Fractional Schrödinger equation with singular data and potential

David Gómez-Castro

Instituto de Matemática Interdisciplinar, U. Complutense de Madrid

Seminar at U. Federico II, Naples January 22, 2019

Aim

We study equations of the form

$$\begin{cases} Lu + Vu = f & \Omega, \\ u = 0 & \partial\Omega \text{ (resp. } \Omega^c), \end{cases}$$
 (P_V)

where L is an integro-differential operator, e.g. $(-\Delta)^s$, posed on a bounded domain Ω of \mathbb{R}^n , where $n \geq 3$ and 0 < s < 1.

V (the potential) is a nonnegative Borel measurable function. It may be singular.

f is some function or measure. We aim to study the singular cases. The results correspond to the publications

J. I. Díaz, D. Gómez-Castro, and J. L. Vázquez. "The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach". *Nonlinear Analysis* (2018), pp. 1–36. arXiv: 1804.08398

Structure of the talk

- Fractional operators
- 2 The Laplace equation (V = 0)
- 3 Problem (P_V) for $V \in L^1$
- Data measures
- 5 Potentials singular at interior points
- **6** Singular potentials at the boundary: $V \in L^1_{loc}$. The RFL

Outline

- Tractional operators
- 2 The Laplace equation (V = 0)
- 3 Problem (P_V) for $V \in L^1$
- 4 Data measures
- 5 Potentials singular at interior points
- $oldsymbol{6}$ Singular potentials at the boundary: $V \in L^1_{loc}$. The RFL

Fractional Laplacian in \mathbb{R}^n

Let 0 < s < 1. The following definitions are equivalent:

• Fourier transform \mathcal{F} , with simbol $|\xi|^{2s}$:

$$(-\Delta)^{s} u = \mathcal{F}^{-1}[|\xi|^{2s} \mathcal{F}[u]] \tag{1a}$$

As a singular integral

$$(-\Delta)^{s} u(x) = c_{n,s} \text{ P.V.} \int_{\mathbb{R}^{n}} \frac{u(x) - (y)}{|x - y|^{n+2s}} dy$$
 (1b)

Through the heat semigroup

$$(-\Delta)^{s}u(x) = \frac{1}{\Gamma(-s)} \int_{0}^{+\infty} (e^{\Delta t}u(x) - u(x)) \frac{dt}{t^{1+s}}$$
 (1c)

Probabilistically, where $-\Delta$ correspond to Brownian motion, $(-\Delta)^s$ corresponds to Levy flights.

Clearly $(-\Delta)^1 = -\Delta$ and $(-\Delta)^0 = Id$.

The fractional Laplacians on bounded domains

The following non-equivalent definitions on bounded domains are common:

The Restricted Fractional Laplacian (RFL):

$$(-\Delta)_{\mathrm{RFL}}^{s} u(x) = c_{n,s} \, \mathrm{P.V.} \int_{\mathbb{R}^{n}} \frac{u(x) - u(y)}{|x - y|^{n+2s}} dy \tag{2}$$

where u is extended by 0 outside Ω

The Spectral Fractional Laplacian (SFL)

$$(-\Delta)_{\mathrm{SFL}}^{s} u(x) = \frac{1}{\Gamma(-s)} \int_{0}^{+\infty} (e^{t\Delta} u(x) - u(x)) \frac{dt}{t^{1+s}}$$
(3)

This corresponds to computing the spectral decomposition and defining

$$(-\Delta)_{\mathrm{SFL}}^{\mathfrak{s}} u(x) = \sum_{i=1}^{+\infty} u_i \lambda_i^{\mathfrak{s}} \varphi_i.$$

• The **Censored** (or Regional) Fractional Laplacian (CFL), for 1/2 < s < 1:

$$(-\Delta)_{CFL}^{s} u(x) = c_{n,s} \text{ P.V.} \int_{\Omega} \frac{u(x) - u(y)}{|x - y|^{n+2s}} dy$$
 (4)

Outline

- Fractional operators
- 2 The Laplace equation (V = 0)
- 3 Problem (P_V) for $V \in L^1$
- Data measures
- 5 Potentials singular at interior points
- $oldsymbol{6}$ Singular potentials at the boundary: $V \in L^1_{loc}$. The RFL

The Laplace problem

Homogeneous Dirichlet problem

$$\begin{cases} Lu = f & \Omega \\ u = 0 & \partial\Omega \end{cases} \qquad L = -\Delta, (-\Delta)_{SFL}^{s}, (-\Delta)_{CFL}^{s} \qquad (P_0)$$

$$\begin{cases} Lu = f & \Omega \\ u = 0 & \Omega^c \end{cases} \qquad L = (-\Delta)_{RFL}^{s} \tag{P_0}$$

For the operators above and $f \in C_c^{\infty}(\Omega)$, there exists a unique classical solution $u \in C(\overline{\Omega})$ (i.e. satisfying the problem pointwise).

This solution can be represented as

$$u(x) = \int_{\Omega} \mathbb{G}(x, y) f(y) dy. \tag{G}$$

We define the solution operator

$$G: f \longmapsto u.$$
 (5)

Existence of solutions in energy spaces. Weak solutions

The operators in the example satisfy a theory similar to the classical.

