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A model of diffusion, confinement and aggregation

The aim of this talk is to explain the modeling and theory behind the following model
for aggregation-diffusion phenomena:

∂ρ

∂t
= ∇ ·

(
ρ∇( U ′(ρ)︸ ︷︷ ︸

Diffusion

+ V︸︷︷︸
Confinement

+ W ∗ ρ︸ ︷︷ ︸
Aggregation

)
)

(ADE)

We will discuss the range of power-type aggregation and diffusion

U ′(ρ) = m
m−1

ρm−1, V (x) =
|x|α

α
, and W (x) =

|x|λ

λ
.

If V,W are bounded below, we can always assume V,W ≥ 0.
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Conservation equation. The heat equation

Conservation equation. Let ρ be a density and ω ⊂ Rd any control volume, if j is the
out-going flux

d

dt

∫
ω
ρ dx = −

∫
∂ω

j · n dS = −
∫
ω
∇ · j dx

Linear Darcy’s law: flux opposing the gradient j = −∇ρ yields

∂ρ

∂t
= ∆ρ (HE)

The confinement can be added as a drift j = −∇ρ− ρ∇V .

Non-linear Darcy’s law: j = −∇ϕ(ρ) for some non-decreasing ϕ : R→ R

∂ρ

∂t
= ∆ϕ(ρ). (DE)

When ϕ(ρ) = ρm for m > 0 this is called Porous Medium Equation [Vázquez 2006].

Notice ∇ϕ(ρ) = ∇ · (ϕ′(u)∇ρ) so U ′′(ρ) =
ϕ′(ρ)
ρ

.
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The heat equation and Brownian motion in d = 1

Consider an stochastic particle jumping over the mesh {...,−h, 0, h, 2h, ...} (h > 0).
Let Xn be the position after n jumps. Assume the jump probabilities are

P(Xn+1 = jh | Xn = ih) =

{
1
2

if |i− j| = 1,

0 otherwise

Define Unj = P (Xn = hj) and assume the initial distribution U0
j is given.

Then Un+1
j = 1

2
(Unj−1 + Unj+1) or, for τ = h2

Un+1
j − Unj

τ
=

1

2

Unj−1 − 2Unj + Unj+1

h2
.

This is a classical discretisation of the stochastic version of (HE): ∂tρ = 1
2

∆ρ.

The time continuous extension of Xn version is the Wiener process Xt = Wt.
This gives rise to the intuition (which has to be understood in terms of the Îto calculus)

dXt = dWt
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The Fokker-Planck equation for single-particle systems

Consider 1 particle. Using a similar arguments, for the stochastic equation

dXt = µ(t,Xt)︸ ︷︷ ︸
drift

dt+ σ(t,Xt) dWt︸ ︷︷ ︸
diffusion

its probability density ρ is the solution of the Fokker-Planck equation

∂ρ

∂t
(t, x) = −∇ · (µ(t, x)ρ(t, x)) + ∆(D(t, x)ρ(t, x))

where D = σ2

2
.
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Particle systems

Consider N with positions Xi of masses ai and the attracting/repulsive system1

dXi

dt
= −

N∑
j=1
j 6=i

aj∇W (Xi −Xj)︸ ︷︷ ︸
Aggregation

−ai∇V (Xi)︸ ︷︷ ︸
Confinement

, i = 1, · · · , N

We say that these are aggregation potentials when ∇W (x) · x,∇V (x) · x ≥ 0.

The typical example is W (x) =
|x|λ

λ
and V (x) =

|x|α

α
.

The empirical distribution is defined as µNt =
N∑
j=1

ajδXj(t).

It is easy to see that, in the sense of distributions, µN solves the Aggregation Equation

∂tµ = ∇ · (µ∇(W ∗ µ+ V )) (AE)

Often ai = 1/N and we simply play with the initial distribution of X1(0), · · · , XN (0).
1Assume∇W (0) = 0
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The mean-field limit. N -particle systems as N →∞

Imagine now we have N stochastic particles at positions X1(t), · · · , XN (t).
We assume they have equal mass.

