Vkuk,mηεϕ =

∫
Ω
fmηεϕ

Now, we do have ∫
Ω
Vkuk,m︸ ︷︷ ︸

L1
loc

ηεϕ︸︷︷︸
L∞c (Ω)

→
∫

Ω
Vumηεϕ
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Approximation of test functions

Let η be a C 2(R) function such that 0 ≤ η ≤ 1 and

η(t) =

{
0 t ≤ 0,

1 t ≥ 2.
(38)

We define the functions

ηε(x) = η

(
ϕ1(x)− εs

εs

)
. (39)

where ϕ1 is the first eigenfunction of (−∆)sRFL. Notice that ϕ1 � δs . We
prove the following approximation result:

Lemma

For ϕ ∈ Xs we have that ηεϕ ∈ Xs ∩ Cc(Ω) and

δs(−∆)s(ϕηε) ⇀ δs(−∆)sϕ (40)
ϕηε
δs

⇀
ϕ

δs
(41)
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Approximation of test functions

There exists a sequence

Lemma

For ϕ ∈ Xs we have that ηεϕ ∈ Xs ∩ Cc(Ω) and

δs(−∆)s(ϕηε) ⇀ δs(−∆)sϕ (40)
ϕηε
δs

⇀
ϕ

δs
(41)

in L∞-weak-? as ε→ 0.

We can now use ∫
Ω
Vkuk,m︸ ︷︷ ︸

L1
loc

ηεϕ︸︷︷︸
L∞c (Ω)

k→
∫

Ω
Vumηεϕ

Since uk,m/δ
s ≤ G(fm)/δs ∈ L∞(Ω) we have∫

Ω

uk,m
δs

δs(−∆)sRFL(ϕηε)
k→
∫

Ω

um
δs
δs(−∆)sRFL(ηεϕ) (42)
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Recovering the set of test functions

Since uk,m/δ
s ≤ G(fm)/δs ∈ L∞(Ω) we have∫

Ω

uk,m
δs

δs(−∆)sRFL(ϕηε)→
∫

Ω

um
δs
δs(−∆)sRFLϕ (43)
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Existence for (f ,V ) ∈ L∞ × (L1
loc)+

Theorem

Let f ∈ L∞(Ω) and 0 ≤ V ∈ L1
loc(Ω). Then, there exists a unique u ∈ L1(Ω) such that

Vuδs ∈ L1 and ∫
Ω

u(−∆)sRFLϕ+

∫
Ω

Vuϕ =

∫
Ω

f ϕ ∀ϕ ∈ Xs .

Proof.
We have uk = GVk (f ) and using ηε as a test function we get:∫

Ω

uk
δs
δs(−∆)sRFL(ηεϕ) +

∫
Ω

Vkukδ
s ηεϕ

δs
=

∫
Ω

f ηεϕ

As k → +∞, we get uk ↘ u ≤ G(f ). Hence u/δs ≤ G(f )/δs ∈ L∞. As above∫
Ω

u

δs
δs(−∆)sRFL(ηεϕ) +

∫
Ω

Vuδs
ηεϕ

δs
=

∫
Ω

f ηεϕ

Again, as ε→ 0 ∫
Ω

u

δs
δs(−∆)sRFLϕ+

∫
Ω

Vuδs
ηεϕ

δs
=

∫
Ω

f ϕ.
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Existence for (f ,V ) ∈ L1(Ω, δs)× (L1
loc)+

Theorem

Let f ∈ L1(Ω, δs) and 0 ≤ V ∈ L1
loc(Ω). Then, there exists a unique solution of∫

Ω

u(−∆)sRFLϕ+

∫
Ω

Vuϕ =

∫
Ω

f ϕ ∀ϕ ∈ Xs .

Proof.
Letting um = GV (fm) we have∫

Ω

um(−∆)sRFLϕ+

∫
Ω

Vumδ
s ϕ

δs
=

∫
Ω

fmδ
s ϕ

δs
.

As

fm ↗ f =⇒ um ↗ u =⇒ Vumδ
s ↗ Vuδs︸ ︷︷ ︸

L1

a.e.
MCT
=⇒ Vumδ

s ↗ Vuδs in L1

Thus ∫
Ω

u(−∆)sRFLϕ+

∫
Ω

Vumδ
s ϕ

δs
=

∫
Ω

fmδ
s ϕ

δs
.
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A comment on boundary behaviour

When V ≥ CV δ
−2+ε then solutions are flatter than the usual estimate:

Theorem

Let 0 < ε < s, 0 ≤ f ∈ L∞, V (x) ≥ CV δ(x)−2s ≥ 0 with CV > −γs+ε.
Then,

u

δs+ε
∈ L∞(Ω). (44)

This means that
u

δs
(x)→ 0, as x → ∂Ω. (45)

Singular potential give flatter boundary behaviour.
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Thank you for you attention.
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J. I. D́ıaz, D. Gómez-Castro, and J.-M. Rakotoson. “Existence and
uniqueness of solutions of Schrödinger type stationary equations with very
singular potentials without prescribing boundary conditions and some
applications”. Differential Equations & Applications 10.1 (2018),
pp. 47–74. arXiv: 1710.06679.
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Hörmander’s theory of µ-transmission pseudodifferential operators”.
Advances in Mathematics 268 (2015), pp. 478–528. arXiv: 1310.0951.

D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of
Second Order. Berlin: Springer-Verlag, 2001.
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