• **RFL:** We can write a weak formulation, for $f \in L^2$ find $u \in H_0^s(\Omega)$ such that

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(u(x) - u(y))(\varphi(x) - \varphi(y))}{|x - y|^{n + 2s}} dx dy = \int_{\Omega} f \varphi, \qquad \forall \varphi \in H_0^s(\Omega)$$

• **CFL**: We can write a weak formulation, for $f \in L^2$ find $u \in H_0^s(\Omega)$ such that

$$\int_{\Omega} \int_{\Omega} \frac{(u(x) - u(y))(\varphi(x) - \varphi(y))}{|x - y|^{n + 2s}} dx dy = \int_{\Omega} f \varphi, \qquad \forall \varphi \in H_0^s(\Omega)$$

• **SFL**: Write $f \in L^2$ in eigen-decomposition

$$f = \sum_{i=1}^{+\infty} f_i \varphi_i \qquad \longmapsto \qquad u = \sum_{i=1}^{+\infty} f_i \lambda_i^{-s} \varphi_i.$$

Problems for the RFL and CFL can be solved by minimization of energy. Also by using the standard Lax-Milgram theorem.

For fractional sobolev spaces: Di Nezza, Palatucci, and Valdinoci 2012.

Kernel representation

We assume that L is an operator such that, for $f \in L^{\infty}(\Omega)$

$$G(f)(x) = \int_{\Omega} G(x, y) f(y) dy.$$
 (G)

such that G satisfies properties:

(i) G is symmetric and self-adjoint in the sense that

$$\mathbb{G}(x,y) = \mathbb{G}(y,x). \tag{G1}$$

(ii) We assume $n \ge 3$ and we have the estimate

$$\mathbb{G}(x,y) \approx \frac{1}{|x-y|^{n-2s}} \left(\frac{\delta(x)\delta(y)}{|x-y|^2} \wedge 1 \right)^{\gamma}. \tag{G2}$$

The examples covered by our theory

The elliptic problem has been widely studied, specially for data $f \in L^{\infty}(\Omega)$. Also, two-sided kernel estimates are known:

- The classical Laplacian $-\Delta$: (G2) holds with s = 1 and $\gamma = 1$.
- Restricted Fractional Laplacian (-Δ)^s_{RFL}:
 (G2) holds with 0 < s < 1 and γ = s. See Chen and Song 1998.
- Spectral Fractional Laplacian $(-\Delta)_{SFL}^s$: (G2) holds with 0 < s < 1 and $\gamma = 1$. See Bonforte, Figalli, and Vázquez 2018.
- Censored Fractional Laplacian $(-\Delta)_{CFL}^s$: (G2) holds with $\frac{1}{2} < s < 1$ and $\gamma = 2s - 1$. See Chen, Kim, and Song 2009.

Weak and weak-dual formulations

Since *L* is self-adjoint, we can define very weak solutions

$$\int_{\Omega} u L \varphi = \int_{\Omega} f \varphi \qquad \forall \varphi \in ? \tag{6}$$

Different operators require different sets of test functions. Some authors use weak solutions for the RFL Chen and Véron 2014; Díaz, Gómez-Castro, and Vázquez 2018.

Letting $\varphi = G(\psi)$ we can simply write

$$\int_{\Omega} u\psi = \int_{\Omega} fG(\psi) \qquad \forall \psi \in L^{\infty}(\Omega)$$
 (P₀-WD)

This kind of solutions are known as weak-dual solutions.

Since L is self-adjoint, G is self-adjoint and so

$$\int_{\Omega} G(f)\psi = \int_{\Omega} fG(\psi), \qquad \forall f, \psi \in L^{\infty}(\Omega)$$
 (7)

Hence, classical solutions for $f \in L^{\infty}(\Omega)$ are weak-dual solutions.

Estimates for some simple functions

Theorem

Assume (G2). Then, we have that:

- For $K \subseteq \Omega$: $G(\chi_K) \simeq \delta^{\gamma}$
- For $A \subset \Omega$: we have $|G(\chi_A)| \leq C|A|^{\beta}$, for any $\beta < \frac{2s}{n}$, where $C = C(\beta)$.

From now on we assume (G1)–(G2).

Uniqueness of weak-dual solutions

Theorem

Let $f \in L^1(\Omega)$. Then there exists, at most, one solution $u \in L^1(\Omega)$ of

$$\int_{\Omega} u\psi = \int_{\Omega} fG(\psi) \qquad \forall \psi \in L^{\infty}(\Omega)$$
 (P₀-WD)

Proof.

Let $u_1, u_2 \in L^1(\Omega)$ be two solutions. Taking $\psi = \text{sign}(u_1 - u_2) \in L^{\infty}(\Omega)$ we deduce

$$\int_{\Omega} |u_1 - u_2| = \int_{\Omega} (u_1 - u_2) \operatorname{sign}(u_1 - u_2) = \int_{\Omega} (f - f) \operatorname{G}(\operatorname{sign}(u_1 - u_2)) = 0.$$
(8)

(8)

From the positive cone to the whole space

Lemma

Let p,q>1 be two normed function spaces, and let $T:L^p\to L^q$ be linear and continuous. If

$$||T(f)||_{L^q} \leq C||f||_{L^p}, \quad \forall 0 \leq f \in X$$

Then the same holds for any $f \in X$.

Proof.

Let $f \in X$. We split $f = f_+ + f_-$. Then

$$||T(f)||_{q} = ||T(f_{+}) - T(f_{-})||_{q} \le ||T(f_{+})||_{q} + ||T(f_{-})||_{q} \le C||f_{+}||_{p} + C||f_{-}||_{p} =$$
(9)

Regularization

Theorem

$$f \in L^p(\Omega) \implies \mathrm{G}(f) \in L^q(\Omega) \qquad orall 1 \leq q < Q(p) = rac{n}{n-2s}p.$$

Furthermore $G: L^p(\Omega) \to L^q(\Omega)$ is continuous.

Proof.

The $L^1(\Omega)$ and $L^{\infty}(\Omega)$ result follow by direct computation.

The intermediate case by Riesz-Thorin lemma.