Recall the empirical measure µNt =
1

N

N∑
j=1

δXj(t)

Assume the evolution of the particles is given by the system of SODEs

dXi = −
1

N

∑
j 6=i
∇W (Xi −Xj)−

1

N
∇V (Xi) +

√
2D dW i

t

The limit as N →∞ is the solution of

∂tρ = ∇ · (ρ∇(W ∗ ρ+ V )) +D∆ρ.

This corresponds to U(ρ) = Dρ log ρ.

Mean-Field Approximation: As N →∞
µN0 → ρ0 in the tight topology =⇒ µNt → ρ(t) in law for a.e. t > 0.

For the details see, e.g., [Jabin and Wang 2017].

1Convergence in law: pointwise convergence of distribution functions at continuity points of the limit
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The Aggregation-Diffusion Equation

Joining the many particle approximation with the Porous Medium diffusion:

∂ρ

∂t
= ∇ ·

(
ρ∇(U ′(ρ) + V +W ∗ ρ)

)
(ADE)

Some famous examples
Model U V W

Heat Equation ρ log ρ 0 0

Porous Medium Equation 1
m−1ρ

m 0 0

m 6= 1

Fokker-Planck ρ log ρ 1
2 |x|

2 0

Patlak-Keller-Segel ρ log ρ 0 χ log |x|

Swarming / Herding 0 0 1
a |x|

a − 1
b |x|

b
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Conservation?

In conservation laws, we expect
∫
Rd
ρ(t) =

∫
Rd
ρ0

(i.e. ρ0 ∈ P(Rd), we expect ρ(t) ∈ P(Rd))

A direct computation yields

d

dt

∫
Rd
ρ dx =

d

dt
lim
R→∞

∫
BR

ρ dx = lim
R→∞

∫
∂BR

j
x

|x|
dS

?−→ 0.

Sometimes mass is not conserved.
Let ∂tρ = ∆ρm with d ≥ 3, m < d−2

d
, and ρ0 ∈ Lq(Rd) with q =

(1−m)d
2

Details

‖ρ(t)‖Lq ↘ 0, as t↗ T ∗ <∞.

North meets South Aggregation-Diffusion Equations 10



Table of Contents

Modelling

Mathematical framework: Lp, H1 and Wasserstein distance

Calculus of Variations approach: gradient flows and minimisation

Examples

North meets South Aggregation-Diffusion Equations



Limitations of the L1 framework

For (DE) entropy solutions:

ρ0 ∈ L1 =⇒ ∃!ρ ∈ C([0,+∞);L1(Rd))

(see, e.g. [Kružkov 1970; Carrillo 1999])

Keller-Segel with χ > χ∗ (e.g. [Herrero and Velázquez 1996] for d = 2):

ρ(t) −→Mδ0 + f as t↗ T <∞.

The so-called chemotactic collapse

The L1 framework is not enough!
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Distances between measures

Total variation: ‖µ‖TV = |µ|(Rd).

However, if a 6= b then ‖δa − δb‖TV = 2.

For the particle system t 7→ µNt is not C
(

[0, T ]; (M(Rd), ‖ · ‖TV )
)

.

We want to construct a distance between measures such that

d(δa, δb) = |a− b|.
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Other people in measure distances. Optimal transport

T : X → Y transport µ ∈ P(X) into ν ∈ P(Y ) if ν(B) = µ(T−1(B)), i.e. ν = T#µ.

Monge’s transport problem:

min
T :ν=T#µ

∫
X
c(x, T (x)) dµ(x)

The limitation is that mass x 7→ T (x) so the mass of a Dirac cannot be split:
i.e. ν = 1

2
δ−1 + 1

2
δ1 6= T#δ0 for any T .

A generalisation is through transport plans between µ and ν:

Π(µ, ν) =
{
π ∈ P(X × Y ) : π(A× Y ) = µ(A), π(X ×B) = ν(B)

}
.