Dunford-Pettis property

The aim of this section is to prove that

Theorem

We have that, for any $0 < \beta < \frac{2s}{n}$

$$\int_{A} |G(f)| \le C|A|^{\beta} ||f||_{L^{1}(\Omega)}, \qquad \forall f \in L^{1}(\Omega).$$
 (10)

for some C > 0.

Hence, if $f_n \in L^1(\Omega)$ is a bounded sequence, then $G(f_n)$ is uniformly integrable.

In particular, there exists a weakly convergent subsequence $G(f_{n_k}) \rightharpoonup u$ in $L^1(\Omega)$.

Extension to L^1

Through duality and approximation we prove that:

Theorem

Let G satisfy (G1)-(G2). Then, there exists an extension

$$G: L^1(\Omega) \to L^1(\Omega).$$
 (11)

which is linear and continuous.

Furthermore, this extension is unique and self-adjoint.

The function u = G(f) is the unique function such that $u \in L^1(\Omega)$ and

$$\int_{\Omega} u\psi = \int_{\Omega} G(\psi)f. \tag{P_0-WD}$$

This solution can be represented as

$$u(x) = \int_{\Omega} \mathbb{G}(x, y) f(y) dy. \tag{12}$$

Optimal set of data f

Due to the duality, it is easy to check that

$$\int_{\Omega} G(f) = \int_{\Omega} fG(1).$$

Therefore

$$G: L^1(\Omega, G(1)) \to L^1(\Omega).$$

On the other hand, for $K \subseteq \Omega$,

$$\int_{\mathcal{K}} G(f) = \int_{\Omega} fG(\chi_{\mathcal{K}}).$$

For this operators $G(\chi_K) \simeq \delta^{\gamma}$, and hence

$$G: L^1(\Omega, \delta^{\gamma}) \to L^1_{loc}(\Omega).$$

For $f \ge 0$ we have, due to (G2)

$$G(f)(x) = \int_{\Omega} \mathbb{G}(x, y) f(y) dy \ge c \delta(x)^{\gamma} \int_{\Omega} f(y) \delta(y)^{\gamma}$$

If $f\delta^{\gamma} \notin L^1 \implies G(f) \equiv +\infty$.

Outline

- Fractional operators
- 2 The Laplace equation (V = 0)
- Data measures
- 5 Potentials singular at interior points
- $oldsymbol{6}$ Singular potentials at the boundary: $V \in L^1_{loc}$. The RFL

Back to the Schrödinger problem

We can rewrite

$$\begin{cases} Lu + Vu = f & \Omega, \\ u = 0 & \partial\Omega \text{ (resp. } \Omega^c), \end{cases}$$
 (P_V)

We write the problem as a fixed point:

$$u = G(f - Vu) \tag{P_V-D}$$

We call this dual formulation.

This is equivalent to the weak-dual formulation

$$\int_{\Omega} u\psi + \int_{\Omega} VuG(\psi) = \int_{\Omega} fG(\psi) \qquad \forall \psi \in L^{\infty}(\Omega). \tag{P_V-WD}$$

Existence for $(f, V) \in L^1(\Omega) \times L^{\infty}_+(\Omega)$

Here we show the following

Theorem

Let $f \in L^1(\Omega)$ and $V \in L^{\infty}_+(\Omega)$. Then, there exists a solution u of (P_V-D) and it satisfies

$$|u| \leq G(|f|)$$

Furthermore.

$$f > 0 \implies u > 0$$
.

We have

$$|G_V(f)| \le G(|f|). \tag{13}$$

Proof for f > 0.

We construct the following sequence. $u_0 = 0$, $u_1 = G(f) \ge 0$,

$$u_2 = G\left(\left(f - Vu_1\right)_+\right), \qquad u_i = G(f - Vu_{i-1}), \qquad i > 2.$$
 (14)

Step a. We prove that

$$u_0 \le u_2 \le u_3 \le u_1. \tag{15}$$

Step b. We show, by induction, that

$$u_{2i} \le u_{2i+2} \le u_{2i+3} \le u_{2i+1}, \qquad \forall i \ge 0.$$
 (16)

Step c. By the monotone convergence theorem $u_{2i} \nearrow \underline{u}$ in $L^1(\Omega)$ where $u_{2i+1} \searrow \overline{u}$ in $L^1(\Omega)$. We have

$$\overline{u} = G(f - V\underline{u}), \qquad \underline{u} = G(f - V\overline{u}).$$
 (17)

Therefore $u = \frac{1}{2}(\underline{u} + \overline{u})$ is a solution of $(P_V - D)$.

Uniqueness for $(f, V) \in L^1(\Omega) \times L^{\infty}_+(\Omega)$

In order to prove uniqueness we to assume

(iii) Furthermore, we need positivity in the sense that

$$\int_{\Omega} fG(f) \ge 0 \qquad \forall f \in L^{2}(\Omega)$$
 (G3)

This is true for the examples.

Theorem

 $V \in L^{\infty}(\Omega)$. There exists at most one solution $u \in L^{1}(\Omega)$ of $(P_{V}-D)$.

Proof.

The difference of two solutions $u=u_1-u_2\in L^1(\Omega)$ satisfies $u=-\mathrm{G}(Vu)$.

We have that $Vu^2 = -Vu\mathrm{G}(Vu) \in L^2(\Omega)$. We deduce

$$0 \le \int_{\Omega} Vu^2 = -\int_{\Omega} VuG(Vu) \underbrace{\le}_{(G3)} 0.$$

Hence $Vu^2 = 0$ so u = -G(0) = 0David Gómez-Castro (UCM)

Fractional Schrödinger

Solution operator

Corollary

Let $V \in L^{\infty}_{+}(\Omega)$. We consider the solution operator

$$G_V: f \in L^1(\Omega) \mapsto u \in L^1(\Omega)$$
,

where u is the unique solution of u = G(f - Vu). It is well-defined, linear and continuous.

Corollary

We have, for any $0 \le \beta < 2s/n$,

$$\int_{A} |G_{V}(f)| \leq C|A|^{\beta} ||f||_{L^{1}(\Omega)}, \quad \forall f \in L^{1}(\Omega).$$

where $C = C(\beta)$.

In particular, $f_n \in L^1(\Omega)$ bounded $\implies G(f_n)$ uniformly integrable.

Notion of solution when $V \notin L^{\infty}_{+}$

In order for (P_V-D) to be well defined, we need to require something extra.

We extend the definition by setting that Vu in the admissible class

$$\begin{cases} u = G(f - Vu) \\ Vu \in L^{1}(\Omega, \delta^{\gamma}) \end{cases}$$
 (P_V-D)

Theorem

For any dual solution we have that:

$$\int_{\Omega} |u| \le C \int_{\Omega} |f| \qquad and \qquad \int_{\Omega} V|u| \delta^{\gamma} \le C \int_{\Omega} |f| \delta^{\gamma}. \tag{18}$$

where C does not depend on V, f.

Proof in the case f > 0.

Setting $\psi=1$ we get, since

$$\int_{\Omega} u + \int_{\Omega} VuG(1) \leq \|G(1)\|_{\infty} \int_{\Omega} f.$$

Taking $\psi = \chi_K$ for any $K \subseteq \Omega$, since $G(\chi_K) \simeq \delta^{\gamma}$:

$$\int_{K} u + \int_{\Omega} Vu\delta^{\gamma} \leq C \int_{\Omega} f\delta^{\gamma}.$$

Uniqueness for general $V \ge 0$

Theorem

Assume $|\{V = +\infty\}| = 0$.

There exists, at most, one solution $u \in L^1(\Omega)$ of (P_V-D) .

Proof.

Let $u_1, u_2 \in L^1(\Omega)$ be two solutions. Then $u = u_1 - u_2$ satisfies u = -G(Vu).

For $k \in \mathbb{N}$ we define $V_k = V \wedge k \in L^{\infty}_+(\Omega)$.

We write

$$u = G((V_k - V)u - V_k u) = G(f_k - V_k u)$$
 (19)

where $f_k = (V_k - V)u \in L^1(\Omega)$.

Hence, due to Theorem 3.2, u is the unique solution of $u + \mathrm{G}(V_k u) = \mathrm{G}(f_k)$ and

$$||u||_{L^1(\Omega)} \le C||f_k||_{L^1(\Omega)}.$$
 (20)

On the other hand, we have that

$$|f_k| = |(V - V_k)u| \le |V - V_k||u| \le V|u| \in L^1(\Omega).$$

Then

$$V_k \to V \text{ a.e.} \implies f_k = (V_k - V)u \to 0 \text{ a.e.} \stackrel{DCT}{\Longrightarrow} f_k \to 0 \text{ in } L^1(\Omega).$$

Existence for $(f, V) \in L^1(\Omega) \times L^1_+(\Omega)$

Theorem

If $(f, V) \in L^1(\Omega) \times L^1_+(\Omega)$, there exists a solution.

Lemma (Monotonicity)

If $V_1 \leq V_2$ and $f_1 \geq f_2$ then $G_{V_1}(f_1) \geq G_{V_2}(f_2)$.

Proof for f > 0.

We define

$$V_k = V \wedge k, \qquad f_m = f \wedge m.$$

We define $u_{k,m} = G_{V_k}(f_m) \in L^{\infty}(\Omega)$. Let $U_m = G(f_m) \in L^{\infty}(\Omega)$. Clearly $u_{k,m} \leq U_m$

Step a. $k \to +\infty$. $V_k \nearrow \Longrightarrow 0 \le u_{k,m} \searrow \stackrel{\operatorname{MCT}}{\Longrightarrow} u_{k,m} \to u_m \text{ in } L^1(\Omega)$. On the other hand

$$\begin{cases} V_k u_{k,m} \leq V U_m \in L^1(\Omega) & \xrightarrow{\text{DCT}} V_k u_{k,m} \to V u_m \text{ in } L^1(\Omega). \\ V_k u_{k,m} \to V u_m \text{ a.e. } \Omega & \end{cases}$$
 (21)

Hence

$$u_m = \lim_k u_{k,m} = \lim_k G(f_m - V_k u_{k,m}) = G(f_m - V u_m)$$
 (22)

and u_m is the solution corresponding to (f_m, V) .

Proof (cont.)

We define

$$V_k = V \wedge k, \qquad f_m = f \wedge m.$$
 (23)

We define $u_{k,m} = G_{V_k}(f_m) \in L^{\infty}(\Omega)$. Let $U_m = G(f_m) \in L^{\infty}(\Omega)$.

Step a. $k \to +\infty$. As $V_k \nearrow V$ we have $u_{k,m} \searrow u_m = G(f_m - Vu_m)$.

Step b. $m \to +\infty$. Since $f_m \nearrow \Longrightarrow u_m \nearrow$.

$$\int_{\Omega} u_m \leq C \stackrel{\text{MCT}}{\Longrightarrow} u_m \to u \text{ in } L^1(\Omega).$$

Analogously $Vu_m\delta^{\gamma} \nearrow Vu\delta^{\gamma}$ in $L^1(\Omega)$.

Furthermore $u_m = G(f_m - V_m u_m) \rightarrow G(f - Vu)$.