Kantorovich’s transport problem:

min
π∈Π(µ,ν)

∫∫
X×Y

c(x, y) dπ(x, y)

Under some conditions, the problems are equivalent. See [Villani 2009; Carrillo 2021].
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The Wasserstein distance

The Wasserstein distance between µ, ν ∈ P(X) with c(x, y) = |x− y|p

dp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

|x− y|p dπ(x, y)

) 1
p

When there exists optimal T0, we have the geodesic µt = ((1− t)idRd + tT0)#µ.

Figure: Computation of a interpolation measure by the Monge-Kantorovich problem with p = 2
between Pac-Man and the Ghost characteristic sets suitably normalized.
[Carrillo, Craig, Wang, and Wei 2019]
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Wasserstein is good for (AE)

To compute dp(δa, δb) we first note that Π(δa, δb) = {δ(a,b)}.
Hence dp(δa, δb) = |a− b|.

The correct space to work with this distance is

Pp(Rd) =

{
µ ∈ P(Rd) :

∫
Rd
|x|p dµ(x)

}
We endow Pp(Rd) with the distance dp.

Theorem 1 [Carrillo, DiFrancesco, Figalli, Laurent, and Slepčev 2011]

W ∈ C(Rd) ∩ C1(Rd \ {0}), even, λ-convex (λ ≤ 0), W (x) ≤ C(1 + |x|2), and V = 0
then there exists a unique solution1 of (AE) in C([0,+∞);P2(Rd)).

1solution in the sense of curve of maximal slope of the energy functional
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Gradient flow in Rd

Let F : Rd → R. Imagine we look for argminF .

We call gradient flow of F the flow of the ODE
dX

dt
= −∇F (X(t))

If F is strictly convex, for any X(0) we have X(t)→ X∞ = argminF .

If D2F ≥ λI then |X(t)−X∞| ≤ e−λt|X0 −X∞|.
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The Heat Equation as a gradient flow in H1

Let F : H1(Rd)→ R be defined as F [ρ] = 1
2

∫
Rd |∇ρ|

2

We compute the first variation (i.e. Gateaux derivative). Taking ϕ ∈ H1(Rd)〈
δF
δρ

[ρ0], ϕ
〉

= lim
ε→0

F [ρ0 + εϕ]−F [ρ0]

ε

=

∫
Rd
∇ρ0∇ϕ+ lim

ε→0

ε

2

∫
Rd
|∇ϕ|2

We define the gradient

∇H1F [ρ0] =
δF
δρ

[ρ0] = −∆ρ0 in H−1

Remark
We can rewrite the Heat Equation

∂ρ

∂t
= −∇H1F [ρ(t)], where F [ρ] = 1

2

∫
Rd
|∇ρ|2 (HE)

F is strictly convex in H1(Rd). Naturally, ρ(t)→ 0 which is the minimiser of F .
In general, the ∇H1F is given by the Euler-Lagrange equations Details
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Gradient flows in Wasserstein space

For F : L1 ∩ P2(Rd)→ R formally speaking Details

∇d2F [ρ] = −∇ ·
(
ρ∇

δF
δρ

)
Remark
If W (x) = W (−x), we can formally rewrite the Aggregation-Diffusion problem as2

∂ρ

∂t
= −∇d2F [ρ(t)], where F [ρ] =

∫
Rd

(
U(ρ) + V ρ+ 1

2
ρ(W ∗ ρ)

)
. (ADE)

Formally, d
dt
F [ρ(t)] = −

∫
Rd
ρ

∣∣∣∣∇ δFδρ [ρ]

∣∣∣∣2 . This is called energy dissipation estimate.

The precise definition of solution is the notion of curves of maximal slope. Details

2Due to the convolution, F is non-local and F[ρ] 6=
∫
Rd F (x, ρ(x)) dx. δF

δρ
can be computed directly

North meets South Aggregation-Diffusion Equations 18



Gradient-flow structure and minimisation

The extension of convexity in Rd that is suitable in P2 is displacement convexity
(see [McCann 1997]).