Outline

- Fractional operators
- 2 The Laplace equation (V = 0)
- 3 Problem (P_V) for $V \in L^1$
- 4 Data measures
- 5 Potentials singular at interior points
- 6 Singular potentials at the boundary: $V \in L^1_{loc}$. The RFL

Regularization and measure data

(iv) Assume G is regularizing in the sense that

$$G: L^{\infty}(\Omega) \to \mathcal{C}(\overline{\Omega}).$$
 (G4)

Then

Theorem

Let G satisfy (G1)-(G4). Then, there exists a extension

$$G: \mathcal{M}(\Omega) \to L^1(\Omega).$$

which is linear and continuous. Furthermore, this extension is unique and self-adjoint. The function $u = G(\mu)$ is the unique function such that $u \in L^1(\Omega)$ and

$$\int_{\Omega} u\psi = \int_{\Omega} G(\psi) d\mu.$$

This solution can be represented as

$$u(x) = \int_{\Omega} \mathbb{G}(x, y) d\mu(y).$$

The examples

- $-\Delta$: (G4) is a classical result. See, e.g., Evans 1998; Gilbarg and Trudinger 2001.
- $(-\Delta)_{RFL}^s$: (G4) is proven via Hörmander theory. See, e.g. Grubb 2015: Ros-Oton and Serra 2014.
- $(-\Delta)_{\rm SFL}^{s}$: (G4) can be found in Caffarelli and Stinga 2016.

Outline

- 1 Fractional operators
- 2 The Laplace equation (V = 0)
- 3 Problem (P_V) for $V \in L^1$
- Data measures
- 5 Potentials singular at interior points
- 6 Singular potentials at the boundary: $V \in L^1_{loc}$. The RFL

CSOLAs

We prove the following, where δ_x is the Dirac measure at $x \in \Omega$,

Theorem

Assume that $V \ge 0$ such that

$$V:\Omega\to [0,+\infty] \ \ \text{is measurable and} \ L^\infty\left(\Omega\setminus B_\rho(S)\right) \ \ \text{for all} \ \rho>0, \tag{V1}$$

for a finite set S, and let $\mu \geq 0$ be a nonnegative Radon measure. Then, there exist an integrable function $\underline{u} \geq 0$ and constants $(\alpha_u^x)_{x \in S} \in \mathbb{R}$ such that:

- i) $G_{V_k}(\mu) = u_k \searrow \underline{u} \text{ in } L^1(\Omega)$
- ii) $V_k u_k \to V_{\underline{u}}$ in $L^1(\Omega \setminus B_{\rho}(S), \delta^{\gamma})$ for any $\rho > 0$
- iii) $V_k u_k \rightharpoonup V \underline{u} + \sum_{x \in S} \alpha_u^x \delta_x$ weakly in $\mathcal{M}(\Omega, \delta^{\gamma})$.
- iv) The limit satisfies the equation, for the reduced measure $\mu_r = \mu \sum_{x \in S} \alpha_{\mu}^x \delta_x$.

$$\underline{u} + G(V\underline{u}) = G(\mu_r),$$
 (24)

If a solution exists it is the limit

It is easy to prove, that :

Lemma

If there exists $u = G(\mu - Vu)$, then $u = \underline{u}$.

Proof.

Assume $f \ge 0$. Let $w_k = u_k - u$. Then

$$w_k = G(\mu - V_k u_k) - G(\mu - Vu)$$
(25)

$$= G(Vu - V_k u_k) \tag{26}$$

$$=G(\underbrace{(V-V_k)u}_{f}-V_kw_k)$$
 (27)

Hence $||w_k||_{L^1} \le C||(V - V_k)u||_{L^1}$.

Via MCT $(V - V_k)u \searrow 0$ in $L^1(\Omega)$. Hence

$$w_k \to 0 \text{ in } L^1(\Omega).$$
 (28)

Data $\mu = \delta_x$

In this case we have

$$(\delta_{\mathsf{x}})_{\mathsf{r}} = (1 - \alpha^{\mathsf{x}})\delta_{\mathsf{x}} \tag{29}$$

There are only two options

- **1** $(1-\alpha^x) \neq 0$. Then $\frac{u}{1-\alpha^x}$ is a solution. Then, it is easy to prove that $\alpha^x = 0$.
- 2 $1 \alpha^x = 0$. By uniqueness, then $\underline{u} = 0$.

There exists a set

$$Z = \{x \in \Omega : \text{there is no solution of } (P_V) \text{ with data } \delta_x\} \subset S.$$
 (30)

Necessary and sufficient condition for existence

Through scaling, one can characterize

$$\mu_r = \mu - \sum_{x \in Z} \mu(\{x\}) \delta_x. \tag{31}$$

where, we recall

$$Z = \{x \in \Omega : \text{there is no solution of } (P_V) \text{ with data } \delta_x\}.$$
 (32)

One can prove that

Theorem

Let $\mu \in \mathcal{M}(\Omega)$.

There exists a dual solution of (P_V) with data $\mu \iff |\mu|(Z) = 0$.

This is compatible for the results for the usual laplacian given in Orsina and Ponce 2018.

The CSOLA operator

Let us define

$$\widetilde{\mathrm{G}}_{V}: \mathcal{M}(\Omega) \longrightarrow L^{1}(\Omega)$$
 $\mu \longmapsto \mathrm{G}_{V}(\mu_{r}).$

Then $\widetilde{\mathrm{G}}_V$ is the unique self-adjoint extension of G_V to $\mathcal{M}(\Omega)$. This operator admits a kernel representation

$$G_V(f)(x) = \langle G_V(f), \delta_x \rangle = \langle \widetilde{G}_V(f), \delta_x \rangle = \langle f, G_V(\delta_x) \rangle$$
$$= \int_{\Omega} \widetilde{G}_V(\delta_x)(y) f(y) dy.$$

hence

$$\mathbb{G}_V(x,y) = \widetilde{G}_V(\delta_x)(y). \tag{33}$$

The maximum principle

Notice that, amongst the previous computation, we showed that, for $x \in \Omega$,

$$G_V(f)(x) = \langle f, \widetilde{G}_V(\delta_x) \rangle$$

We also recall that

$$\widetilde{\mathrm{G}}_V(\delta_x) = \mathrm{G}_V((\delta_x)_r) = 0 \qquad \forall x \in Z.$$

But then,

$$G(f)(x) = 0 \quad \forall x \in Z.$$

No maximum principle on Z.

For the usual laplacian: Orsina and Ponce 2018.

Characterization of Z

Theorem

Assume (V1). Then

$$x \notin Z \iff \int_{B_{\rho}(x)} \frac{V(y)}{|x-y|^{n-2s}} dy < +\infty. \text{ for some } \rho > 0.$$
 (34)

In particular, $Z \subset S$. The second condition is $VG(\delta_0) \in L^1(B_{\rho}(x))$.

Proof of \iff .

We may take x = 0 for convenience. Let $U = G(\delta_0) \in L^1(\Omega)$.

(i) Assume first $VU \in L^1(\Omega)$. Approximate by $u_k = G_{V_k}(\delta_0)$. We have

$$V_k u_k \leq VU \in L^1(\mathcal{B}_{\rho}(x)) \stackrel{\mathrm{DCT}}{\Longrightarrow} V_k u_k \to V \underline{u} \in L^1(\mathcal{B}_{\rho}(x)) \implies \alpha_{\mu}^0 = 0$$
 $\implies (\delta_0)_r = \delta_0$
 $\implies \text{There exists a solution for } \mu = \delta_0$
 $\implies 0 \notin Z$

Outline

- 1 Fractional operators
- 2 The Laplace equation (V = 0)
- 3 Problem (P_V) for $V \in L^1$
- 4 Data measures
- 5 Potentials singular at interior points
- **6** Singular potentials at the boundary: $V \in L^1_{loc}$. The RFL

In this section we discuss the results in

J. I. Díaz, D. Gómez-Castro, and J. L. Vázquez. "The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach". *Nonlinear Analysis* (2018), pp. 1–36. arXiv: 1804.08398

We study the case of the RFL. The aim is to extend previous results for the classical case given in

- J. I. Díaz, D. Gómez-Castro, J.-M. Rakotoson, and R. Temam. "Linear diffusion with singular absorption potential and/or unbounded convective flow: The weighted space approach". *Discrete and Continuous Dynamical Systems* 38.2 (2018), pp. 509–546. arXiv: 1710.07048
- J. I. Díaz, D. Gómez-Castro, and J.-M. Rakotoson. "Existence and uniqueness of solutions of Schrödinger type stationary equations with very singular potentials without prescribing boundary conditions and some applications". *Differential Equations & Applications* 10.1 (2018), pp. 47–74. arXiv: 1710.06679

Optimal set of data f for the RFL

For the RFL we have $\mathbf{s} = \gamma$ and

$$G(1) \simeq \delta^{s}$$
.

Hence

$$G: L^1(\Omega, \delta^s) \to L^1(\Omega).$$

and

$$0 \le f \notin L^1(\Omega, \delta^s) \implies G(f) \equiv +\infty.$$

Weak dual solutions

In order for

$$u = G(f - Vu) \tag{P_V-D}$$

we will require

$$Vu\delta^s \in L^1(\Omega).$$
 (P_V-D-b)

Let us look at this in W-D:

$$\int_{\Omega} u\psi + \int_{\Omega} VuG(\psi) = \int_{\Omega} fG(\psi).$$

Consider f > 0. Then u > 0 hence

$$\int_{\Omega} |u| + \int_{\Omega} V|u|G(1) = \int_{\Omega} fG(1).$$

Therefore, since $G(1) \simeq \delta^s$

$$\int_{\Omega} Vu\delta^{s} \leq \int_{\Omega} f\delta^{s}.$$

For f changing sign

$$\int V|u|\delta^s \leq \int |f|\delta^s.$$

David Gómez-Castro (UCM)

Approximation

Assume $V \in L^1_{loc}$.

Going back to $u_{k,m} = G_{V_k}(f_m)$ with $f_m \ge 0$:

As
$$V_k \nearrow V \implies 0 \le u_{k,m} \searrow u_m$$
 in L^1 .

We have, taking $\psi = 1$.

$$\int_{\Omega} u_{k,m} + \int_{\Omega} V_k u_{k,m} \delta^s \le C \int_{\Omega} f_m \delta^s.$$
 (35)

Also

$$V_k u_{k,m} \leq \underbrace{V}_{L^1_{loc}} \underbrace{\mathrm{G}(f_m)}_{L^\infty} \in L^1_{loc}(\Omega)$$

This implies, together with the a.e. convergence,

$$V_k u_{k,m} \to V u_m \in L^1_{loc}(\Omega).$$
 (36)

However, this does not seem to implies L^1 convergence. We have

$$\int_{\Omega} V u_m \delta^s \le \int_{\Omega} f_m \delta^s \tag{37}$$

Difficulties of the case $V \in L^1_{loc}$

We showed

$$V_k u_{k,m} \to V u_m \in L^1_{loc}(\Omega).$$
 (36)

We would need, in the weak formulation,

$$G(\psi) \in L_c^{\infty}(\Omega).$$

This does not happen for $\psi \in L^{\infty}$. We go back to the very weak formulation

$$\int_{\Omega} u_{k,m} (-\Delta)_{\mathrm{RFL}}^{s} \varphi + \int_{\Omega} V_{k} u_{k,m} \varphi = \int_{\Omega} f_{m} \varphi$$

 $\text{for all } \varphi \in \mathbb{X}^{\mathfrak{s}} = \{\varphi \in \mathit{C}^{\mathfrak{s}}(\mathbb{R}^{n}) : (-\Delta)^{\mathfrak{s}}_{\mathrm{RFL}} \varphi \in \mathit{L}^{\infty}(\Omega)\}.$