There is a suitable theory for gradient flow of F in d2

(see [Ambrosio, Gigli, and Savare 2005])

In fact, as t→∞ we have
F [ρ(t)]↘ inf

ρ∈P2∩L1
F .

Under stronger hypothesis
dp(ρ(t), argminF)↘ 0.

Due to the estimate above, at an minimiser ρ∞, we have

δF
δρ

[ρ∞] = C.
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Minimisation and (ADE)

In some cases, the free energy F for (ADE) is displacement convex
(see [Carrillo and Slepčev 2009]).

This does not hold for ∂tρ = ∆ρm with m < d−2
d

(where solutions leave P).

When inf F = −∞, then we do not expect an asymptotic equilibrium.
There might be intermediate asymptotics, recovered by rescaling.

Actually, we need to consider the extension of F toM(Rd), which we denote F̃
(see [Demengel and Temam 1986]) Details

If µ∞ ∈ argmin F̃ , we expect it to be a local attractor but there is no guarantee.

The first variation:
δF
δρ

= U ′(ρ) + V +W ∗ ρ.
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Asymptotic behaviour of some examples
ρ0 ∈ P ∩ L

∞
c (Rd)

(HE) ρ(t) ∼ (4πt)−
d
2 exp

(
−
|x|2

4t

)
→ 0

Fokker-Planck ρ(t)→ (4π)−
d
2 exp

(
−
|x|2

4

)

PME m ∈
(
d−2
d
, 1
)
∪ (1,+∞) ρ(t) ∼ t−α

(
C1 − C2|x|2t

2α
d

) 1
m−1

+
→ 0

(see [Vázquez 2006]) where α = d
d(m−1)−2

PME m < d−2
d

ρ(t)→ 0 as t→ T

Keller-Segel ρ(t)→Mδ0 + f as t→ T
(see [Herrero and Velázquez 1996]) (where M > 0 if χ > χ∗)
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Scaling of F
CaseU = 1

m−1
ρm , V = c|x|α andW = d|x|λ when α, λ > 0

Let 0 ≤ ρ1 ∈ C∞c (Rd) with ρ1 ≥ 0 and
∫
Rd ρ1 = 1.

Define ρk(x) = kdρ(kx). ρk →
{
δ0 k →∞,
0 k → 0.

Scaling the integrals

F[ρk] = k
d(m−1)

∫
Rd
U(ρ1) dx + k

−α
∫
Rd
V ρ1 +

k−λ

2

∫
Rd

∫
Rd
W (x− y)ρ1(x)ρ1(y) dy.

When m > 1, F[ρ] > 0 for all ρ.
I In F[ρk] the exponents are d(m− 1) > 0 whereas−α,−λ < 0, and the constants≥ 0.

I If V = W = 0, then we minimise k → 0 and we get full diffusion ρk → 0.

I If V > 0 or W > 0, then we have balancing effects. There can be minimisers ρ∞ ∈ L1.

When m ∈ (0, 1),
∫
Rd U(ρ1) < 0 and d(m− 1) < 0.

I If d(1−m) < max{α, λ} then the diffusion is dominant k → 0 gives inf F = −∞.

I If d(1−m) > max{α, λ} aggregation is dominant. There can be minimisers.

I We call fair competition range to m =
d−max{α,λ}

d
.
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Minimization and (ADE) when V = 0

Minimisation for U = m
m−1

ρm, V = 0, and W (x) = |x|λ/λ:

I [Carrillo, Hittmeir, Volzone, and Yao 2019]:
Any minimiser is µ∞ = ρ∞ +Mδ0 with ρ∞ radially symmetric

I [Carrillo, Delgadino, Dolbeault, Frank, and Hoffmann 2019]:

λ > 0 and m ∈ (0, 1)

• F is bounded below iff m ∈ ( d
d+λ

, 1)

• If m > d
d+λ

there exists a minimiser of the form µ∞ = ρ∞ +Mδ0

• If λ ∈ [2, 4] or λ ≥ 1 and m ≥ 1− 1
d

, then the global minimiser is unique (up to translation).