If we multiply by a cut-off function $\eta_{arepsilon}\in \mathcal{C}^{\infty}_{c}(\Omega)$ we get, formally

$$\int_{\Omega} u_{k,m} (-\Delta)_{\mathrm{RFL}}^{\mathfrak{s}} (\eta_{\varepsilon} \varphi) + \int_{\Omega} V_{k} u_{k,m} \eta_{\varepsilon} \varphi = \int_{\Omega} f_{m} \eta_{\varepsilon} \varphi$$

Now, we do have

$$\int_{\mathbb{R}^n} V_k u_{km} \eta_{\varepsilon} \varphi \to \int_{\mathbb{R}^n} V u_m \eta_{\varepsilon} \varphi$$

Approximation of test functions

Let η be a $C^2(\mathbb{R})$ function such that $0 \leq \eta \leq 1$ and

$$\eta(t) = \begin{cases} 0 & t \le 0, \\ 1 & t \ge 2. \end{cases}$$
(38)

We define the functions

$$\eta_{\varepsilon}(x) = \eta\left(\frac{\varphi_1(x) - \varepsilon^s}{\varepsilon^s}\right).$$
(39)

where φ_1 is the first eigenfunction of $(-\Delta)_{RFL}^s$. Notice that $\varphi_1 \simeq \delta^s$. We prove the following approximation result:

Lemma

For $\varphi \in \mathbb{X}^s$ we have that $\eta_{\varepsilon} \varphi \in \mathbb{X}^s \cap C_c(\Omega)$ and

$$\delta^{s}(-\Delta)^{s}(\varphi\eta_{\varepsilon}) \rightharpoonup \delta^{s}(-\Delta)^{s}\varphi \tag{40}$$

$$\frac{\varphi \eta_{\varepsilon}}{\delta^{s}} \rightharpoonup \frac{\varphi}{\delta^{s}} \tag{41}$$

Approximation of test functions

There exists a sequence

Lemma

For $\varphi \in \mathbb{X}^s$ we have that $\eta_{\varepsilon} \varphi \in \mathbb{X}^s \cap C_c(\Omega)$ and

$$\delta^{s}(-\Delta)^{s}(\varphi\eta_{\varepsilon}) \rightharpoonup \delta^{s}(-\Delta)^{s}\varphi \tag{40}$$

$$\frac{\varphi \eta_{\varepsilon}}{\delta^{s}} \rightharpoonup \frac{\varphi}{\delta^{s}} \tag{41}$$

in L^{∞} -weak- \star as $\varepsilon \to 0$.

We can now use

$$\int_{\Omega} \underbrace{V_k u_{k,m}}_{L_{loc}^1} \underbrace{\eta_{\varepsilon} \varphi}_{L_{c}^{\infty}(\Omega)} \xrightarrow{k} \int_{\Omega} V u_m \eta_{\varepsilon} \varphi$$

Since $u_{k,m}/\delta^s \leq \mathrm{G}(f_m)/\delta^s \in L^\infty(\Omega)$ we have

$$\int_{\Omega} \frac{u_{k,m}}{\delta^{s}} \delta^{s}(-\Delta)_{\mathrm{RFL}}^{s}(\varphi \eta_{\varepsilon}) \xrightarrow{k} \int_{\Omega} \frac{u_{m}}{\delta^{s}} \delta^{s}(-\Delta)_{\mathrm{RFL}}^{s}(\eta_{\varepsilon} \varphi) \tag{42}$$

Recovering the set of test functions

Since
$$u_{k,m}/\delta^s \leq \mathrm{G}(f_m)/\delta^s \in L^\infty(\Omega)$$
 we have

$$\int_{\Omega} \frac{u_{k,m}}{\delta^{s}} \delta^{s}(-\Delta)_{\mathrm{RFL}}^{s}(\varphi \eta_{\varepsilon}) \to \int_{\Omega} \frac{u_{m}}{\delta^{s}} \delta^{s}(-\Delta)_{\mathrm{RFL}}^{s} \varphi \tag{43}$$

Existence for $(f, V) \in L^{\infty} \times (L^{1}_{loc})_{+}$

Theorem

Let $f \in L^{\infty}(\Omega)$ and $0 \le V \in L^{1}_{loc}(\Omega)$. Then, there exists a unique $u \in L^{1}(\Omega)$ such that $Vu\delta^{s} \in L^{1}$ and

$$\int_{\Omega} u (-\Delta)^s_{\mathrm{RFL}} \varphi + \int_{\Omega} V u \varphi = \int_{\Omega} f \varphi \qquad \forall \varphi \in \mathbb{X}^s.$$

Proof.

We have $u_k = G_{V_k}(f)$ and using η_{ε} as a test function we get:

$$\int_{\Omega} \frac{u_k}{\delta^s} \delta^s (-\Delta)_{\mathrm{RFL}}^s (\eta_\varepsilon \varphi) + \int_{\Omega} V_k u_k \delta^s \frac{\eta_\varepsilon \varphi}{\delta^s} = \int_{\Omega} f \eta_\varepsilon \varphi$$

As $k \to +\infty$, we get $u_k \searrow u \le G(f)$. Hence $u/\delta^s \le G(f)/\delta^s \in L^\infty$. As above

$$\int_{\Omega} \frac{u}{\delta^{s}} \delta^{s} (-\Delta)_{\mathrm{RFL}}^{s} (\eta_{\varepsilon} \varphi) + \int_{\Omega} V u \delta^{s} \frac{\eta_{\varepsilon} \varphi}{\delta^{s}} = \int_{\Omega} f \eta_{\varepsilon} \varphi$$