• M = 0 if λ ∈ (0, 2 + 4
(N−2)+

) and m ∈ ( d
d+λ

, 1)

I [Carrillo, Delgadino, Frank, and Lewin 2020]:
• If λ = 4 and d ≤ 5 then M = 0.

• If λ = 4 and d ≥ 6 then M = 0 if and only if m ≥ d−2
d+4

(
1 + 4

3d

)
.

• Numerical results for λ = 2k

Asymptotic behaviour as t→∞
I [Cañizo, Carrillo, and Schonbek 2012]

I [Carrillo, G-C, Yao, and Zeng 2021]:

W ∈ W1,∞,∇W ∈ Ln−ε,∆W ∈ L
n
2
−ε then ρ behaves like (HE) .
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Minimization and (ADE) when W = 0

When W = 0, δF
δρ

= 0 leads to

ρV+h = ( 1−m
m

(V + h))
−1

1−m , aV+h =

∫
Rd
ρV+h, h ≥ 0

[Carrillo, G-C, and Vázquez 2021]: m ∈ (0, 1) and V ∈ W2,∞
loc

(Rd) (α ≥ 2).

First, we replace Rd by BR , and add no-flux condition:

I For ρ0 ∈ L1, there is a global solution with mass conservation

I F always minimises in P2(BR)

I The minimiser is

µ∞ =

{
ρV+h if there exists h s.t. aV+h = 1,

ρV + (1− aV )δ0 if a0 < 1.

I If aV < 1, ∃ρ0 such that ∀r,
∫
Br

ρ(t) dx↗ 1− a0 +

∫
Br

ρ0 as t↗∞

We study the equation satisfies by the mass function M(t, r) =
∫
Br

ρ(t) dx

We prove similar results in Rd, with V that ensure minimisation and compactness of F .
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Thank you for your attention!
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J. A. Carrillo and D. Slepčev. “Example of a displacement convex functional of first order”. Calculus of
Variations and Partial Differential Equations 36.4 (2009), pp. 547–564.

F. Demengel and R. Temam. “Convex functions of a measure and applications”. Indiana Univ. Math. J. 33.5
(1986), pp. 673–709.

M. Giaquinta and S. Hildebrandt. Calculus of variations. I. Vol. 310. Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. The Lagrangian formalism.
Springer-Verlag, Berlin, 1996, pp. xxx+474.

M. A. Herrero and J. J. Velázquez. “Chemotactic collapse for the Keller-Segel model”. J. Math. Biol. 35.2
(1996), pp. 177–194.

P.-E. Jabin and Z. Wang. “Mean Field Limit for Stochastic Particle Systems”. Active Particles, Volume 1. Ed. by
N. Bellomo, P. Degond, and E. Tadmor. Modeling and Simulation in Science, Engineering and Technology.
Cham: Springer International Publishing, 2017, pp. 379–402.
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PME: Finite time extinction

Let ∂tρ = ∆ρm with m < d−2
d

and d ≥ 3 and ρ0 ∈ Lq(Rd) with q =
(1−m)d

2
:

d

dt

1

q

∫
Rd
ρq

PDE
= −C

∫
Rd
|∇ρ

m+q
2 |2

Sobolev
≤ −C

(∫
Rd
ρ
m+q

2
2∗
) 1

2∗

where 2∗ = 1
2
− 1
d

.
The equation d

dt
X = −CXα where α < 1 has finite time extinction.
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Computation of the Wasserstein gradient
Following [Ambrosio, Gigli, and Savare 2005, §10.4.1]

P2 is not a vector space, so there we are not using the intrinsic notion of Fréchet gradient.
The correct notion is Fréchet subdifferentials (we will not define it here).
Also, we can see P2 inside the space of measures.
Fix ρ0 ∈ P2(Rd). Then, the tangent space is given by

Tanρ0P2(Rd) =

{
ξ : ∃ζn ∈ Cc(Rd,R) s.t.

∫
Rd
|ξ −∇ζn|2 dρ0 → 0

}
Take ξ = ∇ζ with ζ ∈ C∞c (Rd; R). Then, by [Ambrosio, Gigli, and Savare 2005, Lemma 5.5.3]

ρε = (1Rd + εξ)#ρ0 =
ρ0

det(1Rd + ε∇ξ)
◦ (1Rd + εξ)

−1

The map (x, ε) 7→ ρε(x) is C2 and

lim
ε→0

ρε = ρ0,
∂

∂ε

∣∣∣
ε=0

ρε = −∇ · (ρξ).

For ε small enough 1Rd + ε∇ζ is an optimal transport map, so ρε is a constant-speed geodesic.
Hence, using standard variation formulae (see [Giaquinta and Hildebrandt 1996])

lim
ε→0

F[ρε]− F[ρ0]

ε
= −

∫
Rd

δF

δρ
[ρ0]∇ · (ρξ) =

∫
Rd
∇ζ∇

δF

δρ
[ρ0] dρ

This characterises∇d2F = −∇ · (ρ∇ δF
δρ

) in a broad distributional sense.
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Convex functions of a measure
Following [Demengel and Temam 1986]

Given

F[ρ] =

∫
Rd
f(ρ) dx

where f : R→ R.

The questions is what is the natural lower semicontinuous extension of F toM(Rd) with the weak-? topology.

Given a measure µ and mollifiers ηε we define ρε = µ ∗ ηε.
For |f(ξ)| ≤ C(1 + |ξ|) define

f∞(ξ) = lim
t→∞

f(tξ)

t
.

Since we can use the Lebesgue decomposition theorem µ = ρ dx + µs , where ρ is the Radon-Nikodym derivative
of µ. Then

F̃ [µ] =

∫
Rd
f(ρ) dx + f∞(µ

s
).

The notion of f∞(µs) is tricky (but possible) to define.
If f(s) = sm with m < 1, then f∞ = 0.
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Curves of maximal slope
(see [Ambrosio, Gigli, and Savare 2005])

Typically,
∂ρ

∂t
= −∇XF[ρ(t)] for X = L2, H1 is satisfied in the dual sense.

The way in which
∂ρ

∂t
= −∇d2F[ρ(t)] in rather tricky since P2 is not linear a space.

The main idea is the equivalence for u : [0, T ]→ Rd that

u
′
(t) = −∇F(u), ⇐⇒


d

dt
(F ◦ u) = −|∇F (u)||u′| orientation

|u′| = |∇F(u)| norm

We define the metric slopes

|µ′|(t) = lim sup
h→0

d2(µ(t + h), µ(t))

h
, |∂F|[µ] = lim sup

ν→µ

(F[µ]− F[ν])+

d2(µ, ν)

Definition 2 Maximal slope curve
A locally abs. cont. curve t 7→ µ(t) ∈ P2(Rd) such that t 7→ F[µ(t)] is abs. cont. and

1

2

∫ t
s
|µ′|2(r) dr +

1

2

∫ t
s
|∂F|2[µ(r)] dr ≤ F[µ(s)]− F[µ(t)] ∀0 ≤ s < t ≤ T
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More on ∇H1

Let
F [ρ] =

∫
Rd
F (x, ρ(x),∇ρ(x)) dx.

Expanding F (x, s, ξ) in Taylor expansion yields

lim
ε→0

F [ρ0 + εϕ]−F [ρ0]

ε
=

∫
Rd

(
∂F
∂s

(x, ρ0,∇ρ0)ϕ+ ∂F
∂ξ

(x, ρ0,∇ρ0) · ∇ϕ
)

=

∫
Rd

(
∂F
∂s

(x, ρ0,∇ρ0)−∇ ·
[
∂F
∂ξ

(x, ρ0,∇ρ0)
])
ϕ

Thus

∇H1F [ρ0] =
δF
δρ

[ρ0] =
∂F

∂s
[ρ0]−∇ ·

(
∂F

∂ξ
[ρ0]

)
.

This is the Euler-Lagrange equation!
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