Again, as arepsilon o 0

$$\int_{\Omega} \frac{u}{\delta^{s}} \delta^{s} (-\Delta)_{\mathrm{RFL}}^{s} \varphi + \int_{\Omega} V u \delta^{s} \frac{\eta_{\varepsilon} \varphi}{\delta^{s}} = \int_{\Omega} f \varphi.$$

Existence for $(f, V) \in L^1(\Omega, \delta^s) \times (L^1_{loc})_+$

Theorem

Let $f \in L^1(\Omega, \delta^s)$ and $0 \le V \in L^1_{loc}(\Omega)$. Then, there exists a unique solution of

$$\int_{\Omega} u(-\Delta)_{\mathrm{RFL}}^{\mathfrak{s}} \varphi + \int_{\Omega} V u \varphi = \int_{\Omega} f \varphi \qquad \forall \varphi \in \mathbb{X}^{\mathfrak{s}}.$$

Proof.

Letting $u_m = G_V(f_m)$ we have

$$\int_{\Omega} u_m (-\Delta)_{\mathrm{RFL}}^{\mathfrak{s}} \varphi + \int_{\Omega} V u_m \delta^{\mathfrak{s}} \frac{\varphi}{\delta^{\mathfrak{s}}} = \int_{\Omega} f_m \delta^{\mathfrak{s}} \frac{\varphi}{\delta^{\mathfrak{s}}}.$$

As

$$f_m \nearrow f \implies u_m \nearrow u \implies Vu_m \delta^s \nearrow \underbrace{Vu\delta^s}_{I^1}$$
 a.e. $\stackrel{\mathrm{MCT}}{\Longrightarrow} Vu_m \delta^s \nearrow Vu\delta^s$ in L^1

Thus

$$\int_{\Omega} u(-\Delta)_{\mathrm{RFL}}^{s} \varphi + \int_{\Omega} V u_{m} \delta^{s} \frac{\varphi}{\delta^{s}} = \int_{\Omega} f_{m} \delta^{s} \frac{\varphi}{\delta^{s}}.$$

A comment on boundary behaviour

When $V \ge C_V \delta^{-2+\varepsilon}$ then solutions are flatter than the usual estimate:

Theorem

Let
$$0 < \varepsilon < s$$
, $0 \le f \in L^{\infty}$, $V(x) \ge C_V \delta(x)^{-2s} \ge 0$ with $C_V > -\gamma_{s+\varepsilon}$. Then,

$$\frac{u}{\delta^{s+\varepsilon}} \in L^{\infty}(\Omega). \tag{44}$$

This means that

$$\frac{u}{\delta^s}(x) \to 0, \quad \text{as } x \to \partial\Omega.$$
 (45)

Singular potential give flatter boundary behaviour.

Thank you for you attention.

References I

M. Bonforte, A. Figalli, and J. L. Vázquez. "Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations". *Calculus of Variations and Partial Differential Equations* 57.2 (2018), pp. 1–34.

Z. Q. Chen, P. Kim, and R. Song. "Two-sided heat kernel estimates for censored stable-like processes". *Probability Theory and Related Fields* 146.3 (2009), pp. 361–399.

L. A. Caffarelli and P. R. Stinga. "Fractional elliptic equations, Caccioppoli estimates and regularity". *Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire* 33.3 (2016), pp. 767–807. arXiv: 1409.7721.

Z. Q. Chen and R. Song. "Estimates on Green functions and Poisson kernels for symmetric stable processes". *Math. Ann* 312 (1998), pp. 465–501.

H. Chen and L. Véron. "Semilinear fractional elliptic equations involving measures". *Journal of Differential Equations* 257.5 (2014), pp. 1457–1486. arXiv: 1305.0945.

References II

J. I. Díaz, D. Gómez-Castro, and J.-M. Rakotoson. "Existence and uniqueness of solutions of Schrödinger type stationary equations with very singular potentials without prescribing boundary conditions and some applications". *Differential Equations & Applications* 10.1 (2018), pp. 47–74. arXiv: 1710.06679.

J. I. Díaz, D. Gómez-Castro, and J. L. Vázquez. "The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach". *Nonlinear Analysis* (2018), pp. 1–36. arXiv: 1804.08398.

J. I. Díaz, D. Gómez-Castro, J.-M. Rakotoson, and R. Temam. "Linear diffusion with singular absorption potential and/or unbounded convective flow: The weighted space approach". *Discrete and Continuous Dynamical Systems* 38.2 (2018), pp. 509–546. arXiv: 1710.07048.

E. Di Nezza, G. Palatucci, and E. Valdinoci. "Hitchhiker's guide to the fractional Sobolev spaces". *Bulletin des Sciences Mathematiques* 136.5 (2012), pp. 521–573. arXiv: 1104.4345.

L. C. Evans. *Partial Differential Equations*. Providence, Rhode Island: American Mathematical Society, 1998.

References III

G. Grubb. "Fractional Laplacians on domains, a development of Hörmander's theory of μ -transmission pseudodifferential operators". *Advances in Mathematics* 268 (2015), pp. 478–528. arXiv: 1310.0951.

D. Gilbarg and N. S. Trudinger. *Elliptic Partial Differential Equations of Second Order*. Berlin: Springer-Verlag, 2001.

D. Gómez-Castro and J. L. Vázquez. "The fractional Schrödinger equation with singular potential and measure data". (2018). arXiv: 1812.02120.

L. Orsina and A. C. Ponce. "On the nonexistence of Green's function and failure of the strong maximum principle". (2018). arXiv: 1808.07267.

X. Ros-Oton and J. Serra. "The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary". *Journal des Mathematiques Pures et Appliquees* 101.3 (2014), pp. 275–302. arXiv: 1207.5985.